Disintegrate asm/system.h for Tile
[linux-2.6.git] / arch / tile / mm / fault.c
blobcba30e9547b41682c8cfca0f3577637f1ff8cbbf
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * From i386 code copyright (C) 1995 Linus Torvalds
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
38 #include <asm/pgalloc.h>
39 #include <asm/sections.h>
40 #include <asm/traps.h>
41 #include <asm/syscalls.h>
43 #include <arch/interrupts.h>
45 static noinline void force_sig_info_fault(const char *type, int si_signo,
46 int si_code, unsigned long address,
47 int fault_num,
48 struct task_struct *tsk,
49 struct pt_regs *regs)
51 siginfo_t info;
53 if (unlikely(tsk->pid < 2)) {
54 panic("Signal %d (code %d) at %#lx sent to %s!",
55 si_signo, si_code & 0xffff, address,
56 is_idle_task(tsk) ? "the idle task" : "init");
59 info.si_signo = si_signo;
60 info.si_errno = 0;
61 info.si_code = si_code;
62 info.si_addr = (void __user *)address;
63 info.si_trapno = fault_num;
64 trace_unhandled_signal(type, regs, address, si_signo);
65 force_sig_info(si_signo, &info, tsk);
68 #ifndef __tilegx__
70 * Synthesize the fault a PL0 process would get by doing a word-load of
71 * an unaligned address or a high kernel address.
73 SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
74 struct pt_regs *, regs)
76 if (address >= PAGE_OFFSET)
77 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
78 address, INT_DTLB_MISS, current, regs);
79 else
80 force_sig_info_fault("atomic alignment fault", SIGBUS,
81 BUS_ADRALN, address,
82 INT_UNALIGN_DATA, current, regs);
85 * Adjust pc to point at the actual instruction, which is unusual
86 * for syscalls normally, but is appropriate when we are claiming
87 * that a syscall swint1 caused a page fault or bus error.
89 regs->pc -= 8;
92 * Mark this as a caller-save interrupt, like a normal page fault,
93 * so that when we go through the signal handler path we will
94 * properly restore r0, r1, and r2 for the signal handler arguments.
96 regs->flags |= PT_FLAGS_CALLER_SAVES;
98 return 0;
100 #endif
102 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104 unsigned index = pgd_index(address);
105 pgd_t *pgd_k;
106 pud_t *pud, *pud_k;
107 pmd_t *pmd, *pmd_k;
109 pgd += index;
110 pgd_k = init_mm.pgd + index;
112 if (!pgd_present(*pgd_k))
113 return NULL;
115 pud = pud_offset(pgd, address);
116 pud_k = pud_offset(pgd_k, address);
117 if (!pud_present(*pud_k))
118 return NULL;
120 pmd = pmd_offset(pud, address);
121 pmd_k = pmd_offset(pud_k, address);
122 if (!pmd_present(*pmd_k))
123 return NULL;
124 if (!pmd_present(*pmd)) {
125 set_pmd(pmd, *pmd_k);
126 arch_flush_lazy_mmu_mode();
127 } else
128 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
129 return pmd_k;
133 * Handle a fault on the vmalloc or module mapping area
135 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137 pmd_t *pmd_k;
138 pte_t *pte_k;
140 /* Make sure we are in vmalloc area */
141 if (!(address >= VMALLOC_START && address < VMALLOC_END))
142 return -1;
145 * Synchronize this task's top level page-table
146 * with the 'reference' page table.
148 pmd_k = vmalloc_sync_one(pgd, address);
149 if (!pmd_k)
150 return -1;
151 if (pmd_huge(*pmd_k))
152 return 0; /* support TILE huge_vmap() API */
153 pte_k = pte_offset_kernel(pmd_k, address);
154 if (!pte_present(*pte_k))
155 return -1;
156 return 0;
159 /* Wait until this PTE has completed migration. */
160 static void wait_for_migration(pte_t *pte)
162 if (pte_migrating(*pte)) {
164 * Wait until the migrater fixes up this pte.
165 * We scale the loop count by the clock rate so we'll wait for
166 * a few seconds here.
168 int retries = 0;
169 int bound = get_clock_rate();
170 while (pte_migrating(*pte)) {
171 barrier();
172 if (++retries > bound)
173 panic("Hit migrating PTE (%#llx) and"
174 " page PFN %#lx still migrating",
175 pte->val, pte_pfn(*pte));
181 * It's not generally safe to use "current" to get the page table pointer,
182 * since we might be running an oprofile interrupt in the middle of a
183 * task switch.
185 static pgd_t *get_current_pgd(void)
187 HV_Context ctx = hv_inquire_context();
188 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
189 struct page *pgd_page = pfn_to_page(pgd_pfn);
190 BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
191 return (pgd_t *) __va(ctx.page_table);
195 * We can receive a page fault from a migrating PTE at any time.
196 * Handle it by just waiting until the fault resolves.
198 * It's also possible to get a migrating kernel PTE that resolves
199 * itself during the downcall from hypervisor to Linux. We just check
200 * here to see if the PTE seems valid, and if so we retry it.
202 * NOTE! We MUST NOT take any locks for this case. We may be in an
203 * interrupt or a critical region, and must do as little as possible.
204 * Similarly, we can't use atomic ops here, since we may be handling a
205 * fault caused by an atomic op access.
207 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
208 unsigned long address,
209 int is_kernel_mode, int write)
211 pud_t *pud;
212 pmd_t *pmd;
213 pte_t *pte;
214 pte_t pteval;
216 if (pgd_addr_invalid(address))
217 return 0;
219 pgd += pgd_index(address);
220 pud = pud_offset(pgd, address);
221 if (!pud || !pud_present(*pud))
222 return 0;
223 pmd = pmd_offset(pud, address);
224 if (!pmd || !pmd_present(*pmd))
225 return 0;
226 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
227 pte_offset_kernel(pmd, address);
228 pteval = *pte;
229 if (pte_migrating(pteval)) {
230 wait_for_migration(pte);
231 return 1;
234 if (!is_kernel_mode || !pte_present(pteval))
235 return 0;
236 if (fault_num == INT_ITLB_MISS) {
237 if (pte_exec(pteval))
238 return 1;
239 } else if (write) {
240 if (pte_write(pteval))
241 return 1;
242 } else {
243 if (pte_read(pteval))
244 return 1;
247 return 0;
251 * This routine is responsible for faulting in user pages.
252 * It passes the work off to one of the appropriate routines.
253 * It returns true if the fault was successfully handled.
255 static int handle_page_fault(struct pt_regs *regs,
256 int fault_num,
257 int is_page_fault,
258 unsigned long address,
259 int write)
261 struct task_struct *tsk;
262 struct mm_struct *mm;
263 struct vm_area_struct *vma;
264 unsigned long stack_offset;
265 int fault;
266 int si_code;
267 int is_kernel_mode;
268 pgd_t *pgd;
270 /* on TILE, protection faults are always writes */
271 if (!is_page_fault)
272 write = 1;
274 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
276 tsk = validate_current();
279 * Check to see if we might be overwriting the stack, and bail
280 * out if so. The page fault code is a relatively likely
281 * place to get trapped in an infinite regress, and once we
282 * overwrite the whole stack, it becomes very hard to recover.
284 stack_offset = stack_pointer & (THREAD_SIZE-1);
285 if (stack_offset < THREAD_SIZE / 8) {
286 pr_alert("Potential stack overrun: sp %#lx\n",
287 stack_pointer);
288 show_regs(regs);
289 pr_alert("Killing current process %d/%s\n",
290 tsk->pid, tsk->comm);
291 do_group_exit(SIGKILL);
295 * Early on, we need to check for migrating PTE entries;
296 * see homecache.c. If we find a migrating PTE, we wait until
297 * the backing page claims to be done migrating, then we proceed.
298 * For kernel PTEs, we rewrite the PTE and return and retry.
299 * Otherwise, we treat the fault like a normal "no PTE" fault,
300 * rather than trying to patch up the existing PTE.
302 pgd = get_current_pgd();
303 if (handle_migrating_pte(pgd, fault_num, address,
304 is_kernel_mode, write))
305 return 1;
307 si_code = SEGV_MAPERR;
310 * We fault-in kernel-space virtual memory on-demand. The
311 * 'reference' page table is init_mm.pgd.
313 * NOTE! We MUST NOT take any locks for this case. We may
314 * be in an interrupt or a critical region, and should
315 * only copy the information from the master page table,
316 * nothing more.
318 * This verifies that the fault happens in kernel space
319 * and that the fault was not a protection fault.
321 if (unlikely(address >= TASK_SIZE &&
322 !is_arch_mappable_range(address, 0))) {
323 if (is_kernel_mode && is_page_fault &&
324 vmalloc_fault(pgd, address) >= 0)
325 return 1;
327 * Don't take the mm semaphore here. If we fixup a prefetch
328 * fault we could otherwise deadlock.
330 mm = NULL; /* happy compiler */
331 vma = NULL;
332 goto bad_area_nosemaphore;
336 * If we're trying to touch user-space addresses, we must
337 * be either at PL0, or else with interrupts enabled in the
338 * kernel, so either way we can re-enable interrupts here.
340 local_irq_enable();
342 mm = tsk->mm;
345 * If we're in an interrupt, have no user context or are running in an
346 * atomic region then we must not take the fault.
348 if (in_atomic() || !mm) {
349 vma = NULL; /* happy compiler */
350 goto bad_area_nosemaphore;
354 * When running in the kernel we expect faults to occur only to
355 * addresses in user space. All other faults represent errors in the
356 * kernel and should generate an OOPS. Unfortunately, in the case of an
357 * erroneous fault occurring in a code path which already holds mmap_sem
358 * we will deadlock attempting to validate the fault against the
359 * address space. Luckily the kernel only validly references user
360 * space from well defined areas of code, which are listed in the
361 * exceptions table.
363 * As the vast majority of faults will be valid we will only perform
364 * the source reference check when there is a possibility of a deadlock.
365 * Attempt to lock the address space, if we cannot we then validate the
366 * source. If this is invalid we can skip the address space check,
367 * thus avoiding the deadlock.
369 if (!down_read_trylock(&mm->mmap_sem)) {
370 if (is_kernel_mode &&
371 !search_exception_tables(regs->pc)) {
372 vma = NULL; /* happy compiler */
373 goto bad_area_nosemaphore;
375 down_read(&mm->mmap_sem);
378 vma = find_vma(mm, address);
379 if (!vma)
380 goto bad_area;
381 if (vma->vm_start <= address)
382 goto good_area;
383 if (!(vma->vm_flags & VM_GROWSDOWN))
384 goto bad_area;
385 if (regs->sp < PAGE_OFFSET) {
387 * accessing the stack below sp is always a bug.
389 if (address < regs->sp)
390 goto bad_area;
392 if (expand_stack(vma, address))
393 goto bad_area;
396 * Ok, we have a good vm_area for this memory access, so
397 * we can handle it..
399 good_area:
400 si_code = SEGV_ACCERR;
401 if (fault_num == INT_ITLB_MISS) {
402 if (!(vma->vm_flags & VM_EXEC))
403 goto bad_area;
404 } else if (write) {
405 #ifdef TEST_VERIFY_AREA
406 if (!is_page_fault && regs->cs == KERNEL_CS)
407 pr_err("WP fault at "REGFMT"\n", regs->eip);
408 #endif
409 if (!(vma->vm_flags & VM_WRITE))
410 goto bad_area;
411 } else {
412 if (!is_page_fault || !(vma->vm_flags & VM_READ))
413 goto bad_area;
416 survive:
418 * If for any reason at all we couldn't handle the fault,
419 * make sure we exit gracefully rather than endlessly redo
420 * the fault.
422 fault = handle_mm_fault(mm, vma, address, write);
423 if (unlikely(fault & VM_FAULT_ERROR)) {
424 if (fault & VM_FAULT_OOM)
425 goto out_of_memory;
426 else if (fault & VM_FAULT_SIGBUS)
427 goto do_sigbus;
428 BUG();
430 if (fault & VM_FAULT_MAJOR)
431 tsk->maj_flt++;
432 else
433 tsk->min_flt++;
435 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
437 * If this was an asynchronous fault,
438 * restart the appropriate engine.
440 switch (fault_num) {
441 #if CHIP_HAS_TILE_DMA()
442 case INT_DMATLB_MISS:
443 case INT_DMATLB_MISS_DWNCL:
444 case INT_DMATLB_ACCESS:
445 case INT_DMATLB_ACCESS_DWNCL:
446 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
447 break;
448 #endif
449 #if CHIP_HAS_SN_PROC()
450 case INT_SNITLB_MISS:
451 case INT_SNITLB_MISS_DWNCL:
452 __insn_mtspr(SPR_SNCTL,
453 __insn_mfspr(SPR_SNCTL) &
454 ~SPR_SNCTL__FRZPROC_MASK);
455 break;
456 #endif
458 #endif
460 up_read(&mm->mmap_sem);
461 return 1;
464 * Something tried to access memory that isn't in our memory map..
465 * Fix it, but check if it's kernel or user first..
467 bad_area:
468 up_read(&mm->mmap_sem);
470 bad_area_nosemaphore:
471 /* User mode accesses just cause a SIGSEGV */
472 if (!is_kernel_mode) {
474 * It's possible to have interrupts off here.
476 local_irq_enable();
478 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
479 fault_num, tsk, regs);
480 return 0;
483 no_context:
484 /* Are we prepared to handle this kernel fault? */
485 if (fixup_exception(regs))
486 return 0;
489 * Oops. The kernel tried to access some bad page. We'll have to
490 * terminate things with extreme prejudice.
493 bust_spinlocks(1);
495 /* FIXME: no lookup_address() yet */
496 #ifdef SUPPORT_LOOKUP_ADDRESS
497 if (fault_num == INT_ITLB_MISS) {
498 pte_t *pte = lookup_address(address);
500 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
501 pr_crit("kernel tried to execute"
502 " non-executable page - exploit attempt?"
503 " (uid: %d)\n", current->uid);
505 #endif
506 if (address < PAGE_SIZE)
507 pr_alert("Unable to handle kernel NULL pointer dereference\n");
508 else
509 pr_alert("Unable to handle kernel paging request\n");
510 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
511 address, regs->pc);
513 show_regs(regs);
515 if (unlikely(tsk->pid < 2)) {
516 panic("Kernel page fault running %s!",
517 is_idle_task(tsk) ? "the idle task" : "init");
521 * More FIXME: we should probably copy the i386 here and
522 * implement a generic die() routine. Not today.
524 #ifdef SUPPORT_DIE
525 die("Oops", regs);
526 #endif
527 bust_spinlocks(1);
529 do_group_exit(SIGKILL);
532 * We ran out of memory, or some other thing happened to us that made
533 * us unable to handle the page fault gracefully.
535 out_of_memory:
536 up_read(&mm->mmap_sem);
537 if (is_global_init(tsk)) {
538 yield();
539 down_read(&mm->mmap_sem);
540 goto survive;
542 pr_alert("VM: killing process %s\n", tsk->comm);
543 if (!is_kernel_mode)
544 do_group_exit(SIGKILL);
545 goto no_context;
547 do_sigbus:
548 up_read(&mm->mmap_sem);
550 /* Kernel mode? Handle exceptions or die */
551 if (is_kernel_mode)
552 goto no_context;
554 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
555 fault_num, tsk, regs);
556 return 0;
559 #ifndef __tilegx__
561 /* We must release ICS before panicking or we won't get anywhere. */
562 #define ics_panic(fmt, ...) do { \
563 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
564 panic(fmt, __VA_ARGS__); \
565 } while (0)
568 * When we take an ITLB or DTLB fault or access violation in the
569 * supervisor while the critical section bit is set, the hypervisor is
570 * reluctant to write new values into the EX_CONTEXT_K_x registers,
571 * since that might indicate we have not yet squirreled the SPR
572 * contents away and can thus safely take a recursive interrupt.
573 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
575 * Note that this routine is called before homecache_tlb_defer_enter(),
576 * which means that we can properly unlock any atomics that might
577 * be used there (good), but also means we must be very sensitive
578 * to not touch any data structures that might be located in memory
579 * that could migrate, as we could be entering the kernel on a dataplane
580 * cpu that has been deferring kernel TLB updates. This means, for
581 * example, that we can't migrate init_mm or its pgd.
583 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
584 unsigned long address,
585 unsigned long info)
587 unsigned long pc = info & ~1;
588 int write = info & 1;
589 pgd_t *pgd = get_current_pgd();
591 /* Retval is 1 at first since we will handle the fault fully. */
592 struct intvec_state state = {
593 do_page_fault, fault_num, address, write, 1
596 /* Validate that we are plausibly in the right routine. */
597 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
598 (fault_num != INT_DTLB_MISS &&
599 fault_num != INT_DTLB_ACCESS)) {
600 unsigned long old_pc = regs->pc;
601 regs->pc = pc;
602 ics_panic("Bad ICS page fault args:"
603 " old PC %#lx, fault %d/%d at %#lx\n",
604 old_pc, fault_num, write, address);
607 /* We might be faulting on a vmalloc page, so check that first. */
608 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
609 return state;
612 * If we faulted with ICS set in sys_cmpxchg, we are providing
613 * a user syscall service that should generate a signal on
614 * fault. We didn't set up a kernel stack on initial entry to
615 * sys_cmpxchg, but instead had one set up by the fault, which
616 * (because sys_cmpxchg never releases ICS) came to us via the
617 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
618 * still referencing the original user code. We release the
619 * atomic lock and rewrite pt_regs so that it appears that we
620 * came from user-space directly, and after we finish the
621 * fault we'll go back to user space and re-issue the swint.
622 * This way the backtrace information is correct if we need to
623 * emit a stack dump at any point while handling this.
625 * Must match register use in sys_cmpxchg().
627 if (pc >= (unsigned long) sys_cmpxchg &&
628 pc < (unsigned long) __sys_cmpxchg_end) {
629 #ifdef CONFIG_SMP
630 /* Don't unlock before we could have locked. */
631 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
632 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
633 __atomic_fault_unlock(lock_ptr);
635 #endif
636 regs->sp = regs->regs[27];
640 * We can also fault in the atomic assembly, in which
641 * case we use the exception table to do the first-level fixup.
642 * We may re-fixup again in the real fault handler if it
643 * turns out the faulting address is just bad, and not,
644 * for example, migrating.
646 else if (pc >= (unsigned long) __start_atomic_asm_code &&
647 pc < (unsigned long) __end_atomic_asm_code) {
648 const struct exception_table_entry *fixup;
649 #ifdef CONFIG_SMP
650 /* Unlock the atomic lock. */
651 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
652 __atomic_fault_unlock(lock_ptr);
653 #endif
654 fixup = search_exception_tables(pc);
655 if (!fixup)
656 ics_panic("ICS atomic fault not in table:"
657 " PC %#lx, fault %d", pc, fault_num);
658 regs->pc = fixup->fixup;
659 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
663 * Now that we have released the atomic lock (if necessary),
664 * it's safe to spin if the PTE that caused the fault was migrating.
666 if (fault_num == INT_DTLB_ACCESS)
667 write = 1;
668 if (handle_migrating_pte(pgd, fault_num, address, 1, write))
669 return state;
671 /* Return zero so that we continue on with normal fault handling. */
672 state.retval = 0;
673 return state;
676 #endif /* !__tilegx__ */
679 * This routine handles page faults. It determines the address, and the
680 * problem, and then passes it handle_page_fault() for normal DTLB and
681 * ITLB issues, and for DMA or SN processor faults when we are in user
682 * space. For the latter, if we're in kernel mode, we just save the
683 * interrupt away appropriately and return immediately. We can't do
684 * page faults for user code while in kernel mode.
686 void do_page_fault(struct pt_regs *regs, int fault_num,
687 unsigned long address, unsigned long write)
689 int is_page_fault;
691 /* This case should have been handled by do_page_fault_ics(). */
692 BUG_ON(write & ~1);
694 #if CHIP_HAS_TILE_DMA()
696 * If it's a DMA fault, suspend the transfer while we're
697 * handling the miss; we'll restart after it's handled. If we
698 * don't suspend, it's possible that this process could swap
699 * out and back in, and restart the engine since the DMA is
700 * still 'running'.
702 if (fault_num == INT_DMATLB_MISS ||
703 fault_num == INT_DMATLB_ACCESS ||
704 fault_num == INT_DMATLB_MISS_DWNCL ||
705 fault_num == INT_DMATLB_ACCESS_DWNCL) {
706 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
707 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
708 SPR_DMA_STATUS__BUSY_MASK)
711 #endif
713 /* Validate fault num and decide if this is a first-time page fault. */
714 switch (fault_num) {
715 case INT_ITLB_MISS:
716 case INT_DTLB_MISS:
717 #if CHIP_HAS_TILE_DMA()
718 case INT_DMATLB_MISS:
719 case INT_DMATLB_MISS_DWNCL:
720 #endif
721 #if CHIP_HAS_SN_PROC()
722 case INT_SNITLB_MISS:
723 case INT_SNITLB_MISS_DWNCL:
724 #endif
725 is_page_fault = 1;
726 break;
728 case INT_DTLB_ACCESS:
729 #if CHIP_HAS_TILE_DMA()
730 case INT_DMATLB_ACCESS:
731 case INT_DMATLB_ACCESS_DWNCL:
732 #endif
733 is_page_fault = 0;
734 break;
736 default:
737 panic("Bad fault number %d in do_page_fault", fault_num);
740 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
741 if (EX1_PL(regs->ex1) != USER_PL) {
742 struct async_tlb *async;
743 switch (fault_num) {
744 #if CHIP_HAS_TILE_DMA()
745 case INT_DMATLB_MISS:
746 case INT_DMATLB_ACCESS:
747 case INT_DMATLB_MISS_DWNCL:
748 case INT_DMATLB_ACCESS_DWNCL:
749 async = &current->thread.dma_async_tlb;
750 break;
751 #endif
752 #if CHIP_HAS_SN_PROC()
753 case INT_SNITLB_MISS:
754 case INT_SNITLB_MISS_DWNCL:
755 async = &current->thread.sn_async_tlb;
756 break;
757 #endif
758 default:
759 async = NULL;
761 if (async) {
764 * No vmalloc check required, so we can allow
765 * interrupts immediately at this point.
767 local_irq_enable();
769 set_thread_flag(TIF_ASYNC_TLB);
770 if (async->fault_num != 0) {
771 panic("Second async fault %d;"
772 " old fault was %d (%#lx/%ld)",
773 fault_num, async->fault_num,
774 address, write);
776 BUG_ON(fault_num == 0);
777 async->fault_num = fault_num;
778 async->is_fault = is_page_fault;
779 async->is_write = write;
780 async->address = address;
781 return;
784 #endif
786 handle_page_fault(regs, fault_num, is_page_fault, address, write);
790 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
792 * Check an async_tlb structure to see if a deferred fault is waiting,
793 * and if so pass it to the page-fault code.
795 static void handle_async_page_fault(struct pt_regs *regs,
796 struct async_tlb *async)
798 if (async->fault_num) {
800 * Clear async->fault_num before calling the page-fault
801 * handler so that if we re-interrupt before returning
802 * from the function we have somewhere to put the
803 * information from the new interrupt.
805 int fault_num = async->fault_num;
806 async->fault_num = 0;
807 handle_page_fault(regs, fault_num, async->is_fault,
808 async->address, async->is_write);
813 * This routine effectively re-issues asynchronous page faults
814 * when we are returning to user space.
816 void do_async_page_fault(struct pt_regs *regs)
819 * Clear thread flag early. If we re-interrupt while processing
820 * code here, we will reset it and recall this routine before
821 * returning to user space.
823 clear_thread_flag(TIF_ASYNC_TLB);
825 #if CHIP_HAS_TILE_DMA()
826 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
827 #endif
828 #if CHIP_HAS_SN_PROC()
829 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
830 #endif
832 #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
835 void vmalloc_sync_all(void)
837 #ifdef __tilegx__
838 /* Currently all L1 kernel pmd's are static and shared. */
839 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
840 #else
842 * Note that races in the updates of insync and start aren't
843 * problematic: insync can only get set bits added, and updates to
844 * start are only improving performance (without affecting correctness
845 * if undone).
847 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
848 static unsigned long start = PAGE_OFFSET;
849 unsigned long address;
851 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
852 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
853 if (!test_bit(pgd_index(address), insync)) {
854 unsigned long flags;
855 struct list_head *pos;
857 spin_lock_irqsave(&pgd_lock, flags);
858 list_for_each(pos, &pgd_list)
859 if (!vmalloc_sync_one(list_to_pgd(pos),
860 address)) {
861 /* Must be at first entry in list. */
862 BUG_ON(pos != pgd_list.next);
863 break;
865 spin_unlock_irqrestore(&pgd_lock, flags);
866 if (pos != pgd_list.next)
867 set_bit(pgd_index(address), insync);
869 if (address == start && test_bit(pgd_index(address), insync))
870 start = address + PGDIR_SIZE;
872 #endif