pinctrl: nomadik: delete ancient pin control API
[linux-2.6.git] / net / socket.c
blob829b460acb87e61e88928f596589b51b0947411d
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
109 #ifdef CONFIG_NET_LL_RX_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .aio_read = sock_aio_read,
145 .aio_write = sock_aio_write,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .open = sock_no_open, /* special open code to disallow open via /proc */
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use);
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
221 int err;
222 int len;
224 err = get_user(len, ulen);
225 if (err)
226 return err;
227 if (len > klen)
228 len = klen;
229 if (len < 0 || len > sizeof(struct sockaddr_storage))
230 return -EINVAL;
231 if (len) {
232 if (audit_sockaddr(klen, kaddr))
233 return -ENOMEM;
234 if (copy_to_user(uaddr, kaddr, len))
235 return -EFAULT;
238 * "fromlen shall refer to the value before truncation.."
239 * 1003.1g
241 return __put_user(klen, ulen);
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 static struct inode *sock_alloc_inode(struct super_block *sb)
248 struct socket_alloc *ei;
249 struct socket_wq *wq;
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 if (!wq) {
256 kmem_cache_free(sock_inode_cachep, ei);
257 return NULL;
259 init_waitqueue_head(&wq->wait);
260 wq->fasync_list = NULL;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static int init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 dentry->d_inode->i_ino);
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
330 static struct vfsmount *sock_mnt __read_mostly;
332 static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
339 * Obtains the first available file descriptor and sets it up for use.
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374 SOCK_INODE(sock)->i_fop = &socket_file_ops;
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
390 EXPORT_SYMBOL(sock_alloc_file);
392 static int sock_map_fd(struct socket *sock, int flags)
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
409 struct socket *sock_from_file(struct file *file, int *err)
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
414 *err = -ENOTSOCK;
415 return NULL;
417 EXPORT_SYMBOL(sock_from_file);
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket *sockfd_lookup(int fd, int *err)
434 struct file *file;
435 struct socket *sock;
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
448 EXPORT_SYMBOL(sockfd_lookup);
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 struct file *file;
453 struct socket *sock;
455 *err = -EBADF;
456 file = fget_light(fd, fput_needed);
457 if (file) {
458 sock = sock_from_file(file, err);
459 if (sock)
460 return sock;
461 fput_light(file, *fput_needed);
463 return NULL;
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 const char *name, void *value, size_t size)
472 const char *proto_name;
473 size_t proto_size;
474 int error;
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
486 strncpy(value, proto_name, proto_size + 1);
488 error = proto_size + 1;
491 out:
492 return error;
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
498 ssize_t len;
499 ssize_t used = 0;
501 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
520 return used;
523 static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
529 * sock_alloc - allocate a socket
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
536 static struct socket *sock_alloc(void)
538 struct inode *inode;
539 struct socket *sock;
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
545 sock = SOCKET_I(inode);
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
559 * In theory you can't get an open on this inode, but /proc provides
560 * a back door. Remember to keep it shut otherwise you'll let the
561 * creepy crawlies in.
564 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
566 return -ENXIO;
569 const struct file_operations bad_sock_fops = {
570 .owner = THIS_MODULE,
571 .open = sock_no_open,
572 .llseek = noop_llseek,
576 * sock_release - close a socket
577 * @sock: socket to close
579 * The socket is released from the protocol stack if it has a release
580 * callback, and the inode is then released if the socket is bound to
581 * an inode not a file.
584 void sock_release(struct socket *sock)
586 if (sock->ops) {
587 struct module *owner = sock->ops->owner;
589 sock->ops->release(sock);
590 sock->ops = NULL;
591 module_put(owner);
594 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
595 printk(KERN_ERR "sock_release: fasync list not empty!\n");
597 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
598 return;
600 this_cpu_sub(sockets_in_use, 1);
601 if (!sock->file) {
602 iput(SOCK_INODE(sock));
603 return;
605 sock->file = NULL;
607 EXPORT_SYMBOL(sock_release);
609 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
611 *tx_flags = 0;
612 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
613 *tx_flags |= SKBTX_HW_TSTAMP;
614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
615 *tx_flags |= SKBTX_SW_TSTAMP;
616 if (sock_flag(sk, SOCK_WIFI_STATUS))
617 *tx_flags |= SKBTX_WIFI_STATUS;
619 EXPORT_SYMBOL(sock_tx_timestamp);
621 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
622 struct msghdr *msg, size_t size)
624 struct sock_iocb *si = kiocb_to_siocb(iocb);
626 si->sock = sock;
627 si->scm = NULL;
628 si->msg = msg;
629 si->size = size;
631 return sock->ops->sendmsg(iocb, sock, msg, size);
634 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
635 struct msghdr *msg, size_t size)
637 int err = security_socket_sendmsg(sock, msg, size);
639 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
642 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
644 struct kiocb iocb;
645 struct sock_iocb siocb;
646 int ret;
648 init_sync_kiocb(&iocb, NULL);
649 iocb.private = &siocb;
650 ret = __sock_sendmsg(&iocb, sock, msg, size);
651 if (-EIOCBQUEUED == ret)
652 ret = wait_on_sync_kiocb(&iocb);
653 return ret;
655 EXPORT_SYMBOL(sock_sendmsg);
657 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
659 struct kiocb iocb;
660 struct sock_iocb siocb;
661 int ret;
663 init_sync_kiocb(&iocb, NULL);
664 iocb.private = &siocb;
665 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
666 if (-EIOCBQUEUED == ret)
667 ret = wait_on_sync_kiocb(&iocb);
668 return ret;
671 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
672 struct kvec *vec, size_t num, size_t size)
674 mm_segment_t oldfs = get_fs();
675 int result;
677 set_fs(KERNEL_DS);
679 * the following is safe, since for compiler definitions of kvec and
680 * iovec are identical, yielding the same in-core layout and alignment
682 msg->msg_iov = (struct iovec *)vec;
683 msg->msg_iovlen = num;
684 result = sock_sendmsg(sock, msg, size);
685 set_fs(oldfs);
686 return result;
688 EXPORT_SYMBOL(kernel_sendmsg);
691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
693 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
694 struct sk_buff *skb)
696 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
697 struct timespec ts[3];
698 int empty = 1;
699 struct skb_shared_hwtstamps *shhwtstamps =
700 skb_hwtstamps(skb);
702 /* Race occurred between timestamp enabling and packet
703 receiving. Fill in the current time for now. */
704 if (need_software_tstamp && skb->tstamp.tv64 == 0)
705 __net_timestamp(skb);
707 if (need_software_tstamp) {
708 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
709 struct timeval tv;
710 skb_get_timestamp(skb, &tv);
711 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
712 sizeof(tv), &tv);
713 } else {
714 skb_get_timestampns(skb, &ts[0]);
715 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
716 sizeof(ts[0]), &ts[0]);
721 memset(ts, 0, sizeof(ts));
722 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
723 ktime_to_timespec_cond(skb->tstamp, ts + 0))
724 empty = 0;
725 if (shhwtstamps) {
726 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
727 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
728 empty = 0;
729 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
730 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
731 empty = 0;
733 if (!empty)
734 put_cmsg(msg, SOL_SOCKET,
735 SCM_TIMESTAMPING, sizeof(ts), &ts);
737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
739 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
740 struct sk_buff *skb)
742 int ack;
744 if (!sock_flag(sk, SOCK_WIFI_STATUS))
745 return;
746 if (!skb->wifi_acked_valid)
747 return;
749 ack = skb->wifi_acked;
751 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
755 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
756 struct sk_buff *skb)
758 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
759 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
760 sizeof(__u32), &skb->dropcount);
763 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
764 struct sk_buff *skb)
766 sock_recv_timestamp(msg, sk, skb);
767 sock_recv_drops(msg, sk, skb);
769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
771 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
772 struct msghdr *msg, size_t size, int flags)
774 struct sock_iocb *si = kiocb_to_siocb(iocb);
776 si->sock = sock;
777 si->scm = NULL;
778 si->msg = msg;
779 si->size = size;
780 si->flags = flags;
782 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
785 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
786 struct msghdr *msg, size_t size, int flags)
788 int err = security_socket_recvmsg(sock, msg, size, flags);
790 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
793 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
794 size_t size, int flags)
796 struct kiocb iocb;
797 struct sock_iocb siocb;
798 int ret;
800 init_sync_kiocb(&iocb, NULL);
801 iocb.private = &siocb;
802 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
803 if (-EIOCBQUEUED == ret)
804 ret = wait_on_sync_kiocb(&iocb);
805 return ret;
807 EXPORT_SYMBOL(sock_recvmsg);
809 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
810 size_t size, int flags)
812 struct kiocb iocb;
813 struct sock_iocb siocb;
814 int ret;
816 init_sync_kiocb(&iocb, NULL);
817 iocb.private = &siocb;
818 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
819 if (-EIOCBQUEUED == ret)
820 ret = wait_on_sync_kiocb(&iocb);
821 return ret;
825 * kernel_recvmsg - Receive a message from a socket (kernel space)
826 * @sock: The socket to receive the message from
827 * @msg: Received message
828 * @vec: Input s/g array for message data
829 * @num: Size of input s/g array
830 * @size: Number of bytes to read
831 * @flags: Message flags (MSG_DONTWAIT, etc...)
833 * On return the msg structure contains the scatter/gather array passed in the
834 * vec argument. The array is modified so that it consists of the unfilled
835 * portion of the original array.
837 * The returned value is the total number of bytes received, or an error.
839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
840 struct kvec *vec, size_t num, size_t size, int flags)
842 mm_segment_t oldfs = get_fs();
843 int result;
845 set_fs(KERNEL_DS);
847 * the following is safe, since for compiler definitions of kvec and
848 * iovec are identical, yielding the same in-core layout and alignment
850 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
851 result = sock_recvmsg(sock, msg, size, flags);
852 set_fs(oldfs);
853 return result;
855 EXPORT_SYMBOL(kernel_recvmsg);
857 static void sock_aio_dtor(struct kiocb *iocb)
859 kfree(iocb->private);
862 static ssize_t sock_sendpage(struct file *file, struct page *page,
863 int offset, size_t size, loff_t *ppos, int more)
865 struct socket *sock;
866 int flags;
868 sock = file->private_data;
870 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
872 flags |= more;
874 return kernel_sendpage(sock, page, offset, size, flags);
877 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
878 struct pipe_inode_info *pipe, size_t len,
879 unsigned int flags)
881 struct socket *sock = file->private_data;
883 if (unlikely(!sock->ops->splice_read))
884 return -EINVAL;
886 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
889 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
890 struct sock_iocb *siocb)
892 if (!is_sync_kiocb(iocb)) {
893 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
894 if (!siocb)
895 return NULL;
896 iocb->ki_dtor = sock_aio_dtor;
899 siocb->kiocb = iocb;
900 iocb->private = siocb;
901 return siocb;
904 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
905 struct file *file, const struct iovec *iov,
906 unsigned long nr_segs)
908 struct socket *sock = file->private_data;
909 size_t size = 0;
910 int i;
912 for (i = 0; i < nr_segs; i++)
913 size += iov[i].iov_len;
915 msg->msg_name = NULL;
916 msg->msg_namelen = 0;
917 msg->msg_control = NULL;
918 msg->msg_controllen = 0;
919 msg->msg_iov = (struct iovec *)iov;
920 msg->msg_iovlen = nr_segs;
921 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
923 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
926 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
927 unsigned long nr_segs, loff_t pos)
929 struct sock_iocb siocb, *x;
931 if (pos != 0)
932 return -ESPIPE;
934 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
935 return 0;
938 x = alloc_sock_iocb(iocb, &siocb);
939 if (!x)
940 return -ENOMEM;
941 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
944 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
945 struct file *file, const struct iovec *iov,
946 unsigned long nr_segs)
948 struct socket *sock = file->private_data;
949 size_t size = 0;
950 int i;
952 for (i = 0; i < nr_segs; i++)
953 size += iov[i].iov_len;
955 msg->msg_name = NULL;
956 msg->msg_namelen = 0;
957 msg->msg_control = NULL;
958 msg->msg_controllen = 0;
959 msg->msg_iov = (struct iovec *)iov;
960 msg->msg_iovlen = nr_segs;
961 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
962 if (sock->type == SOCK_SEQPACKET)
963 msg->msg_flags |= MSG_EOR;
965 return __sock_sendmsg(iocb, sock, msg, size);
968 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
969 unsigned long nr_segs, loff_t pos)
971 struct sock_iocb siocb, *x;
973 if (pos != 0)
974 return -ESPIPE;
976 x = alloc_sock_iocb(iocb, &siocb);
977 if (!x)
978 return -ENOMEM;
980 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
984 * Atomic setting of ioctl hooks to avoid race
985 * with module unload.
988 static DEFINE_MUTEX(br_ioctl_mutex);
989 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
991 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
993 mutex_lock(&br_ioctl_mutex);
994 br_ioctl_hook = hook;
995 mutex_unlock(&br_ioctl_mutex);
997 EXPORT_SYMBOL(brioctl_set);
999 static DEFINE_MUTEX(vlan_ioctl_mutex);
1000 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1002 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1004 mutex_lock(&vlan_ioctl_mutex);
1005 vlan_ioctl_hook = hook;
1006 mutex_unlock(&vlan_ioctl_mutex);
1008 EXPORT_SYMBOL(vlan_ioctl_set);
1010 static DEFINE_MUTEX(dlci_ioctl_mutex);
1011 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1013 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1015 mutex_lock(&dlci_ioctl_mutex);
1016 dlci_ioctl_hook = hook;
1017 mutex_unlock(&dlci_ioctl_mutex);
1019 EXPORT_SYMBOL(dlci_ioctl_set);
1021 static long sock_do_ioctl(struct net *net, struct socket *sock,
1022 unsigned int cmd, unsigned long arg)
1024 int err;
1025 void __user *argp = (void __user *)arg;
1027 err = sock->ops->ioctl(sock, cmd, arg);
1030 * If this ioctl is unknown try to hand it down
1031 * to the NIC driver.
1033 if (err == -ENOIOCTLCMD)
1034 err = dev_ioctl(net, cmd, argp);
1036 return err;
1040 * With an ioctl, arg may well be a user mode pointer, but we don't know
1041 * what to do with it - that's up to the protocol still.
1044 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1046 struct socket *sock;
1047 struct sock *sk;
1048 void __user *argp = (void __user *)arg;
1049 int pid, err;
1050 struct net *net;
1052 sock = file->private_data;
1053 sk = sock->sk;
1054 net = sock_net(sk);
1055 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1056 err = dev_ioctl(net, cmd, argp);
1057 } else
1058 #ifdef CONFIG_WEXT_CORE
1059 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1060 err = dev_ioctl(net, cmd, argp);
1061 } else
1062 #endif
1063 switch (cmd) {
1064 case FIOSETOWN:
1065 case SIOCSPGRP:
1066 err = -EFAULT;
1067 if (get_user(pid, (int __user *)argp))
1068 break;
1069 err = f_setown(sock->file, pid, 1);
1070 break;
1071 case FIOGETOWN:
1072 case SIOCGPGRP:
1073 err = put_user(f_getown(sock->file),
1074 (int __user *)argp);
1075 break;
1076 case SIOCGIFBR:
1077 case SIOCSIFBR:
1078 case SIOCBRADDBR:
1079 case SIOCBRDELBR:
1080 err = -ENOPKG;
1081 if (!br_ioctl_hook)
1082 request_module("bridge");
1084 mutex_lock(&br_ioctl_mutex);
1085 if (br_ioctl_hook)
1086 err = br_ioctl_hook(net, cmd, argp);
1087 mutex_unlock(&br_ioctl_mutex);
1088 break;
1089 case SIOCGIFVLAN:
1090 case SIOCSIFVLAN:
1091 err = -ENOPKG;
1092 if (!vlan_ioctl_hook)
1093 request_module("8021q");
1095 mutex_lock(&vlan_ioctl_mutex);
1096 if (vlan_ioctl_hook)
1097 err = vlan_ioctl_hook(net, argp);
1098 mutex_unlock(&vlan_ioctl_mutex);
1099 break;
1100 case SIOCADDDLCI:
1101 case SIOCDELDLCI:
1102 err = -ENOPKG;
1103 if (!dlci_ioctl_hook)
1104 request_module("dlci");
1106 mutex_lock(&dlci_ioctl_mutex);
1107 if (dlci_ioctl_hook)
1108 err = dlci_ioctl_hook(cmd, argp);
1109 mutex_unlock(&dlci_ioctl_mutex);
1110 break;
1111 default:
1112 err = sock_do_ioctl(net, sock, cmd, arg);
1113 break;
1115 return err;
1118 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1120 int err;
1121 struct socket *sock = NULL;
1123 err = security_socket_create(family, type, protocol, 1);
1124 if (err)
1125 goto out;
1127 sock = sock_alloc();
1128 if (!sock) {
1129 err = -ENOMEM;
1130 goto out;
1133 sock->type = type;
1134 err = security_socket_post_create(sock, family, type, protocol, 1);
1135 if (err)
1136 goto out_release;
1138 out:
1139 *res = sock;
1140 return err;
1141 out_release:
1142 sock_release(sock);
1143 sock = NULL;
1144 goto out;
1146 EXPORT_SYMBOL(sock_create_lite);
1148 /* No kernel lock held - perfect */
1149 static unsigned int sock_poll(struct file *file, poll_table *wait)
1151 unsigned int busy_flag = 0;
1152 struct socket *sock;
1155 * We can't return errors to poll, so it's either yes or no.
1157 sock = file->private_data;
1159 if (sk_can_busy_loop(sock->sk)) {
1160 /* this socket can poll_ll so tell the system call */
1161 busy_flag = POLL_BUSY_LOOP;
1163 /* once, only if requested by syscall */
1164 if (wait && (wait->_key & POLL_BUSY_LOOP))
1165 sk_busy_loop(sock->sk, 1);
1168 return busy_flag | sock->ops->poll(file, sock, wait);
1171 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1173 struct socket *sock = file->private_data;
1175 return sock->ops->mmap(file, sock, vma);
1178 static int sock_close(struct inode *inode, struct file *filp)
1180 sock_release(SOCKET_I(inode));
1181 return 0;
1185 * Update the socket async list
1187 * Fasync_list locking strategy.
1189 * 1. fasync_list is modified only under process context socket lock
1190 * i.e. under semaphore.
1191 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192 * or under socket lock
1195 static int sock_fasync(int fd, struct file *filp, int on)
1197 struct socket *sock = filp->private_data;
1198 struct sock *sk = sock->sk;
1199 struct socket_wq *wq;
1201 if (sk == NULL)
1202 return -EINVAL;
1204 lock_sock(sk);
1205 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1206 fasync_helper(fd, filp, on, &wq->fasync_list);
1208 if (!wq->fasync_list)
1209 sock_reset_flag(sk, SOCK_FASYNC);
1210 else
1211 sock_set_flag(sk, SOCK_FASYNC);
1213 release_sock(sk);
1214 return 0;
1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1219 int sock_wake_async(struct socket *sock, int how, int band)
1221 struct socket_wq *wq;
1223 if (!sock)
1224 return -1;
1225 rcu_read_lock();
1226 wq = rcu_dereference(sock->wq);
1227 if (!wq || !wq->fasync_list) {
1228 rcu_read_unlock();
1229 return -1;
1231 switch (how) {
1232 case SOCK_WAKE_WAITD:
1233 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1234 break;
1235 goto call_kill;
1236 case SOCK_WAKE_SPACE:
1237 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1238 break;
1239 /* fall through */
1240 case SOCK_WAKE_IO:
1241 call_kill:
1242 kill_fasync(&wq->fasync_list, SIGIO, band);
1243 break;
1244 case SOCK_WAKE_URG:
1245 kill_fasync(&wq->fasync_list, SIGURG, band);
1247 rcu_read_unlock();
1248 return 0;
1250 EXPORT_SYMBOL(sock_wake_async);
1252 int __sock_create(struct net *net, int family, int type, int protocol,
1253 struct socket **res, int kern)
1255 int err;
1256 struct socket *sock;
1257 const struct net_proto_family *pf;
1260 * Check protocol is in range
1262 if (family < 0 || family >= NPROTO)
1263 return -EAFNOSUPPORT;
1264 if (type < 0 || type >= SOCK_MAX)
1265 return -EINVAL;
1267 /* Compatibility.
1269 This uglymoron is moved from INET layer to here to avoid
1270 deadlock in module load.
1272 if (family == PF_INET && type == SOCK_PACKET) {
1273 static int warned;
1274 if (!warned) {
1275 warned = 1;
1276 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1277 current->comm);
1279 family = PF_PACKET;
1282 err = security_socket_create(family, type, protocol, kern);
1283 if (err)
1284 return err;
1287 * Allocate the socket and allow the family to set things up. if
1288 * the protocol is 0, the family is instructed to select an appropriate
1289 * default.
1291 sock = sock_alloc();
1292 if (!sock) {
1293 net_warn_ratelimited("socket: no more sockets\n");
1294 return -ENFILE; /* Not exactly a match, but its the
1295 closest posix thing */
1298 sock->type = type;
1300 #ifdef CONFIG_MODULES
1301 /* Attempt to load a protocol module if the find failed.
1303 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304 * requested real, full-featured networking support upon configuration.
1305 * Otherwise module support will break!
1307 if (rcu_access_pointer(net_families[family]) == NULL)
1308 request_module("net-pf-%d", family);
1309 #endif
1311 rcu_read_lock();
1312 pf = rcu_dereference(net_families[family]);
1313 err = -EAFNOSUPPORT;
1314 if (!pf)
1315 goto out_release;
1318 * We will call the ->create function, that possibly is in a loadable
1319 * module, so we have to bump that loadable module refcnt first.
1321 if (!try_module_get(pf->owner))
1322 goto out_release;
1324 /* Now protected by module ref count */
1325 rcu_read_unlock();
1327 err = pf->create(net, sock, protocol, kern);
1328 if (err < 0)
1329 goto out_module_put;
1332 * Now to bump the refcnt of the [loadable] module that owns this
1333 * socket at sock_release time we decrement its refcnt.
1335 if (!try_module_get(sock->ops->owner))
1336 goto out_module_busy;
1339 * Now that we're done with the ->create function, the [loadable]
1340 * module can have its refcnt decremented
1342 module_put(pf->owner);
1343 err = security_socket_post_create(sock, family, type, protocol, kern);
1344 if (err)
1345 goto out_sock_release;
1346 *res = sock;
1348 return 0;
1350 out_module_busy:
1351 err = -EAFNOSUPPORT;
1352 out_module_put:
1353 sock->ops = NULL;
1354 module_put(pf->owner);
1355 out_sock_release:
1356 sock_release(sock);
1357 return err;
1359 out_release:
1360 rcu_read_unlock();
1361 goto out_sock_release;
1363 EXPORT_SYMBOL(__sock_create);
1365 int sock_create(int family, int type, int protocol, struct socket **res)
1367 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1369 EXPORT_SYMBOL(sock_create);
1371 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1373 return __sock_create(&init_net, family, type, protocol, res, 1);
1375 EXPORT_SYMBOL(sock_create_kern);
1377 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1379 int retval;
1380 struct socket *sock;
1381 int flags;
1383 /* Check the SOCK_* constants for consistency. */
1384 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1385 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1386 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1387 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1389 flags = type & ~SOCK_TYPE_MASK;
1390 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391 return -EINVAL;
1392 type &= SOCK_TYPE_MASK;
1394 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1395 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1397 retval = sock_create(family, type, protocol, &sock);
1398 if (retval < 0)
1399 goto out;
1401 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1402 if (retval < 0)
1403 goto out_release;
1405 out:
1406 /* It may be already another descriptor 8) Not kernel problem. */
1407 return retval;
1409 out_release:
1410 sock_release(sock);
1411 return retval;
1415 * Create a pair of connected sockets.
1418 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1419 int __user *, usockvec)
1421 struct socket *sock1, *sock2;
1422 int fd1, fd2, err;
1423 struct file *newfile1, *newfile2;
1424 int flags;
1426 flags = type & ~SOCK_TYPE_MASK;
1427 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1428 return -EINVAL;
1429 type &= SOCK_TYPE_MASK;
1431 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1432 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435 * Obtain the first socket and check if the underlying protocol
1436 * supports the socketpair call.
1439 err = sock_create(family, type, protocol, &sock1);
1440 if (err < 0)
1441 goto out;
1443 err = sock_create(family, type, protocol, &sock2);
1444 if (err < 0)
1445 goto out_release_1;
1447 err = sock1->ops->socketpair(sock1, sock2);
1448 if (err < 0)
1449 goto out_release_both;
1451 fd1 = get_unused_fd_flags(flags);
1452 if (unlikely(fd1 < 0)) {
1453 err = fd1;
1454 goto out_release_both;
1456 fd2 = get_unused_fd_flags(flags);
1457 if (unlikely(fd2 < 0)) {
1458 err = fd2;
1459 put_unused_fd(fd1);
1460 goto out_release_both;
1463 newfile1 = sock_alloc_file(sock1, flags, NULL);
1464 if (unlikely(IS_ERR(newfile1))) {
1465 err = PTR_ERR(newfile1);
1466 put_unused_fd(fd1);
1467 put_unused_fd(fd2);
1468 goto out_release_both;
1471 newfile2 = sock_alloc_file(sock2, flags, NULL);
1472 if (IS_ERR(newfile2)) {
1473 err = PTR_ERR(newfile2);
1474 fput(newfile1);
1475 put_unused_fd(fd1);
1476 put_unused_fd(fd2);
1477 sock_release(sock2);
1478 goto out;
1481 audit_fd_pair(fd1, fd2);
1482 fd_install(fd1, newfile1);
1483 fd_install(fd2, newfile2);
1484 /* fd1 and fd2 may be already another descriptors.
1485 * Not kernel problem.
1488 err = put_user(fd1, &usockvec[0]);
1489 if (!err)
1490 err = put_user(fd2, &usockvec[1]);
1491 if (!err)
1492 return 0;
1494 sys_close(fd2);
1495 sys_close(fd1);
1496 return err;
1498 out_release_both:
1499 sock_release(sock2);
1500 out_release_1:
1501 sock_release(sock1);
1502 out:
1503 return err;
1507 * Bind a name to a socket. Nothing much to do here since it's
1508 * the protocol's responsibility to handle the local address.
1510 * We move the socket address to kernel space before we call
1511 * the protocol layer (having also checked the address is ok).
1514 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1516 struct socket *sock;
1517 struct sockaddr_storage address;
1518 int err, fput_needed;
1520 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 if (sock) {
1522 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1523 if (err >= 0) {
1524 err = security_socket_bind(sock,
1525 (struct sockaddr *)&address,
1526 addrlen);
1527 if (!err)
1528 err = sock->ops->bind(sock,
1529 (struct sockaddr *)
1530 &address, addrlen);
1532 fput_light(sock->file, fput_needed);
1534 return err;
1538 * Perform a listen. Basically, we allow the protocol to do anything
1539 * necessary for a listen, and if that works, we mark the socket as
1540 * ready for listening.
1543 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1545 struct socket *sock;
1546 int err, fput_needed;
1547 int somaxconn;
1549 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550 if (sock) {
1551 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1552 if ((unsigned int)backlog > somaxconn)
1553 backlog = somaxconn;
1555 err = security_socket_listen(sock, backlog);
1556 if (!err)
1557 err = sock->ops->listen(sock, backlog);
1559 fput_light(sock->file, fput_needed);
1561 return err;
1565 * For accept, we attempt to create a new socket, set up the link
1566 * with the client, wake up the client, then return the new
1567 * connected fd. We collect the address of the connector in kernel
1568 * space and move it to user at the very end. This is unclean because
1569 * we open the socket then return an error.
1571 * 1003.1g adds the ability to recvmsg() to query connection pending
1572 * status to recvmsg. We need to add that support in a way thats
1573 * clean when we restucture accept also.
1576 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1577 int __user *, upeer_addrlen, int, flags)
1579 struct socket *sock, *newsock;
1580 struct file *newfile;
1581 int err, len, newfd, fput_needed;
1582 struct sockaddr_storage address;
1584 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1585 return -EINVAL;
1587 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1588 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1590 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1591 if (!sock)
1592 goto out;
1594 err = -ENFILE;
1595 newsock = sock_alloc();
1596 if (!newsock)
1597 goto out_put;
1599 newsock->type = sock->type;
1600 newsock->ops = sock->ops;
1603 * We don't need try_module_get here, as the listening socket (sock)
1604 * has the protocol module (sock->ops->owner) held.
1606 __module_get(newsock->ops->owner);
1608 newfd = get_unused_fd_flags(flags);
1609 if (unlikely(newfd < 0)) {
1610 err = newfd;
1611 sock_release(newsock);
1612 goto out_put;
1614 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1615 if (unlikely(IS_ERR(newfile))) {
1616 err = PTR_ERR(newfile);
1617 put_unused_fd(newfd);
1618 sock_release(newsock);
1619 goto out_put;
1622 err = security_socket_accept(sock, newsock);
1623 if (err)
1624 goto out_fd;
1626 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1627 if (err < 0)
1628 goto out_fd;
1630 if (upeer_sockaddr) {
1631 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1632 &len, 2) < 0) {
1633 err = -ECONNABORTED;
1634 goto out_fd;
1636 err = move_addr_to_user(&address,
1637 len, upeer_sockaddr, upeer_addrlen);
1638 if (err < 0)
1639 goto out_fd;
1642 /* File flags are not inherited via accept() unlike another OSes. */
1644 fd_install(newfd, newfile);
1645 err = newfd;
1647 out_put:
1648 fput_light(sock->file, fput_needed);
1649 out:
1650 return err;
1651 out_fd:
1652 fput(newfile);
1653 put_unused_fd(newfd);
1654 goto out_put;
1657 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1658 int __user *, upeer_addrlen)
1660 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1664 * Attempt to connect to a socket with the server address. The address
1665 * is in user space so we verify it is OK and move it to kernel space.
1667 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1668 * break bindings
1670 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1671 * other SEQPACKET protocols that take time to connect() as it doesn't
1672 * include the -EINPROGRESS status for such sockets.
1675 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1676 int, addrlen)
1678 struct socket *sock;
1679 struct sockaddr_storage address;
1680 int err, fput_needed;
1682 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683 if (!sock)
1684 goto out;
1685 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1686 if (err < 0)
1687 goto out_put;
1689 err =
1690 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1691 if (err)
1692 goto out_put;
1694 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1695 sock->file->f_flags);
1696 out_put:
1697 fput_light(sock->file, fput_needed);
1698 out:
1699 return err;
1703 * Get the local address ('name') of a socket object. Move the obtained
1704 * name to user space.
1707 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1708 int __user *, usockaddr_len)
1710 struct socket *sock;
1711 struct sockaddr_storage address;
1712 int len, err, fput_needed;
1714 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1715 if (!sock)
1716 goto out;
1718 err = security_socket_getsockname(sock);
1719 if (err)
1720 goto out_put;
1722 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1723 if (err)
1724 goto out_put;
1725 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1727 out_put:
1728 fput_light(sock->file, fput_needed);
1729 out:
1730 return err;
1734 * Get the remote address ('name') of a socket object. Move the obtained
1735 * name to user space.
1738 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1739 int __user *, usockaddr_len)
1741 struct socket *sock;
1742 struct sockaddr_storage address;
1743 int len, err, fput_needed;
1745 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 if (sock != NULL) {
1747 err = security_socket_getpeername(sock);
1748 if (err) {
1749 fput_light(sock->file, fput_needed);
1750 return err;
1753 err =
1754 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1756 if (!err)
1757 err = move_addr_to_user(&address, len, usockaddr,
1758 usockaddr_len);
1759 fput_light(sock->file, fput_needed);
1761 return err;
1765 * Send a datagram to a given address. We move the address into kernel
1766 * space and check the user space data area is readable before invoking
1767 * the protocol.
1770 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1771 unsigned int, flags, struct sockaddr __user *, addr,
1772 int, addr_len)
1774 struct socket *sock;
1775 struct sockaddr_storage address;
1776 int err;
1777 struct msghdr msg;
1778 struct iovec iov;
1779 int fput_needed;
1781 if (len > INT_MAX)
1782 len = INT_MAX;
1783 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 if (!sock)
1785 goto out;
1787 iov.iov_base = buff;
1788 iov.iov_len = len;
1789 msg.msg_name = NULL;
1790 msg.msg_iov = &iov;
1791 msg.msg_iovlen = 1;
1792 msg.msg_control = NULL;
1793 msg.msg_controllen = 0;
1794 msg.msg_namelen = 0;
1795 if (addr) {
1796 err = move_addr_to_kernel(addr, addr_len, &address);
1797 if (err < 0)
1798 goto out_put;
1799 msg.msg_name = (struct sockaddr *)&address;
1800 msg.msg_namelen = addr_len;
1802 if (sock->file->f_flags & O_NONBLOCK)
1803 flags |= MSG_DONTWAIT;
1804 msg.msg_flags = flags;
1805 err = sock_sendmsg(sock, &msg, len);
1807 out_put:
1808 fput_light(sock->file, fput_needed);
1809 out:
1810 return err;
1814 * Send a datagram down a socket.
1817 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1818 unsigned int, flags)
1820 return sys_sendto(fd, buff, len, flags, NULL, 0);
1824 * Receive a frame from the socket and optionally record the address of the
1825 * sender. We verify the buffers are writable and if needed move the
1826 * sender address from kernel to user space.
1829 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1830 unsigned int, flags, struct sockaddr __user *, addr,
1831 int __user *, addr_len)
1833 struct socket *sock;
1834 struct iovec iov;
1835 struct msghdr msg;
1836 struct sockaddr_storage address;
1837 int err, err2;
1838 int fput_needed;
1840 if (size > INT_MAX)
1841 size = INT_MAX;
1842 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1843 if (!sock)
1844 goto out;
1846 msg.msg_control = NULL;
1847 msg.msg_controllen = 0;
1848 msg.msg_iovlen = 1;
1849 msg.msg_iov = &iov;
1850 iov.iov_len = size;
1851 iov.iov_base = ubuf;
1852 msg.msg_name = (struct sockaddr *)&address;
1853 msg.msg_namelen = sizeof(address);
1854 if (sock->file->f_flags & O_NONBLOCK)
1855 flags |= MSG_DONTWAIT;
1856 err = sock_recvmsg(sock, &msg, size, flags);
1858 if (err >= 0 && addr != NULL) {
1859 err2 = move_addr_to_user(&address,
1860 msg.msg_namelen, addr, addr_len);
1861 if (err2 < 0)
1862 err = err2;
1865 fput_light(sock->file, fput_needed);
1866 out:
1867 return err;
1871 * Receive a datagram from a socket.
1874 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1875 unsigned int flags)
1877 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1881 * Set a socket option. Because we don't know the option lengths we have
1882 * to pass the user mode parameter for the protocols to sort out.
1885 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1886 char __user *, optval, int, optlen)
1888 int err, fput_needed;
1889 struct socket *sock;
1891 if (optlen < 0)
1892 return -EINVAL;
1894 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1895 if (sock != NULL) {
1896 err = security_socket_setsockopt(sock, level, optname);
1897 if (err)
1898 goto out_put;
1900 if (level == SOL_SOCKET)
1901 err =
1902 sock_setsockopt(sock, level, optname, optval,
1903 optlen);
1904 else
1905 err =
1906 sock->ops->setsockopt(sock, level, optname, optval,
1907 optlen);
1908 out_put:
1909 fput_light(sock->file, fput_needed);
1911 return err;
1915 * Get a socket option. Because we don't know the option lengths we have
1916 * to pass a user mode parameter for the protocols to sort out.
1919 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1920 char __user *, optval, int __user *, optlen)
1922 int err, fput_needed;
1923 struct socket *sock;
1925 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1926 if (sock != NULL) {
1927 err = security_socket_getsockopt(sock, level, optname);
1928 if (err)
1929 goto out_put;
1931 if (level == SOL_SOCKET)
1932 err =
1933 sock_getsockopt(sock, level, optname, optval,
1934 optlen);
1935 else
1936 err =
1937 sock->ops->getsockopt(sock, level, optname, optval,
1938 optlen);
1939 out_put:
1940 fput_light(sock->file, fput_needed);
1942 return err;
1946 * Shutdown a socket.
1949 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1951 int err, fput_needed;
1952 struct socket *sock;
1954 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1955 if (sock != NULL) {
1956 err = security_socket_shutdown(sock, how);
1957 if (!err)
1958 err = sock->ops->shutdown(sock, how);
1959 fput_light(sock->file, fput_needed);
1961 return err;
1964 /* A couple of helpful macros for getting the address of the 32/64 bit
1965 * fields which are the same type (int / unsigned) on our platforms.
1967 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1968 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1969 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1971 struct used_address {
1972 struct sockaddr_storage name;
1973 unsigned int name_len;
1976 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1977 struct msghdr *msg_sys, unsigned int flags,
1978 struct used_address *used_address)
1980 struct compat_msghdr __user *msg_compat =
1981 (struct compat_msghdr __user *)msg;
1982 struct sockaddr_storage address;
1983 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1984 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1985 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1986 /* 20 is size of ipv6_pktinfo */
1987 unsigned char *ctl_buf = ctl;
1988 int err, ctl_len, total_len;
1990 err = -EFAULT;
1991 if (MSG_CMSG_COMPAT & flags) {
1992 if (get_compat_msghdr(msg_sys, msg_compat))
1993 return -EFAULT;
1994 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1995 return -EFAULT;
1997 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1998 err = -EMSGSIZE;
1999 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2000 goto out;
2001 err = -ENOMEM;
2002 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2003 GFP_KERNEL);
2004 if (!iov)
2005 goto out;
2008 /* This will also move the address data into kernel space */
2009 if (MSG_CMSG_COMPAT & flags) {
2010 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2011 } else
2012 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2013 if (err < 0)
2014 goto out_freeiov;
2015 total_len = err;
2017 err = -ENOBUFS;
2019 if (msg_sys->msg_controllen > INT_MAX)
2020 goto out_freeiov;
2021 ctl_len = msg_sys->msg_controllen;
2022 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2023 err =
2024 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2025 sizeof(ctl));
2026 if (err)
2027 goto out_freeiov;
2028 ctl_buf = msg_sys->msg_control;
2029 ctl_len = msg_sys->msg_controllen;
2030 } else if (ctl_len) {
2031 if (ctl_len > sizeof(ctl)) {
2032 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2033 if (ctl_buf == NULL)
2034 goto out_freeiov;
2036 err = -EFAULT;
2038 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2039 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2040 * checking falls down on this.
2042 if (copy_from_user(ctl_buf,
2043 (void __user __force *)msg_sys->msg_control,
2044 ctl_len))
2045 goto out_freectl;
2046 msg_sys->msg_control = ctl_buf;
2048 msg_sys->msg_flags = flags;
2050 if (sock->file->f_flags & O_NONBLOCK)
2051 msg_sys->msg_flags |= MSG_DONTWAIT;
2053 * If this is sendmmsg() and current destination address is same as
2054 * previously succeeded address, omit asking LSM's decision.
2055 * used_address->name_len is initialized to UINT_MAX so that the first
2056 * destination address never matches.
2058 if (used_address && msg_sys->msg_name &&
2059 used_address->name_len == msg_sys->msg_namelen &&
2060 !memcmp(&used_address->name, msg_sys->msg_name,
2061 used_address->name_len)) {
2062 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2063 goto out_freectl;
2065 err = sock_sendmsg(sock, msg_sys, total_len);
2067 * If this is sendmmsg() and sending to current destination address was
2068 * successful, remember it.
2070 if (used_address && err >= 0) {
2071 used_address->name_len = msg_sys->msg_namelen;
2072 if (msg_sys->msg_name)
2073 memcpy(&used_address->name, msg_sys->msg_name,
2074 used_address->name_len);
2077 out_freectl:
2078 if (ctl_buf != ctl)
2079 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2080 out_freeiov:
2081 if (iov != iovstack)
2082 kfree(iov);
2083 out:
2084 return err;
2088 * BSD sendmsg interface
2091 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2093 int fput_needed, err;
2094 struct msghdr msg_sys;
2095 struct socket *sock;
2097 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2098 if (!sock)
2099 goto out;
2101 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2103 fput_light(sock->file, fput_needed);
2104 out:
2105 return err;
2108 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2110 if (flags & MSG_CMSG_COMPAT)
2111 return -EINVAL;
2112 return __sys_sendmsg(fd, msg, flags);
2116 * Linux sendmmsg interface
2119 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2120 unsigned int flags)
2122 int fput_needed, err, datagrams;
2123 struct socket *sock;
2124 struct mmsghdr __user *entry;
2125 struct compat_mmsghdr __user *compat_entry;
2126 struct msghdr msg_sys;
2127 struct used_address used_address;
2129 if (vlen > UIO_MAXIOV)
2130 vlen = UIO_MAXIOV;
2132 datagrams = 0;
2134 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2135 if (!sock)
2136 return err;
2138 used_address.name_len = UINT_MAX;
2139 entry = mmsg;
2140 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2141 err = 0;
2143 while (datagrams < vlen) {
2144 if (MSG_CMSG_COMPAT & flags) {
2145 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2146 &msg_sys, flags, &used_address);
2147 if (err < 0)
2148 break;
2149 err = __put_user(err, &compat_entry->msg_len);
2150 ++compat_entry;
2151 } else {
2152 err = ___sys_sendmsg(sock,
2153 (struct msghdr __user *)entry,
2154 &msg_sys, flags, &used_address);
2155 if (err < 0)
2156 break;
2157 err = put_user(err, &entry->msg_len);
2158 ++entry;
2161 if (err)
2162 break;
2163 ++datagrams;
2166 fput_light(sock->file, fput_needed);
2168 /* We only return an error if no datagrams were able to be sent */
2169 if (datagrams != 0)
2170 return datagrams;
2172 return err;
2175 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2176 unsigned int, vlen, unsigned int, flags)
2178 if (flags & MSG_CMSG_COMPAT)
2179 return -EINVAL;
2180 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2183 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2184 struct msghdr *msg_sys, unsigned int flags, int nosec)
2186 struct compat_msghdr __user *msg_compat =
2187 (struct compat_msghdr __user *)msg;
2188 struct iovec iovstack[UIO_FASTIOV];
2189 struct iovec *iov = iovstack;
2190 unsigned long cmsg_ptr;
2191 int err, total_len, len;
2193 /* kernel mode address */
2194 struct sockaddr_storage addr;
2196 /* user mode address pointers */
2197 struct sockaddr __user *uaddr;
2198 int __user *uaddr_len;
2200 if (MSG_CMSG_COMPAT & flags) {
2201 if (get_compat_msghdr(msg_sys, msg_compat))
2202 return -EFAULT;
2203 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2204 return -EFAULT;
2206 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2207 err = -EMSGSIZE;
2208 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2209 goto out;
2210 err = -ENOMEM;
2211 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2212 GFP_KERNEL);
2213 if (!iov)
2214 goto out;
2218 * Save the user-mode address (verify_iovec will change the
2219 * kernel msghdr to use the kernel address space)
2222 uaddr = (__force void __user *)msg_sys->msg_name;
2223 uaddr_len = COMPAT_NAMELEN(msg);
2224 if (MSG_CMSG_COMPAT & flags) {
2225 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2226 } else
2227 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2228 if (err < 0)
2229 goto out_freeiov;
2230 total_len = err;
2232 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2233 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2235 if (sock->file->f_flags & O_NONBLOCK)
2236 flags |= MSG_DONTWAIT;
2237 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2238 total_len, flags);
2239 if (err < 0)
2240 goto out_freeiov;
2241 len = err;
2243 if (uaddr != NULL) {
2244 err = move_addr_to_user(&addr,
2245 msg_sys->msg_namelen, uaddr,
2246 uaddr_len);
2247 if (err < 0)
2248 goto out_freeiov;
2250 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2251 COMPAT_FLAGS(msg));
2252 if (err)
2253 goto out_freeiov;
2254 if (MSG_CMSG_COMPAT & flags)
2255 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2256 &msg_compat->msg_controllen);
2257 else
2258 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2259 &msg->msg_controllen);
2260 if (err)
2261 goto out_freeiov;
2262 err = len;
2264 out_freeiov:
2265 if (iov != iovstack)
2266 kfree(iov);
2267 out:
2268 return err;
2272 * BSD recvmsg interface
2275 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2277 int fput_needed, err;
2278 struct msghdr msg_sys;
2279 struct socket *sock;
2281 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2282 if (!sock)
2283 goto out;
2285 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2287 fput_light(sock->file, fput_needed);
2288 out:
2289 return err;
2292 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2293 unsigned int, flags)
2295 if (flags & MSG_CMSG_COMPAT)
2296 return -EINVAL;
2297 return __sys_recvmsg(fd, msg, flags);
2301 * Linux recvmmsg interface
2304 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2305 unsigned int flags, struct timespec *timeout)
2307 int fput_needed, err, datagrams;
2308 struct socket *sock;
2309 struct mmsghdr __user *entry;
2310 struct compat_mmsghdr __user *compat_entry;
2311 struct msghdr msg_sys;
2312 struct timespec end_time;
2314 if (timeout &&
2315 poll_select_set_timeout(&end_time, timeout->tv_sec,
2316 timeout->tv_nsec))
2317 return -EINVAL;
2319 datagrams = 0;
2321 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2322 if (!sock)
2323 return err;
2325 err = sock_error(sock->sk);
2326 if (err)
2327 goto out_put;
2329 entry = mmsg;
2330 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2332 while (datagrams < vlen) {
2334 * No need to ask LSM for more than the first datagram.
2336 if (MSG_CMSG_COMPAT & flags) {
2337 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2338 &msg_sys, flags & ~MSG_WAITFORONE,
2339 datagrams);
2340 if (err < 0)
2341 break;
2342 err = __put_user(err, &compat_entry->msg_len);
2343 ++compat_entry;
2344 } else {
2345 err = ___sys_recvmsg(sock,
2346 (struct msghdr __user *)entry,
2347 &msg_sys, flags & ~MSG_WAITFORONE,
2348 datagrams);
2349 if (err < 0)
2350 break;
2351 err = put_user(err, &entry->msg_len);
2352 ++entry;
2355 if (err)
2356 break;
2357 ++datagrams;
2359 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2360 if (flags & MSG_WAITFORONE)
2361 flags |= MSG_DONTWAIT;
2363 if (timeout) {
2364 ktime_get_ts(timeout);
2365 *timeout = timespec_sub(end_time, *timeout);
2366 if (timeout->tv_sec < 0) {
2367 timeout->tv_sec = timeout->tv_nsec = 0;
2368 break;
2371 /* Timeout, return less than vlen datagrams */
2372 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2373 break;
2376 /* Out of band data, return right away */
2377 if (msg_sys.msg_flags & MSG_OOB)
2378 break;
2381 out_put:
2382 fput_light(sock->file, fput_needed);
2384 if (err == 0)
2385 return datagrams;
2387 if (datagrams != 0) {
2389 * We may return less entries than requested (vlen) if the
2390 * sock is non block and there aren't enough datagrams...
2392 if (err != -EAGAIN) {
2394 * ... or if recvmsg returns an error after we
2395 * received some datagrams, where we record the
2396 * error to return on the next call or if the
2397 * app asks about it using getsockopt(SO_ERROR).
2399 sock->sk->sk_err = -err;
2402 return datagrams;
2405 return err;
2408 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2409 unsigned int, vlen, unsigned int, flags,
2410 struct timespec __user *, timeout)
2412 int datagrams;
2413 struct timespec timeout_sys;
2415 if (flags & MSG_CMSG_COMPAT)
2416 return -EINVAL;
2418 if (!timeout)
2419 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2421 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2422 return -EFAULT;
2424 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2426 if (datagrams > 0 &&
2427 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2428 datagrams = -EFAULT;
2430 return datagrams;
2433 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2434 /* Argument list sizes for sys_socketcall */
2435 #define AL(x) ((x) * sizeof(unsigned long))
2436 static const unsigned char nargs[21] = {
2437 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2438 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2439 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2440 AL(4), AL(5), AL(4)
2443 #undef AL
2446 * System call vectors.
2448 * Argument checking cleaned up. Saved 20% in size.
2449 * This function doesn't need to set the kernel lock because
2450 * it is set by the callees.
2453 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2455 unsigned long a[AUDITSC_ARGS];
2456 unsigned long a0, a1;
2457 int err;
2458 unsigned int len;
2460 if (call < 1 || call > SYS_SENDMMSG)
2461 return -EINVAL;
2463 len = nargs[call];
2464 if (len > sizeof(a))
2465 return -EINVAL;
2467 /* copy_from_user should be SMP safe. */
2468 if (copy_from_user(a, args, len))
2469 return -EFAULT;
2471 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2472 if (err)
2473 return err;
2475 a0 = a[0];
2476 a1 = a[1];
2478 switch (call) {
2479 case SYS_SOCKET:
2480 err = sys_socket(a0, a1, a[2]);
2481 break;
2482 case SYS_BIND:
2483 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2484 break;
2485 case SYS_CONNECT:
2486 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2487 break;
2488 case SYS_LISTEN:
2489 err = sys_listen(a0, a1);
2490 break;
2491 case SYS_ACCEPT:
2492 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2493 (int __user *)a[2], 0);
2494 break;
2495 case SYS_GETSOCKNAME:
2496 err =
2497 sys_getsockname(a0, (struct sockaddr __user *)a1,
2498 (int __user *)a[2]);
2499 break;
2500 case SYS_GETPEERNAME:
2501 err =
2502 sys_getpeername(a0, (struct sockaddr __user *)a1,
2503 (int __user *)a[2]);
2504 break;
2505 case SYS_SOCKETPAIR:
2506 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2507 break;
2508 case SYS_SEND:
2509 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2510 break;
2511 case SYS_SENDTO:
2512 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2513 (struct sockaddr __user *)a[4], a[5]);
2514 break;
2515 case SYS_RECV:
2516 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2517 break;
2518 case SYS_RECVFROM:
2519 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2520 (struct sockaddr __user *)a[4],
2521 (int __user *)a[5]);
2522 break;
2523 case SYS_SHUTDOWN:
2524 err = sys_shutdown(a0, a1);
2525 break;
2526 case SYS_SETSOCKOPT:
2527 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2528 break;
2529 case SYS_GETSOCKOPT:
2530 err =
2531 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2532 (int __user *)a[4]);
2533 break;
2534 case SYS_SENDMSG:
2535 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2536 break;
2537 case SYS_SENDMMSG:
2538 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2539 break;
2540 case SYS_RECVMSG:
2541 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2542 break;
2543 case SYS_RECVMMSG:
2544 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2545 (struct timespec __user *)a[4]);
2546 break;
2547 case SYS_ACCEPT4:
2548 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2549 (int __user *)a[2], a[3]);
2550 break;
2551 default:
2552 err = -EINVAL;
2553 break;
2555 return err;
2558 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2561 * sock_register - add a socket protocol handler
2562 * @ops: description of protocol
2564 * This function is called by a protocol handler that wants to
2565 * advertise its address family, and have it linked into the
2566 * socket interface. The value ops->family coresponds to the
2567 * socket system call protocol family.
2569 int sock_register(const struct net_proto_family *ops)
2571 int err;
2573 if (ops->family >= NPROTO) {
2574 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2575 NPROTO);
2576 return -ENOBUFS;
2579 spin_lock(&net_family_lock);
2580 if (rcu_dereference_protected(net_families[ops->family],
2581 lockdep_is_held(&net_family_lock)))
2582 err = -EEXIST;
2583 else {
2584 rcu_assign_pointer(net_families[ops->family], ops);
2585 err = 0;
2587 spin_unlock(&net_family_lock);
2589 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2590 return err;
2592 EXPORT_SYMBOL(sock_register);
2595 * sock_unregister - remove a protocol handler
2596 * @family: protocol family to remove
2598 * This function is called by a protocol handler that wants to
2599 * remove its address family, and have it unlinked from the
2600 * new socket creation.
2602 * If protocol handler is a module, then it can use module reference
2603 * counts to protect against new references. If protocol handler is not
2604 * a module then it needs to provide its own protection in
2605 * the ops->create routine.
2607 void sock_unregister(int family)
2609 BUG_ON(family < 0 || family >= NPROTO);
2611 spin_lock(&net_family_lock);
2612 RCU_INIT_POINTER(net_families[family], NULL);
2613 spin_unlock(&net_family_lock);
2615 synchronize_rcu();
2617 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2619 EXPORT_SYMBOL(sock_unregister);
2621 static int __init sock_init(void)
2623 int err;
2625 * Initialize the network sysctl infrastructure.
2627 err = net_sysctl_init();
2628 if (err)
2629 goto out;
2632 * Initialize skbuff SLAB cache
2634 skb_init();
2637 * Initialize the protocols module.
2640 init_inodecache();
2642 err = register_filesystem(&sock_fs_type);
2643 if (err)
2644 goto out_fs;
2645 sock_mnt = kern_mount(&sock_fs_type);
2646 if (IS_ERR(sock_mnt)) {
2647 err = PTR_ERR(sock_mnt);
2648 goto out_mount;
2651 /* The real protocol initialization is performed in later initcalls.
2654 #ifdef CONFIG_NETFILTER
2655 err = netfilter_init();
2656 if (err)
2657 goto out;
2658 #endif
2660 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2661 skb_timestamping_init();
2662 #endif
2664 out:
2665 return err;
2667 out_mount:
2668 unregister_filesystem(&sock_fs_type);
2669 out_fs:
2670 goto out;
2673 core_initcall(sock_init); /* early initcall */
2675 #ifdef CONFIG_PROC_FS
2676 void socket_seq_show(struct seq_file *seq)
2678 int cpu;
2679 int counter = 0;
2681 for_each_possible_cpu(cpu)
2682 counter += per_cpu(sockets_in_use, cpu);
2684 /* It can be negative, by the way. 8) */
2685 if (counter < 0)
2686 counter = 0;
2688 seq_printf(seq, "sockets: used %d\n", counter);
2690 #endif /* CONFIG_PROC_FS */
2692 #ifdef CONFIG_COMPAT
2693 static int do_siocgstamp(struct net *net, struct socket *sock,
2694 unsigned int cmd, void __user *up)
2696 mm_segment_t old_fs = get_fs();
2697 struct timeval ktv;
2698 int err;
2700 set_fs(KERNEL_DS);
2701 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2702 set_fs(old_fs);
2703 if (!err)
2704 err = compat_put_timeval(&ktv, up);
2706 return err;
2709 static int do_siocgstampns(struct net *net, struct socket *sock,
2710 unsigned int cmd, void __user *up)
2712 mm_segment_t old_fs = get_fs();
2713 struct timespec kts;
2714 int err;
2716 set_fs(KERNEL_DS);
2717 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2718 set_fs(old_fs);
2719 if (!err)
2720 err = compat_put_timespec(&kts, up);
2722 return err;
2725 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2727 struct ifreq __user *uifr;
2728 int err;
2730 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2731 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2732 return -EFAULT;
2734 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2735 if (err)
2736 return err;
2738 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2739 return -EFAULT;
2741 return 0;
2744 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2746 struct compat_ifconf ifc32;
2747 struct ifconf ifc;
2748 struct ifconf __user *uifc;
2749 struct compat_ifreq __user *ifr32;
2750 struct ifreq __user *ifr;
2751 unsigned int i, j;
2752 int err;
2754 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2755 return -EFAULT;
2757 memset(&ifc, 0, sizeof(ifc));
2758 if (ifc32.ifcbuf == 0) {
2759 ifc32.ifc_len = 0;
2760 ifc.ifc_len = 0;
2761 ifc.ifc_req = NULL;
2762 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2763 } else {
2764 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2765 sizeof(struct ifreq);
2766 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2767 ifc.ifc_len = len;
2768 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2769 ifr32 = compat_ptr(ifc32.ifcbuf);
2770 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2771 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2772 return -EFAULT;
2773 ifr++;
2774 ifr32++;
2777 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2778 return -EFAULT;
2780 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2781 if (err)
2782 return err;
2784 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2785 return -EFAULT;
2787 ifr = ifc.ifc_req;
2788 ifr32 = compat_ptr(ifc32.ifcbuf);
2789 for (i = 0, j = 0;
2790 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2791 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2792 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2793 return -EFAULT;
2794 ifr32++;
2795 ifr++;
2798 if (ifc32.ifcbuf == 0) {
2799 /* Translate from 64-bit structure multiple to
2800 * a 32-bit one.
2802 i = ifc.ifc_len;
2803 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2804 ifc32.ifc_len = i;
2805 } else {
2806 ifc32.ifc_len = i;
2808 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2809 return -EFAULT;
2811 return 0;
2814 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2816 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2817 bool convert_in = false, convert_out = false;
2818 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2819 struct ethtool_rxnfc __user *rxnfc;
2820 struct ifreq __user *ifr;
2821 u32 rule_cnt = 0, actual_rule_cnt;
2822 u32 ethcmd;
2823 u32 data;
2824 int ret;
2826 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2827 return -EFAULT;
2829 compat_rxnfc = compat_ptr(data);
2831 if (get_user(ethcmd, &compat_rxnfc->cmd))
2832 return -EFAULT;
2834 /* Most ethtool structures are defined without padding.
2835 * Unfortunately struct ethtool_rxnfc is an exception.
2837 switch (ethcmd) {
2838 default:
2839 break;
2840 case ETHTOOL_GRXCLSRLALL:
2841 /* Buffer size is variable */
2842 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2843 return -EFAULT;
2844 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2845 return -ENOMEM;
2846 buf_size += rule_cnt * sizeof(u32);
2847 /* fall through */
2848 case ETHTOOL_GRXRINGS:
2849 case ETHTOOL_GRXCLSRLCNT:
2850 case ETHTOOL_GRXCLSRULE:
2851 case ETHTOOL_SRXCLSRLINS:
2852 convert_out = true;
2853 /* fall through */
2854 case ETHTOOL_SRXCLSRLDEL:
2855 buf_size += sizeof(struct ethtool_rxnfc);
2856 convert_in = true;
2857 break;
2860 ifr = compat_alloc_user_space(buf_size);
2861 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2863 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2864 return -EFAULT;
2866 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2867 &ifr->ifr_ifru.ifru_data))
2868 return -EFAULT;
2870 if (convert_in) {
2871 /* We expect there to be holes between fs.m_ext and
2872 * fs.ring_cookie and at the end of fs, but nowhere else.
2874 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2875 sizeof(compat_rxnfc->fs.m_ext) !=
2876 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2877 sizeof(rxnfc->fs.m_ext));
2878 BUILD_BUG_ON(
2879 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2880 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2881 offsetof(struct ethtool_rxnfc, fs.location) -
2882 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2884 if (copy_in_user(rxnfc, compat_rxnfc,
2885 (void __user *)(&rxnfc->fs.m_ext + 1) -
2886 (void __user *)rxnfc) ||
2887 copy_in_user(&rxnfc->fs.ring_cookie,
2888 &compat_rxnfc->fs.ring_cookie,
2889 (void __user *)(&rxnfc->fs.location + 1) -
2890 (void __user *)&rxnfc->fs.ring_cookie) ||
2891 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2892 sizeof(rxnfc->rule_cnt)))
2893 return -EFAULT;
2896 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2897 if (ret)
2898 return ret;
2900 if (convert_out) {
2901 if (copy_in_user(compat_rxnfc, rxnfc,
2902 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2903 (const void __user *)rxnfc) ||
2904 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2905 &rxnfc->fs.ring_cookie,
2906 (const void __user *)(&rxnfc->fs.location + 1) -
2907 (const void __user *)&rxnfc->fs.ring_cookie) ||
2908 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2909 sizeof(rxnfc->rule_cnt)))
2910 return -EFAULT;
2912 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2913 /* As an optimisation, we only copy the actual
2914 * number of rules that the underlying
2915 * function returned. Since Mallory might
2916 * change the rule count in user memory, we
2917 * check that it is less than the rule count
2918 * originally given (as the user buffer size),
2919 * which has been range-checked.
2921 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2922 return -EFAULT;
2923 if (actual_rule_cnt < rule_cnt)
2924 rule_cnt = actual_rule_cnt;
2925 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2926 &rxnfc->rule_locs[0],
2927 rule_cnt * sizeof(u32)))
2928 return -EFAULT;
2932 return 0;
2935 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2937 void __user *uptr;
2938 compat_uptr_t uptr32;
2939 struct ifreq __user *uifr;
2941 uifr = compat_alloc_user_space(sizeof(*uifr));
2942 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2943 return -EFAULT;
2945 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2946 return -EFAULT;
2948 uptr = compat_ptr(uptr32);
2950 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2951 return -EFAULT;
2953 return dev_ioctl(net, SIOCWANDEV, uifr);
2956 static int bond_ioctl(struct net *net, unsigned int cmd,
2957 struct compat_ifreq __user *ifr32)
2959 struct ifreq kifr;
2960 struct ifreq __user *uifr;
2961 mm_segment_t old_fs;
2962 int err;
2963 u32 data;
2964 void __user *datap;
2966 switch (cmd) {
2967 case SIOCBONDENSLAVE:
2968 case SIOCBONDRELEASE:
2969 case SIOCBONDSETHWADDR:
2970 case SIOCBONDCHANGEACTIVE:
2971 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2972 return -EFAULT;
2974 old_fs = get_fs();
2975 set_fs(KERNEL_DS);
2976 err = dev_ioctl(net, cmd,
2977 (struct ifreq __user __force *) &kifr);
2978 set_fs(old_fs);
2980 return err;
2981 case SIOCBONDSLAVEINFOQUERY:
2982 case SIOCBONDINFOQUERY:
2983 uifr = compat_alloc_user_space(sizeof(*uifr));
2984 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2985 return -EFAULT;
2987 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2988 return -EFAULT;
2990 datap = compat_ptr(data);
2991 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2992 return -EFAULT;
2994 return dev_ioctl(net, cmd, uifr);
2995 default:
2996 return -ENOIOCTLCMD;
3000 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3001 struct compat_ifreq __user *u_ifreq32)
3003 struct ifreq __user *u_ifreq64;
3004 char tmp_buf[IFNAMSIZ];
3005 void __user *data64;
3006 u32 data32;
3008 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3009 IFNAMSIZ))
3010 return -EFAULT;
3011 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3012 return -EFAULT;
3013 data64 = compat_ptr(data32);
3015 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3017 /* Don't check these user accesses, just let that get trapped
3018 * in the ioctl handler instead.
3020 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3021 IFNAMSIZ))
3022 return -EFAULT;
3023 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3024 return -EFAULT;
3026 return dev_ioctl(net, cmd, u_ifreq64);
3029 static int dev_ifsioc(struct net *net, struct socket *sock,
3030 unsigned int cmd, struct compat_ifreq __user *uifr32)
3032 struct ifreq __user *uifr;
3033 int err;
3035 uifr = compat_alloc_user_space(sizeof(*uifr));
3036 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3037 return -EFAULT;
3039 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3041 if (!err) {
3042 switch (cmd) {
3043 case SIOCGIFFLAGS:
3044 case SIOCGIFMETRIC:
3045 case SIOCGIFMTU:
3046 case SIOCGIFMEM:
3047 case SIOCGIFHWADDR:
3048 case SIOCGIFINDEX:
3049 case SIOCGIFADDR:
3050 case SIOCGIFBRDADDR:
3051 case SIOCGIFDSTADDR:
3052 case SIOCGIFNETMASK:
3053 case SIOCGIFPFLAGS:
3054 case SIOCGIFTXQLEN:
3055 case SIOCGMIIPHY:
3056 case SIOCGMIIREG:
3057 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3058 err = -EFAULT;
3059 break;
3062 return err;
3065 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3066 struct compat_ifreq __user *uifr32)
3068 struct ifreq ifr;
3069 struct compat_ifmap __user *uifmap32;
3070 mm_segment_t old_fs;
3071 int err;
3073 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3074 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3075 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3076 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3077 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3078 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3079 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3080 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3081 if (err)
3082 return -EFAULT;
3084 old_fs = get_fs();
3085 set_fs(KERNEL_DS);
3086 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3087 set_fs(old_fs);
3089 if (cmd == SIOCGIFMAP && !err) {
3090 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3091 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3092 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3093 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3094 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3095 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3096 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3097 if (err)
3098 err = -EFAULT;
3100 return err;
3103 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3105 void __user *uptr;
3106 compat_uptr_t uptr32;
3107 struct ifreq __user *uifr;
3109 uifr = compat_alloc_user_space(sizeof(*uifr));
3110 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3111 return -EFAULT;
3113 if (get_user(uptr32, &uifr32->ifr_data))
3114 return -EFAULT;
3116 uptr = compat_ptr(uptr32);
3118 if (put_user(uptr, &uifr->ifr_data))
3119 return -EFAULT;
3121 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3124 struct rtentry32 {
3125 u32 rt_pad1;
3126 struct sockaddr rt_dst; /* target address */
3127 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3128 struct sockaddr rt_genmask; /* target network mask (IP) */
3129 unsigned short rt_flags;
3130 short rt_pad2;
3131 u32 rt_pad3;
3132 unsigned char rt_tos;
3133 unsigned char rt_class;
3134 short rt_pad4;
3135 short rt_metric; /* +1 for binary compatibility! */
3136 /* char * */ u32 rt_dev; /* forcing the device at add */
3137 u32 rt_mtu; /* per route MTU/Window */
3138 u32 rt_window; /* Window clamping */
3139 unsigned short rt_irtt; /* Initial RTT */
3142 struct in6_rtmsg32 {
3143 struct in6_addr rtmsg_dst;
3144 struct in6_addr rtmsg_src;
3145 struct in6_addr rtmsg_gateway;
3146 u32 rtmsg_type;
3147 u16 rtmsg_dst_len;
3148 u16 rtmsg_src_len;
3149 u32 rtmsg_metric;
3150 u32 rtmsg_info;
3151 u32 rtmsg_flags;
3152 s32 rtmsg_ifindex;
3155 static int routing_ioctl(struct net *net, struct socket *sock,
3156 unsigned int cmd, void __user *argp)
3158 int ret;
3159 void *r = NULL;
3160 struct in6_rtmsg r6;
3161 struct rtentry r4;
3162 char devname[16];
3163 u32 rtdev;
3164 mm_segment_t old_fs = get_fs();
3166 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3167 struct in6_rtmsg32 __user *ur6 = argp;
3168 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3169 3 * sizeof(struct in6_addr));
3170 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3171 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3172 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3173 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3174 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3175 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3176 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3178 r = (void *) &r6;
3179 } else { /* ipv4 */
3180 struct rtentry32 __user *ur4 = argp;
3181 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3182 3 * sizeof(struct sockaddr));
3183 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3184 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3185 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3186 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3187 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3188 ret |= __get_user(rtdev, &(ur4->rt_dev));
3189 if (rtdev) {
3190 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3191 r4.rt_dev = (char __user __force *)devname;
3192 devname[15] = 0;
3193 } else
3194 r4.rt_dev = NULL;
3196 r = (void *) &r4;
3199 if (ret) {
3200 ret = -EFAULT;
3201 goto out;
3204 set_fs(KERNEL_DS);
3205 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3206 set_fs(old_fs);
3208 out:
3209 return ret;
3212 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3213 * for some operations; this forces use of the newer bridge-utils that
3214 * use compatible ioctls
3216 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3218 compat_ulong_t tmp;
3220 if (get_user(tmp, argp))
3221 return -EFAULT;
3222 if (tmp == BRCTL_GET_VERSION)
3223 return BRCTL_VERSION + 1;
3224 return -EINVAL;
3227 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3228 unsigned int cmd, unsigned long arg)
3230 void __user *argp = compat_ptr(arg);
3231 struct sock *sk = sock->sk;
3232 struct net *net = sock_net(sk);
3234 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3235 return siocdevprivate_ioctl(net, cmd, argp);
3237 switch (cmd) {
3238 case SIOCSIFBR:
3239 case SIOCGIFBR:
3240 return old_bridge_ioctl(argp);
3241 case SIOCGIFNAME:
3242 return dev_ifname32(net, argp);
3243 case SIOCGIFCONF:
3244 return dev_ifconf(net, argp);
3245 case SIOCETHTOOL:
3246 return ethtool_ioctl(net, argp);
3247 case SIOCWANDEV:
3248 return compat_siocwandev(net, argp);
3249 case SIOCGIFMAP:
3250 case SIOCSIFMAP:
3251 return compat_sioc_ifmap(net, cmd, argp);
3252 case SIOCBONDENSLAVE:
3253 case SIOCBONDRELEASE:
3254 case SIOCBONDSETHWADDR:
3255 case SIOCBONDSLAVEINFOQUERY:
3256 case SIOCBONDINFOQUERY:
3257 case SIOCBONDCHANGEACTIVE:
3258 return bond_ioctl(net, cmd, argp);
3259 case SIOCADDRT:
3260 case SIOCDELRT:
3261 return routing_ioctl(net, sock, cmd, argp);
3262 case SIOCGSTAMP:
3263 return do_siocgstamp(net, sock, cmd, argp);
3264 case SIOCGSTAMPNS:
3265 return do_siocgstampns(net, sock, cmd, argp);
3266 case SIOCSHWTSTAMP:
3267 return compat_siocshwtstamp(net, argp);
3269 case FIOSETOWN:
3270 case SIOCSPGRP:
3271 case FIOGETOWN:
3272 case SIOCGPGRP:
3273 case SIOCBRADDBR:
3274 case SIOCBRDELBR:
3275 case SIOCGIFVLAN:
3276 case SIOCSIFVLAN:
3277 case SIOCADDDLCI:
3278 case SIOCDELDLCI:
3279 return sock_ioctl(file, cmd, arg);
3281 case SIOCGIFFLAGS:
3282 case SIOCSIFFLAGS:
3283 case SIOCGIFMETRIC:
3284 case SIOCSIFMETRIC:
3285 case SIOCGIFMTU:
3286 case SIOCSIFMTU:
3287 case SIOCGIFMEM:
3288 case SIOCSIFMEM:
3289 case SIOCGIFHWADDR:
3290 case SIOCSIFHWADDR:
3291 case SIOCADDMULTI:
3292 case SIOCDELMULTI:
3293 case SIOCGIFINDEX:
3294 case SIOCGIFADDR:
3295 case SIOCSIFADDR:
3296 case SIOCSIFHWBROADCAST:
3297 case SIOCDIFADDR:
3298 case SIOCGIFBRDADDR:
3299 case SIOCSIFBRDADDR:
3300 case SIOCGIFDSTADDR:
3301 case SIOCSIFDSTADDR:
3302 case SIOCGIFNETMASK:
3303 case SIOCSIFNETMASK:
3304 case SIOCSIFPFLAGS:
3305 case SIOCGIFPFLAGS:
3306 case SIOCGIFTXQLEN:
3307 case SIOCSIFTXQLEN:
3308 case SIOCBRADDIF:
3309 case SIOCBRDELIF:
3310 case SIOCSIFNAME:
3311 case SIOCGMIIPHY:
3312 case SIOCGMIIREG:
3313 case SIOCSMIIREG:
3314 return dev_ifsioc(net, sock, cmd, argp);
3316 case SIOCSARP:
3317 case SIOCGARP:
3318 case SIOCDARP:
3319 case SIOCATMARK:
3320 return sock_do_ioctl(net, sock, cmd, arg);
3323 return -ENOIOCTLCMD;
3326 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3327 unsigned long arg)
3329 struct socket *sock = file->private_data;
3330 int ret = -ENOIOCTLCMD;
3331 struct sock *sk;
3332 struct net *net;
3334 sk = sock->sk;
3335 net = sock_net(sk);
3337 if (sock->ops->compat_ioctl)
3338 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3340 if (ret == -ENOIOCTLCMD &&
3341 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3342 ret = compat_wext_handle_ioctl(net, cmd, arg);
3344 if (ret == -ENOIOCTLCMD)
3345 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3347 return ret;
3349 #endif
3351 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3353 return sock->ops->bind(sock, addr, addrlen);
3355 EXPORT_SYMBOL(kernel_bind);
3357 int kernel_listen(struct socket *sock, int backlog)
3359 return sock->ops->listen(sock, backlog);
3361 EXPORT_SYMBOL(kernel_listen);
3363 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3365 struct sock *sk = sock->sk;
3366 int err;
3368 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3369 newsock);
3370 if (err < 0)
3371 goto done;
3373 err = sock->ops->accept(sock, *newsock, flags);
3374 if (err < 0) {
3375 sock_release(*newsock);
3376 *newsock = NULL;
3377 goto done;
3380 (*newsock)->ops = sock->ops;
3381 __module_get((*newsock)->ops->owner);
3383 done:
3384 return err;
3386 EXPORT_SYMBOL(kernel_accept);
3388 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3389 int flags)
3391 return sock->ops->connect(sock, addr, addrlen, flags);
3393 EXPORT_SYMBOL(kernel_connect);
3395 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3396 int *addrlen)
3398 return sock->ops->getname(sock, addr, addrlen, 0);
3400 EXPORT_SYMBOL(kernel_getsockname);
3402 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3403 int *addrlen)
3405 return sock->ops->getname(sock, addr, addrlen, 1);
3407 EXPORT_SYMBOL(kernel_getpeername);
3409 int kernel_getsockopt(struct socket *sock, int level, int optname,
3410 char *optval, int *optlen)
3412 mm_segment_t oldfs = get_fs();
3413 char __user *uoptval;
3414 int __user *uoptlen;
3415 int err;
3417 uoptval = (char __user __force *) optval;
3418 uoptlen = (int __user __force *) optlen;
3420 set_fs(KERNEL_DS);
3421 if (level == SOL_SOCKET)
3422 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3423 else
3424 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3425 uoptlen);
3426 set_fs(oldfs);
3427 return err;
3429 EXPORT_SYMBOL(kernel_getsockopt);
3431 int kernel_setsockopt(struct socket *sock, int level, int optname,
3432 char *optval, unsigned int optlen)
3434 mm_segment_t oldfs = get_fs();
3435 char __user *uoptval;
3436 int err;
3438 uoptval = (char __user __force *) optval;
3440 set_fs(KERNEL_DS);
3441 if (level == SOL_SOCKET)
3442 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3443 else
3444 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3445 optlen);
3446 set_fs(oldfs);
3447 return err;
3449 EXPORT_SYMBOL(kernel_setsockopt);
3451 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3452 size_t size, int flags)
3454 if (sock->ops->sendpage)
3455 return sock->ops->sendpage(sock, page, offset, size, flags);
3457 return sock_no_sendpage(sock, page, offset, size, flags);
3459 EXPORT_SYMBOL(kernel_sendpage);
3461 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3463 mm_segment_t oldfs = get_fs();
3464 int err;
3466 set_fs(KERNEL_DS);
3467 err = sock->ops->ioctl(sock, cmd, arg);
3468 set_fs(oldfs);
3470 return err;
3472 EXPORT_SYMBOL(kernel_sock_ioctl);
3474 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3476 return sock->ops->shutdown(sock, how);
3478 EXPORT_SYMBOL(kernel_sock_shutdown);