2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
40 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
41 if (likely(skb
->len
> FCS_LEN
))
42 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
54 static inline int should_drop_frame(struct sk_buff
*skb
,
57 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
58 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
60 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
62 if (unlikely(skb
->len
< 16 + present_fcs_len
))
64 if (ieee80211_is_ctl(hdr
->frame_control
) &&
65 !ieee80211_is_pspoll(hdr
->frame_control
) &&
66 !ieee80211_is_back_req(hdr
->frame_control
))
72 ieee80211_rx_radiotap_len(struct ieee80211_local
*local
,
73 struct ieee80211_rx_status
*status
)
77 /* always present fields */
78 len
= sizeof(struct ieee80211_radiotap_header
) + 9;
80 if (status
->flag
& RX_FLAG_MACTIME_MPDU
)
82 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
85 if (len
& 1) /* padding for RX_FLAGS if necessary */
88 if (status
->flag
& RX_FLAG_HT
) /* HT info */
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
102 struct ieee80211_rate
*rate
,
105 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
106 struct ieee80211_radiotap_header
*rthdr
;
110 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
111 memset(rthdr
, 0, rtap_len
);
113 /* radiotap header, set always present flags */
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA
) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS
));
119 rthdr
->it_len
= cpu_to_le16(rtap_len
);
121 pos
= (unsigned char *)(rthdr
+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status
->flag
& RX_FLAG_MACTIME_MPDU
) {
127 put_unaligned_le64(status
->mactime
, pos
);
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
135 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
136 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
137 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
138 if (status
->flag
& RX_FLAG_SHORTPRE
)
139 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status
->flag
& RX_FLAG_HT
) {
145 * MCS information is a separate field in radiotap,
150 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
151 *pos
= rate
->bitrate
/ 5;
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status
->freq
, pos
);
158 if (status
->band
== IEEE80211_BAND_5GHZ
)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
,
161 else if (status
->flag
& RX_FLAG_HT
)
162 put_unaligned_le16(IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
,
164 else if (rate
->flags
& IEEE80211_RATE_ERP_G
)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
,
168 put_unaligned_le16(IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
,
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
) {
174 *pos
= status
->signal
;
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos
= status
->antenna
;
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos
- (u8
*)rthdr
) & 1)
192 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
193 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
194 put_unaligned_le16(rx_flags
, pos
);
197 if (status
->flag
& RX_FLAG_HT
) {
198 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
199 *pos
++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS
|
200 IEEE80211_RADIOTAP_MCS_HAVE_GI
|
201 IEEE80211_RADIOTAP_MCS_HAVE_BW
;
203 if (status
->flag
& RX_FLAG_SHORT_GI
)
204 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
205 if (status
->flag
& RX_FLAG_40MHZ
)
206 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
208 *pos
++ = status
->rate_idx
;
213 * This function copies a received frame to all monitor interfaces and
214 * returns a cleaned-up SKB that no longer includes the FCS nor the
215 * radiotap header the driver might have added.
217 static struct sk_buff
*
218 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
219 struct ieee80211_rate
*rate
)
221 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
222 struct ieee80211_sub_if_data
*sdata
;
223 int needed_headroom
= 0;
224 struct sk_buff
*skb
, *skb2
;
225 struct net_device
*prev_dev
= NULL
;
226 int present_fcs_len
= 0;
229 * First, we may need to make a copy of the skb because
230 * (1) we need to modify it for radiotap (if not present), and
231 * (2) the other RX handlers will modify the skb we got.
233 * We don't need to, of course, if we aren't going to return
234 * the SKB because it has a bad FCS/PLCP checksum.
237 /* room for the radiotap header based on driver features */
238 needed_headroom
= ieee80211_rx_radiotap_len(local
, status
);
240 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
241 present_fcs_len
= FCS_LEN
;
243 /* make sure hdr->frame_control is on the linear part */
244 if (!pskb_may_pull(origskb
, 2)) {
245 dev_kfree_skb(origskb
);
249 if (!local
->monitors
) {
250 if (should_drop_frame(origskb
, present_fcs_len
)) {
251 dev_kfree_skb(origskb
);
255 return remove_monitor_info(local
, origskb
);
258 if (should_drop_frame(origskb
, present_fcs_len
)) {
259 /* only need to expand headroom if necessary */
264 * This shouldn't trigger often because most devices have an
265 * RX header they pull before we get here, and that should
266 * be big enough for our radiotap information. We should
267 * probably export the length to drivers so that we can have
268 * them allocate enough headroom to start with.
270 if (skb_headroom(skb
) < needed_headroom
&&
271 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
277 * Need to make a copy and possibly remove radiotap header
278 * and FCS from the original.
280 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
282 origskb
= remove_monitor_info(local
, origskb
);
288 /* prepend radiotap information */
289 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
);
291 skb_reset_mac_header(skb
);
292 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
293 skb
->pkt_type
= PACKET_OTHERHOST
;
294 skb
->protocol
= htons(ETH_P_802_2
);
296 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
297 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
300 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
303 if (!ieee80211_sdata_running(sdata
))
307 skb2
= skb_clone(skb
, GFP_ATOMIC
);
309 skb2
->dev
= prev_dev
;
310 netif_receive_skb(skb2
);
314 prev_dev
= sdata
->dev
;
315 sdata
->dev
->stats
.rx_packets
++;
316 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
321 netif_receive_skb(skb
);
329 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
331 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
332 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
335 /* does the frame have a qos control field? */
336 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
337 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
338 /* frame has qos control */
339 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
340 if (*qc
& IEEE80211_QOS_CONTROL_A_MSDU_PRESENT
)
341 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
344 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
346 * Sequence numbers for management frames, QoS data
347 * frames with a broadcast/multicast address in the
348 * Address 1 field, and all non-QoS data frames sent
349 * by QoS STAs are assigned using an additional single
350 * modulo-4096 counter, [...]
352 * We also use that counter for non-QoS STAs.
354 tid
= NUM_RX_DATA_QUEUES
- 1;
358 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
359 * For now, set skb->priority to 0 for other cases. */
360 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
364 * DOC: Packet alignment
366 * Drivers always need to pass packets that are aligned to two-byte boundaries
369 * Additionally, should, if possible, align the payload data in a way that
370 * guarantees that the contained IP header is aligned to a four-byte
371 * boundary. In the case of regular frames, this simply means aligning the
372 * payload to a four-byte boundary (because either the IP header is directly
373 * contained, or IV/RFC1042 headers that have a length divisible by four are
374 * in front of it). If the payload data is not properly aligned and the
375 * architecture doesn't support efficient unaligned operations, mac80211
376 * will align the data.
378 * With A-MSDU frames, however, the payload data address must yield two modulo
379 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
380 * push the IP header further back to a multiple of four again. Thankfully, the
381 * specs were sane enough this time around to require padding each A-MSDU
382 * subframe to a length that is a multiple of four.
384 * Padding like Atheros hardware adds which is between the 802.11 header and
385 * the payload is not supported, the driver is required to move the 802.11
386 * header to be directly in front of the payload in that case.
388 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
390 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
391 WARN_ONCE((unsigned long)rx
->skb
->data
& 1,
392 "unaligned packet at 0x%p\n", rx
->skb
->data
);
399 static ieee80211_rx_result debug_noinline
400 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data
*rx
)
402 struct ieee80211_local
*local
= rx
->local
;
403 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
404 struct sk_buff
*skb
= rx
->skb
;
406 if (likely(!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
)))
409 if (test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
410 test_bit(SCAN_SW_SCANNING
, &local
->scanning
))
411 return ieee80211_scan_rx(rx
->sdata
, skb
);
413 /* scanning finished during invoking of handlers */
414 I802_DEBUG_INC(local
->rx_handlers_drop_passive_scan
);
415 return RX_DROP_UNUSABLE
;
419 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
421 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
423 if (skb
->len
< 24 || is_multicast_ether_addr(hdr
->addr1
))
426 return ieee80211_is_robust_mgmt_frame(hdr
);
430 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
432 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
434 if (skb
->len
< 24 || !is_multicast_ether_addr(hdr
->addr1
))
437 return ieee80211_is_robust_mgmt_frame(hdr
);
441 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
442 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
444 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
445 struct ieee80211_mmie
*mmie
;
447 if (skb
->len
< 24 + sizeof(*mmie
) ||
448 !is_multicast_ether_addr(hdr
->da
))
451 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr
*) hdr
))
452 return -1; /* not a robust management frame */
454 mmie
= (struct ieee80211_mmie
*)
455 (skb
->data
+ skb
->len
- sizeof(*mmie
));
456 if (mmie
->element_id
!= WLAN_EID_MMIE
||
457 mmie
->length
!= sizeof(*mmie
) - 2)
460 return le16_to_cpu(mmie
->key_id
);
464 static ieee80211_rx_result
465 ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
467 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
468 unsigned int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
469 char *dev_addr
= rx
->sdata
->vif
.addr
;
471 if (ieee80211_is_data(hdr
->frame_control
)) {
472 if (is_multicast_ether_addr(hdr
->addr1
)) {
473 if (ieee80211_has_tods(hdr
->frame_control
) ||
474 !ieee80211_has_fromds(hdr
->frame_control
))
475 return RX_DROP_MONITOR
;
476 if (memcmp(hdr
->addr3
, dev_addr
, ETH_ALEN
) == 0)
477 return RX_DROP_MONITOR
;
479 if (!ieee80211_has_a4(hdr
->frame_control
))
480 return RX_DROP_MONITOR
;
481 if (memcmp(hdr
->addr4
, dev_addr
, ETH_ALEN
) == 0)
482 return RX_DROP_MONITOR
;
486 /* If there is not an established peer link and this is not a peer link
487 * establisment frame, beacon or probe, drop the frame.
490 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != PLINK_ESTAB
) {
491 struct ieee80211_mgmt
*mgmt
;
493 if (!ieee80211_is_mgmt(hdr
->frame_control
))
494 return RX_DROP_MONITOR
;
496 if (ieee80211_is_action(hdr
->frame_control
)) {
497 mgmt
= (struct ieee80211_mgmt
*)hdr
;
498 if (mgmt
->u
.action
.category
!= WLAN_CATEGORY_MESH_PLINK
)
499 return RX_DROP_MONITOR
;
503 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
504 ieee80211_is_probe_resp(hdr
->frame_control
) ||
505 ieee80211_is_beacon(hdr
->frame_control
))
508 return RX_DROP_MONITOR
;
512 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
514 if (ieee80211_is_data(hdr
->frame_control
) &&
515 is_multicast_ether_addr(hdr
->addr1
) &&
516 mesh_rmc_check(hdr
->addr3
, msh_h_get(hdr
, hdrlen
), rx
->sdata
))
517 return RX_DROP_MONITOR
;
523 #define SEQ_MODULO 0x1000
524 #define SEQ_MASK 0xfff
526 static inline int seq_less(u16 sq1
, u16 sq2
)
528 return ((sq1
- sq2
) & SEQ_MASK
) > (SEQ_MODULO
>> 1);
531 static inline u16
seq_inc(u16 sq
)
533 return (sq
+ 1) & SEQ_MASK
;
536 static inline u16
seq_sub(u16 sq1
, u16 sq2
)
538 return (sq1
- sq2
) & SEQ_MASK
;
542 static void ieee80211_release_reorder_frame(struct ieee80211_hw
*hw
,
543 struct tid_ampdu_rx
*tid_agg_rx
,
546 struct ieee80211_local
*local
= hw_to_local(hw
);
547 struct sk_buff
*skb
= tid_agg_rx
->reorder_buf
[index
];
548 struct ieee80211_rx_status
*status
;
550 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
555 /* release the frame from the reorder ring buffer */
556 tid_agg_rx
->stored_mpdu_num
--;
557 tid_agg_rx
->reorder_buf
[index
] = NULL
;
558 status
= IEEE80211_SKB_RXCB(skb
);
559 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
560 skb_queue_tail(&local
->rx_skb_queue
, skb
);
563 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
566 static void ieee80211_release_reorder_frames(struct ieee80211_hw
*hw
,
567 struct tid_ampdu_rx
*tid_agg_rx
,
572 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
574 while (seq_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
575 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
576 tid_agg_rx
->buf_size
;
577 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
582 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
583 * the skb was added to the buffer longer than this time ago, the earlier
584 * frames that have not yet been received are assumed to be lost and the skb
585 * can be released for processing. This may also release other skb's from the
586 * reorder buffer if there are no additional gaps between the frames.
588 * Callers must hold tid_agg_rx->reorder_lock.
590 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
592 static void ieee80211_sta_reorder_release(struct ieee80211_hw
*hw
,
593 struct tid_ampdu_rx
*tid_agg_rx
)
597 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
599 /* release the buffer until next missing frame */
600 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
601 tid_agg_rx
->buf_size
;
602 if (!tid_agg_rx
->reorder_buf
[index
] &&
603 tid_agg_rx
->stored_mpdu_num
> 1) {
605 * No buffers ready to be released, but check whether any
606 * frames in the reorder buffer have timed out.
609 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
610 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
611 if (!tid_agg_rx
->reorder_buf
[j
]) {
616 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
617 HT_RX_REORDER_BUF_TIMEOUT
))
618 goto set_release_timer
;
620 #ifdef CONFIG_MAC80211_HT_DEBUG
622 wiphy_debug(hw
->wiphy
,
623 "release an RX reorder frame due to timeout on earlier frames\n");
625 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, j
);
628 * Increment the head seq# also for the skipped slots.
630 tid_agg_rx
->head_seq_num
=
631 (tid_agg_rx
->head_seq_num
+ skipped
) & SEQ_MASK
;
634 } else while (tid_agg_rx
->reorder_buf
[index
]) {
635 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
636 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
637 tid_agg_rx
->buf_size
;
640 if (tid_agg_rx
->stored_mpdu_num
) {
641 j
= index
= seq_sub(tid_agg_rx
->head_seq_num
,
642 tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
644 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
645 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
646 if (tid_agg_rx
->reorder_buf
[j
])
652 mod_timer(&tid_agg_rx
->reorder_timer
,
653 tid_agg_rx
->reorder_time
[j
] +
654 HT_RX_REORDER_BUF_TIMEOUT
);
656 del_timer(&tid_agg_rx
->reorder_timer
);
661 * As this function belongs to the RX path it must be under
662 * rcu_read_lock protection. It returns false if the frame
663 * can be processed immediately, true if it was consumed.
665 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
666 struct tid_ampdu_rx
*tid_agg_rx
,
669 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
670 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
671 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
672 u16 head_seq_num
, buf_size
;
676 spin_lock(&tid_agg_rx
->reorder_lock
);
678 buf_size
= tid_agg_rx
->buf_size
;
679 head_seq_num
= tid_agg_rx
->head_seq_num
;
681 /* frame with out of date sequence number */
682 if (seq_less(mpdu_seq_num
, head_seq_num
)) {
688 * If frame the sequence number exceeds our buffering window
689 * size release some previous frames to make room for this one.
691 if (!seq_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
692 head_seq_num
= seq_inc(seq_sub(mpdu_seq_num
, buf_size
));
693 /* release stored frames up to new head to stack */
694 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, head_seq_num
);
697 /* Now the new frame is always in the range of the reordering buffer */
699 index
= seq_sub(mpdu_seq_num
, tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
701 /* check if we already stored this frame */
702 if (tid_agg_rx
->reorder_buf
[index
]) {
708 * If the current MPDU is in the right order and nothing else
709 * is stored we can process it directly, no need to buffer it.
711 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
712 tid_agg_rx
->stored_mpdu_num
== 0) {
713 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
718 /* put the frame in the reordering buffer */
719 tid_agg_rx
->reorder_buf
[index
] = skb
;
720 tid_agg_rx
->reorder_time
[index
] = jiffies
;
721 tid_agg_rx
->stored_mpdu_num
++;
722 ieee80211_sta_reorder_release(hw
, tid_agg_rx
);
725 spin_unlock(&tid_agg_rx
->reorder_lock
);
730 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
731 * true if the MPDU was buffered, false if it should be processed.
733 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
)
735 struct sk_buff
*skb
= rx
->skb
;
736 struct ieee80211_local
*local
= rx
->local
;
737 struct ieee80211_hw
*hw
= &local
->hw
;
738 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
739 struct sta_info
*sta
= rx
->sta
;
740 struct tid_ampdu_rx
*tid_agg_rx
;
744 if (!ieee80211_is_data_qos(hdr
->frame_control
))
748 * filter the QoS data rx stream according to
749 * STA/TID and check if this STA/TID is on aggregation
755 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
757 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
761 /* qos null data frames are excluded */
762 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
765 /* new, potentially un-ordered, ampdu frame - process it */
767 /* reset session timer */
768 if (tid_agg_rx
->timeout
)
769 mod_timer(&tid_agg_rx
->session_timer
,
770 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
772 /* if this mpdu is fragmented - terminate rx aggregation session */
773 sc
= le16_to_cpu(hdr
->seq_ctrl
);
774 if (sc
& IEEE80211_SCTL_FRAG
) {
775 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
776 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
777 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
782 * No locking needed -- we will only ever process one
783 * RX packet at a time, and thus own tid_agg_rx. All
784 * other code manipulating it needs to (and does) make
785 * sure that we cannot get to it any more before doing
788 if (ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, skb
))
792 skb_queue_tail(&local
->rx_skb_queue
, skb
);
795 static ieee80211_rx_result debug_noinline
796 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
798 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
799 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
801 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
802 if (rx
->sta
&& !is_multicast_ether_addr(hdr
->addr1
)) {
803 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
804 rx
->sta
->last_seq_ctrl
[rx
->queue
] ==
806 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
807 rx
->local
->dot11FrameDuplicateCount
++;
808 rx
->sta
->num_duplicates
++;
810 return RX_DROP_UNUSABLE
;
812 rx
->sta
->last_seq_ctrl
[rx
->queue
] = hdr
->seq_ctrl
;
815 if (unlikely(rx
->skb
->len
< 16)) {
816 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
817 return RX_DROP_MONITOR
;
820 /* Drop disallowed frame classes based on STA auth/assoc state;
821 * IEEE 802.11, Chap 5.5.
823 * mac80211 filters only based on association state, i.e. it drops
824 * Class 3 frames from not associated stations. hostapd sends
825 * deauth/disassoc frames when needed. In addition, hostapd is
826 * responsible for filtering on both auth and assoc states.
829 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
830 return ieee80211_rx_mesh_check(rx
);
832 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
833 ieee80211_is_pspoll(hdr
->frame_control
)) &&
834 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
835 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
836 (!rx
->sta
|| !test_sta_flags(rx
->sta
, WLAN_STA_ASSOC
))))
837 return RX_DROP_MONITOR
;
843 static ieee80211_rx_result debug_noinline
844 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
846 struct sk_buff
*skb
= rx
->skb
;
847 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
848 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
851 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
852 struct ieee80211_key
*sta_ptk
= NULL
;
853 int mmie_keyidx
= -1;
859 * There are four types of keys:
861 * - IGTK (group keys for management frames)
862 * - PTK (pairwise keys)
863 * - STK (station-to-station pairwise keys)
865 * When selecting a key, we have to distinguish between multicast
866 * (including broadcast) and unicast frames, the latter can only
867 * use PTKs and STKs while the former always use GTKs and IGTKs.
868 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
869 * unicast frames can also use key indices like GTKs. Hence, if we
870 * don't have a PTK/STK we check the key index for a WEP key.
872 * Note that in a regular BSS, multicast frames are sent by the
873 * AP only, associated stations unicast the frame to the AP first
874 * which then multicasts it on their behalf.
876 * There is also a slight problem in IBSS mode: GTKs are negotiated
877 * with each station, that is something we don't currently handle.
878 * The spec seems to expect that one negotiates the same key with
879 * every station but there's no such requirement; VLANs could be
884 * No point in finding a key and decrypting if the frame is neither
885 * addressed to us nor a multicast frame.
887 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
890 /* start without a key */
894 sta_ptk
= rcu_dereference(rx
->sta
->ptk
);
896 fc
= hdr
->frame_control
;
898 if (!ieee80211_has_protected(fc
))
899 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
901 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
903 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
904 (status
->flag
& RX_FLAG_IV_STRIPPED
))
906 /* Skip decryption if the frame is not protected. */
907 if (!ieee80211_has_protected(fc
))
909 } else if (mmie_keyidx
>= 0) {
910 /* Broadcast/multicast robust management frame / BIP */
911 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
912 (status
->flag
& RX_FLAG_IV_STRIPPED
))
915 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
916 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
917 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
919 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
921 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
922 } else if (!ieee80211_has_protected(fc
)) {
924 * The frame was not protected, so skip decryption. However, we
925 * need to set rx->key if there is a key that could have been
926 * used so that the frame may be dropped if encryption would
927 * have been expected.
929 struct ieee80211_key
*key
= NULL
;
930 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
933 if (ieee80211_is_mgmt(fc
) &&
934 is_multicast_ether_addr(hdr
->addr1
) &&
935 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
939 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
940 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
946 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
947 key
= rcu_dereference(sdata
->keys
[i
]);
959 * The device doesn't give us the IV so we won't be
960 * able to look up the key. That's ok though, we
961 * don't need to decrypt the frame, we just won't
962 * be able to keep statistics accurate.
963 * Except for key threshold notifications, should
964 * we somehow allow the driver to tell us which key
965 * the hardware used if this flag is set?
967 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
968 (status
->flag
& RX_FLAG_IV_STRIPPED
))
971 hdrlen
= ieee80211_hdrlen(fc
);
973 if (rx
->skb
->len
< 8 + hdrlen
)
974 return RX_DROP_UNUSABLE
; /* TODO: count this? */
977 * no need to call ieee80211_wep_get_keyidx,
978 * it verifies a bunch of things we've done already
980 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
983 /* check per-station GTK first, if multicast packet */
984 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
985 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
987 /* if not found, try default key */
989 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
992 * RSNA-protected unicast frames should always be
993 * sent with pairwise or station-to-station keys,
994 * but for WEP we allow using a key index as well.
997 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
998 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
999 !is_multicast_ether_addr(hdr
->addr1
))
1005 rx
->key
->tx_rx_count
++;
1006 /* TODO: add threshold stuff again */
1008 return RX_DROP_MONITOR
;
1011 if (skb_linearize(rx
->skb
))
1012 return RX_DROP_UNUSABLE
;
1013 /* the hdr variable is invalid now! */
1015 switch (rx
->key
->conf
.cipher
) {
1016 case WLAN_CIPHER_SUITE_WEP40
:
1017 case WLAN_CIPHER_SUITE_WEP104
:
1018 /* Check for weak IVs if possible */
1019 if (rx
->sta
&& ieee80211_is_data(fc
) &&
1020 (!(status
->flag
& RX_FLAG_IV_STRIPPED
) ||
1021 !(status
->flag
& RX_FLAG_DECRYPTED
)) &&
1022 ieee80211_wep_is_weak_iv(rx
->skb
, rx
->key
))
1023 rx
->sta
->wep_weak_iv_count
++;
1025 result
= ieee80211_crypto_wep_decrypt(rx
);
1027 case WLAN_CIPHER_SUITE_TKIP
:
1028 result
= ieee80211_crypto_tkip_decrypt(rx
);
1030 case WLAN_CIPHER_SUITE_CCMP
:
1031 result
= ieee80211_crypto_ccmp_decrypt(rx
);
1033 case WLAN_CIPHER_SUITE_AES_CMAC
:
1034 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1038 * We can reach here only with HW-only algorithms
1039 * but why didn't it decrypt the frame?!
1041 return RX_DROP_UNUSABLE
;
1044 /* either the frame has been decrypted or will be dropped */
1045 status
->flag
|= RX_FLAG_DECRYPTED
;
1050 static ieee80211_rx_result debug_noinline
1051 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1053 struct ieee80211_local
*local
;
1054 struct ieee80211_hdr
*hdr
;
1055 struct sk_buff
*skb
;
1059 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1061 if (!local
->pspolling
)
1064 if (!ieee80211_has_fromds(hdr
->frame_control
))
1065 /* this is not from AP */
1068 if (!ieee80211_is_data(hdr
->frame_control
))
1071 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1072 /* AP has no more frames buffered for us */
1073 local
->pspolling
= false;
1077 /* more data bit is set, let's request a new frame from the AP */
1078 ieee80211_send_pspoll(local
, rx
->sdata
);
1083 static void ap_sta_ps_start(struct sta_info
*sta
)
1085 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1086 struct ieee80211_local
*local
= sdata
->local
;
1088 atomic_inc(&sdata
->bss
->num_sta_ps
);
1089 set_sta_flags(sta
, WLAN_STA_PS_STA
);
1090 if (!(local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
))
1091 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1092 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1093 printk(KERN_DEBUG
"%s: STA %pM aid %d enters power save mode\n",
1094 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1095 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1098 static void ap_sta_ps_end(struct sta_info
*sta
)
1100 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1102 atomic_dec(&sdata
->bss
->num_sta_ps
);
1104 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1105 printk(KERN_DEBUG
"%s: STA %pM aid %d exits power save mode\n",
1106 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1107 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1109 if (test_sta_flags(sta
, WLAN_STA_PS_DRIVER
)) {
1110 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1111 printk(KERN_DEBUG
"%s: STA %pM aid %d driver-ps-blocked\n",
1112 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1113 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1117 ieee80211_sta_ps_deliver_wakeup(sta
);
1120 int ieee80211_sta_ps_transition(struct ieee80211_sta
*sta
, bool start
)
1122 struct sta_info
*sta_inf
= container_of(sta
, struct sta_info
, sta
);
1125 WARN_ON(!(sta_inf
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
));
1127 /* Don't let the same PS state be set twice */
1128 in_ps
= test_sta_flags(sta_inf
, WLAN_STA_PS_STA
);
1129 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1133 ap_sta_ps_start(sta_inf
);
1135 ap_sta_ps_end(sta_inf
);
1139 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1141 static ieee80211_rx_result debug_noinline
1142 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1144 struct sta_info
*sta
= rx
->sta
;
1145 struct sk_buff
*skb
= rx
->skb
;
1146 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1147 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1153 * Update last_rx only for IBSS packets which are for the current
1154 * BSSID to avoid keeping the current IBSS network alive in cases
1155 * where other STAs start using different BSSID.
1157 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1158 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1159 NL80211_IFTYPE_ADHOC
);
1160 if (compare_ether_addr(bssid
, rx
->sdata
->u
.ibss
.bssid
) == 0) {
1161 sta
->last_rx
= jiffies
;
1162 if (ieee80211_is_data(hdr
->frame_control
)) {
1163 sta
->last_rx_rate_idx
= status
->rate_idx
;
1164 sta
->last_rx_rate_flag
= status
->flag
;
1167 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1169 * Mesh beacons will update last_rx when if they are found to
1170 * match the current local configuration when processed.
1172 sta
->last_rx
= jiffies
;
1173 if (ieee80211_is_data(hdr
->frame_control
)) {
1174 sta
->last_rx_rate_idx
= status
->rate_idx
;
1175 sta
->last_rx_rate_flag
= status
->flag
;
1179 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1182 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1183 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1185 sta
->rx_fragments
++;
1186 sta
->rx_bytes
+= rx
->skb
->len
;
1187 sta
->last_signal
= status
->signal
;
1188 ewma_add(&sta
->avg_signal
, -status
->signal
);
1191 * Change STA power saving mode only at the end of a frame
1192 * exchange sequence.
1194 if (!(sta
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
) &&
1195 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1196 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1197 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1198 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)) {
1199 if (test_sta_flags(sta
, WLAN_STA_PS_STA
)) {
1201 * Ignore doze->wake transitions that are
1202 * indicated by non-data frames, the standard
1203 * is unclear here, but for example going to
1204 * PS mode and then scanning would cause a
1205 * doze->wake transition for the probe request,
1206 * and that is clearly undesirable.
1208 if (ieee80211_is_data(hdr
->frame_control
) &&
1209 !ieee80211_has_pm(hdr
->frame_control
))
1212 if (ieee80211_has_pm(hdr
->frame_control
))
1213 ap_sta_ps_start(sta
);
1218 * Drop (qos-)data::nullfunc frames silently, since they
1219 * are used only to control station power saving mode.
1221 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1222 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1223 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1226 * If we receive a 4-addr nullfunc frame from a STA
1227 * that was not moved to a 4-addr STA vlan yet, drop
1228 * the frame to the monitor interface, to make sure
1229 * that hostapd sees it
1231 if (ieee80211_has_a4(hdr
->frame_control
) &&
1232 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1233 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1234 !rx
->sdata
->u
.vlan
.sta
)))
1235 return RX_DROP_MONITOR
;
1237 * Update counter and free packet here to avoid
1238 * counting this as a dropped packed.
1241 dev_kfree_skb(rx
->skb
);
1246 } /* ieee80211_rx_h_sta_process */
1248 static inline struct ieee80211_fragment_entry
*
1249 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1250 unsigned int frag
, unsigned int seq
, int rx_queue
,
1251 struct sk_buff
**skb
)
1253 struct ieee80211_fragment_entry
*entry
;
1256 idx
= sdata
->fragment_next
;
1257 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1258 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1259 sdata
->fragment_next
= 0;
1261 if (!skb_queue_empty(&entry
->skb_list
)) {
1262 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1263 struct ieee80211_hdr
*hdr
=
1264 (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
1265 printk(KERN_DEBUG
"%s: RX reassembly removed oldest "
1266 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1267 "addr1=%pM addr2=%pM\n",
1269 jiffies
- entry
->first_frag_time
, entry
->seq
,
1270 entry
->last_frag
, hdr
->addr1
, hdr
->addr2
);
1272 __skb_queue_purge(&entry
->skb_list
);
1275 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1277 entry
->first_frag_time
= jiffies
;
1279 entry
->rx_queue
= rx_queue
;
1280 entry
->last_frag
= frag
;
1282 entry
->extra_len
= 0;
1287 static inline struct ieee80211_fragment_entry
*
1288 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1289 unsigned int frag
, unsigned int seq
,
1290 int rx_queue
, struct ieee80211_hdr
*hdr
)
1292 struct ieee80211_fragment_entry
*entry
;
1295 idx
= sdata
->fragment_next
;
1296 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1297 struct ieee80211_hdr
*f_hdr
;
1301 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1303 entry
= &sdata
->fragments
[idx
];
1304 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1305 entry
->rx_queue
!= rx_queue
||
1306 entry
->last_frag
+ 1 != frag
)
1309 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1312 * Check ftype and addresses are equal, else check next fragment
1314 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1315 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1316 compare_ether_addr(hdr
->addr1
, f_hdr
->addr1
) != 0 ||
1317 compare_ether_addr(hdr
->addr2
, f_hdr
->addr2
) != 0)
1320 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1321 __skb_queue_purge(&entry
->skb_list
);
1330 static ieee80211_rx_result debug_noinline
1331 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1333 struct ieee80211_hdr
*hdr
;
1336 unsigned int frag
, seq
;
1337 struct ieee80211_fragment_entry
*entry
;
1338 struct sk_buff
*skb
;
1339 struct ieee80211_rx_status
*status
;
1341 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1342 fc
= hdr
->frame_control
;
1343 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1344 frag
= sc
& IEEE80211_SCTL_FRAG
;
1346 if (likely((!ieee80211_has_morefrags(fc
) && frag
== 0) ||
1347 (rx
->skb
)->len
< 24 ||
1348 is_multicast_ether_addr(hdr
->addr1
))) {
1349 /* not fragmented */
1352 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1354 if (skb_linearize(rx
->skb
))
1355 return RX_DROP_UNUSABLE
;
1358 * skb_linearize() might change the skb->data and
1359 * previously cached variables (in this case, hdr) need to
1360 * be refreshed with the new data.
1362 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1363 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1366 /* This is the first fragment of a new frame. */
1367 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1368 rx
->queue
, &(rx
->skb
));
1369 if (rx
->key
&& rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
&&
1370 ieee80211_has_protected(fc
)) {
1371 int queue
= ieee80211_is_mgmt(fc
) ?
1372 NUM_RX_DATA_QUEUES
: rx
->queue
;
1373 /* Store CCMP PN so that we can verify that the next
1374 * fragment has a sequential PN value. */
1376 memcpy(entry
->last_pn
,
1377 rx
->key
->u
.ccmp
.rx_pn
[queue
],
1383 /* This is a fragment for a frame that should already be pending in
1384 * fragment cache. Add this fragment to the end of the pending entry.
1386 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
, rx
->queue
, hdr
);
1388 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1389 return RX_DROP_MONITOR
;
1392 /* Verify that MPDUs within one MSDU have sequential PN values.
1393 * (IEEE 802.11i, 8.3.3.4.5) */
1396 u8 pn
[CCMP_PN_LEN
], *rpn
;
1398 if (!rx
->key
|| rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
)
1399 return RX_DROP_UNUSABLE
;
1400 memcpy(pn
, entry
->last_pn
, CCMP_PN_LEN
);
1401 for (i
= CCMP_PN_LEN
- 1; i
>= 0; i
--) {
1406 queue
= ieee80211_is_mgmt(fc
) ?
1407 NUM_RX_DATA_QUEUES
: rx
->queue
;
1408 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
1409 if (memcmp(pn
, rpn
, CCMP_PN_LEN
))
1410 return RX_DROP_UNUSABLE
;
1411 memcpy(entry
->last_pn
, pn
, CCMP_PN_LEN
);
1414 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
1415 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
1416 entry
->last_frag
= frag
;
1417 entry
->extra_len
+= rx
->skb
->len
;
1418 if (ieee80211_has_morefrags(fc
)) {
1423 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
1424 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
1425 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
1426 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
1428 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1429 __skb_queue_purge(&entry
->skb_list
);
1430 return RX_DROP_UNUSABLE
;
1433 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
1434 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
1438 /* Complete frame has been reassembled - process it now */
1439 status
= IEEE80211_SKB_RXCB(rx
->skb
);
1440 status
->rx_flags
|= IEEE80211_RX_FRAGMENTED
;
1444 rx
->sta
->rx_packets
++;
1445 if (is_multicast_ether_addr(hdr
->addr1
))
1446 rx
->local
->dot11MulticastReceivedFrameCount
++;
1448 ieee80211_led_rx(rx
->local
);
1452 static ieee80211_rx_result debug_noinline
1453 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data
*rx
)
1455 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1456 __le16 fc
= ((struct ieee80211_hdr
*)rx
->skb
->data
)->frame_control
;
1457 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1459 if (likely(!rx
->sta
|| !ieee80211_is_pspoll(fc
) ||
1460 !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
)))
1463 if ((sdata
->vif
.type
!= NL80211_IFTYPE_AP
) &&
1464 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
))
1465 return RX_DROP_UNUSABLE
;
1467 if (!test_sta_flags(rx
->sta
, WLAN_STA_PS_DRIVER
))
1468 ieee80211_sta_ps_deliver_poll_response(rx
->sta
);
1470 set_sta_flags(rx
->sta
, WLAN_STA_PSPOLL
);
1472 /* Free PS Poll skb here instead of returning RX_DROP that would
1473 * count as an dropped frame. */
1474 dev_kfree_skb(rx
->skb
);
1479 static ieee80211_rx_result debug_noinline
1480 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data
*rx
)
1482 u8
*data
= rx
->skb
->data
;
1483 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)data
;
1485 if (!ieee80211_is_data_qos(hdr
->frame_control
))
1488 /* remove the qos control field, update frame type and meta-data */
1489 memmove(data
+ IEEE80211_QOS_CTL_LEN
, data
,
1490 ieee80211_hdrlen(hdr
->frame_control
) - IEEE80211_QOS_CTL_LEN
);
1491 hdr
= (struct ieee80211_hdr
*)skb_pull(rx
->skb
, IEEE80211_QOS_CTL_LEN
);
1492 /* change frame type to non QOS */
1493 hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA
);
1499 ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1501 if (unlikely(!rx
->sta
||
1502 !test_sta_flags(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1509 ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
1511 struct sk_buff
*skb
= rx
->skb
;
1512 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1515 * Pass through unencrypted frames if the hardware has
1516 * decrypted them already.
1518 if (status
->flag
& RX_FLAG_DECRYPTED
)
1521 /* Drop unencrypted frames if key is set. */
1522 if (unlikely(!ieee80211_has_protected(fc
) &&
1523 !ieee80211_is_nullfunc(fc
) &&
1524 ieee80211_is_data(fc
) &&
1525 (rx
->key
|| rx
->sdata
->drop_unencrypted
)))
1532 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
1534 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1535 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1536 __le16 fc
= hdr
->frame_control
;
1539 * Pass through unencrypted frames if the hardware has
1540 * decrypted them already.
1542 if (status
->flag
& RX_FLAG_DECRYPTED
)
1545 if (rx
->sta
&& test_sta_flags(rx
->sta
, WLAN_STA_MFP
)) {
1546 if (unlikely(!ieee80211_has_protected(fc
) &&
1547 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
1549 if (ieee80211_is_deauth(fc
))
1550 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1553 else if (ieee80211_is_disassoc(fc
))
1554 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1559 /* BIP does not use Protected field, so need to check MMIE */
1560 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
1561 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
1562 if (ieee80211_is_deauth(fc
))
1563 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1566 else if (ieee80211_is_disassoc(fc
))
1567 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1573 * When using MFP, Action frames are not allowed prior to
1574 * having configured keys.
1576 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
1577 ieee80211_is_robust_mgmt_frame(
1578 (struct ieee80211_hdr
*) rx
->skb
->data
)))
1586 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
)
1588 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1589 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1590 bool check_port_control
= false;
1591 struct ethhdr
*ehdr
;
1594 if (ieee80211_has_a4(hdr
->frame_control
) &&
1595 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
1598 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1599 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
1601 if (!sdata
->u
.mgd
.use_4addr
)
1604 check_port_control
= true;
1607 if (is_multicast_ether_addr(hdr
->addr1
) &&
1608 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
1611 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
1612 if (ret
< 0 || !check_port_control
)
1615 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1616 if (ehdr
->h_proto
!= rx
->sdata
->control_port_protocol
)
1623 * requires that rx->skb is a frame with ethernet header
1625 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
1627 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
1628 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1629 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1632 * Allow EAPOL frames to us/the PAE group address regardless
1633 * of whether the frame was encrypted or not.
1635 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
1636 (compare_ether_addr(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) == 0 ||
1637 compare_ether_addr(ehdr
->h_dest
, pae_group_addr
) == 0))
1640 if (ieee80211_802_1x_port_control(rx
) ||
1641 ieee80211_drop_unencrypted(rx
, fc
))
1648 * requires that rx->skb is a frame with ethernet header
1651 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
1653 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1654 struct net_device
*dev
= sdata
->dev
;
1655 struct sk_buff
*skb
, *xmit_skb
;
1656 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1657 struct sta_info
*dsta
;
1658 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1663 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1664 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1665 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
1666 (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) &&
1667 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
1668 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
1670 * send multicast frames both to higher layers in
1671 * local net stack and back to the wireless medium
1673 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1674 if (!xmit_skb
&& net_ratelimit())
1675 printk(KERN_DEBUG
"%s: failed to clone "
1676 "multicast frame\n", dev
->name
);
1678 dsta
= sta_info_get(sdata
, skb
->data
);
1681 * The destination station is associated to
1682 * this AP (in this VLAN), so send the frame
1683 * directly to it and do not pass it to local
1693 int align __maybe_unused
;
1695 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1697 * 'align' will only take the values 0 or 2 here
1698 * since all frames are required to be aligned
1699 * to 2-byte boundaries when being passed to
1700 * mac80211. That also explains the __skb_push()
1703 align
= ((unsigned long)(skb
->data
+ sizeof(struct ethhdr
))) & 3;
1705 if (WARN_ON(skb_headroom(skb
) < 3)) {
1709 u8
*data
= skb
->data
;
1710 size_t len
= skb_headlen(skb
);
1712 memmove(skb
->data
, data
, len
);
1713 skb_set_tail_pointer(skb
, len
);
1719 /* deliver to local stack */
1720 skb
->protocol
= eth_type_trans(skb
, dev
);
1721 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1722 netif_receive_skb(skb
);
1727 /* send to wireless media */
1728 xmit_skb
->protocol
= htons(ETH_P_802_3
);
1729 skb_reset_network_header(xmit_skb
);
1730 skb_reset_mac_header(xmit_skb
);
1731 dev_queue_xmit(xmit_skb
);
1735 static ieee80211_rx_result debug_noinline
1736 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
1738 struct net_device
*dev
= rx
->sdata
->dev
;
1739 struct sk_buff
*skb
= rx
->skb
;
1740 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1741 __le16 fc
= hdr
->frame_control
;
1742 struct sk_buff_head frame_list
;
1743 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1745 if (unlikely(!ieee80211_is_data(fc
)))
1748 if (unlikely(!ieee80211_is_data_present(fc
)))
1749 return RX_DROP_MONITOR
;
1751 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
1754 if (ieee80211_has_a4(hdr
->frame_control
) &&
1755 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1756 !rx
->sdata
->u
.vlan
.sta
)
1757 return RX_DROP_UNUSABLE
;
1759 if (is_multicast_ether_addr(hdr
->addr1
) &&
1760 ((rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1761 rx
->sdata
->u
.vlan
.sta
) ||
1762 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1763 rx
->sdata
->u
.mgd
.use_4addr
)))
1764 return RX_DROP_UNUSABLE
;
1767 __skb_queue_head_init(&frame_list
);
1769 if (skb_linearize(skb
))
1770 return RX_DROP_UNUSABLE
;
1772 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
1773 rx
->sdata
->vif
.type
,
1774 rx
->local
->hw
.extra_tx_headroom
);
1776 while (!skb_queue_empty(&frame_list
)) {
1777 rx
->skb
= __skb_dequeue(&frame_list
);
1779 if (!ieee80211_frame_allowed(rx
, fc
)) {
1780 dev_kfree_skb(rx
->skb
);
1783 dev
->stats
.rx_packets
++;
1784 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1786 ieee80211_deliver_skb(rx
);
1792 #ifdef CONFIG_MAC80211_MESH
1793 static ieee80211_rx_result
1794 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
1796 struct ieee80211_hdr
*hdr
;
1797 struct ieee80211s_hdr
*mesh_hdr
;
1798 unsigned int hdrlen
;
1799 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
1800 struct ieee80211_local
*local
= rx
->local
;
1801 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1802 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1804 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1805 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1806 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
1808 if (!ieee80211_is_data(hdr
->frame_control
))
1813 return RX_DROP_MONITOR
;
1815 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
1816 struct mesh_path
*mppath
;
1820 if (is_multicast_ether_addr(hdr
->addr1
)) {
1821 mpp_addr
= hdr
->addr3
;
1822 proxied_addr
= mesh_hdr
->eaddr1
;
1824 mpp_addr
= hdr
->addr4
;
1825 proxied_addr
= mesh_hdr
->eaddr2
;
1829 mppath
= mpp_path_lookup(proxied_addr
, sdata
);
1831 mpp_path_add(proxied_addr
, mpp_addr
, sdata
);
1833 spin_lock_bh(&mppath
->state_lock
);
1834 if (compare_ether_addr(mppath
->mpp
, mpp_addr
) != 0)
1835 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
1836 spin_unlock_bh(&mppath
->state_lock
);
1841 /* Frame has reached destination. Don't forward */
1842 if (!is_multicast_ether_addr(hdr
->addr1
) &&
1843 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr3
) == 0)
1848 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
1850 IEEE80211_IFSTA_MESH_CTR_INC(&rx
->sdata
->u
.mesh
,
1851 dropped_frames_ttl
);
1853 struct ieee80211_hdr
*fwd_hdr
;
1854 struct ieee80211_tx_info
*info
;
1856 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
1858 if (!fwd_skb
&& net_ratelimit())
1859 printk(KERN_DEBUG
"%s: failed to clone mesh frame\n",
1864 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
1865 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
1866 info
= IEEE80211_SKB_CB(fwd_skb
);
1867 memset(info
, 0, sizeof(*info
));
1868 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
1869 info
->control
.vif
= &rx
->sdata
->vif
;
1870 skb_set_queue_mapping(skb
,
1871 ieee80211_select_queue(rx
->sdata
, fwd_skb
));
1872 ieee80211_set_qos_hdr(local
, skb
);
1873 if (is_multicast_ether_addr(fwd_hdr
->addr1
))
1874 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1879 * Save TA to addr1 to send TA a path error if a
1880 * suitable next hop is not found
1882 memcpy(fwd_hdr
->addr1
, fwd_hdr
->addr2
,
1884 err
= mesh_nexthop_lookup(fwd_skb
, sdata
);
1885 /* Failed to immediately resolve next hop:
1886 * fwded frame was dropped or will be added
1887 * later to the pending skb queue. */
1889 return RX_DROP_MONITOR
;
1891 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1894 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1896 ieee80211_add_pending_skb(local
, fwd_skb
);
1901 if (is_multicast_ether_addr(hdr
->addr1
) ||
1902 sdata
->dev
->flags
& IFF_PROMISC
)
1905 return RX_DROP_MONITOR
;
1909 static ieee80211_rx_result debug_noinline
1910 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
1912 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1913 struct ieee80211_local
*local
= rx
->local
;
1914 struct net_device
*dev
= sdata
->dev
;
1915 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1916 __le16 fc
= hdr
->frame_control
;
1919 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
1922 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
1923 return RX_DROP_MONITOR
;
1926 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1927 * that a 4-addr station can be detected and moved into a separate VLAN
1929 if (ieee80211_has_a4(hdr
->frame_control
) &&
1930 sdata
->vif
.type
== NL80211_IFTYPE_AP
)
1931 return RX_DROP_MONITOR
;
1933 err
= __ieee80211_data_to_8023(rx
);
1935 return RX_DROP_UNUSABLE
;
1937 if (!ieee80211_frame_allowed(rx
, fc
))
1938 return RX_DROP_MONITOR
;
1942 dev
->stats
.rx_packets
++;
1943 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1945 if (local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
1946 !is_multicast_ether_addr(
1947 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
1948 (!local
->scanning
&&
1949 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
))) {
1950 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
1951 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
1954 ieee80211_deliver_skb(rx
);
1959 static ieee80211_rx_result debug_noinline
1960 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
)
1962 struct ieee80211_local
*local
= rx
->local
;
1963 struct ieee80211_hw
*hw
= &local
->hw
;
1964 struct sk_buff
*skb
= rx
->skb
;
1965 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
1966 struct tid_ampdu_rx
*tid_agg_rx
;
1970 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
1973 if (ieee80211_is_back_req(bar
->frame_control
)) {
1975 __le16 control
, start_seq_num
;
1976 } __packed bar_data
;
1979 return RX_DROP_MONITOR
;
1981 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
1982 &bar_data
, sizeof(bar_data
)))
1983 return RX_DROP_MONITOR
;
1985 tid
= le16_to_cpu(bar_data
.control
) >> 12;
1987 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
1989 return RX_DROP_MONITOR
;
1991 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
1993 /* reset session timer */
1994 if (tid_agg_rx
->timeout
)
1995 mod_timer(&tid_agg_rx
->session_timer
,
1996 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
1998 spin_lock(&tid_agg_rx
->reorder_lock
);
1999 /* release stored frames up to start of BAR */
2000 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, start_seq_num
);
2001 spin_unlock(&tid_agg_rx
->reorder_lock
);
2008 * After this point, we only want management frames,
2009 * so we can drop all remaining control frames to
2010 * cooked monitor interfaces.
2012 return RX_DROP_MONITOR
;
2015 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2016 struct ieee80211_mgmt
*mgmt
,
2019 struct ieee80211_local
*local
= sdata
->local
;
2020 struct sk_buff
*skb
;
2021 struct ieee80211_mgmt
*resp
;
2023 if (compare_ether_addr(mgmt
->da
, sdata
->vif
.addr
) != 0) {
2024 /* Not to own unicast address */
2028 if (compare_ether_addr(mgmt
->sa
, sdata
->u
.mgd
.bssid
) != 0 ||
2029 compare_ether_addr(mgmt
->bssid
, sdata
->u
.mgd
.bssid
) != 0) {
2030 /* Not from the current AP or not associated yet. */
2034 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2035 /* Too short SA Query request frame */
2039 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2043 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2044 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
2045 memset(resp
, 0, 24);
2046 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2047 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2048 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2049 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2050 IEEE80211_STYPE_ACTION
);
2051 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2052 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2053 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2054 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2055 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2056 WLAN_SA_QUERY_TR_ID_LEN
);
2058 ieee80211_tx_skb(sdata
, skb
);
2061 static ieee80211_rx_result debug_noinline
2062 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2064 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2065 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2068 * From here on, look only at management frames.
2069 * Data and control frames are already handled,
2070 * and unknown (reserved) frames are useless.
2072 if (rx
->skb
->len
< 24)
2073 return RX_DROP_MONITOR
;
2075 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2076 return RX_DROP_MONITOR
;
2078 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2079 return RX_DROP_MONITOR
;
2081 if (ieee80211_drop_unencrypted_mgmt(rx
))
2082 return RX_DROP_UNUSABLE
;
2087 static ieee80211_rx_result debug_noinline
2088 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2090 struct ieee80211_local
*local
= rx
->local
;
2091 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2092 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2093 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2094 int len
= rx
->skb
->len
;
2096 if (!ieee80211_is_action(mgmt
->frame_control
))
2099 /* drop too small frames */
2100 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2101 return RX_DROP_UNUSABLE
;
2103 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
)
2104 return RX_DROP_UNUSABLE
;
2106 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2107 return RX_DROP_UNUSABLE
;
2109 switch (mgmt
->u
.action
.category
) {
2110 case WLAN_CATEGORY_BACK
:
2112 * The aggregation code is not prepared to handle
2113 * anything but STA/AP due to the BSSID handling;
2114 * IBSS could work in the code but isn't supported
2115 * by drivers or the standard.
2117 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2118 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2119 sdata
->vif
.type
!= NL80211_IFTYPE_AP
)
2122 /* verify action_code is present */
2123 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2126 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2127 case WLAN_ACTION_ADDBA_REQ
:
2128 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2129 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2132 case WLAN_ACTION_ADDBA_RESP
:
2133 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2134 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2137 case WLAN_ACTION_DELBA
:
2138 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2139 sizeof(mgmt
->u
.action
.u
.delba
)))
2147 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2148 if (local
->hw
.conf
.channel
->band
!= IEEE80211_BAND_5GHZ
)
2151 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2154 /* verify action_code is present */
2155 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2158 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2159 case WLAN_ACTION_SPCT_MSR_REQ
:
2160 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2161 sizeof(mgmt
->u
.action
.u
.measurement
)))
2163 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2165 case WLAN_ACTION_SPCT_CHL_SWITCH
:
2166 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2167 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2170 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2173 if (memcmp(mgmt
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
))
2179 case WLAN_CATEGORY_SA_QUERY
:
2180 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2181 sizeof(mgmt
->u
.action
.u
.sa_query
)))
2184 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
2185 case WLAN_ACTION_SA_QUERY_REQUEST
:
2186 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2188 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
2192 case WLAN_CATEGORY_MESH_PLINK
:
2193 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2196 case WLAN_CATEGORY_MESH_PATH_SEL
:
2197 if (!mesh_path_sel_is_hwmp(sdata
))
2205 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
2206 /* will return in the next handlers */
2211 rx
->sta
->rx_packets
++;
2212 dev_kfree_skb(rx
->skb
);
2216 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2217 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2218 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
2220 rx
->sta
->rx_packets
++;
2224 static ieee80211_rx_result debug_noinline
2225 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
2227 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2229 /* skip known-bad action frames and return them in the next handler */
2230 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
2234 * Getting here means the kernel doesn't know how to handle
2235 * it, but maybe userspace does ... include returned frames
2236 * so userspace can register for those to know whether ones
2237 * it transmitted were processed or returned.
2240 if (cfg80211_rx_mgmt(rx
->sdata
->dev
, status
->freq
,
2241 rx
->skb
->data
, rx
->skb
->len
,
2244 rx
->sta
->rx_packets
++;
2245 dev_kfree_skb(rx
->skb
);
2253 static ieee80211_rx_result debug_noinline
2254 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
2256 struct ieee80211_local
*local
= rx
->local
;
2257 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2258 struct sk_buff
*nskb
;
2259 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2260 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2262 if (!ieee80211_is_action(mgmt
->frame_control
))
2266 * For AP mode, hostapd is responsible for handling any action
2267 * frames that we didn't handle, including returning unknown
2268 * ones. For all other modes we will return them to the sender,
2269 * setting the 0x80 bit in the action category, as required by
2270 * 802.11-2007 7.3.1.11.
2271 * Newer versions of hostapd shall also use the management frame
2272 * registration mechanisms, but older ones still use cooked
2273 * monitor interfaces so push all frames there.
2275 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
2276 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2277 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
2278 return RX_DROP_MONITOR
;
2280 /* do not return rejected action frames */
2281 if (mgmt
->u
.action
.category
& 0x80)
2282 return RX_DROP_UNUSABLE
;
2284 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
2287 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
2289 nmgmt
->u
.action
.category
|= 0x80;
2290 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
2291 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
2293 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
2295 ieee80211_tx_skb(rx
->sdata
, nskb
);
2297 dev_kfree_skb(rx
->skb
);
2301 static ieee80211_rx_result debug_noinline
2302 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
2304 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2305 ieee80211_rx_result rxs
;
2306 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
2309 rxs
= ieee80211_work_rx_mgmt(rx
->sdata
, rx
->skb
);
2310 if (rxs
!= RX_CONTINUE
)
2313 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
2315 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
2316 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2317 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2318 return RX_DROP_MONITOR
;
2321 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
2322 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
2323 /* process for all: mesh, mlme, ibss */
2325 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
2326 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
2327 if (is_multicast_ether_addr(mgmt
->da
) &&
2328 !is_broadcast_ether_addr(mgmt
->da
))
2329 return RX_DROP_MONITOR
;
2331 /* process only for station */
2332 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2333 return RX_DROP_MONITOR
;
2335 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
2336 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
2337 /* process only for ibss */
2338 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2339 return RX_DROP_MONITOR
;
2342 return RX_DROP_MONITOR
;
2345 /* queue up frame and kick off work to process it */
2346 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2347 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2348 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
2350 rx
->sta
->rx_packets
++;
2355 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr
*hdr
,
2356 struct ieee80211_rx_data
*rx
)
2359 unsigned int hdrlen
;
2361 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
2362 if (rx
->skb
->len
>= hdrlen
+ 4)
2363 keyidx
= rx
->skb
->data
[hdrlen
+ 3] >> 6;
2369 * Some hardware seem to generate incorrect Michael MIC
2370 * reports; ignore them to avoid triggering countermeasures.
2375 if (!ieee80211_has_protected(hdr
->frame_control
))
2378 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&& keyidx
) {
2380 * APs with pairwise keys should never receive Michael MIC
2381 * errors for non-zero keyidx because these are reserved for
2382 * group keys and only the AP is sending real multicast
2383 * frames in the BSS.
2388 if (!ieee80211_is_data(hdr
->frame_control
) &&
2389 !ieee80211_is_auth(hdr
->frame_control
))
2392 mac80211_ev_michael_mic_failure(rx
->sdata
, keyidx
, hdr
, NULL
,
2396 /* TODO: use IEEE80211_RX_FRAGMENTED */
2397 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
2398 struct ieee80211_rate
*rate
)
2400 struct ieee80211_sub_if_data
*sdata
;
2401 struct ieee80211_local
*local
= rx
->local
;
2402 struct ieee80211_rtap_hdr
{
2403 struct ieee80211_radiotap_header hdr
;
2409 struct sk_buff
*skb
= rx
->skb
, *skb2
;
2410 struct net_device
*prev_dev
= NULL
;
2411 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2414 * If cooked monitor has been processed already, then
2415 * don't do it again. If not, set the flag.
2417 if (rx
->flags
& IEEE80211_RX_CMNTR
)
2419 rx
->flags
|= IEEE80211_RX_CMNTR
;
2421 if (skb_headroom(skb
) < sizeof(*rthdr
) &&
2422 pskb_expand_head(skb
, sizeof(*rthdr
), 0, GFP_ATOMIC
))
2425 rthdr
= (void *)skb_push(skb
, sizeof(*rthdr
));
2426 memset(rthdr
, 0, sizeof(*rthdr
));
2427 rthdr
->hdr
.it_len
= cpu_to_le16(sizeof(*rthdr
));
2428 rthdr
->hdr
.it_present
=
2429 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
2430 (1 << IEEE80211_RADIOTAP_CHANNEL
));
2433 rthdr
->rate_or_pad
= rate
->bitrate
/ 5;
2434 rthdr
->hdr
.it_present
|=
2435 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
2437 rthdr
->chan_freq
= cpu_to_le16(status
->freq
);
2439 if (status
->band
== IEEE80211_BAND_5GHZ
)
2440 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
2441 IEEE80211_CHAN_5GHZ
);
2443 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_DYN
|
2444 IEEE80211_CHAN_2GHZ
);
2446 skb_set_mac_header(skb
, 0);
2447 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2448 skb
->pkt_type
= PACKET_OTHERHOST
;
2449 skb
->protocol
= htons(ETH_P_802_2
);
2451 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2452 if (!ieee80211_sdata_running(sdata
))
2455 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
2456 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
2460 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2462 skb2
->dev
= prev_dev
;
2463 netif_receive_skb(skb2
);
2467 prev_dev
= sdata
->dev
;
2468 sdata
->dev
->stats
.rx_packets
++;
2469 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
2473 skb
->dev
= prev_dev
;
2474 netif_receive_skb(skb
);
2482 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
2483 ieee80211_rx_result res
)
2486 case RX_DROP_MONITOR
:
2487 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2489 rx
->sta
->rx_dropped
++;
2492 struct ieee80211_rate
*rate
= NULL
;
2493 struct ieee80211_supported_band
*sband
;
2494 struct ieee80211_rx_status
*status
;
2496 status
= IEEE80211_SKB_RXCB((rx
->skb
));
2498 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2499 if (!(status
->flag
& RX_FLAG_HT
))
2500 rate
= &sband
->bitrates
[status
->rate_idx
];
2502 ieee80211_rx_cooked_monitor(rx
, rate
);
2505 case RX_DROP_UNUSABLE
:
2506 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2508 rx
->sta
->rx_dropped
++;
2509 dev_kfree_skb(rx
->skb
);
2512 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
2517 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
)
2519 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2520 struct sk_buff
*skb
;
2522 #define CALL_RXH(rxh) \
2525 if (res != RX_CONTINUE) \
2529 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2530 if (rx
->local
->running_rx_handler
)
2533 rx
->local
->running_rx_handler
= true;
2535 while ((skb
= __skb_dequeue(&rx
->local
->rx_skb_queue
))) {
2536 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2539 * all the other fields are valid across frames
2540 * that belong to an aMPDU since they are on the
2541 * same TID from the same station
2545 CALL_RXH(ieee80211_rx_h_decrypt
)
2546 CALL_RXH(ieee80211_rx_h_check_more_data
)
2547 CALL_RXH(ieee80211_rx_h_sta_process
)
2548 CALL_RXH(ieee80211_rx_h_defragment
)
2549 CALL_RXH(ieee80211_rx_h_ps_poll
)
2550 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
2551 /* must be after MMIC verify so header is counted in MPDU mic */
2552 CALL_RXH(ieee80211_rx_h_remove_qos_control
)
2553 CALL_RXH(ieee80211_rx_h_amsdu
)
2554 #ifdef CONFIG_MAC80211_MESH
2555 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
2556 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
2558 CALL_RXH(ieee80211_rx_h_data
)
2559 CALL_RXH(ieee80211_rx_h_ctrl
);
2560 CALL_RXH(ieee80211_rx_h_mgmt_check
)
2561 CALL_RXH(ieee80211_rx_h_action
)
2562 CALL_RXH(ieee80211_rx_h_userspace_mgmt
)
2563 CALL_RXH(ieee80211_rx_h_action_return
)
2564 CALL_RXH(ieee80211_rx_h_mgmt
)
2567 ieee80211_rx_handlers_result(rx
, res
);
2568 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2572 rx
->local
->running_rx_handler
= false;
2575 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2578 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
2580 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2582 #define CALL_RXH(rxh) \
2585 if (res != RX_CONTINUE) \
2589 CALL_RXH(ieee80211_rx_h_passive_scan
)
2590 CALL_RXH(ieee80211_rx_h_check
)
2592 ieee80211_rx_reorder_ampdu(rx
);
2594 ieee80211_rx_handlers(rx
);
2598 ieee80211_rx_handlers_result(rx
, res
);
2604 * This function makes calls into the RX path, therefore
2605 * it has to be invoked under RCU read lock.
2607 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
2609 struct ieee80211_rx_data rx
= {
2611 .sdata
= sta
->sdata
,
2612 .local
= sta
->local
,
2616 struct tid_ampdu_rx
*tid_agg_rx
;
2618 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
2622 spin_lock(&tid_agg_rx
->reorder_lock
);
2623 ieee80211_sta_reorder_release(&sta
->local
->hw
, tid_agg_rx
);
2624 spin_unlock(&tid_agg_rx
->reorder_lock
);
2626 ieee80211_rx_handlers(&rx
);
2629 /* main receive path */
2631 static int prepare_for_handlers(struct ieee80211_rx_data
*rx
,
2632 struct ieee80211_hdr
*hdr
)
2634 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2635 struct sk_buff
*skb
= rx
->skb
;
2636 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2637 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
2638 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
2640 switch (sdata
->vif
.type
) {
2641 case NL80211_IFTYPE_STATION
:
2642 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
2645 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr1
) != 0) {
2646 if (!(sdata
->dev
->flags
& IFF_PROMISC
) ||
2647 sdata
->u
.mgd
.use_4addr
)
2649 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2652 case NL80211_IFTYPE_ADHOC
:
2655 if (ieee80211_is_beacon(hdr
->frame_control
)) {
2658 else if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
)) {
2659 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
))
2661 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2662 } else if (!multicast
&&
2663 compare_ether_addr(sdata
->vif
.addr
,
2665 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2667 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2668 } else if (!rx
->sta
) {
2670 if (status
->flag
& RX_FLAG_HT
)
2671 rate_idx
= 0; /* TODO: HT rates */
2673 rate_idx
= status
->rate_idx
;
2674 rx
->sta
= ieee80211_ibss_add_sta(sdata
, bssid
,
2675 hdr
->addr2
, BIT(rate_idx
), GFP_ATOMIC
);
2678 case NL80211_IFTYPE_MESH_POINT
:
2680 compare_ether_addr(sdata
->vif
.addr
,
2682 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2685 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2688 case NL80211_IFTYPE_AP_VLAN
:
2689 case NL80211_IFTYPE_AP
:
2691 if (compare_ether_addr(sdata
->vif
.addr
,
2694 } else if (!ieee80211_bssid_match(bssid
,
2696 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
2697 !ieee80211_is_beacon(hdr
->frame_control
))
2699 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2702 case NL80211_IFTYPE_WDS
:
2703 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
2705 if (compare_ether_addr(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
2709 /* should never get here */
2718 * This function returns whether or not the SKB
2719 * was destined for RX processing or not, which,
2720 * if consume is true, is equivalent to whether
2721 * or not the skb was consumed.
2723 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
2724 struct sk_buff
*skb
, bool consume
)
2726 struct ieee80211_local
*local
= rx
->local
;
2727 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2728 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2729 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
2733 status
->rx_flags
|= IEEE80211_RX_RA_MATCH
;
2734 prepares
= prepare_for_handlers(rx
, hdr
);
2739 if (status
->flag
& RX_FLAG_MMIC_ERROR
) {
2740 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
)
2741 ieee80211_rx_michael_mic_report(hdr
, rx
);
2746 skb
= skb_copy(skb
, GFP_ATOMIC
);
2748 if (net_ratelimit())
2749 wiphy_debug(local
->hw
.wiphy
,
2750 "failed to copy skb for %s\n",
2758 ieee80211_invoke_rx_handlers(rx
);
2763 * This is the actual Rx frames handler. as it blongs to Rx path it must
2764 * be called with rcu_read_lock protection.
2766 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
2767 struct sk_buff
*skb
)
2769 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2770 struct ieee80211_local
*local
= hw_to_local(hw
);
2771 struct ieee80211_sub_if_data
*sdata
;
2772 struct ieee80211_hdr
*hdr
;
2774 struct ieee80211_rx_data rx
;
2775 struct ieee80211_sub_if_data
*prev
;
2776 struct sta_info
*sta
, *tmp
, *prev_sta
;
2779 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
2780 memset(&rx
, 0, sizeof(rx
));
2784 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
2785 local
->dot11ReceivedFragmentCount
++;
2787 if (unlikely(test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
2788 test_bit(SCAN_SW_SCANNING
, &local
->scanning
)))
2789 status
->rx_flags
|= IEEE80211_RX_IN_SCAN
;
2791 if (ieee80211_is_mgmt(fc
))
2792 err
= skb_linearize(skb
);
2794 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
2801 hdr
= (struct ieee80211_hdr
*)skb
->data
;
2802 ieee80211_parse_qos(&rx
);
2803 ieee80211_verify_alignment(&rx
);
2805 if (ieee80211_is_data(fc
)) {
2808 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
2815 rx
.sdata
= prev_sta
->sdata
;
2816 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2823 rx
.sdata
= prev_sta
->sdata
;
2825 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2833 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2834 if (!ieee80211_sdata_running(sdata
))
2837 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
2838 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
2842 * frame is destined for this interface, but if it's
2843 * not also for the previous one we handle that after
2844 * the loop to avoid copying the SKB once too much
2852 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2854 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2860 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2863 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2872 * This is the receive path handler. It is called by a low level driver when an
2873 * 802.11 MPDU is received from the hardware.
2875 void ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2877 struct ieee80211_local
*local
= hw_to_local(hw
);
2878 struct ieee80211_rate
*rate
= NULL
;
2879 struct ieee80211_supported_band
*sband
;
2880 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2882 WARN_ON_ONCE(softirq_count() == 0);
2884 if (WARN_ON(status
->band
< 0 ||
2885 status
->band
>= IEEE80211_NUM_BANDS
))
2888 sband
= local
->hw
.wiphy
->bands
[status
->band
];
2889 if (WARN_ON(!sband
))
2893 * If we're suspending, it is possible although not too likely
2894 * that we'd be receiving frames after having already partially
2895 * quiesced the stack. We can't process such frames then since
2896 * that might, for example, cause stations to be added or other
2897 * driver callbacks be invoked.
2899 if (unlikely(local
->quiescing
|| local
->suspended
))
2903 * The same happens when we're not even started,
2904 * but that's worth a warning.
2906 if (WARN_ON(!local
->started
))
2909 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
2911 * Validate the rate, unless a PLCP error means that
2912 * we probably can't have a valid rate here anyway.
2915 if (status
->flag
& RX_FLAG_HT
) {
2917 * rate_idx is MCS index, which can be [0-76]
2920 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2922 * Anything else would be some sort of driver or
2923 * hardware error. The driver should catch hardware
2926 if (WARN((status
->rate_idx
< 0 ||
2927 status
->rate_idx
> 76),
2928 "Rate marked as an HT rate but passed "
2929 "status->rate_idx is not "
2930 "an MCS index [0-76]: %d (0x%02x)\n",
2935 if (WARN_ON(status
->rate_idx
< 0 ||
2936 status
->rate_idx
>= sband
->n_bitrates
))
2938 rate
= &sband
->bitrates
[status
->rate_idx
];
2942 status
->rx_flags
= 0;
2945 * key references and virtual interfaces are protected using RCU
2946 * and this requires that we are in a read-side RCU section during
2947 * receive processing
2952 * Frames with failed FCS/PLCP checksum are not returned,
2953 * all other frames are returned without radiotap header
2954 * if it was previously present.
2955 * Also, frames with less than 16 bytes are dropped.
2957 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
2963 ieee80211_tpt_led_trig_rx(local
,
2964 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
2966 __ieee80211_rx_handle_packet(hw
, skb
);
2974 EXPORT_SYMBOL(ieee80211_rx
);
2976 /* This is a version of the rx handler that can be called from hard irq
2977 * context. Post the skb on the queue and schedule the tasklet */
2978 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2980 struct ieee80211_local
*local
= hw_to_local(hw
);
2982 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
2984 skb
->pkt_type
= IEEE80211_RX_MSG
;
2985 skb_queue_tail(&local
->skb_queue
, skb
);
2986 tasklet_schedule(&local
->tasklet
);
2988 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);