2 * sparse memory mappings.
4 #include <linux/config.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
15 * Permanent SPARSEMEM data:
17 * 1) mem_section - memory sections, mem_map's for valid memory
19 #ifdef CONFIG_SPARSEMEM_EXTREME
20 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
21 ____cacheline_internodealigned_in_smp
;
23 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
24 ____cacheline_internodealigned_in_smp
;
26 EXPORT_SYMBOL(mem_section
);
28 #ifdef CONFIG_SPARSEMEM_EXTREME
29 static struct mem_section
*sparse_index_alloc(int nid
)
31 struct mem_section
*section
= NULL
;
32 unsigned long array_size
= SECTIONS_PER_ROOT
*
33 sizeof(struct mem_section
);
35 if (slab_is_available())
36 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
38 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
41 memset(section
, 0, array_size
);
46 static int sparse_index_init(unsigned long section_nr
, int nid
)
48 static spinlock_t index_init_lock
= SPIN_LOCK_UNLOCKED
;
49 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
50 struct mem_section
*section
;
53 if (mem_section
[root
])
56 section
= sparse_index_alloc(nid
);
58 * This lock keeps two different sections from
59 * reallocating for the same index
61 spin_lock(&index_init_lock
);
63 if (mem_section
[root
]) {
68 mem_section
[root
] = section
;
70 spin_unlock(&index_init_lock
);
73 #else /* !SPARSEMEM_EXTREME */
74 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
81 * Although written for the SPARSEMEM_EXTREME case, this happens
82 * to also work for the flat array case becase
83 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
85 int __section_nr(struct mem_section
* ms
)
87 unsigned long root_nr
;
88 struct mem_section
* root
;
90 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
91 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
95 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
99 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
103 * During early boot, before section_mem_map is used for an actual
104 * mem_map, we use section_mem_map to store the section's NUMA
105 * node. This keeps us from having to use another data structure. The
106 * node information is cleared just before we store the real mem_map.
108 static inline unsigned long sparse_encode_early_nid(int nid
)
110 return (nid
<< SECTION_NID_SHIFT
);
113 static inline int sparse_early_nid(struct mem_section
*section
)
115 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
118 /* Record a memory area against a node. */
119 void memory_present(int nid
, unsigned long start
, unsigned long end
)
123 start
&= PAGE_SECTION_MASK
;
124 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
125 unsigned long section
= pfn_to_section_nr(pfn
);
126 struct mem_section
*ms
;
128 sparse_index_init(section
, nid
);
130 ms
= __nr_to_section(section
);
131 if (!ms
->section_mem_map
)
132 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
133 SECTION_MARKED_PRESENT
;
138 * Only used by the i386 NUMA architecures, but relatively
141 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
142 unsigned long end_pfn
)
145 unsigned long nr_pages
= 0;
147 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
148 if (nid
!= early_pfn_to_nid(pfn
))
152 nr_pages
+= PAGES_PER_SECTION
;
155 return nr_pages
* sizeof(struct page
);
159 * Subtle, we encode the real pfn into the mem_map such that
160 * the identity pfn - section_mem_map will return the actual
161 * physical page frame number.
163 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
165 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
169 * We need this if we ever free the mem_maps. While not implemented yet,
170 * this function is included for parity with its sibling.
172 static __attribute((unused
))
173 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
175 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
178 static int sparse_init_one_section(struct mem_section
*ms
,
179 unsigned long pnum
, struct page
*mem_map
)
181 if (!valid_section(ms
))
184 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
185 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
);
190 static struct page
*sparse_early_mem_map_alloc(unsigned long pnum
)
193 struct mem_section
*ms
= __nr_to_section(pnum
);
194 int nid
= sparse_early_nid(ms
);
196 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
200 map
= alloc_bootmem_node(NODE_DATA(nid
),
201 sizeof(struct page
) * PAGES_PER_SECTION
);
205 printk(KERN_WARNING
"%s: allocation failed\n", __FUNCTION__
);
206 ms
->section_mem_map
= 0;
210 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
212 struct page
*page
, *ret
;
213 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
215 page
= alloc_pages(GFP_KERNEL
, get_order(memmap_size
));
219 ret
= vmalloc(memmap_size
);
225 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
227 memset(ret
, 0, memmap_size
);
232 static int vaddr_in_vmalloc_area(void *addr
)
234 if (addr
>= (void *)VMALLOC_START
&&
235 addr
< (void *)VMALLOC_END
)
240 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
242 if (vaddr_in_vmalloc_area(memmap
))
245 free_pages((unsigned long)memmap
,
246 get_order(sizeof(struct page
) * nr_pages
));
250 * Allocate the accumulated non-linear sections, allocate a mem_map
251 * for each and record the physical to section mapping.
253 void sparse_init(void)
258 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
259 if (!valid_section_nr(pnum
))
262 map
= sparse_early_mem_map_alloc(pnum
);
265 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
);
270 * returns the number of sections whose mem_maps were properly
271 * set. If this is <=0, then that means that the passed-in
272 * map was not consumed and must be freed.
274 int sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
277 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
278 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
279 struct mem_section
*ms
;
285 * no locking for this, because it does its own
286 * plus, it does a kmalloc
288 sparse_index_init(section_nr
, pgdat
->node_id
);
289 memmap
= __kmalloc_section_memmap(nr_pages
);
291 pgdat_resize_lock(pgdat
, &flags
);
293 ms
= __pfn_to_section(start_pfn
);
294 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
298 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
300 ret
= sparse_init_one_section(ms
, section_nr
, memmap
);
303 pgdat_resize_unlock(pgdat
, &flags
);
305 __kfree_section_memmap(memmap
, nr_pages
);