drm/i915: i915_mutex_interruptible() returns -EINTR
[linux-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
bloba8768e2bbebc6401450e78d837dfc48566edcd46
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
78 static int
79 i915_gem_wait_for_error(struct drm_device *dev)
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
103 return 0;
106 int i915_mutex_lock_interruptible(struct drm_device *dev)
108 int ret;
110 ret = i915_gem_wait_for_error(dev);
111 if (ret)
112 return ret;
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
118 WARN_ON(i915_verify_lists(dev));
119 return 0;
122 static inline bool
123 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
128 void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
133 drm_i915_private_t *dev_priv = dev->dev_private;
135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
140 dev_priv->mm.gtt_total = end - start;
141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
151 struct drm_i915_gem_init *args = data;
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
157 mutex_lock(&dev->struct_mutex);
158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 mutex_unlock(&dev->struct_mutex);
161 return 0;
165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 struct drm_file *file)
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 struct drm_i915_gem_get_aperture *args = data;
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
176 pinned = 0;
177 mutex_lock(&dev->struct_mutex);
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
180 mutex_unlock(&dev->struct_mutex);
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
185 return 0;
189 * Creates a new mm object and returns a handle to it.
192 i915_gem_create_ioctl(struct drm_device *dev, void *data,
193 struct drm_file *file)
195 struct drm_i915_gem_create *args = data;
196 struct drm_i915_gem_object *obj;
197 int ret;
198 u32 handle;
200 args->size = roundup(args->size, PAGE_SIZE);
202 /* Allocate the new object */
203 obj = i915_gem_alloc_object(dev, args->size);
204 if (obj == NULL)
205 return -ENOMEM;
207 ret = drm_gem_handle_create(file, &obj->base, &handle);
208 if (ret) {
209 drm_gem_object_release(&obj->base);
210 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
211 kfree(obj);
212 return ret;
215 /* drop reference from allocate - handle holds it now */
216 drm_gem_object_unreference(&obj->base);
217 trace_i915_gem_object_create(obj);
219 args->handle = handle;
220 return 0;
223 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
225 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
227 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
228 obj->tiling_mode != I915_TILING_NONE;
231 static inline void
232 slow_shmem_copy(struct page *dst_page,
233 int dst_offset,
234 struct page *src_page,
235 int src_offset,
236 int length)
238 char *dst_vaddr, *src_vaddr;
240 dst_vaddr = kmap(dst_page);
241 src_vaddr = kmap(src_page);
243 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
245 kunmap(src_page);
246 kunmap(dst_page);
249 static inline void
250 slow_shmem_bit17_copy(struct page *gpu_page,
251 int gpu_offset,
252 struct page *cpu_page,
253 int cpu_offset,
254 int length,
255 int is_read)
257 char *gpu_vaddr, *cpu_vaddr;
259 /* Use the unswizzled path if this page isn't affected. */
260 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
261 if (is_read)
262 return slow_shmem_copy(cpu_page, cpu_offset,
263 gpu_page, gpu_offset, length);
264 else
265 return slow_shmem_copy(gpu_page, gpu_offset,
266 cpu_page, cpu_offset, length);
269 gpu_vaddr = kmap(gpu_page);
270 cpu_vaddr = kmap(cpu_page);
272 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
273 * XORing with the other bits (A9 for Y, A9 and A10 for X)
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
280 if (is_read) {
281 memcpy(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 } else {
285 memcpy(gpu_vaddr + swizzled_gpu_offset,
286 cpu_vaddr + cpu_offset,
287 this_length);
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
294 kunmap(cpu_page);
295 kunmap(gpu_page);
299 * This is the fast shmem pread path, which attempts to copy_from_user directly
300 * from the backing pages of the object to the user's address space. On a
301 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
303 static int
304 i915_gem_shmem_pread_fast(struct drm_device *dev,
305 struct drm_i915_gem_object *obj,
306 struct drm_i915_gem_pread *args,
307 struct drm_file *file)
309 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
310 ssize_t remain;
311 loff_t offset;
312 char __user *user_data;
313 int page_offset, page_length;
315 user_data = (char __user *) (uintptr_t) args->data_ptr;
316 remain = args->size;
318 offset = args->offset;
320 while (remain > 0) {
321 struct page *page;
322 char *vaddr;
323 int ret;
325 /* Operation in this page
327 * page_offset = offset within page
328 * page_length = bytes to copy for this page
330 page_offset = offset & (PAGE_SIZE-1);
331 page_length = remain;
332 if ((page_offset + remain) > PAGE_SIZE)
333 page_length = PAGE_SIZE - page_offset;
335 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
336 GFP_HIGHUSER | __GFP_RECLAIMABLE);
337 if (IS_ERR(page))
338 return PTR_ERR(page);
340 vaddr = kmap_atomic(page);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
346 mark_page_accessed(page);
347 page_cache_release(page);
348 if (ret)
349 return -EFAULT;
351 remain -= page_length;
352 user_data += page_length;
353 offset += page_length;
356 return 0;
360 * This is the fallback shmem pread path, which allocates temporary storage
361 * in kernel space to copy_to_user into outside of the struct_mutex, so we
362 * can copy out of the object's backing pages while holding the struct mutex
363 * and not take page faults.
365 static int
366 i915_gem_shmem_pread_slow(struct drm_device *dev,
367 struct drm_i915_gem_object *obj,
368 struct drm_i915_gem_pread *args,
369 struct drm_file *file)
371 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
372 struct mm_struct *mm = current->mm;
373 struct page **user_pages;
374 ssize_t remain;
375 loff_t offset, pinned_pages, i;
376 loff_t first_data_page, last_data_page, num_pages;
377 int shmem_page_offset;
378 int data_page_index, data_page_offset;
379 int page_length;
380 int ret;
381 uint64_t data_ptr = args->data_ptr;
382 int do_bit17_swizzling;
384 remain = args->size;
386 /* Pin the user pages containing the data. We can't fault while
387 * holding the struct mutex, yet we want to hold it while
388 * dereferencing the user data.
390 first_data_page = data_ptr / PAGE_SIZE;
391 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
392 num_pages = last_data_page - first_data_page + 1;
394 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
395 if (user_pages == NULL)
396 return -ENOMEM;
398 mutex_unlock(&dev->struct_mutex);
399 down_read(&mm->mmap_sem);
400 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
401 num_pages, 1, 0, user_pages, NULL);
402 up_read(&mm->mmap_sem);
403 mutex_lock(&dev->struct_mutex);
404 if (pinned_pages < num_pages) {
405 ret = -EFAULT;
406 goto out;
409 ret = i915_gem_object_set_cpu_read_domain_range(obj,
410 args->offset,
411 args->size);
412 if (ret)
413 goto out;
415 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417 offset = args->offset;
419 while (remain > 0) {
420 struct page *page;
422 /* Operation in this page
424 * shmem_page_offset = offset within page in shmem file
425 * data_page_index = page number in get_user_pages return
426 * data_page_offset = offset with data_page_index page.
427 * page_length = bytes to copy for this page
429 shmem_page_offset = offset & ~PAGE_MASK;
430 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
431 data_page_offset = data_ptr & ~PAGE_MASK;
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
436 if ((data_page_offset + page_length) > PAGE_SIZE)
437 page_length = PAGE_SIZE - data_page_offset;
439 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
440 GFP_HIGHUSER | __GFP_RECLAIMABLE);
441 if (IS_ERR(page))
442 return PTR_ERR(page);
444 if (do_bit17_swizzling) {
445 slow_shmem_bit17_copy(page,
446 shmem_page_offset,
447 user_pages[data_page_index],
448 data_page_offset,
449 page_length,
451 } else {
452 slow_shmem_copy(user_pages[data_page_index],
453 data_page_offset,
454 page,
455 shmem_page_offset,
456 page_length);
459 mark_page_accessed(page);
460 page_cache_release(page);
462 remain -= page_length;
463 data_ptr += page_length;
464 offset += page_length;
467 out:
468 for (i = 0; i < pinned_pages; i++) {
469 SetPageDirty(user_pages[i]);
470 mark_page_accessed(user_pages[i]);
471 page_cache_release(user_pages[i]);
473 drm_free_large(user_pages);
475 return ret;
479 * Reads data from the object referenced by handle.
481 * On error, the contents of *data are undefined.
484 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
485 struct drm_file *file)
487 struct drm_i915_gem_pread *args = data;
488 struct drm_i915_gem_object *obj;
489 int ret = 0;
491 if (args->size == 0)
492 return 0;
494 if (!access_ok(VERIFY_WRITE,
495 (char __user *)(uintptr_t)args->data_ptr,
496 args->size))
497 return -EFAULT;
499 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
500 args->size);
501 if (ret)
502 return -EFAULT;
504 ret = i915_mutex_lock_interruptible(dev);
505 if (ret)
506 return ret;
508 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
509 if (obj == NULL) {
510 ret = -ENOENT;
511 goto unlock;
514 /* Bounds check source. */
515 if (args->offset > obj->base.size ||
516 args->size > obj->base.size - args->offset) {
517 ret = -EINVAL;
518 goto out;
521 trace_i915_gem_object_pread(obj, args->offset, args->size);
523 ret = i915_gem_object_set_cpu_read_domain_range(obj,
524 args->offset,
525 args->size);
526 if (ret)
527 goto out;
529 ret = -EFAULT;
530 if (!i915_gem_object_needs_bit17_swizzle(obj))
531 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
532 if (ret == -EFAULT)
533 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
535 out:
536 drm_gem_object_unreference(&obj->base);
537 unlock:
538 mutex_unlock(&dev->struct_mutex);
539 return ret;
542 /* This is the fast write path which cannot handle
543 * page faults in the source data
546 static inline int
547 fast_user_write(struct io_mapping *mapping,
548 loff_t page_base, int page_offset,
549 char __user *user_data,
550 int length)
552 char *vaddr_atomic;
553 unsigned long unwritten;
555 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
556 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
557 user_data, length);
558 io_mapping_unmap_atomic(vaddr_atomic);
559 return unwritten;
562 /* Here's the write path which can sleep for
563 * page faults
566 static inline void
567 slow_kernel_write(struct io_mapping *mapping,
568 loff_t gtt_base, int gtt_offset,
569 struct page *user_page, int user_offset,
570 int length)
572 char __iomem *dst_vaddr;
573 char *src_vaddr;
575 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
576 src_vaddr = kmap(user_page);
578 memcpy_toio(dst_vaddr + gtt_offset,
579 src_vaddr + user_offset,
580 length);
582 kunmap(user_page);
583 io_mapping_unmap(dst_vaddr);
587 * This is the fast pwrite path, where we copy the data directly from the
588 * user into the GTT, uncached.
590 static int
591 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
592 struct drm_i915_gem_object *obj,
593 struct drm_i915_gem_pwrite *args,
594 struct drm_file *file)
596 drm_i915_private_t *dev_priv = dev->dev_private;
597 ssize_t remain;
598 loff_t offset, page_base;
599 char __user *user_data;
600 int page_offset, page_length;
602 user_data = (char __user *) (uintptr_t) args->data_ptr;
603 remain = args->size;
605 offset = obj->gtt_offset + args->offset;
607 while (remain > 0) {
608 /* Operation in this page
610 * page_base = page offset within aperture
611 * page_offset = offset within page
612 * page_length = bytes to copy for this page
614 page_base = (offset & ~(PAGE_SIZE-1));
615 page_offset = offset & (PAGE_SIZE-1);
616 page_length = remain;
617 if ((page_offset + remain) > PAGE_SIZE)
618 page_length = PAGE_SIZE - page_offset;
620 /* If we get a fault while copying data, then (presumably) our
621 * source page isn't available. Return the error and we'll
622 * retry in the slow path.
624 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
625 page_offset, user_data, page_length))
627 return -EFAULT;
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
634 return 0;
638 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
639 * the memory and maps it using kmap_atomic for copying.
641 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
642 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 static int
645 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
646 struct drm_i915_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file)
650 drm_i915_private_t *dev_priv = dev->dev_private;
651 ssize_t remain;
652 loff_t gtt_page_base, offset;
653 loff_t first_data_page, last_data_page, num_pages;
654 loff_t pinned_pages, i;
655 struct page **user_pages;
656 struct mm_struct *mm = current->mm;
657 int gtt_page_offset, data_page_offset, data_page_index, page_length;
658 int ret;
659 uint64_t data_ptr = args->data_ptr;
661 remain = args->size;
663 /* Pin the user pages containing the data. We can't fault while
664 * holding the struct mutex, and all of the pwrite implementations
665 * want to hold it while dereferencing the user data.
667 first_data_page = data_ptr / PAGE_SIZE;
668 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
669 num_pages = last_data_page - first_data_page + 1;
671 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
672 if (user_pages == NULL)
673 return -ENOMEM;
675 mutex_unlock(&dev->struct_mutex);
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 mutex_lock(&dev->struct_mutex);
681 if (pinned_pages < num_pages) {
682 ret = -EFAULT;
683 goto out_unpin_pages;
686 ret = i915_gem_object_set_to_gtt_domain(obj, true);
687 if (ret)
688 goto out_unpin_pages;
690 ret = i915_gem_object_put_fence(obj);
691 if (ret)
692 goto out_unpin_pages;
694 offset = obj->gtt_offset + args->offset;
696 while (remain > 0) {
697 /* Operation in this page
699 * gtt_page_base = page offset within aperture
700 * gtt_page_offset = offset within page in aperture
701 * data_page_index = page number in get_user_pages return
702 * data_page_offset = offset with data_page_index page.
703 * page_length = bytes to copy for this page
705 gtt_page_base = offset & PAGE_MASK;
706 gtt_page_offset = offset & ~PAGE_MASK;
707 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
708 data_page_offset = data_ptr & ~PAGE_MASK;
710 page_length = remain;
711 if ((gtt_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - gtt_page_offset;
713 if ((data_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - data_page_offset;
716 slow_kernel_write(dev_priv->mm.gtt_mapping,
717 gtt_page_base, gtt_page_offset,
718 user_pages[data_page_index],
719 data_page_offset,
720 page_length);
722 remain -= page_length;
723 offset += page_length;
724 data_ptr += page_length;
727 out_unpin_pages:
728 for (i = 0; i < pinned_pages; i++)
729 page_cache_release(user_pages[i]);
730 drm_free_large(user_pages);
732 return ret;
736 * This is the fast shmem pwrite path, which attempts to directly
737 * copy_from_user into the kmapped pages backing the object.
739 static int
740 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
741 struct drm_i915_gem_object *obj,
742 struct drm_i915_gem_pwrite *args,
743 struct drm_file *file)
745 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
746 ssize_t remain;
747 loff_t offset;
748 char __user *user_data;
749 int page_offset, page_length;
751 user_data = (char __user *) (uintptr_t) args->data_ptr;
752 remain = args->size;
754 offset = args->offset;
755 obj->dirty = 1;
757 while (remain > 0) {
758 struct page *page;
759 char *vaddr;
760 int ret;
762 /* Operation in this page
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
772 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
773 GFP_HIGHUSER | __GFP_RECLAIMABLE);
774 if (IS_ERR(page))
775 return PTR_ERR(page);
777 vaddr = kmap_atomic(page, KM_USER0);
778 ret = __copy_from_user_inatomic(vaddr + page_offset,
779 user_data,
780 page_length);
781 kunmap_atomic(vaddr, KM_USER0);
783 set_page_dirty(page);
784 mark_page_accessed(page);
785 page_cache_release(page);
787 /* If we get a fault while copying data, then (presumably) our
788 * source page isn't available. Return the error and we'll
789 * retry in the slow path.
791 if (ret)
792 return -EFAULT;
794 remain -= page_length;
795 user_data += page_length;
796 offset += page_length;
799 return 0;
803 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
804 * the memory and maps it using kmap_atomic for copying.
806 * This avoids taking mmap_sem for faulting on the user's address while the
807 * struct_mutex is held.
809 static int
810 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
811 struct drm_i915_gem_object *obj,
812 struct drm_i915_gem_pwrite *args,
813 struct drm_file *file)
815 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
816 struct mm_struct *mm = current->mm;
817 struct page **user_pages;
818 ssize_t remain;
819 loff_t offset, pinned_pages, i;
820 loff_t first_data_page, last_data_page, num_pages;
821 int shmem_page_offset;
822 int data_page_index, data_page_offset;
823 int page_length;
824 int ret;
825 uint64_t data_ptr = args->data_ptr;
826 int do_bit17_swizzling;
828 remain = args->size;
830 /* Pin the user pages containing the data. We can't fault while
831 * holding the struct mutex, and all of the pwrite implementations
832 * want to hold it while dereferencing the user data.
834 first_data_page = data_ptr / PAGE_SIZE;
835 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
836 num_pages = last_data_page - first_data_page + 1;
838 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
839 if (user_pages == NULL)
840 return -ENOMEM;
842 mutex_unlock(&dev->struct_mutex);
843 down_read(&mm->mmap_sem);
844 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
845 num_pages, 0, 0, user_pages, NULL);
846 up_read(&mm->mmap_sem);
847 mutex_lock(&dev->struct_mutex);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto out;
853 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
854 if (ret)
855 goto out;
857 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
859 offset = args->offset;
860 obj->dirty = 1;
862 while (remain > 0) {
863 struct page *page;
865 /* Operation in this page
867 * shmem_page_offset = offset within page in shmem file
868 * data_page_index = page number in get_user_pages return
869 * data_page_offset = offset with data_page_index page.
870 * page_length = bytes to copy for this page
872 shmem_page_offset = offset & ~PAGE_MASK;
873 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874 data_page_offset = data_ptr & ~PAGE_MASK;
876 page_length = remain;
877 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - shmem_page_offset;
879 if ((data_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - data_page_offset;
882 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
883 GFP_HIGHUSER | __GFP_RECLAIMABLE);
884 if (IS_ERR(page)) {
885 ret = PTR_ERR(page);
886 goto out;
889 if (do_bit17_swizzling) {
890 slow_shmem_bit17_copy(page,
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
894 page_length,
896 } else {
897 slow_shmem_copy(page,
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
904 set_page_dirty(page);
905 mark_page_accessed(page);
906 page_cache_release(page);
908 remain -= page_length;
909 data_ptr += page_length;
910 offset += page_length;
913 out:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
916 drm_free_large(user_pages);
918 return ret;
922 * Writes data to the object referenced by handle.
924 * On error, the contents of the buffer that were to be modified are undefined.
927 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file)
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_i915_gem_object *obj;
932 int ret;
934 if (args->size == 0)
935 return 0;
937 if (!access_ok(VERIFY_READ,
938 (char __user *)(uintptr_t)args->data_ptr,
939 args->size))
940 return -EFAULT;
942 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
943 args->size);
944 if (ret)
945 return -EFAULT;
947 ret = i915_mutex_lock_interruptible(dev);
948 if (ret)
949 return ret;
951 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
952 if (obj == NULL) {
953 ret = -ENOENT;
954 goto unlock;
957 /* Bounds check destination. */
958 if (args->offset > obj->base.size ||
959 args->size > obj->base.size - args->offset) {
960 ret = -EINVAL;
961 goto out;
964 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
972 if (obj->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file);
974 else if (obj->gtt_space &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 ret = i915_gem_object_pin(obj, 0, true);
977 if (ret)
978 goto out;
980 ret = i915_gem_object_set_to_gtt_domain(obj, true);
981 if (ret)
982 goto out_unpin;
984 ret = i915_gem_object_put_fence(obj);
985 if (ret)
986 goto out_unpin;
988 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
989 if (ret == -EFAULT)
990 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
992 out_unpin:
993 i915_gem_object_unpin(obj);
994 } else {
995 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
996 if (ret)
997 goto out;
999 ret = -EFAULT;
1000 if (!i915_gem_object_needs_bit17_swizzle(obj))
1001 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1002 if (ret == -EFAULT)
1003 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1006 out:
1007 drm_gem_object_unreference(&obj->base);
1008 unlock:
1009 mutex_unlock(&dev->struct_mutex);
1010 return ret;
1014 * Called when user space prepares to use an object with the CPU, either
1015 * through the mmap ioctl's mapping or a GTT mapping.
1018 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1019 struct drm_file *file)
1021 struct drm_i915_gem_set_domain *args = data;
1022 struct drm_i915_gem_object *obj;
1023 uint32_t read_domains = args->read_domains;
1024 uint32_t write_domain = args->write_domain;
1025 int ret;
1027 if (!(dev->driver->driver_features & DRIVER_GEM))
1028 return -ENODEV;
1030 /* Only handle setting domains to types used by the CPU. */
1031 if (write_domain & I915_GEM_GPU_DOMAINS)
1032 return -EINVAL;
1034 if (read_domains & I915_GEM_GPU_DOMAINS)
1035 return -EINVAL;
1037 /* Having something in the write domain implies it's in the read
1038 * domain, and only that read domain. Enforce that in the request.
1040 if (write_domain != 0 && read_domains != write_domain)
1041 return -EINVAL;
1043 ret = i915_mutex_lock_interruptible(dev);
1044 if (ret)
1045 return ret;
1047 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1048 if (obj == NULL) {
1049 ret = -ENOENT;
1050 goto unlock;
1053 if (read_domains & I915_GEM_DOMAIN_GTT) {
1054 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1056 /* Silently promote "you're not bound, there was nothing to do"
1057 * to success, since the client was just asking us to
1058 * make sure everything was done.
1060 if (ret == -EINVAL)
1061 ret = 0;
1062 } else {
1063 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1066 drm_gem_object_unreference(&obj->base);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1073 * Called when user space has done writes to this buffer
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file)
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_i915_gem_object *obj;
1081 int ret = 0;
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1086 ret = i915_mutex_lock_interruptible(dev);
1087 if (ret)
1088 return ret;
1090 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1091 if (obj == NULL) {
1092 ret = -ENOENT;
1093 goto unlock;
1096 /* Pinned buffers may be scanout, so flush the cache */
1097 if (obj->pin_count)
1098 i915_gem_object_flush_cpu_write_domain(obj);
1100 drm_gem_object_unreference(&obj->base);
1101 unlock:
1102 mutex_unlock(&dev->struct_mutex);
1103 return ret;
1107 * Maps the contents of an object, returning the address it is mapped
1108 * into.
1110 * While the mapping holds a reference on the contents of the object, it doesn't
1111 * imply a ref on the object itself.
1114 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1115 struct drm_file *file)
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 struct drm_i915_gem_mmap *args = data;
1119 struct drm_gem_object *obj;
1120 unsigned long addr;
1122 if (!(dev->driver->driver_features & DRIVER_GEM))
1123 return -ENODEV;
1125 obj = drm_gem_object_lookup(dev, file, args->handle);
1126 if (obj == NULL)
1127 return -ENOENT;
1129 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1130 drm_gem_object_unreference_unlocked(obj);
1131 return -E2BIG;
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
1139 drm_gem_object_unreference_unlocked(obj);
1140 if (IS_ERR((void *)addr))
1141 return addr;
1143 args->addr_ptr = (uint64_t) addr;
1145 return 0;
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1166 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1167 struct drm_device *dev = obj->base.dev;
1168 drm_i915_private_t *dev_priv = dev->dev_private;
1169 pgoff_t page_offset;
1170 unsigned long pfn;
1171 int ret = 0;
1172 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174 /* We don't use vmf->pgoff since that has the fake offset */
1175 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1176 PAGE_SHIFT;
1178 ret = i915_mutex_lock_interruptible(dev);
1179 if (ret)
1180 goto out;
1182 trace_i915_gem_object_fault(obj, page_offset, true, write);
1184 /* Now bind it into the GTT if needed */
1185 if (!obj->map_and_fenceable) {
1186 ret = i915_gem_object_unbind(obj);
1187 if (ret)
1188 goto unlock;
1190 if (!obj->gtt_space) {
1191 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1192 if (ret)
1193 goto unlock;
1196 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1197 if (ret)
1198 goto unlock;
1200 if (obj->tiling_mode == I915_TILING_NONE)
1201 ret = i915_gem_object_put_fence(obj);
1202 else
1203 ret = i915_gem_object_get_fence(obj, NULL, true);
1204 if (ret)
1205 goto unlock;
1207 if (i915_gem_object_is_inactive(obj))
1208 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1210 obj->fault_mappable = true;
1212 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1213 page_offset;
1215 /* Finally, remap it using the new GTT offset */
1216 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1217 unlock:
1218 mutex_unlock(&dev->struct_mutex);
1219 out:
1220 switch (ret) {
1221 case -EIO:
1222 case -EAGAIN:
1223 /* Give the error handler a chance to run and move the
1224 * objects off the GPU active list. Next time we service the
1225 * fault, we should be able to transition the page into the
1226 * GTT without touching the GPU (and so avoid further
1227 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1228 * with coherency, just lost writes.
1230 set_need_resched();
1231 case 0:
1232 case -ERESTARTSYS:
1233 case -EINTR:
1234 return VM_FAULT_NOPAGE;
1235 case -ENOMEM:
1236 return VM_FAULT_OOM;
1237 default:
1238 return VM_FAULT_SIGBUS;
1243 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1244 * @obj: obj in question
1246 * GEM memory mapping works by handing back to userspace a fake mmap offset
1247 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1248 * up the object based on the offset and sets up the various memory mapping
1249 * structures.
1251 * This routine allocates and attaches a fake offset for @obj.
1253 static int
1254 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1256 struct drm_device *dev = obj->base.dev;
1257 struct drm_gem_mm *mm = dev->mm_private;
1258 struct drm_map_list *list;
1259 struct drm_local_map *map;
1260 int ret = 0;
1262 /* Set the object up for mmap'ing */
1263 list = &obj->base.map_list;
1264 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1265 if (!list->map)
1266 return -ENOMEM;
1268 map = list->map;
1269 map->type = _DRM_GEM;
1270 map->size = obj->base.size;
1271 map->handle = obj;
1273 /* Get a DRM GEM mmap offset allocated... */
1274 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1275 obj->base.size / PAGE_SIZE,
1276 0, 0);
1277 if (!list->file_offset_node) {
1278 DRM_ERROR("failed to allocate offset for bo %d\n",
1279 obj->base.name);
1280 ret = -ENOSPC;
1281 goto out_free_list;
1284 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1285 obj->base.size / PAGE_SIZE,
1287 if (!list->file_offset_node) {
1288 ret = -ENOMEM;
1289 goto out_free_list;
1292 list->hash.key = list->file_offset_node->start;
1293 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1294 if (ret) {
1295 DRM_ERROR("failed to add to map hash\n");
1296 goto out_free_mm;
1299 return 0;
1301 out_free_mm:
1302 drm_mm_put_block(list->file_offset_node);
1303 out_free_list:
1304 kfree(list->map);
1305 list->map = NULL;
1307 return ret;
1311 * i915_gem_release_mmap - remove physical page mappings
1312 * @obj: obj in question
1314 * Preserve the reservation of the mmapping with the DRM core code, but
1315 * relinquish ownership of the pages back to the system.
1317 * It is vital that we remove the page mapping if we have mapped a tiled
1318 * object through the GTT and then lose the fence register due to
1319 * resource pressure. Similarly if the object has been moved out of the
1320 * aperture, than pages mapped into userspace must be revoked. Removing the
1321 * mapping will then trigger a page fault on the next user access, allowing
1322 * fixup by i915_gem_fault().
1324 void
1325 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1327 if (!obj->fault_mappable)
1328 return;
1330 unmap_mapping_range(obj->base.dev->dev_mapping,
1331 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1332 obj->base.size, 1);
1334 obj->fault_mappable = false;
1337 static void
1338 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1340 struct drm_device *dev = obj->base.dev;
1341 struct drm_gem_mm *mm = dev->mm_private;
1342 struct drm_map_list *list = &obj->base.map_list;
1344 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1345 drm_mm_put_block(list->file_offset_node);
1346 kfree(list->map);
1347 list->map = NULL;
1350 static uint32_t
1351 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1353 struct drm_device *dev = obj->base.dev;
1354 uint32_t size;
1356 if (INTEL_INFO(dev)->gen >= 4 ||
1357 obj->tiling_mode == I915_TILING_NONE)
1358 return obj->base.size;
1360 /* Previous chips need a power-of-two fence region when tiling */
1361 if (INTEL_INFO(dev)->gen == 3)
1362 size = 1024*1024;
1363 else
1364 size = 512*1024;
1366 while (size < obj->base.size)
1367 size <<= 1;
1369 return size;
1373 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1374 * @obj: object to check
1376 * Return the required GTT alignment for an object, taking into account
1377 * potential fence register mapping.
1379 static uint32_t
1380 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1382 struct drm_device *dev = obj->base.dev;
1385 * Minimum alignment is 4k (GTT page size), but might be greater
1386 * if a fence register is needed for the object.
1388 if (INTEL_INFO(dev)->gen >= 4 ||
1389 obj->tiling_mode == I915_TILING_NONE)
1390 return 4096;
1393 * Previous chips need to be aligned to the size of the smallest
1394 * fence register that can contain the object.
1396 return i915_gem_get_gtt_size(obj);
1400 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1401 * unfenced object
1402 * @obj: object to check
1404 * Return the required GTT alignment for an object, only taking into account
1405 * unfenced tiled surface requirements.
1407 static uint32_t
1408 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1410 struct drm_device *dev = obj->base.dev;
1411 int tile_height;
1414 * Minimum alignment is 4k (GTT page size) for sane hw.
1416 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1417 obj->tiling_mode == I915_TILING_NONE)
1418 return 4096;
1421 * Older chips need unfenced tiled buffers to be aligned to the left
1422 * edge of an even tile row (where tile rows are counted as if the bo is
1423 * placed in a fenced gtt region).
1425 if (IS_GEN2(dev) ||
1426 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1427 tile_height = 32;
1428 else
1429 tile_height = 8;
1431 return tile_height * obj->stride * 2;
1435 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1436 * @dev: DRM device
1437 * @data: GTT mapping ioctl data
1438 * @file: GEM object info
1440 * Simply returns the fake offset to userspace so it can mmap it.
1441 * The mmap call will end up in drm_gem_mmap(), which will set things
1442 * up so we can get faults in the handler above.
1444 * The fault handler will take care of binding the object into the GTT
1445 * (since it may have been evicted to make room for something), allocating
1446 * a fence register, and mapping the appropriate aperture address into
1447 * userspace.
1450 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1451 struct drm_file *file)
1453 struct drm_i915_private *dev_priv = dev->dev_private;
1454 struct drm_i915_gem_mmap_gtt *args = data;
1455 struct drm_i915_gem_object *obj;
1456 int ret;
1458 if (!(dev->driver->driver_features & DRIVER_GEM))
1459 return -ENODEV;
1461 ret = i915_mutex_lock_interruptible(dev);
1462 if (ret)
1463 return ret;
1465 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1466 if (obj == NULL) {
1467 ret = -ENOENT;
1468 goto unlock;
1471 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1472 ret = -E2BIG;
1473 goto unlock;
1476 if (obj->madv != I915_MADV_WILLNEED) {
1477 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1478 ret = -EINVAL;
1479 goto out;
1482 if (!obj->base.map_list.map) {
1483 ret = i915_gem_create_mmap_offset(obj);
1484 if (ret)
1485 goto out;
1488 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1490 out:
1491 drm_gem_object_unreference(&obj->base);
1492 unlock:
1493 mutex_unlock(&dev->struct_mutex);
1494 return ret;
1497 static int
1498 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1499 gfp_t gfpmask)
1501 int page_count, i;
1502 struct address_space *mapping;
1503 struct inode *inode;
1504 struct page *page;
1506 /* Get the list of pages out of our struct file. They'll be pinned
1507 * at this point until we release them.
1509 page_count = obj->base.size / PAGE_SIZE;
1510 BUG_ON(obj->pages != NULL);
1511 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1512 if (obj->pages == NULL)
1513 return -ENOMEM;
1515 inode = obj->base.filp->f_path.dentry->d_inode;
1516 mapping = inode->i_mapping;
1517 for (i = 0; i < page_count; i++) {
1518 page = read_cache_page_gfp(mapping, i,
1519 GFP_HIGHUSER |
1520 __GFP_COLD |
1521 __GFP_RECLAIMABLE |
1522 gfpmask);
1523 if (IS_ERR(page))
1524 goto err_pages;
1526 obj->pages[i] = page;
1529 if (obj->tiling_mode != I915_TILING_NONE)
1530 i915_gem_object_do_bit_17_swizzle(obj);
1532 return 0;
1534 err_pages:
1535 while (i--)
1536 page_cache_release(obj->pages[i]);
1538 drm_free_large(obj->pages);
1539 obj->pages = NULL;
1540 return PTR_ERR(page);
1543 static void
1544 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1546 int page_count = obj->base.size / PAGE_SIZE;
1547 int i;
1549 BUG_ON(obj->madv == __I915_MADV_PURGED);
1551 if (obj->tiling_mode != I915_TILING_NONE)
1552 i915_gem_object_save_bit_17_swizzle(obj);
1554 if (obj->madv == I915_MADV_DONTNEED)
1555 obj->dirty = 0;
1557 for (i = 0; i < page_count; i++) {
1558 if (obj->dirty)
1559 set_page_dirty(obj->pages[i]);
1561 if (obj->madv == I915_MADV_WILLNEED)
1562 mark_page_accessed(obj->pages[i]);
1564 page_cache_release(obj->pages[i]);
1566 obj->dirty = 0;
1568 drm_free_large(obj->pages);
1569 obj->pages = NULL;
1572 void
1573 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1574 struct intel_ring_buffer *ring,
1575 u32 seqno)
1577 struct drm_device *dev = obj->base.dev;
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1580 BUG_ON(ring == NULL);
1581 obj->ring = ring;
1583 /* Add a reference if we're newly entering the active list. */
1584 if (!obj->active) {
1585 drm_gem_object_reference(&obj->base);
1586 obj->active = 1;
1589 /* Move from whatever list we were on to the tail of execution. */
1590 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1591 list_move_tail(&obj->ring_list, &ring->active_list);
1593 obj->last_rendering_seqno = seqno;
1594 if (obj->fenced_gpu_access) {
1595 struct drm_i915_fence_reg *reg;
1597 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1599 obj->last_fenced_seqno = seqno;
1600 obj->last_fenced_ring = ring;
1602 reg = &dev_priv->fence_regs[obj->fence_reg];
1603 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1607 static void
1608 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1610 list_del_init(&obj->ring_list);
1611 obj->last_rendering_seqno = 0;
1614 static void
1615 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1617 struct drm_device *dev = obj->base.dev;
1618 drm_i915_private_t *dev_priv = dev->dev_private;
1620 BUG_ON(!obj->active);
1621 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1623 i915_gem_object_move_off_active(obj);
1626 static void
1627 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1629 struct drm_device *dev = obj->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1632 if (obj->pin_count != 0)
1633 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1634 else
1635 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1637 BUG_ON(!list_empty(&obj->gpu_write_list));
1638 BUG_ON(!obj->active);
1639 obj->ring = NULL;
1641 i915_gem_object_move_off_active(obj);
1642 obj->fenced_gpu_access = false;
1644 obj->active = 0;
1645 obj->pending_gpu_write = false;
1646 drm_gem_object_unreference(&obj->base);
1648 WARN_ON(i915_verify_lists(dev));
1651 /* Immediately discard the backing storage */
1652 static void
1653 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1655 struct inode *inode;
1657 /* Our goal here is to return as much of the memory as
1658 * is possible back to the system as we are called from OOM.
1659 * To do this we must instruct the shmfs to drop all of its
1660 * backing pages, *now*. Here we mirror the actions taken
1661 * when by shmem_delete_inode() to release the backing store.
1663 inode = obj->base.filp->f_path.dentry->d_inode;
1664 truncate_inode_pages(inode->i_mapping, 0);
1665 if (inode->i_op->truncate_range)
1666 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1668 obj->madv = __I915_MADV_PURGED;
1671 static inline int
1672 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1674 return obj->madv == I915_MADV_DONTNEED;
1677 static void
1678 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1679 uint32_t flush_domains)
1681 struct drm_i915_gem_object *obj, *next;
1683 list_for_each_entry_safe(obj, next,
1684 &ring->gpu_write_list,
1685 gpu_write_list) {
1686 if (obj->base.write_domain & flush_domains) {
1687 uint32_t old_write_domain = obj->base.write_domain;
1689 obj->base.write_domain = 0;
1690 list_del_init(&obj->gpu_write_list);
1691 i915_gem_object_move_to_active(obj, ring,
1692 i915_gem_next_request_seqno(ring));
1694 trace_i915_gem_object_change_domain(obj,
1695 obj->base.read_domains,
1696 old_write_domain);
1702 i915_add_request(struct intel_ring_buffer *ring,
1703 struct drm_file *file,
1704 struct drm_i915_gem_request *request)
1706 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1707 uint32_t seqno;
1708 int was_empty;
1709 int ret;
1711 BUG_ON(request == NULL);
1713 ret = ring->add_request(ring, &seqno);
1714 if (ret)
1715 return ret;
1717 trace_i915_gem_request_add(ring, seqno);
1719 request->seqno = seqno;
1720 request->ring = ring;
1721 request->emitted_jiffies = jiffies;
1722 was_empty = list_empty(&ring->request_list);
1723 list_add_tail(&request->list, &ring->request_list);
1725 if (file) {
1726 struct drm_i915_file_private *file_priv = file->driver_priv;
1728 spin_lock(&file_priv->mm.lock);
1729 request->file_priv = file_priv;
1730 list_add_tail(&request->client_list,
1731 &file_priv->mm.request_list);
1732 spin_unlock(&file_priv->mm.lock);
1735 ring->outstanding_lazy_request = false;
1737 if (!dev_priv->mm.suspended) {
1738 mod_timer(&dev_priv->hangcheck_timer,
1739 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1740 if (was_empty)
1741 queue_delayed_work(dev_priv->wq,
1742 &dev_priv->mm.retire_work, HZ);
1744 return 0;
1747 static inline void
1748 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1750 struct drm_i915_file_private *file_priv = request->file_priv;
1752 if (!file_priv)
1753 return;
1755 spin_lock(&file_priv->mm.lock);
1756 list_del(&request->client_list);
1757 request->file_priv = NULL;
1758 spin_unlock(&file_priv->mm.lock);
1761 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1762 struct intel_ring_buffer *ring)
1764 while (!list_empty(&ring->request_list)) {
1765 struct drm_i915_gem_request *request;
1767 request = list_first_entry(&ring->request_list,
1768 struct drm_i915_gem_request,
1769 list);
1771 list_del(&request->list);
1772 i915_gem_request_remove_from_client(request);
1773 kfree(request);
1776 while (!list_empty(&ring->active_list)) {
1777 struct drm_i915_gem_object *obj;
1779 obj = list_first_entry(&ring->active_list,
1780 struct drm_i915_gem_object,
1781 ring_list);
1783 obj->base.write_domain = 0;
1784 list_del_init(&obj->gpu_write_list);
1785 i915_gem_object_move_to_inactive(obj);
1789 static void i915_gem_reset_fences(struct drm_device *dev)
1791 struct drm_i915_private *dev_priv = dev->dev_private;
1792 int i;
1794 for (i = 0; i < 16; i++) {
1795 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1796 struct drm_i915_gem_object *obj = reg->obj;
1798 if (!obj)
1799 continue;
1801 if (obj->tiling_mode)
1802 i915_gem_release_mmap(obj);
1804 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1805 reg->obj->fenced_gpu_access = false;
1806 reg->obj->last_fenced_seqno = 0;
1807 reg->obj->last_fenced_ring = NULL;
1808 i915_gem_clear_fence_reg(dev, reg);
1812 void i915_gem_reset(struct drm_device *dev)
1814 struct drm_i915_private *dev_priv = dev->dev_private;
1815 struct drm_i915_gem_object *obj;
1816 int i;
1818 for (i = 0; i < I915_NUM_RINGS; i++)
1819 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1821 /* Remove anything from the flushing lists. The GPU cache is likely
1822 * to be lost on reset along with the data, so simply move the
1823 * lost bo to the inactive list.
1825 while (!list_empty(&dev_priv->mm.flushing_list)) {
1826 obj= list_first_entry(&dev_priv->mm.flushing_list,
1827 struct drm_i915_gem_object,
1828 mm_list);
1830 obj->base.write_domain = 0;
1831 list_del_init(&obj->gpu_write_list);
1832 i915_gem_object_move_to_inactive(obj);
1835 /* Move everything out of the GPU domains to ensure we do any
1836 * necessary invalidation upon reuse.
1838 list_for_each_entry(obj,
1839 &dev_priv->mm.inactive_list,
1840 mm_list)
1842 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1845 /* The fence registers are invalidated so clear them out */
1846 i915_gem_reset_fences(dev);
1850 * This function clears the request list as sequence numbers are passed.
1852 static void
1853 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1855 uint32_t seqno;
1856 int i;
1858 if (list_empty(&ring->request_list))
1859 return;
1861 WARN_ON(i915_verify_lists(ring->dev));
1863 seqno = ring->get_seqno(ring);
1865 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1866 if (seqno >= ring->sync_seqno[i])
1867 ring->sync_seqno[i] = 0;
1869 while (!list_empty(&ring->request_list)) {
1870 struct drm_i915_gem_request *request;
1872 request = list_first_entry(&ring->request_list,
1873 struct drm_i915_gem_request,
1874 list);
1876 if (!i915_seqno_passed(seqno, request->seqno))
1877 break;
1879 trace_i915_gem_request_retire(ring, request->seqno);
1881 list_del(&request->list);
1882 i915_gem_request_remove_from_client(request);
1883 kfree(request);
1886 /* Move any buffers on the active list that are no longer referenced
1887 * by the ringbuffer to the flushing/inactive lists as appropriate.
1889 while (!list_empty(&ring->active_list)) {
1890 struct drm_i915_gem_object *obj;
1892 obj= list_first_entry(&ring->active_list,
1893 struct drm_i915_gem_object,
1894 ring_list);
1896 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1897 break;
1899 if (obj->base.write_domain != 0)
1900 i915_gem_object_move_to_flushing(obj);
1901 else
1902 i915_gem_object_move_to_inactive(obj);
1905 if (unlikely(ring->trace_irq_seqno &&
1906 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1907 ring->irq_put(ring);
1908 ring->trace_irq_seqno = 0;
1911 WARN_ON(i915_verify_lists(ring->dev));
1914 void
1915 i915_gem_retire_requests(struct drm_device *dev)
1917 drm_i915_private_t *dev_priv = dev->dev_private;
1918 int i;
1920 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1921 struct drm_i915_gem_object *obj, *next;
1923 /* We must be careful that during unbind() we do not
1924 * accidentally infinitely recurse into retire requests.
1925 * Currently:
1926 * retire -> free -> unbind -> wait -> retire_ring
1928 list_for_each_entry_safe(obj, next,
1929 &dev_priv->mm.deferred_free_list,
1930 mm_list)
1931 i915_gem_free_object_tail(obj);
1934 for (i = 0; i < I915_NUM_RINGS; i++)
1935 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1938 static void
1939 i915_gem_retire_work_handler(struct work_struct *work)
1941 drm_i915_private_t *dev_priv;
1942 struct drm_device *dev;
1943 bool idle;
1944 int i;
1946 dev_priv = container_of(work, drm_i915_private_t,
1947 mm.retire_work.work);
1948 dev = dev_priv->dev;
1950 /* Come back later if the device is busy... */
1951 if (!mutex_trylock(&dev->struct_mutex)) {
1952 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1953 return;
1956 i915_gem_retire_requests(dev);
1958 /* Send a periodic flush down the ring so we don't hold onto GEM
1959 * objects indefinitely.
1961 idle = true;
1962 for (i = 0; i < I915_NUM_RINGS; i++) {
1963 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1965 if (!list_empty(&ring->gpu_write_list)) {
1966 struct drm_i915_gem_request *request;
1967 int ret;
1969 ret = i915_gem_flush_ring(ring,
1970 0, I915_GEM_GPU_DOMAINS);
1971 request = kzalloc(sizeof(*request), GFP_KERNEL);
1972 if (ret || request == NULL ||
1973 i915_add_request(ring, NULL, request))
1974 kfree(request);
1977 idle &= list_empty(&ring->request_list);
1980 if (!dev_priv->mm.suspended && !idle)
1981 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1983 mutex_unlock(&dev->struct_mutex);
1987 * Waits for a sequence number to be signaled, and cleans up the
1988 * request and object lists appropriately for that event.
1991 i915_wait_request(struct intel_ring_buffer *ring,
1992 uint32_t seqno,
1993 bool interruptible)
1995 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1996 u32 ier;
1997 int ret = 0;
1999 BUG_ON(seqno == 0);
2001 if (atomic_read(&dev_priv->mm.wedged)) {
2002 struct completion *x = &dev_priv->error_completion;
2003 bool recovery_complete;
2004 unsigned long flags;
2006 /* Give the error handler a chance to run. */
2007 spin_lock_irqsave(&x->wait.lock, flags);
2008 recovery_complete = x->done > 0;
2009 spin_unlock_irqrestore(&x->wait.lock, flags);
2011 return recovery_complete ? -EIO : -EAGAIN;
2014 if (seqno == ring->outstanding_lazy_request) {
2015 struct drm_i915_gem_request *request;
2017 request = kzalloc(sizeof(*request), GFP_KERNEL);
2018 if (request == NULL)
2019 return -ENOMEM;
2021 ret = i915_add_request(ring, NULL, request);
2022 if (ret) {
2023 kfree(request);
2024 return ret;
2027 seqno = request->seqno;
2030 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2031 if (HAS_PCH_SPLIT(ring->dev))
2032 ier = I915_READ(DEIER) | I915_READ(GTIER);
2033 else
2034 ier = I915_READ(IER);
2035 if (!ier) {
2036 DRM_ERROR("something (likely vbetool) disabled "
2037 "interrupts, re-enabling\n");
2038 i915_driver_irq_preinstall(ring->dev);
2039 i915_driver_irq_postinstall(ring->dev);
2042 trace_i915_gem_request_wait_begin(ring, seqno);
2044 ring->waiting_seqno = seqno;
2045 if (ring->irq_get(ring)) {
2046 if (interruptible)
2047 ret = wait_event_interruptible(ring->irq_queue,
2048 i915_seqno_passed(ring->get_seqno(ring), seqno)
2049 || atomic_read(&dev_priv->mm.wedged));
2050 else
2051 wait_event(ring->irq_queue,
2052 i915_seqno_passed(ring->get_seqno(ring), seqno)
2053 || atomic_read(&dev_priv->mm.wedged));
2055 ring->irq_put(ring);
2056 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2057 seqno) ||
2058 atomic_read(&dev_priv->mm.wedged), 3000))
2059 ret = -EBUSY;
2060 ring->waiting_seqno = 0;
2062 trace_i915_gem_request_wait_end(ring, seqno);
2064 if (atomic_read(&dev_priv->mm.wedged))
2065 ret = -EAGAIN;
2067 if (ret && ret != -ERESTARTSYS)
2068 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2069 __func__, ret, seqno, ring->get_seqno(ring),
2070 dev_priv->next_seqno);
2072 /* Directly dispatch request retiring. While we have the work queue
2073 * to handle this, the waiter on a request often wants an associated
2074 * buffer to have made it to the inactive list, and we would need
2075 * a separate wait queue to handle that.
2077 if (ret == 0)
2078 i915_gem_retire_requests_ring(ring);
2080 return ret;
2084 * Ensures that all rendering to the object has completed and the object is
2085 * safe to unbind from the GTT or access from the CPU.
2088 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2089 bool interruptible)
2091 int ret;
2093 /* This function only exists to support waiting for existing rendering,
2094 * not for emitting required flushes.
2096 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2098 /* If there is rendering queued on the buffer being evicted, wait for
2099 * it.
2101 if (obj->active) {
2102 ret = i915_wait_request(obj->ring,
2103 obj->last_rendering_seqno,
2104 interruptible);
2105 if (ret)
2106 return ret;
2109 return 0;
2113 * Unbinds an object from the GTT aperture.
2116 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2118 int ret = 0;
2120 if (obj->gtt_space == NULL)
2121 return 0;
2123 if (obj->pin_count != 0) {
2124 DRM_ERROR("Attempting to unbind pinned buffer\n");
2125 return -EINVAL;
2128 /* blow away mappings if mapped through GTT */
2129 i915_gem_release_mmap(obj);
2131 /* Move the object to the CPU domain to ensure that
2132 * any possible CPU writes while it's not in the GTT
2133 * are flushed when we go to remap it. This will
2134 * also ensure that all pending GPU writes are finished
2135 * before we unbind.
2137 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2138 if (ret == -ERESTARTSYS)
2139 return ret;
2140 /* Continue on if we fail due to EIO, the GPU is hung so we
2141 * should be safe and we need to cleanup or else we might
2142 * cause memory corruption through use-after-free.
2144 if (ret) {
2145 i915_gem_clflush_object(obj);
2146 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2149 /* release the fence reg _after_ flushing */
2150 ret = i915_gem_object_put_fence(obj);
2151 if (ret == -ERESTARTSYS)
2152 return ret;
2154 trace_i915_gem_object_unbind(obj);
2156 i915_gem_gtt_unbind_object(obj);
2157 i915_gem_object_put_pages_gtt(obj);
2159 list_del_init(&obj->gtt_list);
2160 list_del_init(&obj->mm_list);
2161 /* Avoid an unnecessary call to unbind on rebind. */
2162 obj->map_and_fenceable = true;
2164 drm_mm_put_block(obj->gtt_space);
2165 obj->gtt_space = NULL;
2166 obj->gtt_offset = 0;
2168 if (i915_gem_object_is_purgeable(obj))
2169 i915_gem_object_truncate(obj);
2171 return ret;
2175 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2176 uint32_t invalidate_domains,
2177 uint32_t flush_domains)
2179 int ret;
2181 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2183 ret = ring->flush(ring, invalidate_domains, flush_domains);
2184 if (ret)
2185 return ret;
2187 i915_gem_process_flushing_list(ring, flush_domains);
2188 return 0;
2191 static int i915_ring_idle(struct intel_ring_buffer *ring)
2193 int ret;
2195 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2196 return 0;
2198 if (!list_empty(&ring->gpu_write_list)) {
2199 ret = i915_gem_flush_ring(ring,
2200 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2201 if (ret)
2202 return ret;
2205 return i915_wait_request(ring,
2206 i915_gem_next_request_seqno(ring),
2207 true);
2211 i915_gpu_idle(struct drm_device *dev)
2213 drm_i915_private_t *dev_priv = dev->dev_private;
2214 bool lists_empty;
2215 int ret, i;
2217 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2218 list_empty(&dev_priv->mm.active_list));
2219 if (lists_empty)
2220 return 0;
2222 /* Flush everything onto the inactive list. */
2223 for (i = 0; i < I915_NUM_RINGS; i++) {
2224 ret = i915_ring_idle(&dev_priv->ring[i]);
2225 if (ret)
2226 return ret;
2229 return 0;
2232 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2233 struct intel_ring_buffer *pipelined)
2235 struct drm_device *dev = obj->base.dev;
2236 drm_i915_private_t *dev_priv = dev->dev_private;
2237 u32 size = obj->gtt_space->size;
2238 int regnum = obj->fence_reg;
2239 uint64_t val;
2241 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2242 0xfffff000) << 32;
2243 val |= obj->gtt_offset & 0xfffff000;
2244 val |= (uint64_t)((obj->stride / 128) - 1) <<
2245 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2247 if (obj->tiling_mode == I915_TILING_Y)
2248 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2249 val |= I965_FENCE_REG_VALID;
2251 if (pipelined) {
2252 int ret = intel_ring_begin(pipelined, 6);
2253 if (ret)
2254 return ret;
2256 intel_ring_emit(pipelined, MI_NOOP);
2257 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2258 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2259 intel_ring_emit(pipelined, (u32)val);
2260 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2261 intel_ring_emit(pipelined, (u32)(val >> 32));
2262 intel_ring_advance(pipelined);
2263 } else
2264 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2266 return 0;
2269 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2270 struct intel_ring_buffer *pipelined)
2272 struct drm_device *dev = obj->base.dev;
2273 drm_i915_private_t *dev_priv = dev->dev_private;
2274 u32 size = obj->gtt_space->size;
2275 int regnum = obj->fence_reg;
2276 uint64_t val;
2278 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2279 0xfffff000) << 32;
2280 val |= obj->gtt_offset & 0xfffff000;
2281 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2282 if (obj->tiling_mode == I915_TILING_Y)
2283 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2284 val |= I965_FENCE_REG_VALID;
2286 if (pipelined) {
2287 int ret = intel_ring_begin(pipelined, 6);
2288 if (ret)
2289 return ret;
2291 intel_ring_emit(pipelined, MI_NOOP);
2292 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2293 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2294 intel_ring_emit(pipelined, (u32)val);
2295 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2296 intel_ring_emit(pipelined, (u32)(val >> 32));
2297 intel_ring_advance(pipelined);
2298 } else
2299 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2301 return 0;
2304 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2305 struct intel_ring_buffer *pipelined)
2307 struct drm_device *dev = obj->base.dev;
2308 drm_i915_private_t *dev_priv = dev->dev_private;
2309 u32 size = obj->gtt_space->size;
2310 u32 fence_reg, val, pitch_val;
2311 int tile_width;
2313 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2314 (size & -size) != size ||
2315 (obj->gtt_offset & (size - 1)),
2316 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2317 obj->gtt_offset, obj->map_and_fenceable, size))
2318 return -EINVAL;
2320 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2321 tile_width = 128;
2322 else
2323 tile_width = 512;
2325 /* Note: pitch better be a power of two tile widths */
2326 pitch_val = obj->stride / tile_width;
2327 pitch_val = ffs(pitch_val) - 1;
2329 val = obj->gtt_offset;
2330 if (obj->tiling_mode == I915_TILING_Y)
2331 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2332 val |= I915_FENCE_SIZE_BITS(size);
2333 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2334 val |= I830_FENCE_REG_VALID;
2336 fence_reg = obj->fence_reg;
2337 if (fence_reg < 8)
2338 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2339 else
2340 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2342 if (pipelined) {
2343 int ret = intel_ring_begin(pipelined, 4);
2344 if (ret)
2345 return ret;
2347 intel_ring_emit(pipelined, MI_NOOP);
2348 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2349 intel_ring_emit(pipelined, fence_reg);
2350 intel_ring_emit(pipelined, val);
2351 intel_ring_advance(pipelined);
2352 } else
2353 I915_WRITE(fence_reg, val);
2355 return 0;
2358 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2359 struct intel_ring_buffer *pipelined)
2361 struct drm_device *dev = obj->base.dev;
2362 drm_i915_private_t *dev_priv = dev->dev_private;
2363 u32 size = obj->gtt_space->size;
2364 int regnum = obj->fence_reg;
2365 uint32_t val;
2366 uint32_t pitch_val;
2368 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2369 (size & -size) != size ||
2370 (obj->gtt_offset & (size - 1)),
2371 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2372 obj->gtt_offset, size))
2373 return -EINVAL;
2375 pitch_val = obj->stride / 128;
2376 pitch_val = ffs(pitch_val) - 1;
2378 val = obj->gtt_offset;
2379 if (obj->tiling_mode == I915_TILING_Y)
2380 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2381 val |= I830_FENCE_SIZE_BITS(size);
2382 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2383 val |= I830_FENCE_REG_VALID;
2385 if (pipelined) {
2386 int ret = intel_ring_begin(pipelined, 4);
2387 if (ret)
2388 return ret;
2390 intel_ring_emit(pipelined, MI_NOOP);
2391 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2392 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2393 intel_ring_emit(pipelined, val);
2394 intel_ring_advance(pipelined);
2395 } else
2396 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2398 return 0;
2401 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2403 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2406 static int
2407 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2408 struct intel_ring_buffer *pipelined,
2409 bool interruptible)
2411 int ret;
2413 if (obj->fenced_gpu_access) {
2414 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2415 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2416 0, obj->base.write_domain);
2417 if (ret)
2418 return ret;
2421 obj->fenced_gpu_access = false;
2424 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2425 if (!ring_passed_seqno(obj->last_fenced_ring,
2426 obj->last_fenced_seqno)) {
2427 ret = i915_wait_request(obj->last_fenced_ring,
2428 obj->last_fenced_seqno,
2429 interruptible);
2431 if (ret)
2432 return ret;
2435 obj->last_fenced_seqno = 0;
2436 obj->last_fenced_ring = NULL;
2439 /* Ensure that all CPU reads are completed before installing a fence
2440 * and all writes before removing the fence.
2442 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2443 mb();
2445 return 0;
2449 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2451 int ret;
2453 if (obj->tiling_mode)
2454 i915_gem_release_mmap(obj);
2456 ret = i915_gem_object_flush_fence(obj, NULL, true);
2457 if (ret)
2458 return ret;
2460 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2461 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2462 i915_gem_clear_fence_reg(obj->base.dev,
2463 &dev_priv->fence_regs[obj->fence_reg]);
2465 obj->fence_reg = I915_FENCE_REG_NONE;
2468 return 0;
2471 static struct drm_i915_fence_reg *
2472 i915_find_fence_reg(struct drm_device *dev,
2473 struct intel_ring_buffer *pipelined)
2475 struct drm_i915_private *dev_priv = dev->dev_private;
2476 struct drm_i915_fence_reg *reg, *first, *avail;
2477 int i;
2479 /* First try to find a free reg */
2480 avail = NULL;
2481 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2482 reg = &dev_priv->fence_regs[i];
2483 if (!reg->obj)
2484 return reg;
2486 if (!reg->obj->pin_count)
2487 avail = reg;
2490 if (avail == NULL)
2491 return NULL;
2493 /* None available, try to steal one or wait for a user to finish */
2494 avail = first = NULL;
2495 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2496 if (reg->obj->pin_count)
2497 continue;
2499 if (first == NULL)
2500 first = reg;
2502 if (!pipelined ||
2503 !reg->obj->last_fenced_ring ||
2504 reg->obj->last_fenced_ring == pipelined) {
2505 avail = reg;
2506 break;
2510 if (avail == NULL)
2511 avail = first;
2513 return avail;
2517 * i915_gem_object_get_fence - set up a fence reg for an object
2518 * @obj: object to map through a fence reg
2519 * @pipelined: ring on which to queue the change, or NULL for CPU access
2520 * @interruptible: must we wait uninterruptibly for the register to retire?
2522 * When mapping objects through the GTT, userspace wants to be able to write
2523 * to them without having to worry about swizzling if the object is tiled.
2525 * This function walks the fence regs looking for a free one for @obj,
2526 * stealing one if it can't find any.
2528 * It then sets up the reg based on the object's properties: address, pitch
2529 * and tiling format.
2532 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2533 struct intel_ring_buffer *pipelined,
2534 bool interruptible)
2536 struct drm_device *dev = obj->base.dev;
2537 struct drm_i915_private *dev_priv = dev->dev_private;
2538 struct drm_i915_fence_reg *reg;
2539 int ret;
2541 /* XXX disable pipelining. There are bugs. Shocking. */
2542 pipelined = NULL;
2544 /* Just update our place in the LRU if our fence is getting reused. */
2545 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2546 reg = &dev_priv->fence_regs[obj->fence_reg];
2547 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2549 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2550 pipelined = NULL;
2552 if (!pipelined) {
2553 if (reg->setup_seqno) {
2554 if (!ring_passed_seqno(obj->last_fenced_ring,
2555 reg->setup_seqno)) {
2556 ret = i915_wait_request(obj->last_fenced_ring,
2557 reg->setup_seqno,
2558 interruptible);
2559 if (ret)
2560 return ret;
2563 reg->setup_seqno = 0;
2565 } else if (obj->last_fenced_ring &&
2566 obj->last_fenced_ring != pipelined) {
2567 ret = i915_gem_object_flush_fence(obj,
2568 pipelined,
2569 interruptible);
2570 if (ret)
2571 return ret;
2572 } else if (obj->tiling_changed) {
2573 if (obj->fenced_gpu_access) {
2574 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2575 ret = i915_gem_flush_ring(obj->ring,
2576 0, obj->base.write_domain);
2577 if (ret)
2578 return ret;
2581 obj->fenced_gpu_access = false;
2585 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2586 pipelined = NULL;
2587 BUG_ON(!pipelined && reg->setup_seqno);
2589 if (obj->tiling_changed) {
2590 if (pipelined) {
2591 reg->setup_seqno =
2592 i915_gem_next_request_seqno(pipelined);
2593 obj->last_fenced_seqno = reg->setup_seqno;
2594 obj->last_fenced_ring = pipelined;
2596 goto update;
2599 return 0;
2602 reg = i915_find_fence_reg(dev, pipelined);
2603 if (reg == NULL)
2604 return -ENOSPC;
2606 ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2607 if (ret)
2608 return ret;
2610 if (reg->obj) {
2611 struct drm_i915_gem_object *old = reg->obj;
2613 drm_gem_object_reference(&old->base);
2615 if (old->tiling_mode)
2616 i915_gem_release_mmap(old);
2618 ret = i915_gem_object_flush_fence(old,
2619 pipelined,
2620 interruptible);
2621 if (ret) {
2622 drm_gem_object_unreference(&old->base);
2623 return ret;
2626 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2627 pipelined = NULL;
2629 old->fence_reg = I915_FENCE_REG_NONE;
2630 old->last_fenced_ring = pipelined;
2631 old->last_fenced_seqno =
2632 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2634 drm_gem_object_unreference(&old->base);
2635 } else if (obj->last_fenced_seqno == 0)
2636 pipelined = NULL;
2638 reg->obj = obj;
2639 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2640 obj->fence_reg = reg - dev_priv->fence_regs;
2641 obj->last_fenced_ring = pipelined;
2643 reg->setup_seqno =
2644 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2645 obj->last_fenced_seqno = reg->setup_seqno;
2647 update:
2648 obj->tiling_changed = false;
2649 switch (INTEL_INFO(dev)->gen) {
2650 case 6:
2651 ret = sandybridge_write_fence_reg(obj, pipelined);
2652 break;
2653 case 5:
2654 case 4:
2655 ret = i965_write_fence_reg(obj, pipelined);
2656 break;
2657 case 3:
2658 ret = i915_write_fence_reg(obj, pipelined);
2659 break;
2660 case 2:
2661 ret = i830_write_fence_reg(obj, pipelined);
2662 break;
2665 return ret;
2669 * i915_gem_clear_fence_reg - clear out fence register info
2670 * @obj: object to clear
2672 * Zeroes out the fence register itself and clears out the associated
2673 * data structures in dev_priv and obj.
2675 static void
2676 i915_gem_clear_fence_reg(struct drm_device *dev,
2677 struct drm_i915_fence_reg *reg)
2679 drm_i915_private_t *dev_priv = dev->dev_private;
2680 uint32_t fence_reg = reg - dev_priv->fence_regs;
2682 switch (INTEL_INFO(dev)->gen) {
2683 case 6:
2684 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2685 break;
2686 case 5:
2687 case 4:
2688 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2689 break;
2690 case 3:
2691 if (fence_reg >= 8)
2692 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2693 else
2694 case 2:
2695 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2697 I915_WRITE(fence_reg, 0);
2698 break;
2701 list_del_init(&reg->lru_list);
2702 reg->obj = NULL;
2703 reg->setup_seqno = 0;
2707 * Finds free space in the GTT aperture and binds the object there.
2709 static int
2710 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2711 unsigned alignment,
2712 bool map_and_fenceable)
2714 struct drm_device *dev = obj->base.dev;
2715 drm_i915_private_t *dev_priv = dev->dev_private;
2716 struct drm_mm_node *free_space;
2717 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2718 u32 size, fence_size, fence_alignment, unfenced_alignment;
2719 bool mappable, fenceable;
2720 int ret;
2722 if (obj->madv != I915_MADV_WILLNEED) {
2723 DRM_ERROR("Attempting to bind a purgeable object\n");
2724 return -EINVAL;
2727 fence_size = i915_gem_get_gtt_size(obj);
2728 fence_alignment = i915_gem_get_gtt_alignment(obj);
2729 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2731 if (alignment == 0)
2732 alignment = map_and_fenceable ? fence_alignment :
2733 unfenced_alignment;
2734 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2735 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2736 return -EINVAL;
2739 size = map_and_fenceable ? fence_size : obj->base.size;
2741 /* If the object is bigger than the entire aperture, reject it early
2742 * before evicting everything in a vain attempt to find space.
2744 if (obj->base.size >
2745 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2746 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2747 return -E2BIG;
2750 search_free:
2751 if (map_and_fenceable)
2752 free_space =
2753 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2754 size, alignment, 0,
2755 dev_priv->mm.gtt_mappable_end,
2757 else
2758 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2759 size, alignment, 0);
2761 if (free_space != NULL) {
2762 if (map_and_fenceable)
2763 obj->gtt_space =
2764 drm_mm_get_block_range_generic(free_space,
2765 size, alignment, 0,
2766 dev_priv->mm.gtt_mappable_end,
2768 else
2769 obj->gtt_space =
2770 drm_mm_get_block(free_space, size, alignment);
2772 if (obj->gtt_space == NULL) {
2773 /* If the gtt is empty and we're still having trouble
2774 * fitting our object in, we're out of memory.
2776 ret = i915_gem_evict_something(dev, size, alignment,
2777 map_and_fenceable);
2778 if (ret)
2779 return ret;
2781 goto search_free;
2784 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2785 if (ret) {
2786 drm_mm_put_block(obj->gtt_space);
2787 obj->gtt_space = NULL;
2789 if (ret == -ENOMEM) {
2790 /* first try to reclaim some memory by clearing the GTT */
2791 ret = i915_gem_evict_everything(dev, false);
2792 if (ret) {
2793 /* now try to shrink everyone else */
2794 if (gfpmask) {
2795 gfpmask = 0;
2796 goto search_free;
2799 return -ENOMEM;
2802 goto search_free;
2805 return ret;
2808 ret = i915_gem_gtt_bind_object(obj);
2809 if (ret) {
2810 i915_gem_object_put_pages_gtt(obj);
2811 drm_mm_put_block(obj->gtt_space);
2812 obj->gtt_space = NULL;
2814 if (i915_gem_evict_everything(dev, false))
2815 return ret;
2817 goto search_free;
2820 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2821 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2823 /* Assert that the object is not currently in any GPU domain. As it
2824 * wasn't in the GTT, there shouldn't be any way it could have been in
2825 * a GPU cache
2827 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2828 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2830 obj->gtt_offset = obj->gtt_space->start;
2832 fenceable =
2833 obj->gtt_space->size == fence_size &&
2834 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2836 mappable =
2837 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2839 obj->map_and_fenceable = mappable && fenceable;
2841 trace_i915_gem_object_bind(obj, map_and_fenceable);
2842 return 0;
2845 void
2846 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2848 /* If we don't have a page list set up, then we're not pinned
2849 * to GPU, and we can ignore the cache flush because it'll happen
2850 * again at bind time.
2852 if (obj->pages == NULL)
2853 return;
2855 trace_i915_gem_object_clflush(obj);
2857 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2860 /** Flushes any GPU write domain for the object if it's dirty. */
2861 static int
2862 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2864 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2865 return 0;
2867 /* Queue the GPU write cache flushing we need. */
2868 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2871 /** Flushes the GTT write domain for the object if it's dirty. */
2872 static void
2873 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2875 uint32_t old_write_domain;
2877 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2878 return;
2880 /* No actual flushing is required for the GTT write domain. Writes
2881 * to it immediately go to main memory as far as we know, so there's
2882 * no chipset flush. It also doesn't land in render cache.
2884 * However, we do have to enforce the order so that all writes through
2885 * the GTT land before any writes to the device, such as updates to
2886 * the GATT itself.
2888 wmb();
2890 i915_gem_release_mmap(obj);
2892 old_write_domain = obj->base.write_domain;
2893 obj->base.write_domain = 0;
2895 trace_i915_gem_object_change_domain(obj,
2896 obj->base.read_domains,
2897 old_write_domain);
2900 /** Flushes the CPU write domain for the object if it's dirty. */
2901 static void
2902 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2904 uint32_t old_write_domain;
2906 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2907 return;
2909 i915_gem_clflush_object(obj);
2910 intel_gtt_chipset_flush();
2911 old_write_domain = obj->base.write_domain;
2912 obj->base.write_domain = 0;
2914 trace_i915_gem_object_change_domain(obj,
2915 obj->base.read_domains,
2916 old_write_domain);
2920 * Moves a single object to the GTT read, and possibly write domain.
2922 * This function returns when the move is complete, including waiting on
2923 * flushes to occur.
2926 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2928 uint32_t old_write_domain, old_read_domains;
2929 int ret;
2931 /* Not valid to be called on unbound objects. */
2932 if (obj->gtt_space == NULL)
2933 return -EINVAL;
2935 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2936 return 0;
2938 ret = i915_gem_object_flush_gpu_write_domain(obj);
2939 if (ret)
2940 return ret;
2942 if (obj->pending_gpu_write || write) {
2943 ret = i915_gem_object_wait_rendering(obj, true);
2944 if (ret)
2945 return ret;
2948 i915_gem_object_flush_cpu_write_domain(obj);
2950 old_write_domain = obj->base.write_domain;
2951 old_read_domains = obj->base.read_domains;
2953 /* It should now be out of any other write domains, and we can update
2954 * the domain values for our changes.
2956 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2957 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2958 if (write) {
2959 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2960 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2961 obj->dirty = 1;
2964 trace_i915_gem_object_change_domain(obj,
2965 old_read_domains,
2966 old_write_domain);
2968 return 0;
2972 * Prepare buffer for display plane. Use uninterruptible for possible flush
2973 * wait, as in modesetting process we're not supposed to be interrupted.
2976 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2977 struct intel_ring_buffer *pipelined)
2979 uint32_t old_read_domains;
2980 int ret;
2982 /* Not valid to be called on unbound objects. */
2983 if (obj->gtt_space == NULL)
2984 return -EINVAL;
2986 ret = i915_gem_object_flush_gpu_write_domain(obj);
2987 if (ret)
2988 return ret;
2991 /* Currently, we are always called from an non-interruptible context. */
2992 if (pipelined != obj->ring) {
2993 ret = i915_gem_object_wait_rendering(obj, false);
2994 if (ret)
2995 return ret;
2998 i915_gem_object_flush_cpu_write_domain(obj);
3000 old_read_domains = obj->base.read_domains;
3001 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3003 trace_i915_gem_object_change_domain(obj,
3004 old_read_domains,
3005 obj->base.write_domain);
3007 return 0;
3011 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3012 bool interruptible)
3014 int ret;
3016 if (!obj->active)
3017 return 0;
3019 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3020 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3021 if (ret)
3022 return ret;
3025 return i915_gem_object_wait_rendering(obj, interruptible);
3029 * Moves a single object to the CPU read, and possibly write domain.
3031 * This function returns when the move is complete, including waiting on
3032 * flushes to occur.
3034 static int
3035 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3037 uint32_t old_write_domain, old_read_domains;
3038 int ret;
3040 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3041 return 0;
3043 ret = i915_gem_object_flush_gpu_write_domain(obj);
3044 if (ret)
3045 return ret;
3047 ret = i915_gem_object_wait_rendering(obj, true);
3048 if (ret)
3049 return ret;
3051 i915_gem_object_flush_gtt_write_domain(obj);
3053 /* If we have a partially-valid cache of the object in the CPU,
3054 * finish invalidating it and free the per-page flags.
3056 i915_gem_object_set_to_full_cpu_read_domain(obj);
3058 old_write_domain = obj->base.write_domain;
3059 old_read_domains = obj->base.read_domains;
3061 /* Flush the CPU cache if it's still invalid. */
3062 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3063 i915_gem_clflush_object(obj);
3065 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3068 /* It should now be out of any other write domains, and we can update
3069 * the domain values for our changes.
3071 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3073 /* If we're writing through the CPU, then the GPU read domains will
3074 * need to be invalidated at next use.
3076 if (write) {
3077 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3078 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3081 trace_i915_gem_object_change_domain(obj,
3082 old_read_domains,
3083 old_write_domain);
3085 return 0;
3089 * Moves the object from a partially CPU read to a full one.
3091 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3092 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3094 static void
3095 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3097 if (!obj->page_cpu_valid)
3098 return;
3100 /* If we're partially in the CPU read domain, finish moving it in.
3102 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3103 int i;
3105 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3106 if (obj->page_cpu_valid[i])
3107 continue;
3108 drm_clflush_pages(obj->pages + i, 1);
3112 /* Free the page_cpu_valid mappings which are now stale, whether
3113 * or not we've got I915_GEM_DOMAIN_CPU.
3115 kfree(obj->page_cpu_valid);
3116 obj->page_cpu_valid = NULL;
3120 * Set the CPU read domain on a range of the object.
3122 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3123 * not entirely valid. The page_cpu_valid member of the object flags which
3124 * pages have been flushed, and will be respected by
3125 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3126 * of the whole object.
3128 * This function returns when the move is complete, including waiting on
3129 * flushes to occur.
3131 static int
3132 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3133 uint64_t offset, uint64_t size)
3135 uint32_t old_read_domains;
3136 int i, ret;
3138 if (offset == 0 && size == obj->base.size)
3139 return i915_gem_object_set_to_cpu_domain(obj, 0);
3141 ret = i915_gem_object_flush_gpu_write_domain(obj);
3142 if (ret)
3143 return ret;
3145 ret = i915_gem_object_wait_rendering(obj, true);
3146 if (ret)
3147 return ret;
3149 i915_gem_object_flush_gtt_write_domain(obj);
3151 /* If we're already fully in the CPU read domain, we're done. */
3152 if (obj->page_cpu_valid == NULL &&
3153 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3154 return 0;
3156 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3157 * newly adding I915_GEM_DOMAIN_CPU
3159 if (obj->page_cpu_valid == NULL) {
3160 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3161 GFP_KERNEL);
3162 if (obj->page_cpu_valid == NULL)
3163 return -ENOMEM;
3164 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3165 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3167 /* Flush the cache on any pages that are still invalid from the CPU's
3168 * perspective.
3170 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3171 i++) {
3172 if (obj->page_cpu_valid[i])
3173 continue;
3175 drm_clflush_pages(obj->pages + i, 1);
3177 obj->page_cpu_valid[i] = 1;
3180 /* It should now be out of any other write domains, and we can update
3181 * the domain values for our changes.
3183 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3185 old_read_domains = obj->base.read_domains;
3186 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3188 trace_i915_gem_object_change_domain(obj,
3189 old_read_domains,
3190 obj->base.write_domain);
3192 return 0;
3195 /* Throttle our rendering by waiting until the ring has completed our requests
3196 * emitted over 20 msec ago.
3198 * Note that if we were to use the current jiffies each time around the loop,
3199 * we wouldn't escape the function with any frames outstanding if the time to
3200 * render a frame was over 20ms.
3202 * This should get us reasonable parallelism between CPU and GPU but also
3203 * relatively low latency when blocking on a particular request to finish.
3205 static int
3206 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 struct drm_i915_file_private *file_priv = file->driver_priv;
3210 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3211 struct drm_i915_gem_request *request;
3212 struct intel_ring_buffer *ring = NULL;
3213 u32 seqno = 0;
3214 int ret;
3216 if (atomic_read(&dev_priv->mm.wedged))
3217 return -EIO;
3219 spin_lock(&file_priv->mm.lock);
3220 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3221 if (time_after_eq(request->emitted_jiffies, recent_enough))
3222 break;
3224 ring = request->ring;
3225 seqno = request->seqno;
3227 spin_unlock(&file_priv->mm.lock);
3229 if (seqno == 0)
3230 return 0;
3232 ret = 0;
3233 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3234 /* And wait for the seqno passing without holding any locks and
3235 * causing extra latency for others. This is safe as the irq
3236 * generation is designed to be run atomically and so is
3237 * lockless.
3239 if (ring->irq_get(ring)) {
3240 ret = wait_event_interruptible(ring->irq_queue,
3241 i915_seqno_passed(ring->get_seqno(ring), seqno)
3242 || atomic_read(&dev_priv->mm.wedged));
3243 ring->irq_put(ring);
3245 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3246 ret = -EIO;
3250 if (ret == 0)
3251 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3253 return ret;
3257 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3258 uint32_t alignment,
3259 bool map_and_fenceable)
3261 struct drm_device *dev = obj->base.dev;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 int ret;
3265 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3266 WARN_ON(i915_verify_lists(dev));
3268 if (obj->gtt_space != NULL) {
3269 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3270 (map_and_fenceable && !obj->map_and_fenceable)) {
3271 WARN(obj->pin_count,
3272 "bo is already pinned with incorrect alignment:"
3273 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3274 " obj->map_and_fenceable=%d\n",
3275 obj->gtt_offset, alignment,
3276 map_and_fenceable,
3277 obj->map_and_fenceable);
3278 ret = i915_gem_object_unbind(obj);
3279 if (ret)
3280 return ret;
3284 if (obj->gtt_space == NULL) {
3285 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3286 map_and_fenceable);
3287 if (ret)
3288 return ret;
3291 if (obj->pin_count++ == 0) {
3292 if (!obj->active)
3293 list_move_tail(&obj->mm_list,
3294 &dev_priv->mm.pinned_list);
3296 obj->pin_mappable |= map_and_fenceable;
3298 WARN_ON(i915_verify_lists(dev));
3299 return 0;
3302 void
3303 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3305 struct drm_device *dev = obj->base.dev;
3306 drm_i915_private_t *dev_priv = dev->dev_private;
3308 WARN_ON(i915_verify_lists(dev));
3309 BUG_ON(obj->pin_count == 0);
3310 BUG_ON(obj->gtt_space == NULL);
3312 if (--obj->pin_count == 0) {
3313 if (!obj->active)
3314 list_move_tail(&obj->mm_list,
3315 &dev_priv->mm.inactive_list);
3316 obj->pin_mappable = false;
3318 WARN_ON(i915_verify_lists(dev));
3322 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3323 struct drm_file *file)
3325 struct drm_i915_gem_pin *args = data;
3326 struct drm_i915_gem_object *obj;
3327 int ret;
3329 ret = i915_mutex_lock_interruptible(dev);
3330 if (ret)
3331 return ret;
3333 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3334 if (obj == NULL) {
3335 ret = -ENOENT;
3336 goto unlock;
3339 if (obj->madv != I915_MADV_WILLNEED) {
3340 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3341 ret = -EINVAL;
3342 goto out;
3345 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3346 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3347 args->handle);
3348 ret = -EINVAL;
3349 goto out;
3352 obj->user_pin_count++;
3353 obj->pin_filp = file;
3354 if (obj->user_pin_count == 1) {
3355 ret = i915_gem_object_pin(obj, args->alignment, true);
3356 if (ret)
3357 goto out;
3360 /* XXX - flush the CPU caches for pinned objects
3361 * as the X server doesn't manage domains yet
3363 i915_gem_object_flush_cpu_write_domain(obj);
3364 args->offset = obj->gtt_offset;
3365 out:
3366 drm_gem_object_unreference(&obj->base);
3367 unlock:
3368 mutex_unlock(&dev->struct_mutex);
3369 return ret;
3373 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3374 struct drm_file *file)
3376 struct drm_i915_gem_pin *args = data;
3377 struct drm_i915_gem_object *obj;
3378 int ret;
3380 ret = i915_mutex_lock_interruptible(dev);
3381 if (ret)
3382 return ret;
3384 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3385 if (obj == NULL) {
3386 ret = -ENOENT;
3387 goto unlock;
3390 if (obj->pin_filp != file) {
3391 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3392 args->handle);
3393 ret = -EINVAL;
3394 goto out;
3396 obj->user_pin_count--;
3397 if (obj->user_pin_count == 0) {
3398 obj->pin_filp = NULL;
3399 i915_gem_object_unpin(obj);
3402 out:
3403 drm_gem_object_unreference(&obj->base);
3404 unlock:
3405 mutex_unlock(&dev->struct_mutex);
3406 return ret;
3410 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3411 struct drm_file *file)
3413 struct drm_i915_gem_busy *args = data;
3414 struct drm_i915_gem_object *obj;
3415 int ret;
3417 ret = i915_mutex_lock_interruptible(dev);
3418 if (ret)
3419 return ret;
3421 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3422 if (obj == NULL) {
3423 ret = -ENOENT;
3424 goto unlock;
3427 /* Count all active objects as busy, even if they are currently not used
3428 * by the gpu. Users of this interface expect objects to eventually
3429 * become non-busy without any further actions, therefore emit any
3430 * necessary flushes here.
3432 args->busy = obj->active;
3433 if (args->busy) {
3434 /* Unconditionally flush objects, even when the gpu still uses this
3435 * object. Userspace calling this function indicates that it wants to
3436 * use this buffer rather sooner than later, so issuing the required
3437 * flush earlier is beneficial.
3439 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3440 ret = i915_gem_flush_ring(obj->ring,
3441 0, obj->base.write_domain);
3442 } else if (obj->ring->outstanding_lazy_request ==
3443 obj->last_rendering_seqno) {
3444 struct drm_i915_gem_request *request;
3446 /* This ring is not being cleared by active usage,
3447 * so emit a request to do so.
3449 request = kzalloc(sizeof(*request), GFP_KERNEL);
3450 if (request)
3451 ret = i915_add_request(obj->ring, NULL,request);
3452 else
3453 ret = -ENOMEM;
3456 /* Update the active list for the hardware's current position.
3457 * Otherwise this only updates on a delayed timer or when irqs
3458 * are actually unmasked, and our working set ends up being
3459 * larger than required.
3461 i915_gem_retire_requests_ring(obj->ring);
3463 args->busy = obj->active;
3466 drm_gem_object_unreference(&obj->base);
3467 unlock:
3468 mutex_unlock(&dev->struct_mutex);
3469 return ret;
3473 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3474 struct drm_file *file_priv)
3476 return i915_gem_ring_throttle(dev, file_priv);
3480 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3481 struct drm_file *file_priv)
3483 struct drm_i915_gem_madvise *args = data;
3484 struct drm_i915_gem_object *obj;
3485 int ret;
3487 switch (args->madv) {
3488 case I915_MADV_DONTNEED:
3489 case I915_MADV_WILLNEED:
3490 break;
3491 default:
3492 return -EINVAL;
3495 ret = i915_mutex_lock_interruptible(dev);
3496 if (ret)
3497 return ret;
3499 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3500 if (obj == NULL) {
3501 ret = -ENOENT;
3502 goto unlock;
3505 if (obj->pin_count) {
3506 ret = -EINVAL;
3507 goto out;
3510 if (obj->madv != __I915_MADV_PURGED)
3511 obj->madv = args->madv;
3513 /* if the object is no longer bound, discard its backing storage */
3514 if (i915_gem_object_is_purgeable(obj) &&
3515 obj->gtt_space == NULL)
3516 i915_gem_object_truncate(obj);
3518 args->retained = obj->madv != __I915_MADV_PURGED;
3520 out:
3521 drm_gem_object_unreference(&obj->base);
3522 unlock:
3523 mutex_unlock(&dev->struct_mutex);
3524 return ret;
3527 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3528 size_t size)
3530 struct drm_i915_private *dev_priv = dev->dev_private;
3531 struct drm_i915_gem_object *obj;
3533 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3534 if (obj == NULL)
3535 return NULL;
3537 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3538 kfree(obj);
3539 return NULL;
3542 i915_gem_info_add_obj(dev_priv, size);
3544 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3545 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3547 obj->agp_type = AGP_USER_MEMORY;
3548 obj->base.driver_private = NULL;
3549 obj->fence_reg = I915_FENCE_REG_NONE;
3550 INIT_LIST_HEAD(&obj->mm_list);
3551 INIT_LIST_HEAD(&obj->gtt_list);
3552 INIT_LIST_HEAD(&obj->ring_list);
3553 INIT_LIST_HEAD(&obj->exec_list);
3554 INIT_LIST_HEAD(&obj->gpu_write_list);
3555 obj->madv = I915_MADV_WILLNEED;
3556 /* Avoid an unnecessary call to unbind on the first bind. */
3557 obj->map_and_fenceable = true;
3559 return obj;
3562 int i915_gem_init_object(struct drm_gem_object *obj)
3564 BUG();
3566 return 0;
3569 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3571 struct drm_device *dev = obj->base.dev;
3572 drm_i915_private_t *dev_priv = dev->dev_private;
3573 int ret;
3575 ret = i915_gem_object_unbind(obj);
3576 if (ret == -ERESTARTSYS) {
3577 list_move(&obj->mm_list,
3578 &dev_priv->mm.deferred_free_list);
3579 return;
3582 if (obj->base.map_list.map)
3583 i915_gem_free_mmap_offset(obj);
3585 drm_gem_object_release(&obj->base);
3586 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3588 kfree(obj->page_cpu_valid);
3589 kfree(obj->bit_17);
3590 kfree(obj);
3592 trace_i915_gem_object_destroy(obj);
3595 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3597 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3598 struct drm_device *dev = obj->base.dev;
3600 while (obj->pin_count > 0)
3601 i915_gem_object_unpin(obj);
3603 if (obj->phys_obj)
3604 i915_gem_detach_phys_object(dev, obj);
3606 i915_gem_free_object_tail(obj);
3610 i915_gem_idle(struct drm_device *dev)
3612 drm_i915_private_t *dev_priv = dev->dev_private;
3613 int ret;
3615 mutex_lock(&dev->struct_mutex);
3617 if (dev_priv->mm.suspended) {
3618 mutex_unlock(&dev->struct_mutex);
3619 return 0;
3622 ret = i915_gpu_idle(dev);
3623 if (ret) {
3624 mutex_unlock(&dev->struct_mutex);
3625 return ret;
3628 /* Under UMS, be paranoid and evict. */
3629 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3630 ret = i915_gem_evict_inactive(dev, false);
3631 if (ret) {
3632 mutex_unlock(&dev->struct_mutex);
3633 return ret;
3637 i915_gem_reset_fences(dev);
3639 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3640 * We need to replace this with a semaphore, or something.
3641 * And not confound mm.suspended!
3643 dev_priv->mm.suspended = 1;
3644 del_timer_sync(&dev_priv->hangcheck_timer);
3646 i915_kernel_lost_context(dev);
3647 i915_gem_cleanup_ringbuffer(dev);
3649 mutex_unlock(&dev->struct_mutex);
3651 /* Cancel the retire work handler, which should be idle now. */
3652 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3654 return 0;
3658 i915_gem_init_ringbuffer(struct drm_device *dev)
3660 drm_i915_private_t *dev_priv = dev->dev_private;
3661 int ret;
3663 ret = intel_init_render_ring_buffer(dev);
3664 if (ret)
3665 return ret;
3667 if (HAS_BSD(dev)) {
3668 ret = intel_init_bsd_ring_buffer(dev);
3669 if (ret)
3670 goto cleanup_render_ring;
3673 if (HAS_BLT(dev)) {
3674 ret = intel_init_blt_ring_buffer(dev);
3675 if (ret)
3676 goto cleanup_bsd_ring;
3679 dev_priv->next_seqno = 1;
3681 return 0;
3683 cleanup_bsd_ring:
3684 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3685 cleanup_render_ring:
3686 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3687 return ret;
3690 void
3691 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3693 drm_i915_private_t *dev_priv = dev->dev_private;
3694 int i;
3696 for (i = 0; i < I915_NUM_RINGS; i++)
3697 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3701 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3702 struct drm_file *file_priv)
3704 drm_i915_private_t *dev_priv = dev->dev_private;
3705 int ret, i;
3707 if (drm_core_check_feature(dev, DRIVER_MODESET))
3708 return 0;
3710 if (atomic_read(&dev_priv->mm.wedged)) {
3711 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3712 atomic_set(&dev_priv->mm.wedged, 0);
3715 mutex_lock(&dev->struct_mutex);
3716 dev_priv->mm.suspended = 0;
3718 ret = i915_gem_init_ringbuffer(dev);
3719 if (ret != 0) {
3720 mutex_unlock(&dev->struct_mutex);
3721 return ret;
3724 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3725 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3726 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3727 for (i = 0; i < I915_NUM_RINGS; i++) {
3728 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3729 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3731 mutex_unlock(&dev->struct_mutex);
3733 ret = drm_irq_install(dev);
3734 if (ret)
3735 goto cleanup_ringbuffer;
3737 return 0;
3739 cleanup_ringbuffer:
3740 mutex_lock(&dev->struct_mutex);
3741 i915_gem_cleanup_ringbuffer(dev);
3742 dev_priv->mm.suspended = 1;
3743 mutex_unlock(&dev->struct_mutex);
3745 return ret;
3749 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3750 struct drm_file *file_priv)
3752 if (drm_core_check_feature(dev, DRIVER_MODESET))
3753 return 0;
3755 drm_irq_uninstall(dev);
3756 return i915_gem_idle(dev);
3759 void
3760 i915_gem_lastclose(struct drm_device *dev)
3762 int ret;
3764 if (drm_core_check_feature(dev, DRIVER_MODESET))
3765 return;
3767 ret = i915_gem_idle(dev);
3768 if (ret)
3769 DRM_ERROR("failed to idle hardware: %d\n", ret);
3772 static void
3773 init_ring_lists(struct intel_ring_buffer *ring)
3775 INIT_LIST_HEAD(&ring->active_list);
3776 INIT_LIST_HEAD(&ring->request_list);
3777 INIT_LIST_HEAD(&ring->gpu_write_list);
3780 void
3781 i915_gem_load(struct drm_device *dev)
3783 int i;
3784 drm_i915_private_t *dev_priv = dev->dev_private;
3786 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3787 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3788 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3789 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3790 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3791 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3792 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3793 for (i = 0; i < I915_NUM_RINGS; i++)
3794 init_ring_lists(&dev_priv->ring[i]);
3795 for (i = 0; i < 16; i++)
3796 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3797 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3798 i915_gem_retire_work_handler);
3799 init_completion(&dev_priv->error_completion);
3801 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3802 if (IS_GEN3(dev)) {
3803 u32 tmp = I915_READ(MI_ARB_STATE);
3804 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3805 /* arb state is a masked write, so set bit + bit in mask */
3806 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3807 I915_WRITE(MI_ARB_STATE, tmp);
3811 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3813 /* Old X drivers will take 0-2 for front, back, depth buffers */
3814 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3815 dev_priv->fence_reg_start = 3;
3817 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3818 dev_priv->num_fence_regs = 16;
3819 else
3820 dev_priv->num_fence_regs = 8;
3822 /* Initialize fence registers to zero */
3823 switch (INTEL_INFO(dev)->gen) {
3824 case 6:
3825 for (i = 0; i < 16; i++)
3826 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3827 break;
3828 case 5:
3829 case 4:
3830 for (i = 0; i < 16; i++)
3831 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3832 break;
3833 case 3:
3834 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3835 for (i = 0; i < 8; i++)
3836 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3837 case 2:
3838 for (i = 0; i < 8; i++)
3839 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3840 break;
3842 i915_gem_detect_bit_6_swizzle(dev);
3843 init_waitqueue_head(&dev_priv->pending_flip_queue);
3845 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3846 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3847 register_shrinker(&dev_priv->mm.inactive_shrinker);
3851 * Create a physically contiguous memory object for this object
3852 * e.g. for cursor + overlay regs
3854 static int i915_gem_init_phys_object(struct drm_device *dev,
3855 int id, int size, int align)
3857 drm_i915_private_t *dev_priv = dev->dev_private;
3858 struct drm_i915_gem_phys_object *phys_obj;
3859 int ret;
3861 if (dev_priv->mm.phys_objs[id - 1] || !size)
3862 return 0;
3864 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3865 if (!phys_obj)
3866 return -ENOMEM;
3868 phys_obj->id = id;
3870 phys_obj->handle = drm_pci_alloc(dev, size, align);
3871 if (!phys_obj->handle) {
3872 ret = -ENOMEM;
3873 goto kfree_obj;
3875 #ifdef CONFIG_X86
3876 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3877 #endif
3879 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3881 return 0;
3882 kfree_obj:
3883 kfree(phys_obj);
3884 return ret;
3887 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3889 drm_i915_private_t *dev_priv = dev->dev_private;
3890 struct drm_i915_gem_phys_object *phys_obj;
3892 if (!dev_priv->mm.phys_objs[id - 1])
3893 return;
3895 phys_obj = dev_priv->mm.phys_objs[id - 1];
3896 if (phys_obj->cur_obj) {
3897 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3900 #ifdef CONFIG_X86
3901 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3902 #endif
3903 drm_pci_free(dev, phys_obj->handle);
3904 kfree(phys_obj);
3905 dev_priv->mm.phys_objs[id - 1] = NULL;
3908 void i915_gem_free_all_phys_object(struct drm_device *dev)
3910 int i;
3912 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3913 i915_gem_free_phys_object(dev, i);
3916 void i915_gem_detach_phys_object(struct drm_device *dev,
3917 struct drm_i915_gem_object *obj)
3919 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3920 char *vaddr;
3921 int i;
3922 int page_count;
3924 if (!obj->phys_obj)
3925 return;
3926 vaddr = obj->phys_obj->handle->vaddr;
3928 page_count = obj->base.size / PAGE_SIZE;
3929 for (i = 0; i < page_count; i++) {
3930 struct page *page = read_cache_page_gfp(mapping, i,
3931 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3932 if (!IS_ERR(page)) {
3933 char *dst = kmap_atomic(page);
3934 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3935 kunmap_atomic(dst);
3937 drm_clflush_pages(&page, 1);
3939 set_page_dirty(page);
3940 mark_page_accessed(page);
3941 page_cache_release(page);
3944 intel_gtt_chipset_flush();
3946 obj->phys_obj->cur_obj = NULL;
3947 obj->phys_obj = NULL;
3951 i915_gem_attach_phys_object(struct drm_device *dev,
3952 struct drm_i915_gem_object *obj,
3953 int id,
3954 int align)
3956 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3957 drm_i915_private_t *dev_priv = dev->dev_private;
3958 int ret = 0;
3959 int page_count;
3960 int i;
3962 if (id > I915_MAX_PHYS_OBJECT)
3963 return -EINVAL;
3965 if (obj->phys_obj) {
3966 if (obj->phys_obj->id == id)
3967 return 0;
3968 i915_gem_detach_phys_object(dev, obj);
3971 /* create a new object */
3972 if (!dev_priv->mm.phys_objs[id - 1]) {
3973 ret = i915_gem_init_phys_object(dev, id,
3974 obj->base.size, align);
3975 if (ret) {
3976 DRM_ERROR("failed to init phys object %d size: %zu\n",
3977 id, obj->base.size);
3978 return ret;
3982 /* bind to the object */
3983 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3984 obj->phys_obj->cur_obj = obj;
3986 page_count = obj->base.size / PAGE_SIZE;
3988 for (i = 0; i < page_count; i++) {
3989 struct page *page;
3990 char *dst, *src;
3992 page = read_cache_page_gfp(mapping, i,
3993 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3994 if (IS_ERR(page))
3995 return PTR_ERR(page);
3997 src = kmap_atomic(page);
3998 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3999 memcpy(dst, src, PAGE_SIZE);
4000 kunmap_atomic(src);
4002 mark_page_accessed(page);
4003 page_cache_release(page);
4006 return 0;
4009 static int
4010 i915_gem_phys_pwrite(struct drm_device *dev,
4011 struct drm_i915_gem_object *obj,
4012 struct drm_i915_gem_pwrite *args,
4013 struct drm_file *file_priv)
4015 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4016 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4018 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4019 unsigned long unwritten;
4021 /* The physical object once assigned is fixed for the lifetime
4022 * of the obj, so we can safely drop the lock and continue
4023 * to access vaddr.
4025 mutex_unlock(&dev->struct_mutex);
4026 unwritten = copy_from_user(vaddr, user_data, args->size);
4027 mutex_lock(&dev->struct_mutex);
4028 if (unwritten)
4029 return -EFAULT;
4032 intel_gtt_chipset_flush();
4033 return 0;
4036 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4038 struct drm_i915_file_private *file_priv = file->driver_priv;
4040 /* Clean up our request list when the client is going away, so that
4041 * later retire_requests won't dereference our soon-to-be-gone
4042 * file_priv.
4044 spin_lock(&file_priv->mm.lock);
4045 while (!list_empty(&file_priv->mm.request_list)) {
4046 struct drm_i915_gem_request *request;
4048 request = list_first_entry(&file_priv->mm.request_list,
4049 struct drm_i915_gem_request,
4050 client_list);
4051 list_del(&request->client_list);
4052 request->file_priv = NULL;
4054 spin_unlock(&file_priv->mm.lock);
4057 static int
4058 i915_gpu_is_active(struct drm_device *dev)
4060 drm_i915_private_t *dev_priv = dev->dev_private;
4061 int lists_empty;
4063 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4064 list_empty(&dev_priv->mm.active_list);
4066 return !lists_empty;
4069 static int
4070 i915_gem_inactive_shrink(struct shrinker *shrinker,
4071 int nr_to_scan,
4072 gfp_t gfp_mask)
4074 struct drm_i915_private *dev_priv =
4075 container_of(shrinker,
4076 struct drm_i915_private,
4077 mm.inactive_shrinker);
4078 struct drm_device *dev = dev_priv->dev;
4079 struct drm_i915_gem_object *obj, *next;
4080 int cnt;
4082 if (!mutex_trylock(&dev->struct_mutex))
4083 return 0;
4085 /* "fast-path" to count number of available objects */
4086 if (nr_to_scan == 0) {
4087 cnt = 0;
4088 list_for_each_entry(obj,
4089 &dev_priv->mm.inactive_list,
4090 mm_list)
4091 cnt++;
4092 mutex_unlock(&dev->struct_mutex);
4093 return cnt / 100 * sysctl_vfs_cache_pressure;
4096 rescan:
4097 /* first scan for clean buffers */
4098 i915_gem_retire_requests(dev);
4100 list_for_each_entry_safe(obj, next,
4101 &dev_priv->mm.inactive_list,
4102 mm_list) {
4103 if (i915_gem_object_is_purgeable(obj)) {
4104 if (i915_gem_object_unbind(obj) == 0 &&
4105 --nr_to_scan == 0)
4106 break;
4110 /* second pass, evict/count anything still on the inactive list */
4111 cnt = 0;
4112 list_for_each_entry_safe(obj, next,
4113 &dev_priv->mm.inactive_list,
4114 mm_list) {
4115 if (nr_to_scan &&
4116 i915_gem_object_unbind(obj) == 0)
4117 nr_to_scan--;
4118 else
4119 cnt++;
4122 if (nr_to_scan && i915_gpu_is_active(dev)) {
4124 * We are desperate for pages, so as a last resort, wait
4125 * for the GPU to finish and discard whatever we can.
4126 * This has a dramatic impact to reduce the number of
4127 * OOM-killer events whilst running the GPU aggressively.
4129 if (i915_gpu_idle(dev) == 0)
4130 goto rescan;
4132 mutex_unlock(&dev->struct_mutex);
4133 return cnt / 100 * sysctl_vfs_cache_pressure;