2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h>
39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h>
41 #include <asm/proto.h>
42 #include <asm/iommu.h>
46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h"
51 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
53 #define LOOP_TIMEOUT 100000
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
61 * 512GB Pages are not supported due to a hardware bug
63 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list
);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock
);
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list
);
73 static DEFINE_SPINLOCK(dev_data_list_lock
);
75 LIST_HEAD(ioapic_map
);
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
82 static struct protection_domain
*pt_domain
;
84 static struct iommu_ops amd_iommu_ops
;
86 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
87 int amd_iommu_max_glx_val
= -1;
89 static struct dma_map_ops amd_iommu_dma_ops
;
92 * general struct to manage commands send to an IOMMU
98 struct kmem_cache
*amd_iommu_irq_cache
;
100 static void update_domain(struct protection_domain
*domain
);
101 static int __init
alloc_passthrough_domain(void);
103 /****************************************************************************
107 ****************************************************************************/
109 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
111 struct iommu_dev_data
*dev_data
;
114 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
118 dev_data
->devid
= devid
;
119 atomic_set(&dev_data
->bind
, 0);
121 spin_lock_irqsave(&dev_data_list_lock
, flags
);
122 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
123 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
128 static void free_dev_data(struct iommu_dev_data
*dev_data
)
132 spin_lock_irqsave(&dev_data_list_lock
, flags
);
133 list_del(&dev_data
->dev_data_list
);
134 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
137 iommu_group_put(dev_data
->group
);
142 static struct iommu_dev_data
*search_dev_data(u16 devid
)
144 struct iommu_dev_data
*dev_data
;
147 spin_lock_irqsave(&dev_data_list_lock
, flags
);
148 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
149 if (dev_data
->devid
== devid
)
156 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
161 static struct iommu_dev_data
*find_dev_data(u16 devid
)
163 struct iommu_dev_data
*dev_data
;
165 dev_data
= search_dev_data(devid
);
167 if (dev_data
== NULL
)
168 dev_data
= alloc_dev_data(devid
);
173 static inline u16
get_device_id(struct device
*dev
)
175 struct pci_dev
*pdev
= to_pci_dev(dev
);
177 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
180 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
182 return dev
->archdata
.iommu
;
185 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
187 static const int caps
[] = {
190 PCI_EXT_CAP_ID_PASID
,
194 for (i
= 0; i
< 3; ++i
) {
195 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
203 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
205 struct iommu_dev_data
*dev_data
;
207 dev_data
= get_dev_data(&pdev
->dev
);
209 return dev_data
->errata
& (1 << erratum
) ? true : false;
213 * In this function the list of preallocated protection domains is traversed to
214 * find the domain for a specific device
216 static struct dma_ops_domain
*find_protection_domain(u16 devid
)
218 struct dma_ops_domain
*entry
, *ret
= NULL
;
220 u16 alias
= amd_iommu_alias_table
[devid
];
222 if (list_empty(&iommu_pd_list
))
225 spin_lock_irqsave(&iommu_pd_list_lock
, flags
);
227 list_for_each_entry(entry
, &iommu_pd_list
, list
) {
228 if (entry
->target_dev
== devid
||
229 entry
->target_dev
== alias
) {
235 spin_unlock_irqrestore(&iommu_pd_list_lock
, flags
);
241 * This function checks if the driver got a valid device from the caller to
242 * avoid dereferencing invalid pointers.
244 static bool check_device(struct device
*dev
)
248 if (!dev
|| !dev
->dma_mask
)
251 /* No device or no PCI device */
252 if (dev
->bus
!= &pci_bus_type
)
255 devid
= get_device_id(dev
);
257 /* Out of our scope? */
258 if (devid
> amd_iommu_last_bdf
)
261 if (amd_iommu_rlookup_table
[devid
] == NULL
)
267 static struct pci_bus
*find_hosted_bus(struct pci_bus
*bus
)
270 if (!pci_is_root_bus(bus
))
273 return ERR_PTR(-ENODEV
);
279 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
281 static struct pci_dev
*get_isolation_root(struct pci_dev
*pdev
)
283 struct pci_dev
*dma_pdev
= pdev
;
285 /* Account for quirked devices */
286 swap_pci_ref(&dma_pdev
, pci_get_dma_source(dma_pdev
));
289 * If it's a multifunction device that does not support our
290 * required ACS flags, add to the same group as lowest numbered
291 * function that also does not suport the required ACS flags.
293 if (dma_pdev
->multifunction
&&
294 !pci_acs_enabled(dma_pdev
, REQ_ACS_FLAGS
)) {
295 u8 i
, slot
= PCI_SLOT(dma_pdev
->devfn
);
297 for (i
= 0; i
< 8; i
++) {
300 tmp
= pci_get_slot(dma_pdev
->bus
, PCI_DEVFN(slot
, i
));
304 if (!pci_acs_enabled(tmp
, REQ_ACS_FLAGS
)) {
305 swap_pci_ref(&dma_pdev
, tmp
);
313 * Devices on the root bus go through the iommu. If that's not us,
314 * find the next upstream device and test ACS up to the root bus.
315 * Finding the next device may require skipping virtual buses.
317 while (!pci_is_root_bus(dma_pdev
->bus
)) {
318 struct pci_bus
*bus
= find_hosted_bus(dma_pdev
->bus
);
322 if (pci_acs_path_enabled(bus
->self
, NULL
, REQ_ACS_FLAGS
))
325 swap_pci_ref(&dma_pdev
, pci_dev_get(bus
->self
));
331 static int use_pdev_iommu_group(struct pci_dev
*pdev
, struct device
*dev
)
333 struct iommu_group
*group
= iommu_group_get(&pdev
->dev
);
337 group
= iommu_group_alloc();
339 return PTR_ERR(group
);
341 WARN_ON(&pdev
->dev
!= dev
);
344 ret
= iommu_group_add_device(group
, dev
);
345 iommu_group_put(group
);
349 static int use_dev_data_iommu_group(struct iommu_dev_data
*dev_data
,
352 if (!dev_data
->group
) {
353 struct iommu_group
*group
= iommu_group_alloc();
355 return PTR_ERR(group
);
357 dev_data
->group
= group
;
360 return iommu_group_add_device(dev_data
->group
, dev
);
363 static int init_iommu_group(struct device
*dev
)
365 struct iommu_dev_data
*dev_data
;
366 struct iommu_group
*group
;
367 struct pci_dev
*dma_pdev
;
370 group
= iommu_group_get(dev
);
372 iommu_group_put(group
);
376 dev_data
= find_dev_data(get_device_id(dev
));
380 if (dev_data
->alias_data
) {
384 if (dev_data
->alias_data
->group
)
388 * If the alias device exists, it's effectively just a first
389 * level quirk for finding the DMA source.
391 alias
= amd_iommu_alias_table
[dev_data
->devid
];
392 dma_pdev
= pci_get_bus_and_slot(alias
>> 8, alias
& 0xff);
394 dma_pdev
= get_isolation_root(dma_pdev
);
399 * If the alias is virtual, try to find a parent device
400 * and test whether the IOMMU group is actualy rooted above
401 * the alias. Be careful to also test the parent device if
402 * we think the alias is the root of the group.
404 bus
= pci_find_bus(0, alias
>> 8);
408 bus
= find_hosted_bus(bus
);
409 if (IS_ERR(bus
) || !bus
->self
)
412 dma_pdev
= get_isolation_root(pci_dev_get(bus
->self
));
413 if (dma_pdev
!= bus
->self
|| (dma_pdev
->multifunction
&&
414 !pci_acs_enabled(dma_pdev
, REQ_ACS_FLAGS
)))
417 pci_dev_put(dma_pdev
);
421 dma_pdev
= get_isolation_root(pci_dev_get(to_pci_dev(dev
)));
423 ret
= use_pdev_iommu_group(dma_pdev
, dev
);
424 pci_dev_put(dma_pdev
);
427 return use_dev_data_iommu_group(dev_data
->alias_data
, dev
);
430 static int iommu_init_device(struct device
*dev
)
432 struct pci_dev
*pdev
= to_pci_dev(dev
);
433 struct iommu_dev_data
*dev_data
;
437 if (dev
->archdata
.iommu
)
440 dev_data
= find_dev_data(get_device_id(dev
));
444 alias
= amd_iommu_alias_table
[dev_data
->devid
];
445 if (alias
!= dev_data
->devid
) {
446 struct iommu_dev_data
*alias_data
;
448 alias_data
= find_dev_data(alias
);
449 if (alias_data
== NULL
) {
450 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
452 free_dev_data(dev_data
);
455 dev_data
->alias_data
= alias_data
;
458 ret
= init_iommu_group(dev
);
462 if (pci_iommuv2_capable(pdev
)) {
463 struct amd_iommu
*iommu
;
465 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
466 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
469 dev
->archdata
.iommu
= dev_data
;
474 static void iommu_ignore_device(struct device
*dev
)
478 devid
= get_device_id(dev
);
479 alias
= amd_iommu_alias_table
[devid
];
481 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
482 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
484 amd_iommu_rlookup_table
[devid
] = NULL
;
485 amd_iommu_rlookup_table
[alias
] = NULL
;
488 static void iommu_uninit_device(struct device
*dev
)
490 iommu_group_remove_device(dev
);
493 * Nothing to do here - we keep dev_data around for unplugged devices
494 * and reuse it when the device is re-plugged - not doing so would
495 * introduce a ton of races.
499 void __init
amd_iommu_uninit_devices(void)
501 struct iommu_dev_data
*dev_data
, *n
;
502 struct pci_dev
*pdev
= NULL
;
504 for_each_pci_dev(pdev
) {
506 if (!check_device(&pdev
->dev
))
509 iommu_uninit_device(&pdev
->dev
);
512 /* Free all of our dev_data structures */
513 list_for_each_entry_safe(dev_data
, n
, &dev_data_list
, dev_data_list
)
514 free_dev_data(dev_data
);
517 int __init
amd_iommu_init_devices(void)
519 struct pci_dev
*pdev
= NULL
;
522 for_each_pci_dev(pdev
) {
524 if (!check_device(&pdev
->dev
))
527 ret
= iommu_init_device(&pdev
->dev
);
528 if (ret
== -ENOTSUPP
)
529 iommu_ignore_device(&pdev
->dev
);
538 amd_iommu_uninit_devices();
542 #ifdef CONFIG_AMD_IOMMU_STATS
545 * Initialization code for statistics collection
548 DECLARE_STATS_COUNTER(compl_wait
);
549 DECLARE_STATS_COUNTER(cnt_map_single
);
550 DECLARE_STATS_COUNTER(cnt_unmap_single
);
551 DECLARE_STATS_COUNTER(cnt_map_sg
);
552 DECLARE_STATS_COUNTER(cnt_unmap_sg
);
553 DECLARE_STATS_COUNTER(cnt_alloc_coherent
);
554 DECLARE_STATS_COUNTER(cnt_free_coherent
);
555 DECLARE_STATS_COUNTER(cross_page
);
556 DECLARE_STATS_COUNTER(domain_flush_single
);
557 DECLARE_STATS_COUNTER(domain_flush_all
);
558 DECLARE_STATS_COUNTER(alloced_io_mem
);
559 DECLARE_STATS_COUNTER(total_map_requests
);
560 DECLARE_STATS_COUNTER(complete_ppr
);
561 DECLARE_STATS_COUNTER(invalidate_iotlb
);
562 DECLARE_STATS_COUNTER(invalidate_iotlb_all
);
563 DECLARE_STATS_COUNTER(pri_requests
);
565 static struct dentry
*stats_dir
;
566 static struct dentry
*de_fflush
;
568 static void amd_iommu_stats_add(struct __iommu_counter
*cnt
)
570 if (stats_dir
== NULL
)
573 cnt
->dent
= debugfs_create_u64(cnt
->name
, 0444, stats_dir
,
577 static void amd_iommu_stats_init(void)
579 stats_dir
= debugfs_create_dir("amd-iommu", NULL
);
580 if (stats_dir
== NULL
)
583 de_fflush
= debugfs_create_bool("fullflush", 0444, stats_dir
,
584 &amd_iommu_unmap_flush
);
586 amd_iommu_stats_add(&compl_wait
);
587 amd_iommu_stats_add(&cnt_map_single
);
588 amd_iommu_stats_add(&cnt_unmap_single
);
589 amd_iommu_stats_add(&cnt_map_sg
);
590 amd_iommu_stats_add(&cnt_unmap_sg
);
591 amd_iommu_stats_add(&cnt_alloc_coherent
);
592 amd_iommu_stats_add(&cnt_free_coherent
);
593 amd_iommu_stats_add(&cross_page
);
594 amd_iommu_stats_add(&domain_flush_single
);
595 amd_iommu_stats_add(&domain_flush_all
);
596 amd_iommu_stats_add(&alloced_io_mem
);
597 amd_iommu_stats_add(&total_map_requests
);
598 amd_iommu_stats_add(&complete_ppr
);
599 amd_iommu_stats_add(&invalidate_iotlb
);
600 amd_iommu_stats_add(&invalidate_iotlb_all
);
601 amd_iommu_stats_add(&pri_requests
);
606 /****************************************************************************
608 * Interrupt handling functions
610 ****************************************************************************/
612 static void dump_dte_entry(u16 devid
)
616 for (i
= 0; i
< 4; ++i
)
617 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
618 amd_iommu_dev_table
[devid
].data
[i
]);
621 static void dump_command(unsigned long phys_addr
)
623 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
626 for (i
= 0; i
< 4; ++i
)
627 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
630 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
632 int type
, devid
, domid
, flags
;
633 volatile u32
*event
= __evt
;
638 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
639 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
640 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
641 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
642 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
645 /* Did we hit the erratum? */
646 if (++count
== LOOP_TIMEOUT
) {
647 pr_err("AMD-Vi: No event written to event log\n");
654 printk(KERN_ERR
"AMD-Vi: Event logged [");
657 case EVENT_TYPE_ILL_DEV
:
658 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
659 "address=0x%016llx flags=0x%04x]\n",
660 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
662 dump_dte_entry(devid
);
664 case EVENT_TYPE_IO_FAULT
:
665 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
666 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
667 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
668 domid
, address
, flags
);
670 case EVENT_TYPE_DEV_TAB_ERR
:
671 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
672 "address=0x%016llx flags=0x%04x]\n",
673 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
676 case EVENT_TYPE_PAGE_TAB_ERR
:
677 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
678 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
679 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
680 domid
, address
, flags
);
682 case EVENT_TYPE_ILL_CMD
:
683 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
684 dump_command(address
);
686 case EVENT_TYPE_CMD_HARD_ERR
:
687 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
688 "flags=0x%04x]\n", address
, flags
);
690 case EVENT_TYPE_IOTLB_INV_TO
:
691 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
692 "address=0x%016llx]\n",
693 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
696 case EVENT_TYPE_INV_DEV_REQ
:
697 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
698 "address=0x%016llx flags=0x%04x]\n",
699 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
703 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
706 memset(__evt
, 0, 4 * sizeof(u32
));
709 static void iommu_poll_events(struct amd_iommu
*iommu
)
713 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
714 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
716 while (head
!= tail
) {
717 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
718 head
= (head
+ EVENT_ENTRY_SIZE
) % iommu
->evt_buf_size
;
721 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
724 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
726 struct amd_iommu_fault fault
;
728 INC_STATS_COUNTER(pri_requests
);
730 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
731 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
735 fault
.address
= raw
[1];
736 fault
.pasid
= PPR_PASID(raw
[0]);
737 fault
.device_id
= PPR_DEVID(raw
[0]);
738 fault
.tag
= PPR_TAG(raw
[0]);
739 fault
.flags
= PPR_FLAGS(raw
[0]);
741 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
744 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
748 if (iommu
->ppr_log
== NULL
)
751 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
752 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
754 while (head
!= tail
) {
759 raw
= (u64
*)(iommu
->ppr_log
+ head
);
762 * Hardware bug: Interrupt may arrive before the entry is
763 * written to memory. If this happens we need to wait for the
766 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
767 if (PPR_REQ_TYPE(raw
[0]) != 0)
772 /* Avoid memcpy function-call overhead */
777 * To detect the hardware bug we need to clear the entry
780 raw
[0] = raw
[1] = 0UL;
782 /* Update head pointer of hardware ring-buffer */
783 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
784 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
786 /* Handle PPR entry */
787 iommu_handle_ppr_entry(iommu
, entry
);
789 /* Refresh ring-buffer information */
790 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
791 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
795 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
797 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
798 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
800 while (status
& (MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
)) {
801 /* Enable EVT and PPR interrupts again */
802 writel((MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
),
803 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
805 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
806 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
807 iommu_poll_events(iommu
);
810 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
811 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
812 iommu_poll_ppr_log(iommu
);
816 * Hardware bug: ERBT1312
817 * When re-enabling interrupt (by writing 1
818 * to clear the bit), the hardware might also try to set
819 * the interrupt bit in the event status register.
820 * In this scenario, the bit will be set, and disable
821 * subsequent interrupts.
823 * Workaround: The IOMMU driver should read back the
824 * status register and check if the interrupt bits are cleared.
825 * If not, driver will need to go through the interrupt handler
826 * again and re-clear the bits
828 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
833 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
835 return IRQ_WAKE_THREAD
;
838 /****************************************************************************
840 * IOMMU command queuing functions
842 ****************************************************************************/
844 static int wait_on_sem(volatile u64
*sem
)
848 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
853 if (i
== LOOP_TIMEOUT
) {
854 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
861 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
862 struct iommu_cmd
*cmd
,
867 target
= iommu
->cmd_buf
+ tail
;
868 tail
= (tail
+ sizeof(*cmd
)) % iommu
->cmd_buf_size
;
870 /* Copy command to buffer */
871 memcpy(target
, cmd
, sizeof(*cmd
));
873 /* Tell the IOMMU about it */
874 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
877 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
879 WARN_ON(address
& 0x7ULL
);
881 memset(cmd
, 0, sizeof(*cmd
));
882 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
883 cmd
->data
[1] = upper_32_bits(__pa(address
));
885 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
888 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
890 memset(cmd
, 0, sizeof(*cmd
));
891 cmd
->data
[0] = devid
;
892 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
895 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
896 size_t size
, u16 domid
, int pde
)
901 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
906 * If we have to flush more than one page, flush all
907 * TLB entries for this domain
909 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
913 address
&= PAGE_MASK
;
915 memset(cmd
, 0, sizeof(*cmd
));
916 cmd
->data
[1] |= domid
;
917 cmd
->data
[2] = lower_32_bits(address
);
918 cmd
->data
[3] = upper_32_bits(address
);
919 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
920 if (s
) /* size bit - we flush more than one 4kb page */
921 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
922 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
923 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
926 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
927 u64 address
, size_t size
)
932 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
937 * If we have to flush more than one page, flush all
938 * TLB entries for this domain
940 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
944 address
&= PAGE_MASK
;
946 memset(cmd
, 0, sizeof(*cmd
));
947 cmd
->data
[0] = devid
;
948 cmd
->data
[0] |= (qdep
& 0xff) << 24;
949 cmd
->data
[1] = devid
;
950 cmd
->data
[2] = lower_32_bits(address
);
951 cmd
->data
[3] = upper_32_bits(address
);
952 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
954 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
957 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
958 u64 address
, bool size
)
960 memset(cmd
, 0, sizeof(*cmd
));
962 address
&= ~(0xfffULL
);
964 cmd
->data
[0] = pasid
& PASID_MASK
;
965 cmd
->data
[1] = domid
;
966 cmd
->data
[2] = lower_32_bits(address
);
967 cmd
->data
[3] = upper_32_bits(address
);
968 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
969 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
971 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
972 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
975 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
976 int qdep
, u64 address
, bool size
)
978 memset(cmd
, 0, sizeof(*cmd
));
980 address
&= ~(0xfffULL
);
982 cmd
->data
[0] = devid
;
983 cmd
->data
[0] |= (pasid
& 0xff) << 16;
984 cmd
->data
[0] |= (qdep
& 0xff) << 24;
985 cmd
->data
[1] = devid
;
986 cmd
->data
[1] |= ((pasid
>> 8) & 0xfff) << 16;
987 cmd
->data
[2] = lower_32_bits(address
);
988 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
989 cmd
->data
[3] = upper_32_bits(address
);
991 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
992 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
995 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
996 int status
, int tag
, bool gn
)
998 memset(cmd
, 0, sizeof(*cmd
));
1000 cmd
->data
[0] = devid
;
1002 cmd
->data
[1] = pasid
& PASID_MASK
;
1003 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
1005 cmd
->data
[3] = tag
& 0x1ff;
1006 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
1008 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
1011 static void build_inv_all(struct iommu_cmd
*cmd
)
1013 memset(cmd
, 0, sizeof(*cmd
));
1014 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1017 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1019 memset(cmd
, 0, sizeof(*cmd
));
1020 cmd
->data
[0] = devid
;
1021 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1025 * Writes the command to the IOMMUs command buffer and informs the
1026 * hardware about the new command.
1028 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1029 struct iommu_cmd
*cmd
,
1032 u32 left
, tail
, head
, next_tail
;
1033 unsigned long flags
;
1035 WARN_ON(iommu
->cmd_buf_size
& CMD_BUFFER_UNINITIALIZED
);
1038 spin_lock_irqsave(&iommu
->lock
, flags
);
1040 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
1041 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
1042 next_tail
= (tail
+ sizeof(*cmd
)) % iommu
->cmd_buf_size
;
1043 left
= (head
- next_tail
) % iommu
->cmd_buf_size
;
1046 struct iommu_cmd sync_cmd
;
1047 volatile u64 sem
= 0;
1050 build_completion_wait(&sync_cmd
, (u64
)&sem
);
1051 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
1053 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1055 if ((ret
= wait_on_sem(&sem
)) != 0)
1061 copy_cmd_to_buffer(iommu
, cmd
, tail
);
1063 /* We need to sync now to make sure all commands are processed */
1064 iommu
->need_sync
= sync
;
1066 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1071 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1073 return iommu_queue_command_sync(iommu
, cmd
, true);
1077 * This function queues a completion wait command into the command
1078 * buffer of an IOMMU
1080 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1082 struct iommu_cmd cmd
;
1083 volatile u64 sem
= 0;
1086 if (!iommu
->need_sync
)
1089 build_completion_wait(&cmd
, (u64
)&sem
);
1091 ret
= iommu_queue_command_sync(iommu
, &cmd
, false);
1095 return wait_on_sem(&sem
);
1098 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1100 struct iommu_cmd cmd
;
1102 build_inv_dte(&cmd
, devid
);
1104 return iommu_queue_command(iommu
, &cmd
);
1107 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
1111 for (devid
= 0; devid
<= 0xffff; ++devid
)
1112 iommu_flush_dte(iommu
, devid
);
1114 iommu_completion_wait(iommu
);
1118 * This function uses heavy locking and may disable irqs for some time. But
1119 * this is no issue because it is only called during resume.
1121 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1125 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1126 struct iommu_cmd cmd
;
1127 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1129 iommu_queue_command(iommu
, &cmd
);
1132 iommu_completion_wait(iommu
);
1135 static void iommu_flush_all(struct amd_iommu
*iommu
)
1137 struct iommu_cmd cmd
;
1139 build_inv_all(&cmd
);
1141 iommu_queue_command(iommu
, &cmd
);
1142 iommu_completion_wait(iommu
);
1145 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1147 struct iommu_cmd cmd
;
1149 build_inv_irt(&cmd
, devid
);
1151 iommu_queue_command(iommu
, &cmd
);
1154 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1158 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1159 iommu_flush_irt(iommu
, devid
);
1161 iommu_completion_wait(iommu
);
1164 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1166 if (iommu_feature(iommu
, FEATURE_IA
)) {
1167 iommu_flush_all(iommu
);
1169 iommu_flush_dte_all(iommu
);
1170 iommu_flush_irt_all(iommu
);
1171 iommu_flush_tlb_all(iommu
);
1176 * Command send function for flushing on-device TLB
1178 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1179 u64 address
, size_t size
)
1181 struct amd_iommu
*iommu
;
1182 struct iommu_cmd cmd
;
1185 qdep
= dev_data
->ats
.qdep
;
1186 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1188 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1190 return iommu_queue_command(iommu
, &cmd
);
1194 * Command send function for invalidating a device table entry
1196 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1198 struct amd_iommu
*iommu
;
1201 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1203 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1207 if (dev_data
->ats
.enabled
)
1208 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1214 * TLB invalidation function which is called from the mapping functions.
1215 * It invalidates a single PTE if the range to flush is within a single
1216 * page. Otherwise it flushes the whole TLB of the IOMMU.
1218 static void __domain_flush_pages(struct protection_domain
*domain
,
1219 u64 address
, size_t size
, int pde
)
1221 struct iommu_dev_data
*dev_data
;
1222 struct iommu_cmd cmd
;
1225 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1227 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1228 if (!domain
->dev_iommu
[i
])
1232 * Devices of this domain are behind this IOMMU
1233 * We need a TLB flush
1235 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1238 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1240 if (!dev_data
->ats
.enabled
)
1243 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1249 static void domain_flush_pages(struct protection_domain
*domain
,
1250 u64 address
, size_t size
)
1252 __domain_flush_pages(domain
, address
, size
, 0);
1255 /* Flush the whole IO/TLB for a given protection domain */
1256 static void domain_flush_tlb(struct protection_domain
*domain
)
1258 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1261 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1262 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1264 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1267 static void domain_flush_complete(struct protection_domain
*domain
)
1271 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1272 if (!domain
->dev_iommu
[i
])
1276 * Devices of this domain are behind this IOMMU
1277 * We need to wait for completion of all commands.
1279 iommu_completion_wait(amd_iommus
[i
]);
1285 * This function flushes the DTEs for all devices in domain
1287 static void domain_flush_devices(struct protection_domain
*domain
)
1289 struct iommu_dev_data
*dev_data
;
1291 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1292 device_flush_dte(dev_data
);
1295 /****************************************************************************
1297 * The functions below are used the create the page table mappings for
1298 * unity mapped regions.
1300 ****************************************************************************/
1303 * This function is used to add another level to an IO page table. Adding
1304 * another level increases the size of the address space by 9 bits to a size up
1307 static bool increase_address_space(struct protection_domain
*domain
,
1312 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1313 /* address space already 64 bit large */
1316 pte
= (void *)get_zeroed_page(gfp
);
1320 *pte
= PM_LEVEL_PDE(domain
->mode
,
1321 virt_to_phys(domain
->pt_root
));
1322 domain
->pt_root
= pte
;
1324 domain
->updated
= true;
1329 static u64
*alloc_pte(struct protection_domain
*domain
,
1330 unsigned long address
,
1331 unsigned long page_size
,
1338 BUG_ON(!is_power_of_2(page_size
));
1340 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1341 increase_address_space(domain
, gfp
);
1343 level
= domain
->mode
- 1;
1344 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1345 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1346 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1348 while (level
> end_lvl
) {
1349 if (!IOMMU_PTE_PRESENT(*pte
)) {
1350 page
= (u64
*)get_zeroed_page(gfp
);
1353 *pte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1356 /* No level skipping support yet */
1357 if (PM_PTE_LEVEL(*pte
) != level
)
1362 pte
= IOMMU_PTE_PAGE(*pte
);
1364 if (pte_page
&& level
== end_lvl
)
1367 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1374 * This function checks if there is a PTE for a given dma address. If
1375 * there is one, it returns the pointer to it.
1377 static u64
*fetch_pte(struct protection_domain
*domain
, unsigned long address
)
1382 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1385 level
= domain
->mode
- 1;
1386 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1391 if (!IOMMU_PTE_PRESENT(*pte
))
1395 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1396 unsigned long pte_mask
, __pte
;
1399 * If we have a series of large PTEs, make
1400 * sure to return a pointer to the first one.
1402 pte_mask
= PTE_PAGE_SIZE(*pte
);
1403 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1404 __pte
= ((unsigned long)pte
) & pte_mask
;
1406 return (u64
*)__pte
;
1409 /* No level skipping support yet */
1410 if (PM_PTE_LEVEL(*pte
) != level
)
1415 /* Walk to the next level */
1416 pte
= IOMMU_PTE_PAGE(*pte
);
1417 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1424 * Generic mapping functions. It maps a physical address into a DMA
1425 * address space. It allocates the page table pages if necessary.
1426 * In the future it can be extended to a generic mapping function
1427 * supporting all features of AMD IOMMU page tables like level skipping
1428 * and full 64 bit address spaces.
1430 static int iommu_map_page(struct protection_domain
*dom
,
1431 unsigned long bus_addr
,
1432 unsigned long phys_addr
,
1434 unsigned long page_size
)
1439 if (!(prot
& IOMMU_PROT_MASK
))
1442 bus_addr
= PAGE_ALIGN(bus_addr
);
1443 phys_addr
= PAGE_ALIGN(phys_addr
);
1444 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1445 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, GFP_KERNEL
);
1447 for (i
= 0; i
< count
; ++i
)
1448 if (IOMMU_PTE_PRESENT(pte
[i
]))
1451 if (page_size
> PAGE_SIZE
) {
1452 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1453 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1455 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1457 if (prot
& IOMMU_PROT_IR
)
1458 __pte
|= IOMMU_PTE_IR
;
1459 if (prot
& IOMMU_PROT_IW
)
1460 __pte
|= IOMMU_PTE_IW
;
1462 for (i
= 0; i
< count
; ++i
)
1470 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1471 unsigned long bus_addr
,
1472 unsigned long page_size
)
1474 unsigned long long unmap_size
, unmapped
;
1477 BUG_ON(!is_power_of_2(page_size
));
1481 while (unmapped
< page_size
) {
1483 pte
= fetch_pte(dom
, bus_addr
);
1487 * No PTE for this address
1488 * move forward in 4kb steps
1490 unmap_size
= PAGE_SIZE
;
1491 } else if (PM_PTE_LEVEL(*pte
) == 0) {
1492 /* 4kb PTE found for this address */
1493 unmap_size
= PAGE_SIZE
;
1498 /* Large PTE found which maps this address */
1499 unmap_size
= PTE_PAGE_SIZE(*pte
);
1501 /* Only unmap from the first pte in the page */
1502 if ((unmap_size
- 1) & bus_addr
)
1504 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1505 for (i
= 0; i
< count
; i
++)
1509 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1510 unmapped
+= unmap_size
;
1513 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1519 * This function checks if a specific unity mapping entry is needed for
1520 * this specific IOMMU.
1522 static int iommu_for_unity_map(struct amd_iommu
*iommu
,
1523 struct unity_map_entry
*entry
)
1527 for (i
= entry
->devid_start
; i
<= entry
->devid_end
; ++i
) {
1528 bdf
= amd_iommu_alias_table
[i
];
1529 if (amd_iommu_rlookup_table
[bdf
] == iommu
)
1537 * This function actually applies the mapping to the page table of the
1540 static int dma_ops_unity_map(struct dma_ops_domain
*dma_dom
,
1541 struct unity_map_entry
*e
)
1546 for (addr
= e
->address_start
; addr
< e
->address_end
;
1547 addr
+= PAGE_SIZE
) {
1548 ret
= iommu_map_page(&dma_dom
->domain
, addr
, addr
, e
->prot
,
1553 * if unity mapping is in aperture range mark the page
1554 * as allocated in the aperture
1556 if (addr
< dma_dom
->aperture_size
)
1557 __set_bit(addr
>> PAGE_SHIFT
,
1558 dma_dom
->aperture
[0]->bitmap
);
1565 * Init the unity mappings for a specific IOMMU in the system
1567 * Basically iterates over all unity mapping entries and applies them to
1568 * the default domain DMA of that IOMMU if necessary.
1570 static int iommu_init_unity_mappings(struct amd_iommu
*iommu
)
1572 struct unity_map_entry
*entry
;
1575 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
1576 if (!iommu_for_unity_map(iommu
, entry
))
1578 ret
= dma_ops_unity_map(iommu
->default_dom
, entry
);
1587 * Inits the unity mappings required for a specific device
1589 static int init_unity_mappings_for_device(struct dma_ops_domain
*dma_dom
,
1592 struct unity_map_entry
*e
;
1595 list_for_each_entry(e
, &amd_iommu_unity_map
, list
) {
1596 if (!(devid
>= e
->devid_start
&& devid
<= e
->devid_end
))
1598 ret
= dma_ops_unity_map(dma_dom
, e
);
1606 /****************************************************************************
1608 * The next functions belong to the address allocator for the dma_ops
1609 * interface functions. They work like the allocators in the other IOMMU
1610 * drivers. Its basically a bitmap which marks the allocated pages in
1611 * the aperture. Maybe it could be enhanced in the future to a more
1612 * efficient allocator.
1614 ****************************************************************************/
1617 * The address allocator core functions.
1619 * called with domain->lock held
1623 * Used to reserve address ranges in the aperture (e.g. for exclusion
1626 static void dma_ops_reserve_addresses(struct dma_ops_domain
*dom
,
1627 unsigned long start_page
,
1630 unsigned int i
, last_page
= dom
->aperture_size
>> PAGE_SHIFT
;
1632 if (start_page
+ pages
> last_page
)
1633 pages
= last_page
- start_page
;
1635 for (i
= start_page
; i
< start_page
+ pages
; ++i
) {
1636 int index
= i
/ APERTURE_RANGE_PAGES
;
1637 int page
= i
% APERTURE_RANGE_PAGES
;
1638 __set_bit(page
, dom
->aperture
[index
]->bitmap
);
1643 * This function is used to add a new aperture range to an existing
1644 * aperture in case of dma_ops domain allocation or address allocation
1647 static int alloc_new_range(struct dma_ops_domain
*dma_dom
,
1648 bool populate
, gfp_t gfp
)
1650 int index
= dma_dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1651 struct amd_iommu
*iommu
;
1652 unsigned long i
, old_size
;
1654 #ifdef CONFIG_IOMMU_STRESS
1658 if (index
>= APERTURE_MAX_RANGES
)
1661 dma_dom
->aperture
[index
] = kzalloc(sizeof(struct aperture_range
), gfp
);
1662 if (!dma_dom
->aperture
[index
])
1665 dma_dom
->aperture
[index
]->bitmap
= (void *)get_zeroed_page(gfp
);
1666 if (!dma_dom
->aperture
[index
]->bitmap
)
1669 dma_dom
->aperture
[index
]->offset
= dma_dom
->aperture_size
;
1672 unsigned long address
= dma_dom
->aperture_size
;
1673 int i
, num_ptes
= APERTURE_RANGE_PAGES
/ 512;
1674 u64
*pte
, *pte_page
;
1676 for (i
= 0; i
< num_ptes
; ++i
) {
1677 pte
= alloc_pte(&dma_dom
->domain
, address
, PAGE_SIZE
,
1682 dma_dom
->aperture
[index
]->pte_pages
[i
] = pte_page
;
1684 address
+= APERTURE_RANGE_SIZE
/ 64;
1688 old_size
= dma_dom
->aperture_size
;
1689 dma_dom
->aperture_size
+= APERTURE_RANGE_SIZE
;
1691 /* Reserve address range used for MSI messages */
1692 if (old_size
< MSI_ADDR_BASE_LO
&&
1693 dma_dom
->aperture_size
> MSI_ADDR_BASE_LO
) {
1694 unsigned long spage
;
1697 pages
= iommu_num_pages(MSI_ADDR_BASE_LO
, 0x10000, PAGE_SIZE
);
1698 spage
= MSI_ADDR_BASE_LO
>> PAGE_SHIFT
;
1700 dma_ops_reserve_addresses(dma_dom
, spage
, pages
);
1703 /* Initialize the exclusion range if necessary */
1704 for_each_iommu(iommu
) {
1705 if (iommu
->exclusion_start
&&
1706 iommu
->exclusion_start
>= dma_dom
->aperture
[index
]->offset
1707 && iommu
->exclusion_start
< dma_dom
->aperture_size
) {
1708 unsigned long startpage
;
1709 int pages
= iommu_num_pages(iommu
->exclusion_start
,
1710 iommu
->exclusion_length
,
1712 startpage
= iommu
->exclusion_start
>> PAGE_SHIFT
;
1713 dma_ops_reserve_addresses(dma_dom
, startpage
, pages
);
1718 * Check for areas already mapped as present in the new aperture
1719 * range and mark those pages as reserved in the allocator. Such
1720 * mappings may already exist as a result of requested unity
1721 * mappings for devices.
1723 for (i
= dma_dom
->aperture
[index
]->offset
;
1724 i
< dma_dom
->aperture_size
;
1726 u64
*pte
= fetch_pte(&dma_dom
->domain
, i
);
1727 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
1730 dma_ops_reserve_addresses(dma_dom
, i
>> PAGE_SHIFT
, 1);
1733 update_domain(&dma_dom
->domain
);
1738 update_domain(&dma_dom
->domain
);
1740 free_page((unsigned long)dma_dom
->aperture
[index
]->bitmap
);
1742 kfree(dma_dom
->aperture
[index
]);
1743 dma_dom
->aperture
[index
] = NULL
;
1748 static unsigned long dma_ops_area_alloc(struct device
*dev
,
1749 struct dma_ops_domain
*dom
,
1751 unsigned long align_mask
,
1753 unsigned long start
)
1755 unsigned long next_bit
= dom
->next_address
% APERTURE_RANGE_SIZE
;
1756 int max_index
= dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1757 int i
= start
>> APERTURE_RANGE_SHIFT
;
1758 unsigned long boundary_size
;
1759 unsigned long address
= -1;
1760 unsigned long limit
;
1762 next_bit
>>= PAGE_SHIFT
;
1764 boundary_size
= ALIGN(dma_get_seg_boundary(dev
) + 1,
1765 PAGE_SIZE
) >> PAGE_SHIFT
;
1767 for (;i
< max_index
; ++i
) {
1768 unsigned long offset
= dom
->aperture
[i
]->offset
>> PAGE_SHIFT
;
1770 if (dom
->aperture
[i
]->offset
>= dma_mask
)
1773 limit
= iommu_device_max_index(APERTURE_RANGE_PAGES
, offset
,
1774 dma_mask
>> PAGE_SHIFT
);
1776 address
= iommu_area_alloc(dom
->aperture
[i
]->bitmap
,
1777 limit
, next_bit
, pages
, 0,
1778 boundary_size
, align_mask
);
1779 if (address
!= -1) {
1780 address
= dom
->aperture
[i
]->offset
+
1781 (address
<< PAGE_SHIFT
);
1782 dom
->next_address
= address
+ (pages
<< PAGE_SHIFT
);
1792 static unsigned long dma_ops_alloc_addresses(struct device
*dev
,
1793 struct dma_ops_domain
*dom
,
1795 unsigned long align_mask
,
1798 unsigned long address
;
1800 #ifdef CONFIG_IOMMU_STRESS
1801 dom
->next_address
= 0;
1802 dom
->need_flush
= true;
1805 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1806 dma_mask
, dom
->next_address
);
1808 if (address
== -1) {
1809 dom
->next_address
= 0;
1810 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1812 dom
->need_flush
= true;
1815 if (unlikely(address
== -1))
1816 address
= DMA_ERROR_CODE
;
1818 WARN_ON((address
+ (PAGE_SIZE
*pages
)) > dom
->aperture_size
);
1824 * The address free function.
1826 * called with domain->lock held
1828 static void dma_ops_free_addresses(struct dma_ops_domain
*dom
,
1829 unsigned long address
,
1832 unsigned i
= address
>> APERTURE_RANGE_SHIFT
;
1833 struct aperture_range
*range
= dom
->aperture
[i
];
1835 BUG_ON(i
>= APERTURE_MAX_RANGES
|| range
== NULL
);
1837 #ifdef CONFIG_IOMMU_STRESS
1842 if (address
>= dom
->next_address
)
1843 dom
->need_flush
= true;
1845 address
= (address
% APERTURE_RANGE_SIZE
) >> PAGE_SHIFT
;
1847 bitmap_clear(range
->bitmap
, address
, pages
);
1851 /****************************************************************************
1853 * The next functions belong to the domain allocation. A domain is
1854 * allocated for every IOMMU as the default domain. If device isolation
1855 * is enabled, every device get its own domain. The most important thing
1856 * about domains is the page table mapping the DMA address space they
1859 ****************************************************************************/
1862 * This function adds a protection domain to the global protection domain list
1864 static void add_domain_to_list(struct protection_domain
*domain
)
1866 unsigned long flags
;
1868 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1869 list_add(&domain
->list
, &amd_iommu_pd_list
);
1870 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1874 * This function removes a protection domain to the global
1875 * protection domain list
1877 static void del_domain_from_list(struct protection_domain
*domain
)
1879 unsigned long flags
;
1881 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1882 list_del(&domain
->list
);
1883 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1886 static u16
domain_id_alloc(void)
1888 unsigned long flags
;
1891 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1892 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1894 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1895 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1898 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1903 static void domain_id_free(int id
)
1905 unsigned long flags
;
1907 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1908 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1909 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1910 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1913 #define DEFINE_FREE_PT_FN(LVL, FN) \
1914 static void free_pt_##LVL (unsigned long __pt) \
1922 for (i = 0; i < 512; ++i) { \
1923 if (!IOMMU_PTE_PRESENT(pt[i])) \
1926 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1929 free_page((unsigned long)pt); \
1932 DEFINE_FREE_PT_FN(l2
, free_page
)
1933 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1934 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1935 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1936 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1938 static void free_pagetable(struct protection_domain
*domain
)
1940 unsigned long root
= (unsigned long)domain
->pt_root
;
1942 switch (domain
->mode
) {
1943 case PAGE_MODE_NONE
:
1945 case PAGE_MODE_1_LEVEL
:
1948 case PAGE_MODE_2_LEVEL
:
1951 case PAGE_MODE_3_LEVEL
:
1954 case PAGE_MODE_4_LEVEL
:
1957 case PAGE_MODE_5_LEVEL
:
1960 case PAGE_MODE_6_LEVEL
:
1968 static void free_gcr3_tbl_level1(u64
*tbl
)
1973 for (i
= 0; i
< 512; ++i
) {
1974 if (!(tbl
[i
] & GCR3_VALID
))
1977 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1979 free_page((unsigned long)ptr
);
1983 static void free_gcr3_tbl_level2(u64
*tbl
)
1988 for (i
= 0; i
< 512; ++i
) {
1989 if (!(tbl
[i
] & GCR3_VALID
))
1992 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1994 free_gcr3_tbl_level1(ptr
);
1998 static void free_gcr3_table(struct protection_domain
*domain
)
2000 if (domain
->glx
== 2)
2001 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
2002 else if (domain
->glx
== 1)
2003 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
2004 else if (domain
->glx
!= 0)
2007 free_page((unsigned long)domain
->gcr3_tbl
);
2011 * Free a domain, only used if something went wrong in the
2012 * allocation path and we need to free an already allocated page table
2014 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
2021 del_domain_from_list(&dom
->domain
);
2023 free_pagetable(&dom
->domain
);
2025 for (i
= 0; i
< APERTURE_MAX_RANGES
; ++i
) {
2026 if (!dom
->aperture
[i
])
2028 free_page((unsigned long)dom
->aperture
[i
]->bitmap
);
2029 kfree(dom
->aperture
[i
]);
2036 * Allocates a new protection domain usable for the dma_ops functions.
2037 * It also initializes the page table and the address allocator data
2038 * structures required for the dma_ops interface
2040 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
2042 struct dma_ops_domain
*dma_dom
;
2044 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
2048 spin_lock_init(&dma_dom
->domain
.lock
);
2050 dma_dom
->domain
.id
= domain_id_alloc();
2051 if (dma_dom
->domain
.id
== 0)
2053 INIT_LIST_HEAD(&dma_dom
->domain
.dev_list
);
2054 dma_dom
->domain
.mode
= PAGE_MODE_2_LEVEL
;
2055 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2056 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
2057 dma_dom
->domain
.priv
= dma_dom
;
2058 if (!dma_dom
->domain
.pt_root
)
2061 dma_dom
->need_flush
= false;
2062 dma_dom
->target_dev
= 0xffff;
2064 add_domain_to_list(&dma_dom
->domain
);
2066 if (alloc_new_range(dma_dom
, true, GFP_KERNEL
))
2070 * mark the first page as allocated so we never return 0 as
2071 * a valid dma-address. So we can use 0 as error value
2073 dma_dom
->aperture
[0]->bitmap
[0] = 1;
2074 dma_dom
->next_address
= 0;
2080 dma_ops_domain_free(dma_dom
);
2086 * little helper function to check whether a given protection domain is a
2089 static bool dma_ops_domain(struct protection_domain
*domain
)
2091 return domain
->flags
& PD_DMA_OPS_MASK
;
2094 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
2099 if (domain
->mode
!= PAGE_MODE_NONE
)
2100 pte_root
= virt_to_phys(domain
->pt_root
);
2102 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
2103 << DEV_ENTRY_MODE_SHIFT
;
2104 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
2106 flags
= amd_iommu_dev_table
[devid
].data
[1];
2109 flags
|= DTE_FLAG_IOTLB
;
2111 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2112 u64 gcr3
= __pa(domain
->gcr3_tbl
);
2113 u64 glx
= domain
->glx
;
2116 pte_root
|= DTE_FLAG_GV
;
2117 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
2119 /* First mask out possible old values for GCR3 table */
2120 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
2123 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
2126 /* Encode GCR3 table into DTE */
2127 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
2130 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
2133 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
2137 flags
&= ~(0xffffUL
);
2138 flags
|= domain
->id
;
2140 amd_iommu_dev_table
[devid
].data
[1] = flags
;
2141 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
2144 static void clear_dte_entry(u16 devid
)
2146 /* remove entry from the device table seen by the hardware */
2147 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
2148 amd_iommu_dev_table
[devid
].data
[1] = 0;
2150 amd_iommu_apply_erratum_63(devid
);
2153 static void do_attach(struct iommu_dev_data
*dev_data
,
2154 struct protection_domain
*domain
)
2156 struct amd_iommu
*iommu
;
2159 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2160 ats
= dev_data
->ats
.enabled
;
2162 /* Update data structures */
2163 dev_data
->domain
= domain
;
2164 list_add(&dev_data
->list
, &domain
->dev_list
);
2165 set_dte_entry(dev_data
->devid
, domain
, ats
);
2167 /* Do reference counting */
2168 domain
->dev_iommu
[iommu
->index
] += 1;
2169 domain
->dev_cnt
+= 1;
2171 /* Flush the DTE entry */
2172 device_flush_dte(dev_data
);
2175 static void do_detach(struct iommu_dev_data
*dev_data
)
2177 struct amd_iommu
*iommu
;
2179 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2181 /* decrease reference counters */
2182 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
2183 dev_data
->domain
->dev_cnt
-= 1;
2185 /* Update data structures */
2186 dev_data
->domain
= NULL
;
2187 list_del(&dev_data
->list
);
2188 clear_dte_entry(dev_data
->devid
);
2190 /* Flush the DTE entry */
2191 device_flush_dte(dev_data
);
2195 * If a device is not yet associated with a domain, this function does
2196 * assigns it visible for the hardware
2198 static int __attach_device(struct iommu_dev_data
*dev_data
,
2199 struct protection_domain
*domain
)
2204 spin_lock(&domain
->lock
);
2206 if (dev_data
->alias_data
!= NULL
) {
2207 struct iommu_dev_data
*alias_data
= dev_data
->alias_data
;
2209 /* Some sanity checks */
2211 if (alias_data
->domain
!= NULL
&&
2212 alias_data
->domain
!= domain
)
2215 if (dev_data
->domain
!= NULL
&&
2216 dev_data
->domain
!= domain
)
2219 /* Do real assignment */
2220 if (alias_data
->domain
== NULL
)
2221 do_attach(alias_data
, domain
);
2223 atomic_inc(&alias_data
->bind
);
2226 if (dev_data
->domain
== NULL
)
2227 do_attach(dev_data
, domain
);
2229 atomic_inc(&dev_data
->bind
);
2236 spin_unlock(&domain
->lock
);
2242 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
2244 pci_disable_ats(pdev
);
2245 pci_disable_pri(pdev
);
2246 pci_disable_pasid(pdev
);
2249 /* FIXME: Change generic reset-function to do the same */
2250 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
2255 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2259 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2260 control
|= PCI_PRI_CTRL_RESET
;
2261 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2266 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2271 /* FIXME: Hardcode number of outstanding requests for now */
2273 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2275 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2277 /* Only allow access to user-accessible pages */
2278 ret
= pci_enable_pasid(pdev
, 0);
2282 /* First reset the PRI state of the device */
2283 ret
= pci_reset_pri(pdev
);
2288 ret
= pci_enable_pri(pdev
, reqs
);
2293 ret
= pri_reset_while_enabled(pdev
);
2298 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2305 pci_disable_pri(pdev
);
2306 pci_disable_pasid(pdev
);
2311 /* FIXME: Move this to PCI code */
2312 #define PCI_PRI_TLP_OFF (1 << 15)
2314 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2319 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2323 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2325 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2329 * If a device is not yet associated with a domain, this function
2330 * assigns it visible for the hardware
2332 static int attach_device(struct device
*dev
,
2333 struct protection_domain
*domain
)
2335 struct pci_dev
*pdev
= to_pci_dev(dev
);
2336 struct iommu_dev_data
*dev_data
;
2337 unsigned long flags
;
2340 dev_data
= get_dev_data(dev
);
2342 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2343 if (!dev_data
->iommu_v2
|| !dev_data
->passthrough
)
2346 if (pdev_iommuv2_enable(pdev
) != 0)
2349 dev_data
->ats
.enabled
= true;
2350 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2351 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2352 } else if (amd_iommu_iotlb_sup
&&
2353 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2354 dev_data
->ats
.enabled
= true;
2355 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2358 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2359 ret
= __attach_device(dev_data
, domain
);
2360 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2363 * We might boot into a crash-kernel here. The crashed kernel
2364 * left the caches in the IOMMU dirty. So we have to flush
2365 * here to evict all dirty stuff.
2367 domain_flush_tlb_pde(domain
);
2373 * Removes a device from a protection domain (unlocked)
2375 static void __detach_device(struct iommu_dev_data
*dev_data
)
2377 struct protection_domain
*domain
;
2378 unsigned long flags
;
2380 BUG_ON(!dev_data
->domain
);
2382 domain
= dev_data
->domain
;
2384 spin_lock_irqsave(&domain
->lock
, flags
);
2386 if (dev_data
->alias_data
!= NULL
) {
2387 struct iommu_dev_data
*alias_data
= dev_data
->alias_data
;
2389 if (atomic_dec_and_test(&alias_data
->bind
))
2390 do_detach(alias_data
);
2393 if (atomic_dec_and_test(&dev_data
->bind
))
2394 do_detach(dev_data
);
2396 spin_unlock_irqrestore(&domain
->lock
, flags
);
2399 * If we run in passthrough mode the device must be assigned to the
2400 * passthrough domain if it is detached from any other domain.
2401 * Make sure we can deassign from the pt_domain itself.
2403 if (dev_data
->passthrough
&&
2404 (dev_data
->domain
== NULL
&& domain
!= pt_domain
))
2405 __attach_device(dev_data
, pt_domain
);
2409 * Removes a device from a protection domain (with devtable_lock held)
2411 static void detach_device(struct device
*dev
)
2413 struct protection_domain
*domain
;
2414 struct iommu_dev_data
*dev_data
;
2415 unsigned long flags
;
2417 dev_data
= get_dev_data(dev
);
2418 domain
= dev_data
->domain
;
2420 /* lock device table */
2421 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2422 __detach_device(dev_data
);
2423 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2425 if (domain
->flags
& PD_IOMMUV2_MASK
)
2426 pdev_iommuv2_disable(to_pci_dev(dev
));
2427 else if (dev_data
->ats
.enabled
)
2428 pci_disable_ats(to_pci_dev(dev
));
2430 dev_data
->ats
.enabled
= false;
2434 * Find out the protection domain structure for a given PCI device. This
2435 * will give us the pointer to the page table root for example.
2437 static struct protection_domain
*domain_for_device(struct device
*dev
)
2439 struct iommu_dev_data
*dev_data
;
2440 struct protection_domain
*dom
= NULL
;
2441 unsigned long flags
;
2443 dev_data
= get_dev_data(dev
);
2445 if (dev_data
->domain
)
2446 return dev_data
->domain
;
2448 if (dev_data
->alias_data
!= NULL
) {
2449 struct iommu_dev_data
*alias_data
= dev_data
->alias_data
;
2451 read_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2452 if (alias_data
->domain
!= NULL
) {
2453 __attach_device(dev_data
, alias_data
->domain
);
2454 dom
= alias_data
->domain
;
2456 read_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2462 static int device_change_notifier(struct notifier_block
*nb
,
2463 unsigned long action
, void *data
)
2465 struct dma_ops_domain
*dma_domain
;
2466 struct protection_domain
*domain
;
2467 struct iommu_dev_data
*dev_data
;
2468 struct device
*dev
= data
;
2469 struct amd_iommu
*iommu
;
2470 unsigned long flags
;
2473 if (!check_device(dev
))
2476 devid
= get_device_id(dev
);
2477 iommu
= amd_iommu_rlookup_table
[devid
];
2478 dev_data
= get_dev_data(dev
);
2481 case BUS_NOTIFY_UNBOUND_DRIVER
:
2483 domain
= domain_for_device(dev
);
2487 if (dev_data
->passthrough
)
2491 case BUS_NOTIFY_ADD_DEVICE
:
2493 iommu_init_device(dev
);
2496 * dev_data is still NULL and
2497 * got initialized in iommu_init_device
2499 dev_data
= get_dev_data(dev
);
2501 if (iommu_pass_through
|| dev_data
->iommu_v2
) {
2502 dev_data
->passthrough
= true;
2503 attach_device(dev
, pt_domain
);
2507 domain
= domain_for_device(dev
);
2509 /* allocate a protection domain if a device is added */
2510 dma_domain
= find_protection_domain(devid
);
2512 dma_domain
= dma_ops_domain_alloc();
2515 dma_domain
->target_dev
= devid
;
2517 spin_lock_irqsave(&iommu_pd_list_lock
, flags
);
2518 list_add_tail(&dma_domain
->list
, &iommu_pd_list
);
2519 spin_unlock_irqrestore(&iommu_pd_list_lock
, flags
);
2522 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2525 case BUS_NOTIFY_DEL_DEVICE
:
2527 iommu_uninit_device(dev
);
2533 iommu_completion_wait(iommu
);
2539 static struct notifier_block device_nb
= {
2540 .notifier_call
= device_change_notifier
,
2543 void amd_iommu_init_notifier(void)
2545 bus_register_notifier(&pci_bus_type
, &device_nb
);
2548 /*****************************************************************************
2550 * The next functions belong to the dma_ops mapping/unmapping code.
2552 *****************************************************************************/
2555 * In the dma_ops path we only have the struct device. This function
2556 * finds the corresponding IOMMU, the protection domain and the
2557 * requestor id for a given device.
2558 * If the device is not yet associated with a domain this is also done
2561 static struct protection_domain
*get_domain(struct device
*dev
)
2563 struct protection_domain
*domain
;
2564 struct dma_ops_domain
*dma_dom
;
2565 u16 devid
= get_device_id(dev
);
2567 if (!check_device(dev
))
2568 return ERR_PTR(-EINVAL
);
2570 domain
= domain_for_device(dev
);
2571 if (domain
!= NULL
&& !dma_ops_domain(domain
))
2572 return ERR_PTR(-EBUSY
);
2577 /* Device not bound yet - bind it */
2578 dma_dom
= find_protection_domain(devid
);
2580 dma_dom
= amd_iommu_rlookup_table
[devid
]->default_dom
;
2581 attach_device(dev
, &dma_dom
->domain
);
2582 DUMP_printk("Using protection domain %d for device %s\n",
2583 dma_dom
->domain
.id
, dev_name(dev
));
2585 return &dma_dom
->domain
;
2588 static void update_device_table(struct protection_domain
*domain
)
2590 struct iommu_dev_data
*dev_data
;
2592 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
2593 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2596 static void update_domain(struct protection_domain
*domain
)
2598 if (!domain
->updated
)
2601 update_device_table(domain
);
2603 domain_flush_devices(domain
);
2604 domain_flush_tlb_pde(domain
);
2606 domain
->updated
= false;
2610 * This function fetches the PTE for a given address in the aperture
2612 static u64
* dma_ops_get_pte(struct dma_ops_domain
*dom
,
2613 unsigned long address
)
2615 struct aperture_range
*aperture
;
2616 u64
*pte
, *pte_page
;
2618 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2622 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2624 pte
= alloc_pte(&dom
->domain
, address
, PAGE_SIZE
, &pte_page
,
2626 aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)] = pte_page
;
2628 pte
+= PM_LEVEL_INDEX(0, address
);
2630 update_domain(&dom
->domain
);
2636 * This is the generic map function. It maps one 4kb page at paddr to
2637 * the given address in the DMA address space for the domain.
2639 static dma_addr_t
dma_ops_domain_map(struct dma_ops_domain
*dom
,
2640 unsigned long address
,
2646 WARN_ON(address
> dom
->aperture_size
);
2650 pte
= dma_ops_get_pte(dom
, address
);
2652 return DMA_ERROR_CODE
;
2654 __pte
= paddr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
2656 if (direction
== DMA_TO_DEVICE
)
2657 __pte
|= IOMMU_PTE_IR
;
2658 else if (direction
== DMA_FROM_DEVICE
)
2659 __pte
|= IOMMU_PTE_IW
;
2660 else if (direction
== DMA_BIDIRECTIONAL
)
2661 __pte
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
;
2667 return (dma_addr_t
)address
;
2671 * The generic unmapping function for on page in the DMA address space.
2673 static void dma_ops_domain_unmap(struct dma_ops_domain
*dom
,
2674 unsigned long address
)
2676 struct aperture_range
*aperture
;
2679 if (address
>= dom
->aperture_size
)
2682 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2686 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2690 pte
+= PM_LEVEL_INDEX(0, address
);
2698 * This function contains common code for mapping of a physically
2699 * contiguous memory region into DMA address space. It is used by all
2700 * mapping functions provided with this IOMMU driver.
2701 * Must be called with the domain lock held.
2703 static dma_addr_t
__map_single(struct device
*dev
,
2704 struct dma_ops_domain
*dma_dom
,
2711 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2712 dma_addr_t address
, start
, ret
;
2714 unsigned long align_mask
= 0;
2717 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2720 INC_STATS_COUNTER(total_map_requests
);
2723 INC_STATS_COUNTER(cross_page
);
2726 align_mask
= (1UL << get_order(size
)) - 1;
2729 address
= dma_ops_alloc_addresses(dev
, dma_dom
, pages
, align_mask
,
2731 if (unlikely(address
== DMA_ERROR_CODE
)) {
2733 * setting next_address here will let the address
2734 * allocator only scan the new allocated range in the
2735 * first run. This is a small optimization.
2737 dma_dom
->next_address
= dma_dom
->aperture_size
;
2739 if (alloc_new_range(dma_dom
, false, GFP_ATOMIC
))
2743 * aperture was successfully enlarged by 128 MB, try
2750 for (i
= 0; i
< pages
; ++i
) {
2751 ret
= dma_ops_domain_map(dma_dom
, start
, paddr
, dir
);
2752 if (ret
== DMA_ERROR_CODE
)
2760 ADD_STATS_COUNTER(alloced_io_mem
, size
);
2762 if (unlikely(dma_dom
->need_flush
&& !amd_iommu_unmap_flush
)) {
2763 domain_flush_tlb(&dma_dom
->domain
);
2764 dma_dom
->need_flush
= false;
2765 } else if (unlikely(amd_iommu_np_cache
))
2766 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2773 for (--i
; i
>= 0; --i
) {
2775 dma_ops_domain_unmap(dma_dom
, start
);
2778 dma_ops_free_addresses(dma_dom
, address
, pages
);
2780 return DMA_ERROR_CODE
;
2784 * Does the reverse of the __map_single function. Must be called with
2785 * the domain lock held too
2787 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2788 dma_addr_t dma_addr
,
2792 dma_addr_t flush_addr
;
2793 dma_addr_t i
, start
;
2796 if ((dma_addr
== DMA_ERROR_CODE
) ||
2797 (dma_addr
+ size
> dma_dom
->aperture_size
))
2800 flush_addr
= dma_addr
;
2801 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2802 dma_addr
&= PAGE_MASK
;
2805 for (i
= 0; i
< pages
; ++i
) {
2806 dma_ops_domain_unmap(dma_dom
, start
);
2810 SUB_STATS_COUNTER(alloced_io_mem
, size
);
2812 dma_ops_free_addresses(dma_dom
, dma_addr
, pages
);
2814 if (amd_iommu_unmap_flush
|| dma_dom
->need_flush
) {
2815 domain_flush_pages(&dma_dom
->domain
, flush_addr
, size
);
2816 dma_dom
->need_flush
= false;
2821 * The exported map_single function for dma_ops.
2823 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2824 unsigned long offset
, size_t size
,
2825 enum dma_data_direction dir
,
2826 struct dma_attrs
*attrs
)
2828 unsigned long flags
;
2829 struct protection_domain
*domain
;
2832 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2834 INC_STATS_COUNTER(cnt_map_single
);
2836 domain
= get_domain(dev
);
2837 if (PTR_ERR(domain
) == -EINVAL
)
2838 return (dma_addr_t
)paddr
;
2839 else if (IS_ERR(domain
))
2840 return DMA_ERROR_CODE
;
2842 dma_mask
= *dev
->dma_mask
;
2844 spin_lock_irqsave(&domain
->lock
, flags
);
2846 addr
= __map_single(dev
, domain
->priv
, paddr
, size
, dir
, false,
2848 if (addr
== DMA_ERROR_CODE
)
2851 domain_flush_complete(domain
);
2854 spin_unlock_irqrestore(&domain
->lock
, flags
);
2860 * The exported unmap_single function for dma_ops.
2862 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2863 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2865 unsigned long flags
;
2866 struct protection_domain
*domain
;
2868 INC_STATS_COUNTER(cnt_unmap_single
);
2870 domain
= get_domain(dev
);
2874 spin_lock_irqsave(&domain
->lock
, flags
);
2876 __unmap_single(domain
->priv
, dma_addr
, size
, dir
);
2878 domain_flush_complete(domain
);
2880 spin_unlock_irqrestore(&domain
->lock
, flags
);
2884 * The exported map_sg function for dma_ops (handles scatter-gather
2887 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2888 int nelems
, enum dma_data_direction dir
,
2889 struct dma_attrs
*attrs
)
2891 unsigned long flags
;
2892 struct protection_domain
*domain
;
2894 struct scatterlist
*s
;
2896 int mapped_elems
= 0;
2899 INC_STATS_COUNTER(cnt_map_sg
);
2901 domain
= get_domain(dev
);
2905 dma_mask
= *dev
->dma_mask
;
2907 spin_lock_irqsave(&domain
->lock
, flags
);
2909 for_each_sg(sglist
, s
, nelems
, i
) {
2912 s
->dma_address
= __map_single(dev
, domain
->priv
,
2913 paddr
, s
->length
, dir
, false,
2916 if (s
->dma_address
) {
2917 s
->dma_length
= s
->length
;
2923 domain_flush_complete(domain
);
2926 spin_unlock_irqrestore(&domain
->lock
, flags
);
2928 return mapped_elems
;
2930 for_each_sg(sglist
, s
, mapped_elems
, i
) {
2932 __unmap_single(domain
->priv
, s
->dma_address
,
2933 s
->dma_length
, dir
);
2934 s
->dma_address
= s
->dma_length
= 0;
2943 * The exported map_sg function for dma_ops (handles scatter-gather
2946 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2947 int nelems
, enum dma_data_direction dir
,
2948 struct dma_attrs
*attrs
)
2950 unsigned long flags
;
2951 struct protection_domain
*domain
;
2952 struct scatterlist
*s
;
2955 INC_STATS_COUNTER(cnt_unmap_sg
);
2957 domain
= get_domain(dev
);
2961 spin_lock_irqsave(&domain
->lock
, flags
);
2963 for_each_sg(sglist
, s
, nelems
, i
) {
2964 __unmap_single(domain
->priv
, s
->dma_address
,
2965 s
->dma_length
, dir
);
2966 s
->dma_address
= s
->dma_length
= 0;
2969 domain_flush_complete(domain
);
2971 spin_unlock_irqrestore(&domain
->lock
, flags
);
2975 * The exported alloc_coherent function for dma_ops.
2977 static void *alloc_coherent(struct device
*dev
, size_t size
,
2978 dma_addr_t
*dma_addr
, gfp_t flag
,
2979 struct dma_attrs
*attrs
)
2981 unsigned long flags
;
2983 struct protection_domain
*domain
;
2985 u64 dma_mask
= dev
->coherent_dma_mask
;
2987 INC_STATS_COUNTER(cnt_alloc_coherent
);
2989 domain
= get_domain(dev
);
2990 if (PTR_ERR(domain
) == -EINVAL
) {
2991 virt_addr
= (void *)__get_free_pages(flag
, get_order(size
));
2992 *dma_addr
= __pa(virt_addr
);
2994 } else if (IS_ERR(domain
))
2997 dma_mask
= dev
->coherent_dma_mask
;
2998 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
3001 virt_addr
= (void *)__get_free_pages(flag
, get_order(size
));
3005 paddr
= virt_to_phys(virt_addr
);
3008 dma_mask
= *dev
->dma_mask
;
3010 spin_lock_irqsave(&domain
->lock
, flags
);
3012 *dma_addr
= __map_single(dev
, domain
->priv
, paddr
,
3013 size
, DMA_BIDIRECTIONAL
, true, dma_mask
);
3015 if (*dma_addr
== DMA_ERROR_CODE
) {
3016 spin_unlock_irqrestore(&domain
->lock
, flags
);
3020 domain_flush_complete(domain
);
3022 spin_unlock_irqrestore(&domain
->lock
, flags
);
3028 free_pages((unsigned long)virt_addr
, get_order(size
));
3034 * The exported free_coherent function for dma_ops.
3036 static void free_coherent(struct device
*dev
, size_t size
,
3037 void *virt_addr
, dma_addr_t dma_addr
,
3038 struct dma_attrs
*attrs
)
3040 unsigned long flags
;
3041 struct protection_domain
*domain
;
3043 INC_STATS_COUNTER(cnt_free_coherent
);
3045 domain
= get_domain(dev
);
3049 spin_lock_irqsave(&domain
->lock
, flags
);
3051 __unmap_single(domain
->priv
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
3053 domain_flush_complete(domain
);
3055 spin_unlock_irqrestore(&domain
->lock
, flags
);
3058 free_pages((unsigned long)virt_addr
, get_order(size
));
3062 * This function is called by the DMA layer to find out if we can handle a
3063 * particular device. It is part of the dma_ops.
3065 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
3067 return check_device(dev
);
3071 * The function for pre-allocating protection domains.
3073 * If the driver core informs the DMA layer if a driver grabs a device
3074 * we don't need to preallocate the protection domains anymore.
3075 * For now we have to.
3077 static void __init
prealloc_protection_domains(void)
3079 struct iommu_dev_data
*dev_data
;
3080 struct dma_ops_domain
*dma_dom
;
3081 struct pci_dev
*dev
= NULL
;
3084 for_each_pci_dev(dev
) {
3086 /* Do we handle this device? */
3087 if (!check_device(&dev
->dev
))
3090 dev_data
= get_dev_data(&dev
->dev
);
3091 if (!amd_iommu_force_isolation
&& dev_data
->iommu_v2
) {
3092 /* Make sure passthrough domain is allocated */
3093 alloc_passthrough_domain();
3094 dev_data
->passthrough
= true;
3095 attach_device(&dev
->dev
, pt_domain
);
3096 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3097 dev_name(&dev
->dev
));
3100 /* Is there already any domain for it? */
3101 if (domain_for_device(&dev
->dev
))
3104 devid
= get_device_id(&dev
->dev
);
3106 dma_dom
= dma_ops_domain_alloc();
3109 init_unity_mappings_for_device(dma_dom
, devid
);
3110 dma_dom
->target_dev
= devid
;
3112 attach_device(&dev
->dev
, &dma_dom
->domain
);
3114 list_add_tail(&dma_dom
->list
, &iommu_pd_list
);
3118 static struct dma_map_ops amd_iommu_dma_ops
= {
3119 .alloc
= alloc_coherent
,
3120 .free
= free_coherent
,
3121 .map_page
= map_page
,
3122 .unmap_page
= unmap_page
,
3124 .unmap_sg
= unmap_sg
,
3125 .dma_supported
= amd_iommu_dma_supported
,
3128 static unsigned device_dma_ops_init(void)
3130 struct iommu_dev_data
*dev_data
;
3131 struct pci_dev
*pdev
= NULL
;
3132 unsigned unhandled
= 0;
3134 for_each_pci_dev(pdev
) {
3135 if (!check_device(&pdev
->dev
)) {
3137 iommu_ignore_device(&pdev
->dev
);
3143 dev_data
= get_dev_data(&pdev
->dev
);
3145 if (!dev_data
->passthrough
)
3146 pdev
->dev
.archdata
.dma_ops
= &amd_iommu_dma_ops
;
3148 pdev
->dev
.archdata
.dma_ops
= &nommu_dma_ops
;
3155 * The function which clues the AMD IOMMU driver into dma_ops.
3158 void __init
amd_iommu_init_api(void)
3160 bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
3163 int __init
amd_iommu_init_dma_ops(void)
3165 struct amd_iommu
*iommu
;
3169 * first allocate a default protection domain for every IOMMU we
3170 * found in the system. Devices not assigned to any other
3171 * protection domain will be assigned to the default one.
3173 for_each_iommu(iommu
) {
3174 iommu
->default_dom
= dma_ops_domain_alloc();
3175 if (iommu
->default_dom
== NULL
)
3177 iommu
->default_dom
->domain
.flags
|= PD_DEFAULT_MASK
;
3178 ret
= iommu_init_unity_mappings(iommu
);
3184 * Pre-allocate the protection domains for each device.
3186 prealloc_protection_domains();
3191 /* Make the driver finally visible to the drivers */
3192 unhandled
= device_dma_ops_init();
3193 if (unhandled
&& max_pfn
> MAX_DMA32_PFN
) {
3194 /* There are unhandled devices - initialize swiotlb for them */
3198 amd_iommu_stats_init();
3200 if (amd_iommu_unmap_flush
)
3201 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3203 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3209 for_each_iommu(iommu
) {
3210 dma_ops_domain_free(iommu
->default_dom
);
3216 /*****************************************************************************
3218 * The following functions belong to the exported interface of AMD IOMMU
3220 * This interface allows access to lower level functions of the IOMMU
3221 * like protection domain handling and assignement of devices to domains
3222 * which is not possible with the dma_ops interface.
3224 *****************************************************************************/
3226 static void cleanup_domain(struct protection_domain
*domain
)
3228 struct iommu_dev_data
*dev_data
, *next
;
3229 unsigned long flags
;
3231 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3233 list_for_each_entry_safe(dev_data
, next
, &domain
->dev_list
, list
) {
3234 __detach_device(dev_data
);
3235 atomic_set(&dev_data
->bind
, 0);
3238 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3241 static void protection_domain_free(struct protection_domain
*domain
)
3246 del_domain_from_list(domain
);
3249 domain_id_free(domain
->id
);
3254 static struct protection_domain
*protection_domain_alloc(void)
3256 struct protection_domain
*domain
;
3258 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
3262 spin_lock_init(&domain
->lock
);
3263 mutex_init(&domain
->api_lock
);
3264 domain
->id
= domain_id_alloc();
3267 INIT_LIST_HEAD(&domain
->dev_list
);
3269 add_domain_to_list(domain
);
3279 static int __init
alloc_passthrough_domain(void)
3281 if (pt_domain
!= NULL
)
3284 /* allocate passthrough domain */
3285 pt_domain
= protection_domain_alloc();
3289 pt_domain
->mode
= PAGE_MODE_NONE
;
3293 static int amd_iommu_domain_init(struct iommu_domain
*dom
)
3295 struct protection_domain
*domain
;
3297 domain
= protection_domain_alloc();
3301 domain
->mode
= PAGE_MODE_3_LEVEL
;
3302 domain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
3303 if (!domain
->pt_root
)
3306 domain
->iommu_domain
= dom
;
3310 dom
->geometry
.aperture_start
= 0;
3311 dom
->geometry
.aperture_end
= ~0ULL;
3312 dom
->geometry
.force_aperture
= true;
3317 protection_domain_free(domain
);
3322 static void amd_iommu_domain_destroy(struct iommu_domain
*dom
)
3324 struct protection_domain
*domain
= dom
->priv
;
3329 if (domain
->dev_cnt
> 0)
3330 cleanup_domain(domain
);
3332 BUG_ON(domain
->dev_cnt
!= 0);
3334 if (domain
->mode
!= PAGE_MODE_NONE
)
3335 free_pagetable(domain
);
3337 if (domain
->flags
& PD_IOMMUV2_MASK
)
3338 free_gcr3_table(domain
);
3340 protection_domain_free(domain
);
3345 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3348 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3349 struct amd_iommu
*iommu
;
3352 if (!check_device(dev
))
3355 devid
= get_device_id(dev
);
3357 if (dev_data
->domain
!= NULL
)
3360 iommu
= amd_iommu_rlookup_table
[devid
];
3364 iommu_completion_wait(iommu
);
3367 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3370 struct protection_domain
*domain
= dom
->priv
;
3371 struct iommu_dev_data
*dev_data
;
3372 struct amd_iommu
*iommu
;
3375 if (!check_device(dev
))
3378 dev_data
= dev
->archdata
.iommu
;
3380 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3384 if (dev_data
->domain
)
3387 ret
= attach_device(dev
, domain
);
3389 iommu_completion_wait(iommu
);
3394 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3395 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3397 struct protection_domain
*domain
= dom
->priv
;
3401 if (domain
->mode
== PAGE_MODE_NONE
)
3404 if (iommu_prot
& IOMMU_READ
)
3405 prot
|= IOMMU_PROT_IR
;
3406 if (iommu_prot
& IOMMU_WRITE
)
3407 prot
|= IOMMU_PROT_IW
;
3409 mutex_lock(&domain
->api_lock
);
3410 ret
= iommu_map_page(domain
, iova
, paddr
, prot
, page_size
);
3411 mutex_unlock(&domain
->api_lock
);
3416 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3419 struct protection_domain
*domain
= dom
->priv
;
3422 if (domain
->mode
== PAGE_MODE_NONE
)
3425 mutex_lock(&domain
->api_lock
);
3426 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3427 mutex_unlock(&domain
->api_lock
);
3429 domain_flush_tlb_pde(domain
);
3434 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3437 struct protection_domain
*domain
= dom
->priv
;
3438 unsigned long offset_mask
;
3442 if (domain
->mode
== PAGE_MODE_NONE
)
3445 pte
= fetch_pte(domain
, iova
);
3447 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3450 if (PM_PTE_LEVEL(*pte
) == 0)
3451 offset_mask
= PAGE_SIZE
- 1;
3453 offset_mask
= PTE_PAGE_SIZE(*pte
) - 1;
3455 __pte
= *pte
& PM_ADDR_MASK
;
3456 paddr
= (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3461 static int amd_iommu_domain_has_cap(struct iommu_domain
*domain
,
3465 case IOMMU_CAP_CACHE_COHERENCY
:
3467 case IOMMU_CAP_INTR_REMAP
:
3468 return irq_remapping_enabled
;
3474 static struct iommu_ops amd_iommu_ops
= {
3475 .domain_init
= amd_iommu_domain_init
,
3476 .domain_destroy
= amd_iommu_domain_destroy
,
3477 .attach_dev
= amd_iommu_attach_device
,
3478 .detach_dev
= amd_iommu_detach_device
,
3479 .map
= amd_iommu_map
,
3480 .unmap
= amd_iommu_unmap
,
3481 .iova_to_phys
= amd_iommu_iova_to_phys
,
3482 .domain_has_cap
= amd_iommu_domain_has_cap
,
3483 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3486 /*****************************************************************************
3488 * The next functions do a basic initialization of IOMMU for pass through
3491 * In passthrough mode the IOMMU is initialized and enabled but not used for
3492 * DMA-API translation.
3494 *****************************************************************************/
3496 int __init
amd_iommu_init_passthrough(void)
3498 struct iommu_dev_data
*dev_data
;
3499 struct pci_dev
*dev
= NULL
;
3500 struct amd_iommu
*iommu
;
3504 ret
= alloc_passthrough_domain();
3508 for_each_pci_dev(dev
) {
3509 if (!check_device(&dev
->dev
))
3512 dev_data
= get_dev_data(&dev
->dev
);
3513 dev_data
->passthrough
= true;
3515 devid
= get_device_id(&dev
->dev
);
3517 iommu
= amd_iommu_rlookup_table
[devid
];
3521 attach_device(&dev
->dev
, pt_domain
);
3524 amd_iommu_stats_init();
3526 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3531 /* IOMMUv2 specific functions */
3532 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3534 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3536 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3538 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3540 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3542 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3544 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3546 struct protection_domain
*domain
= dom
->priv
;
3547 unsigned long flags
;
3549 spin_lock_irqsave(&domain
->lock
, flags
);
3551 /* Update data structure */
3552 domain
->mode
= PAGE_MODE_NONE
;
3553 domain
->updated
= true;
3555 /* Make changes visible to IOMMUs */
3556 update_domain(domain
);
3558 /* Page-table is not visible to IOMMU anymore, so free it */
3559 free_pagetable(domain
);
3561 spin_unlock_irqrestore(&domain
->lock
, flags
);
3563 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3565 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3567 struct protection_domain
*domain
= dom
->priv
;
3568 unsigned long flags
;
3571 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3574 /* Number of GCR3 table levels required */
3575 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3578 if (levels
> amd_iommu_max_glx_val
)
3581 spin_lock_irqsave(&domain
->lock
, flags
);
3584 * Save us all sanity checks whether devices already in the
3585 * domain support IOMMUv2. Just force that the domain has no
3586 * devices attached when it is switched into IOMMUv2 mode.
3589 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3593 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3594 if (domain
->gcr3_tbl
== NULL
)
3597 domain
->glx
= levels
;
3598 domain
->flags
|= PD_IOMMUV2_MASK
;
3599 domain
->updated
= true;
3601 update_domain(domain
);
3606 spin_unlock_irqrestore(&domain
->lock
, flags
);
3610 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3612 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3613 u64 address
, bool size
)
3615 struct iommu_dev_data
*dev_data
;
3616 struct iommu_cmd cmd
;
3619 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3622 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3625 * IOMMU TLB needs to be flushed before Device TLB to
3626 * prevent device TLB refill from IOMMU TLB
3628 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3629 if (domain
->dev_iommu
[i
] == 0)
3632 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3637 /* Wait until IOMMU TLB flushes are complete */
3638 domain_flush_complete(domain
);
3640 /* Now flush device TLBs */
3641 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3642 struct amd_iommu
*iommu
;
3645 BUG_ON(!dev_data
->ats
.enabled
);
3647 qdep
= dev_data
->ats
.qdep
;
3648 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3650 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3651 qdep
, address
, size
);
3653 ret
= iommu_queue_command(iommu
, &cmd
);
3658 /* Wait until all device TLBs are flushed */
3659 domain_flush_complete(domain
);
3668 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3671 INC_STATS_COUNTER(invalidate_iotlb
);
3673 return __flush_pasid(domain
, pasid
, address
, false);
3676 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3679 struct protection_domain
*domain
= dom
->priv
;
3680 unsigned long flags
;
3683 spin_lock_irqsave(&domain
->lock
, flags
);
3684 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3685 spin_unlock_irqrestore(&domain
->lock
, flags
);
3689 EXPORT_SYMBOL(amd_iommu_flush_page
);
3691 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3693 INC_STATS_COUNTER(invalidate_iotlb_all
);
3695 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3699 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3701 struct protection_domain
*domain
= dom
->priv
;
3702 unsigned long flags
;
3705 spin_lock_irqsave(&domain
->lock
, flags
);
3706 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3707 spin_unlock_irqrestore(&domain
->lock
, flags
);
3711 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3713 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3720 index
= (pasid
>> (9 * level
)) & 0x1ff;
3726 if (!(*pte
& GCR3_VALID
)) {
3730 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3734 *pte
= __pa(root
) | GCR3_VALID
;
3737 root
= __va(*pte
& PAGE_MASK
);
3745 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3750 if (domain
->mode
!= PAGE_MODE_NONE
)
3753 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3757 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3759 return __amd_iommu_flush_tlb(domain
, pasid
);
3762 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3766 if (domain
->mode
!= PAGE_MODE_NONE
)
3769 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3775 return __amd_iommu_flush_tlb(domain
, pasid
);
3778 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3781 struct protection_domain
*domain
= dom
->priv
;
3782 unsigned long flags
;
3785 spin_lock_irqsave(&domain
->lock
, flags
);
3786 ret
= __set_gcr3(domain
, pasid
, cr3
);
3787 spin_unlock_irqrestore(&domain
->lock
, flags
);
3791 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3793 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3795 struct protection_domain
*domain
= dom
->priv
;
3796 unsigned long flags
;
3799 spin_lock_irqsave(&domain
->lock
, flags
);
3800 ret
= __clear_gcr3(domain
, pasid
);
3801 spin_unlock_irqrestore(&domain
->lock
, flags
);
3805 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3807 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3808 int status
, int tag
)
3810 struct iommu_dev_data
*dev_data
;
3811 struct amd_iommu
*iommu
;
3812 struct iommu_cmd cmd
;
3814 INC_STATS_COUNTER(complete_ppr
);
3816 dev_data
= get_dev_data(&pdev
->dev
);
3817 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3819 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3820 tag
, dev_data
->pri_tlp
);
3822 return iommu_queue_command(iommu
, &cmd
);
3824 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3826 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3828 struct protection_domain
*domain
;
3830 domain
= get_domain(&pdev
->dev
);
3834 /* Only return IOMMUv2 domains */
3835 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3838 return domain
->iommu_domain
;
3840 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3842 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3844 struct iommu_dev_data
*dev_data
;
3846 if (!amd_iommu_v2_supported())
3849 dev_data
= get_dev_data(&pdev
->dev
);
3850 dev_data
->errata
|= (1 << erratum
);
3852 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3854 int amd_iommu_device_info(struct pci_dev
*pdev
,
3855 struct amd_iommu_device_info
*info
)
3860 if (pdev
== NULL
|| info
== NULL
)
3863 if (!amd_iommu_v2_supported())
3866 memset(info
, 0, sizeof(*info
));
3868 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3870 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3872 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3874 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3876 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3880 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3881 max_pasids
= min(max_pasids
, (1 << 20));
3883 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3884 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3886 features
= pci_pasid_features(pdev
);
3887 if (features
& PCI_PASID_CAP_EXEC
)
3888 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3889 if (features
& PCI_PASID_CAP_PRIV
)
3890 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3895 EXPORT_SYMBOL(amd_iommu_device_info
);
3897 #ifdef CONFIG_IRQ_REMAP
3899 /*****************************************************************************
3901 * Interrupt Remapping Implementation
3903 *****************************************************************************/
3920 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3921 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3922 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3923 #define DTE_IRQ_REMAP_ENABLE 1ULL
3925 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3929 dte
= amd_iommu_dev_table
[devid
].data
[2];
3930 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3931 dte
|= virt_to_phys(table
->table
);
3932 dte
|= DTE_IRQ_REMAP_INTCTL
;
3933 dte
|= DTE_IRQ_TABLE_LEN
;
3934 dte
|= DTE_IRQ_REMAP_ENABLE
;
3936 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3939 #define IRTE_ALLOCATED (~1U)
3941 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3943 struct irq_remap_table
*table
= NULL
;
3944 struct amd_iommu
*iommu
;
3945 unsigned long flags
;
3948 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3950 iommu
= amd_iommu_rlookup_table
[devid
];
3954 table
= irq_lookup_table
[devid
];
3958 alias
= amd_iommu_alias_table
[devid
];
3959 table
= irq_lookup_table
[alias
];
3961 irq_lookup_table
[devid
] = table
;
3962 set_dte_irq_entry(devid
, table
);
3963 iommu_flush_dte(iommu
, devid
);
3967 /* Nothing there yet, allocate new irq remapping table */
3968 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3972 /* Initialize table spin-lock */
3973 spin_lock_init(&table
->lock
);
3976 /* Keep the first 32 indexes free for IOAPIC interrupts */
3977 table
->min_index
= 32;
3979 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3980 if (!table
->table
) {
3986 memset(table
->table
, 0, MAX_IRQS_PER_TABLE
* sizeof(u32
));
3991 for (i
= 0; i
< 32; ++i
)
3992 table
->table
[i
] = IRTE_ALLOCATED
;
3995 irq_lookup_table
[devid
] = table
;
3996 set_dte_irq_entry(devid
, table
);
3997 iommu_flush_dte(iommu
, devid
);
3998 if (devid
!= alias
) {
3999 irq_lookup_table
[alias
] = table
;
4000 set_dte_irq_entry(devid
, table
);
4001 iommu_flush_dte(iommu
, alias
);
4005 iommu_completion_wait(iommu
);
4008 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
4013 static int alloc_irq_index(struct irq_cfg
*cfg
, u16 devid
, int count
)
4015 struct irq_remap_table
*table
;
4016 unsigned long flags
;
4019 table
= get_irq_table(devid
, false);
4023 spin_lock_irqsave(&table
->lock
, flags
);
4025 /* Scan table for free entries */
4026 for (c
= 0, index
= table
->min_index
;
4027 index
< MAX_IRQS_PER_TABLE
;
4029 if (table
->table
[index
] == 0)
4035 struct irq_2_irte
*irte_info
;
4038 table
->table
[index
- c
+ 1] = IRTE_ALLOCATED
;
4043 irte_info
= &cfg
->irq_2_irte
;
4044 irte_info
->devid
= devid
;
4045 irte_info
->index
= index
;
4054 spin_unlock_irqrestore(&table
->lock
, flags
);
4059 static int get_irte(u16 devid
, int index
, union irte
*irte
)
4061 struct irq_remap_table
*table
;
4062 unsigned long flags
;
4064 table
= get_irq_table(devid
, false);
4068 spin_lock_irqsave(&table
->lock
, flags
);
4069 irte
->val
= table
->table
[index
];
4070 spin_unlock_irqrestore(&table
->lock
, flags
);
4075 static int modify_irte(u16 devid
, int index
, union irte irte
)
4077 struct irq_remap_table
*table
;
4078 struct amd_iommu
*iommu
;
4079 unsigned long flags
;
4081 iommu
= amd_iommu_rlookup_table
[devid
];
4085 table
= get_irq_table(devid
, false);
4089 spin_lock_irqsave(&table
->lock
, flags
);
4090 table
->table
[index
] = irte
.val
;
4091 spin_unlock_irqrestore(&table
->lock
, flags
);
4093 iommu_flush_irt(iommu
, devid
);
4094 iommu_completion_wait(iommu
);
4099 static void free_irte(u16 devid
, int index
)
4101 struct irq_remap_table
*table
;
4102 struct amd_iommu
*iommu
;
4103 unsigned long flags
;
4105 iommu
= amd_iommu_rlookup_table
[devid
];
4109 table
= get_irq_table(devid
, false);
4113 spin_lock_irqsave(&table
->lock
, flags
);
4114 table
->table
[index
] = 0;
4115 spin_unlock_irqrestore(&table
->lock
, flags
);
4117 iommu_flush_irt(iommu
, devid
);
4118 iommu_completion_wait(iommu
);
4121 static int setup_ioapic_entry(int irq
, struct IO_APIC_route_entry
*entry
,
4122 unsigned int destination
, int vector
,
4123 struct io_apic_irq_attr
*attr
)
4125 struct irq_remap_table
*table
;
4126 struct irq_2_irte
*irte_info
;
4127 struct irq_cfg
*cfg
;
4134 cfg
= irq_get_chip_data(irq
);
4138 irte_info
= &cfg
->irq_2_irte
;
4139 ioapic_id
= mpc_ioapic_id(attr
->ioapic
);
4140 devid
= get_ioapic_devid(ioapic_id
);
4145 table
= get_irq_table(devid
, true);
4149 index
= attr
->ioapic_pin
;
4151 /* Setup IRQ remapping info */
4153 irte_info
->devid
= devid
;
4154 irte_info
->index
= index
;
4156 /* Setup IRTE for IOMMU */
4158 irte
.fields
.vector
= vector
;
4159 irte
.fields
.int_type
= apic
->irq_delivery_mode
;
4160 irte
.fields
.destination
= destination
;
4161 irte
.fields
.dm
= apic
->irq_dest_mode
;
4162 irte
.fields
.valid
= 1;
4164 ret
= modify_irte(devid
, index
, irte
);
4168 /* Setup IOAPIC entry */
4169 memset(entry
, 0, sizeof(*entry
));
4171 entry
->vector
= index
;
4173 entry
->trigger
= attr
->trigger
;
4174 entry
->polarity
= attr
->polarity
;
4177 * Mask level triggered irqs.
4185 static int set_affinity(struct irq_data
*data
, const struct cpumask
*mask
,
4188 struct irq_2_irte
*irte_info
;
4189 unsigned int dest
, irq
;
4190 struct irq_cfg
*cfg
;
4194 if (!config_enabled(CONFIG_SMP
))
4197 cfg
= data
->chip_data
;
4199 irte_info
= &cfg
->irq_2_irte
;
4201 if (!cpumask_intersects(mask
, cpu_online_mask
))
4204 if (get_irte(irte_info
->devid
, irte_info
->index
, &irte
))
4207 if (assign_irq_vector(irq
, cfg
, mask
))
4210 err
= apic
->cpu_mask_to_apicid_and(cfg
->domain
, mask
, &dest
);
4212 if (assign_irq_vector(irq
, cfg
, data
->affinity
))
4213 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq
);
4217 irte
.fields
.vector
= cfg
->vector
;
4218 irte
.fields
.destination
= dest
;
4220 modify_irte(irte_info
->devid
, irte_info
->index
, irte
);
4222 if (cfg
->move_in_progress
)
4223 send_cleanup_vector(cfg
);
4225 cpumask_copy(data
->affinity
, mask
);
4230 static int free_irq(int irq
)
4232 struct irq_2_irte
*irte_info
;
4233 struct irq_cfg
*cfg
;
4235 cfg
= irq_get_chip_data(irq
);
4239 irte_info
= &cfg
->irq_2_irte
;
4241 free_irte(irte_info
->devid
, irte_info
->index
);
4246 static void compose_msi_msg(struct pci_dev
*pdev
,
4247 unsigned int irq
, unsigned int dest
,
4248 struct msi_msg
*msg
, u8 hpet_id
)
4250 struct irq_2_irte
*irte_info
;
4251 struct irq_cfg
*cfg
;
4254 cfg
= irq_get_chip_data(irq
);
4258 irte_info
= &cfg
->irq_2_irte
;
4261 irte
.fields
.vector
= cfg
->vector
;
4262 irte
.fields
.int_type
= apic
->irq_delivery_mode
;
4263 irte
.fields
.destination
= dest
;
4264 irte
.fields
.dm
= apic
->irq_dest_mode
;
4265 irte
.fields
.valid
= 1;
4267 modify_irte(irte_info
->devid
, irte_info
->index
, irte
);
4269 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4270 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4271 msg
->data
= irte_info
->index
;
4274 static int msi_alloc_irq(struct pci_dev
*pdev
, int irq
, int nvec
)
4276 struct irq_cfg
*cfg
;
4283 cfg
= irq_get_chip_data(irq
);
4287 devid
= get_device_id(&pdev
->dev
);
4288 index
= alloc_irq_index(cfg
, devid
, nvec
);
4290 return index
< 0 ? MAX_IRQS_PER_TABLE
: index
;
4293 static int msi_setup_irq(struct pci_dev
*pdev
, unsigned int irq
,
4294 int index
, int offset
)
4296 struct irq_2_irte
*irte_info
;
4297 struct irq_cfg
*cfg
;
4303 cfg
= irq_get_chip_data(irq
);
4307 if (index
>= MAX_IRQS_PER_TABLE
)
4310 devid
= get_device_id(&pdev
->dev
);
4311 irte_info
= &cfg
->irq_2_irte
;
4314 irte_info
->devid
= devid
;
4315 irte_info
->index
= index
+ offset
;
4320 static int setup_hpet_msi(unsigned int irq
, unsigned int id
)
4322 struct irq_2_irte
*irte_info
;
4323 struct irq_cfg
*cfg
;
4326 cfg
= irq_get_chip_data(irq
);
4330 irte_info
= &cfg
->irq_2_irte
;
4331 devid
= get_hpet_devid(id
);
4335 index
= alloc_irq_index(cfg
, devid
, 1);
4340 irte_info
->devid
= devid
;
4341 irte_info
->index
= index
;
4346 struct irq_remap_ops amd_iommu_irq_ops
= {
4347 .supported
= amd_iommu_supported
,
4348 .prepare
= amd_iommu_prepare
,
4349 .enable
= amd_iommu_enable
,
4350 .disable
= amd_iommu_disable
,
4351 .reenable
= amd_iommu_reenable
,
4352 .enable_faulting
= amd_iommu_enable_faulting
,
4353 .setup_ioapic_entry
= setup_ioapic_entry
,
4354 .set_affinity
= set_affinity
,
4355 .free_irq
= free_irq
,
4356 .compose_msi_msg
= compose_msi_msg
,
4357 .msi_alloc_irq
= msi_alloc_irq
,
4358 .msi_setup_irq
= msi_setup_irq
,
4359 .setup_hpet_msi
= setup_hpet_msi
,