of/device: add helper to get cpu device node from logical cpu index
[linux-2.6.git] / drivers / scsi / aacraid / commsup.c
blobcab190af63455319ffaf009b486a69664b2a47d9
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Module Name:
26 * commsup.c
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 * communication.
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
51 #include "aacraid.h"
53 /**
54 * fib_map_alloc - allocate the fib objects
55 * @dev: Adapter to allocate for
57 * Allocate and map the shared PCI space for the FIB blocks used to
58 * talk to the Adaptec firmware.
61 static int fib_map_alloc(struct aac_dev *dev)
63 dprintk((KERN_INFO
64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 &dev->hw_fib_pa);
71 if (dev->hw_fib_va == NULL)
72 return -ENOMEM;
73 return 0;
76 /**
77 * aac_fib_map_free - free the fib objects
78 * @dev: Adapter to free
80 * Free the PCI mappings and the memory allocated for FIB blocks
81 * on this adapter.
84 void aac_fib_map_free(struct aac_dev *dev)
86 pci_free_consistent(dev->pdev,
87 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88 dev->hw_fib_va, dev->hw_fib_pa);
89 dev->hw_fib_va = NULL;
90 dev->hw_fib_pa = 0;
93 /**
94 * aac_fib_setup - setup the fibs
95 * @dev: Adapter to set up
97 * Allocate the PCI space for the fibs, map it and then initialise the
98 * fib area, the unmapped fib data and also the free list
101 int aac_fib_setup(struct aac_dev * dev)
103 struct fib *fibptr;
104 struct hw_fib *hw_fib;
105 dma_addr_t hw_fib_pa;
106 int i;
108 while (((i = fib_map_alloc(dev)) == -ENOMEM)
109 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
113 if (i<0)
114 return -ENOMEM;
116 /* 32 byte alignment for PMC */
117 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119 (hw_fib_pa - dev->hw_fib_pa));
120 dev->hw_fib_pa = hw_fib_pa;
121 memset(dev->hw_fib_va, 0,
122 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
125 /* add Xport header */
126 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127 sizeof(struct aac_fib_xporthdr));
128 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
130 hw_fib = dev->hw_fib_va;
131 hw_fib_pa = dev->hw_fib_pa;
133 * Initialise the fibs
135 for (i = 0, fibptr = &dev->fibs[i];
136 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137 i++, fibptr++)
139 fibptr->flags = 0;
140 fibptr->dev = dev;
141 fibptr->hw_fib_va = hw_fib;
142 fibptr->data = (void *) fibptr->hw_fib_va->data;
143 fibptr->next = fibptr+1; /* Forward chain the fibs */
144 sema_init(&fibptr->event_wait, 0);
145 spin_lock_init(&fibptr->event_lock);
146 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
147 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
148 fibptr->hw_fib_pa = hw_fib_pa;
149 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
150 dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
151 hw_fib_pa = hw_fib_pa +
152 dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
155 * Add the fib chain to the free list
157 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
159 * Enable this to debug out of queue space
161 dev->free_fib = &dev->fibs[0];
162 return 0;
166 * aac_fib_alloc - allocate a fib
167 * @dev: Adapter to allocate the fib for
169 * Allocate a fib from the adapter fib pool. If the pool is empty we
170 * return NULL.
173 struct fib *aac_fib_alloc(struct aac_dev *dev)
175 struct fib * fibptr;
176 unsigned long flags;
177 spin_lock_irqsave(&dev->fib_lock, flags);
178 fibptr = dev->free_fib;
179 if(!fibptr){
180 spin_unlock_irqrestore(&dev->fib_lock, flags);
181 return fibptr;
183 dev->free_fib = fibptr->next;
184 spin_unlock_irqrestore(&dev->fib_lock, flags);
186 * Set the proper node type code and node byte size
188 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
189 fibptr->size = sizeof(struct fib);
191 * Null out fields that depend on being zero at the start of
192 * each I/O
194 fibptr->hw_fib_va->header.XferState = 0;
195 fibptr->flags = 0;
196 fibptr->callback = NULL;
197 fibptr->callback_data = NULL;
199 return fibptr;
203 * aac_fib_free - free a fib
204 * @fibptr: fib to free up
206 * Frees up a fib and places it on the appropriate queue
209 void aac_fib_free(struct fib *fibptr)
211 unsigned long flags, flagsv;
213 spin_lock_irqsave(&fibptr->event_lock, flagsv);
214 if (fibptr->done == 2) {
215 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
216 return;
218 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
220 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
221 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
222 aac_config.fib_timeouts++;
223 if (fibptr->hw_fib_va->header.XferState != 0) {
224 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
225 (void*)fibptr,
226 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
228 fibptr->next = fibptr->dev->free_fib;
229 fibptr->dev->free_fib = fibptr;
230 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
234 * aac_fib_init - initialise a fib
235 * @fibptr: The fib to initialize
237 * Set up the generic fib fields ready for use
240 void aac_fib_init(struct fib *fibptr)
242 struct hw_fib *hw_fib = fibptr->hw_fib_va;
244 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
245 hw_fib->header.StructType = FIB_MAGIC;
246 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
247 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
248 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
249 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
253 * fib_deallocate - deallocate a fib
254 * @fibptr: fib to deallocate
256 * Will deallocate and return to the free pool the FIB pointed to by the
257 * caller.
260 static void fib_dealloc(struct fib * fibptr)
262 struct hw_fib *hw_fib = fibptr->hw_fib_va;
263 hw_fib->header.XferState = 0;
267 * Commuication primitives define and support the queuing method we use to
268 * support host to adapter commuication. All queue accesses happen through
269 * these routines and are the only routines which have a knowledge of the
270 * how these queues are implemented.
274 * aac_get_entry - get a queue entry
275 * @dev: Adapter
276 * @qid: Queue Number
277 * @entry: Entry return
278 * @index: Index return
279 * @nonotify: notification control
281 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
282 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
283 * returned.
286 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
288 struct aac_queue * q;
289 unsigned long idx;
292 * All of the queues wrap when they reach the end, so we check
293 * to see if they have reached the end and if they have we just
294 * set the index back to zero. This is a wrap. You could or off
295 * the high bits in all updates but this is a bit faster I think.
298 q = &dev->queues->queue[qid];
300 idx = *index = le32_to_cpu(*(q->headers.producer));
301 /* Interrupt Moderation, only interrupt for first two entries */
302 if (idx != le32_to_cpu(*(q->headers.consumer))) {
303 if (--idx == 0) {
304 if (qid == AdapNormCmdQueue)
305 idx = ADAP_NORM_CMD_ENTRIES;
306 else
307 idx = ADAP_NORM_RESP_ENTRIES;
309 if (idx != le32_to_cpu(*(q->headers.consumer)))
310 *nonotify = 1;
313 if (qid == AdapNormCmdQueue) {
314 if (*index >= ADAP_NORM_CMD_ENTRIES)
315 *index = 0; /* Wrap to front of the Producer Queue. */
316 } else {
317 if (*index >= ADAP_NORM_RESP_ENTRIES)
318 *index = 0; /* Wrap to front of the Producer Queue. */
321 /* Queue is full */
322 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
323 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
324 qid, q->numpending);
325 return 0;
326 } else {
327 *entry = q->base + *index;
328 return 1;
333 * aac_queue_get - get the next free QE
334 * @dev: Adapter
335 * @index: Returned index
336 * @priority: Priority of fib
337 * @fib: Fib to associate with the queue entry
338 * @wait: Wait if queue full
339 * @fibptr: Driver fib object to go with fib
340 * @nonotify: Don't notify the adapter
342 * Gets the next free QE off the requested priorty adapter command
343 * queue and associates the Fib with the QE. The QE represented by
344 * index is ready to insert on the queue when this routine returns
345 * success.
348 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
350 struct aac_entry * entry = NULL;
351 int map = 0;
353 if (qid == AdapNormCmdQueue) {
354 /* if no entries wait for some if caller wants to */
355 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
356 printk(KERN_ERR "GetEntries failed\n");
359 * Setup queue entry with a command, status and fib mapped
361 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
362 map = 1;
363 } else {
364 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
365 /* if no entries wait for some if caller wants to */
368 * Setup queue entry with command, status and fib mapped
370 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
371 entry->addr = hw_fib->header.SenderFibAddress;
372 /* Restore adapters pointer to the FIB */
373 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
374 map = 0;
377 * If MapFib is true than we need to map the Fib and put pointers
378 * in the queue entry.
380 if (map)
381 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
382 return 0;
386 * Define the highest level of host to adapter communication routines.
387 * These routines will support host to adapter FS commuication. These
388 * routines have no knowledge of the commuication method used. This level
389 * sends and receives FIBs. This level has no knowledge of how these FIBs
390 * get passed back and forth.
394 * aac_fib_send - send a fib to the adapter
395 * @command: Command to send
396 * @fibptr: The fib
397 * @size: Size of fib data area
398 * @priority: Priority of Fib
399 * @wait: Async/sync select
400 * @reply: True if a reply is wanted
401 * @callback: Called with reply
402 * @callback_data: Passed to callback
404 * Sends the requested FIB to the adapter and optionally will wait for a
405 * response FIB. If the caller does not wish to wait for a response than
406 * an event to wait on must be supplied. This event will be set when a
407 * response FIB is received from the adapter.
410 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
411 int priority, int wait, int reply, fib_callback callback,
412 void *callback_data)
414 struct aac_dev * dev = fibptr->dev;
415 struct hw_fib * hw_fib = fibptr->hw_fib_va;
416 unsigned long flags = 0;
417 unsigned long qflags;
418 unsigned long mflags = 0;
419 unsigned long sflags = 0;
422 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
423 return -EBUSY;
425 * There are 5 cases with the wait and response requested flags.
426 * The only invalid cases are if the caller requests to wait and
427 * does not request a response and if the caller does not want a
428 * response and the Fib is not allocated from pool. If a response
429 * is not requesed the Fib will just be deallocaed by the DPC
430 * routine when the response comes back from the adapter. No
431 * further processing will be done besides deleting the Fib. We
432 * will have a debug mode where the adapter can notify the host
433 * it had a problem and the host can log that fact.
435 fibptr->flags = 0;
436 if (wait && !reply) {
437 return -EINVAL;
438 } else if (!wait && reply) {
439 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
440 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
441 } else if (!wait && !reply) {
442 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
443 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
444 } else if (wait && reply) {
445 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
446 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
449 * Map the fib into 32bits by using the fib number
452 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
453 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
455 * Set FIB state to indicate where it came from and if we want a
456 * response from the adapter. Also load the command from the
457 * caller.
459 * Map the hw fib pointer as a 32bit value
461 hw_fib->header.Command = cpu_to_le16(command);
462 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
464 * Set the size of the Fib we want to send to the adapter
466 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
468 return -EMSGSIZE;
471 * Get a queue entry connect the FIB to it and send an notify
472 * the adapter a command is ready.
474 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
477 * Fill in the Callback and CallbackContext if we are not
478 * going to wait.
480 if (!wait) {
481 fibptr->callback = callback;
482 fibptr->callback_data = callback_data;
483 fibptr->flags = FIB_CONTEXT_FLAG;
486 fibptr->done = 0;
488 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
490 dprintk((KERN_DEBUG "Fib contents:.\n"));
491 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
492 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
493 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
494 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
495 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
496 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
498 if (!dev->queues)
499 return -EBUSY;
501 if (wait) {
503 spin_lock_irqsave(&dev->manage_lock, mflags);
504 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
505 printk(KERN_INFO "No management Fibs Available:%d\n",
506 dev->management_fib_count);
507 spin_unlock_irqrestore(&dev->manage_lock, mflags);
508 return -EBUSY;
510 dev->management_fib_count++;
511 spin_unlock_irqrestore(&dev->manage_lock, mflags);
512 spin_lock_irqsave(&fibptr->event_lock, flags);
515 if (dev->sync_mode) {
516 if (wait)
517 spin_unlock_irqrestore(&fibptr->event_lock, flags);
518 spin_lock_irqsave(&dev->sync_lock, sflags);
519 if (dev->sync_fib) {
520 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
521 spin_unlock_irqrestore(&dev->sync_lock, sflags);
522 } else {
523 dev->sync_fib = fibptr;
524 spin_unlock_irqrestore(&dev->sync_lock, sflags);
525 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
526 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
527 NULL, NULL, NULL, NULL, NULL);
529 if (wait) {
530 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
531 if (down_interruptible(&fibptr->event_wait)) {
532 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
533 return -EFAULT;
535 return 0;
537 return -EINPROGRESS;
540 if (aac_adapter_deliver(fibptr) != 0) {
541 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
542 if (wait) {
543 spin_unlock_irqrestore(&fibptr->event_lock, flags);
544 spin_lock_irqsave(&dev->manage_lock, mflags);
545 dev->management_fib_count--;
546 spin_unlock_irqrestore(&dev->manage_lock, mflags);
548 return -EBUSY;
553 * If the caller wanted us to wait for response wait now.
556 if (wait) {
557 spin_unlock_irqrestore(&fibptr->event_lock, flags);
558 /* Only set for first known interruptable command */
559 if (wait < 0) {
561 * *VERY* Dangerous to time out a command, the
562 * assumption is made that we have no hope of
563 * functioning because an interrupt routing or other
564 * hardware failure has occurred.
566 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
567 while (down_trylock(&fibptr->event_wait)) {
568 int blink;
569 if (time_is_before_eq_jiffies(timeout)) {
570 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
571 spin_lock_irqsave(q->lock, qflags);
572 q->numpending--;
573 spin_unlock_irqrestore(q->lock, qflags);
574 if (wait == -1) {
575 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
576 "Usually a result of a PCI interrupt routing problem;\n"
577 "update mother board BIOS or consider utilizing one of\n"
578 "the SAFE mode kernel options (acpi, apic etc)\n");
580 return -ETIMEDOUT;
582 if ((blink = aac_adapter_check_health(dev)) > 0) {
583 if (wait == -1) {
584 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
585 "Usually a result of a serious unrecoverable hardware problem\n",
586 blink);
588 return -EFAULT;
590 /* We used to udelay() here but that absorbed
591 * a CPU when a timeout occured. Not very
592 * useful. */
593 cpu_relax();
595 } else if (down_interruptible(&fibptr->event_wait)) {
596 /* Do nothing ... satisfy
597 * down_interruptible must_check */
600 spin_lock_irqsave(&fibptr->event_lock, flags);
601 if (fibptr->done == 0) {
602 fibptr->done = 2; /* Tell interrupt we aborted */
603 spin_unlock_irqrestore(&fibptr->event_lock, flags);
604 return -ERESTARTSYS;
606 spin_unlock_irqrestore(&fibptr->event_lock, flags);
607 BUG_ON(fibptr->done == 0);
609 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
610 return -ETIMEDOUT;
611 return 0;
614 * If the user does not want a response than return success otherwise
615 * return pending
617 if (reply)
618 return -EINPROGRESS;
619 else
620 return 0;
624 * aac_consumer_get - get the top of the queue
625 * @dev: Adapter
626 * @q: Queue
627 * @entry: Return entry
629 * Will return a pointer to the entry on the top of the queue requested that
630 * we are a consumer of, and return the address of the queue entry. It does
631 * not change the state of the queue.
634 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
636 u32 index;
637 int status;
638 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
639 status = 0;
640 } else {
642 * The consumer index must be wrapped if we have reached
643 * the end of the queue, else we just use the entry
644 * pointed to by the header index
646 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
647 index = 0;
648 else
649 index = le32_to_cpu(*q->headers.consumer);
650 *entry = q->base + index;
651 status = 1;
653 return(status);
657 * aac_consumer_free - free consumer entry
658 * @dev: Adapter
659 * @q: Queue
660 * @qid: Queue ident
662 * Frees up the current top of the queue we are a consumer of. If the
663 * queue was full notify the producer that the queue is no longer full.
666 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
668 int wasfull = 0;
669 u32 notify;
671 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
672 wasfull = 1;
674 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
675 *q->headers.consumer = cpu_to_le32(1);
676 else
677 le32_add_cpu(q->headers.consumer, 1);
679 if (wasfull) {
680 switch (qid) {
682 case HostNormCmdQueue:
683 notify = HostNormCmdNotFull;
684 break;
685 case HostNormRespQueue:
686 notify = HostNormRespNotFull;
687 break;
688 default:
689 BUG();
690 return;
692 aac_adapter_notify(dev, notify);
697 * aac_fib_adapter_complete - complete adapter issued fib
698 * @fibptr: fib to complete
699 * @size: size of fib
701 * Will do all necessary work to complete a FIB that was sent from
702 * the adapter.
705 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
707 struct hw_fib * hw_fib = fibptr->hw_fib_va;
708 struct aac_dev * dev = fibptr->dev;
709 struct aac_queue * q;
710 unsigned long nointr = 0;
711 unsigned long qflags;
713 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
714 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
715 kfree(hw_fib);
716 return 0;
719 if (hw_fib->header.XferState == 0) {
720 if (dev->comm_interface == AAC_COMM_MESSAGE)
721 kfree(hw_fib);
722 return 0;
725 * If we plan to do anything check the structure type first.
727 if (hw_fib->header.StructType != FIB_MAGIC &&
728 hw_fib->header.StructType != FIB_MAGIC2 &&
729 hw_fib->header.StructType != FIB_MAGIC2_64) {
730 if (dev->comm_interface == AAC_COMM_MESSAGE)
731 kfree(hw_fib);
732 return -EINVAL;
735 * This block handles the case where the adapter had sent us a
736 * command and we have finished processing the command. We
737 * call completeFib when we are done processing the command
738 * and want to send a response back to the adapter. This will
739 * send the completed cdb to the adapter.
741 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
742 if (dev->comm_interface == AAC_COMM_MESSAGE) {
743 kfree (hw_fib);
744 } else {
745 u32 index;
746 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
747 if (size) {
748 size += sizeof(struct aac_fibhdr);
749 if (size > le16_to_cpu(hw_fib->header.SenderSize))
750 return -EMSGSIZE;
751 hw_fib->header.Size = cpu_to_le16(size);
753 q = &dev->queues->queue[AdapNormRespQueue];
754 spin_lock_irqsave(q->lock, qflags);
755 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
756 *(q->headers.producer) = cpu_to_le32(index + 1);
757 spin_unlock_irqrestore(q->lock, qflags);
758 if (!(nointr & (int)aac_config.irq_mod))
759 aac_adapter_notify(dev, AdapNormRespQueue);
761 } else {
762 printk(KERN_WARNING "aac_fib_adapter_complete: "
763 "Unknown xferstate detected.\n");
764 BUG();
766 return 0;
770 * aac_fib_complete - fib completion handler
771 * @fib: FIB to complete
773 * Will do all necessary work to complete a FIB.
776 int aac_fib_complete(struct fib *fibptr)
778 unsigned long flags;
779 struct hw_fib * hw_fib = fibptr->hw_fib_va;
782 * Check for a fib which has already been completed
785 if (hw_fib->header.XferState == 0)
786 return 0;
788 * If we plan to do anything check the structure type first.
791 if (hw_fib->header.StructType != FIB_MAGIC &&
792 hw_fib->header.StructType != FIB_MAGIC2 &&
793 hw_fib->header.StructType != FIB_MAGIC2_64)
794 return -EINVAL;
796 * This block completes a cdb which orginated on the host and we
797 * just need to deallocate the cdb or reinit it. At this point the
798 * command is complete that we had sent to the adapter and this
799 * cdb could be reused.
801 spin_lock_irqsave(&fibptr->event_lock, flags);
802 if (fibptr->done == 2) {
803 spin_unlock_irqrestore(&fibptr->event_lock, flags);
804 return 0;
806 spin_unlock_irqrestore(&fibptr->event_lock, flags);
808 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
809 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
811 fib_dealloc(fibptr);
813 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
816 * This handles the case when the host has aborted the I/O
817 * to the adapter because the adapter is not responding
819 fib_dealloc(fibptr);
820 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
821 fib_dealloc(fibptr);
822 } else {
823 BUG();
825 return 0;
829 * aac_printf - handle printf from firmware
830 * @dev: Adapter
831 * @val: Message info
833 * Print a message passed to us by the controller firmware on the
834 * Adaptec board
837 void aac_printf(struct aac_dev *dev, u32 val)
839 char *cp = dev->printfbuf;
840 if (dev->printf_enabled)
842 int length = val & 0xffff;
843 int level = (val >> 16) & 0xffff;
846 * The size of the printfbuf is set in port.c
847 * There is no variable or define for it
849 if (length > 255)
850 length = 255;
851 if (cp[length] != 0)
852 cp[length] = 0;
853 if (level == LOG_AAC_HIGH_ERROR)
854 printk(KERN_WARNING "%s:%s", dev->name, cp);
855 else
856 printk(KERN_INFO "%s:%s", dev->name, cp);
858 memset(cp, 0, 256);
863 * aac_handle_aif - Handle a message from the firmware
864 * @dev: Which adapter this fib is from
865 * @fibptr: Pointer to fibptr from adapter
867 * This routine handles a driver notify fib from the adapter and
868 * dispatches it to the appropriate routine for handling.
871 #define AIF_SNIFF_TIMEOUT (30*HZ)
872 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
874 struct hw_fib * hw_fib = fibptr->hw_fib_va;
875 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
876 u32 channel, id, lun, container;
877 struct scsi_device *device;
878 enum {
879 NOTHING,
880 DELETE,
881 ADD,
882 CHANGE
883 } device_config_needed = NOTHING;
885 /* Sniff for container changes */
887 if (!dev || !dev->fsa_dev)
888 return;
889 container = channel = id = lun = (u32)-1;
892 * We have set this up to try and minimize the number of
893 * re-configures that take place. As a result of this when
894 * certain AIF's come in we will set a flag waiting for another
895 * type of AIF before setting the re-config flag.
897 switch (le32_to_cpu(aifcmd->command)) {
898 case AifCmdDriverNotify:
899 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
901 * Morph or Expand complete
903 case AifDenMorphComplete:
904 case AifDenVolumeExtendComplete:
905 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
906 if (container >= dev->maximum_num_containers)
907 break;
910 * Find the scsi_device associated with the SCSI
911 * address. Make sure we have the right array, and if
912 * so set the flag to initiate a new re-config once we
913 * see an AifEnConfigChange AIF come through.
916 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
917 device = scsi_device_lookup(dev->scsi_host_ptr,
918 CONTAINER_TO_CHANNEL(container),
919 CONTAINER_TO_ID(container),
920 CONTAINER_TO_LUN(container));
921 if (device) {
922 dev->fsa_dev[container].config_needed = CHANGE;
923 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
924 dev->fsa_dev[container].config_waiting_stamp = jiffies;
925 scsi_device_put(device);
931 * If we are waiting on something and this happens to be
932 * that thing then set the re-configure flag.
934 if (container != (u32)-1) {
935 if (container >= dev->maximum_num_containers)
936 break;
937 if ((dev->fsa_dev[container].config_waiting_on ==
938 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
939 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
940 dev->fsa_dev[container].config_waiting_on = 0;
941 } else for (container = 0;
942 container < dev->maximum_num_containers; ++container) {
943 if ((dev->fsa_dev[container].config_waiting_on ==
944 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
945 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
946 dev->fsa_dev[container].config_waiting_on = 0;
948 break;
950 case AifCmdEventNotify:
951 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
952 case AifEnBatteryEvent:
953 dev->cache_protected =
954 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
955 break;
957 * Add an Array.
959 case AifEnAddContainer:
960 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
961 if (container >= dev->maximum_num_containers)
962 break;
963 dev->fsa_dev[container].config_needed = ADD;
964 dev->fsa_dev[container].config_waiting_on =
965 AifEnConfigChange;
966 dev->fsa_dev[container].config_waiting_stamp = jiffies;
967 break;
970 * Delete an Array.
972 case AifEnDeleteContainer:
973 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
974 if (container >= dev->maximum_num_containers)
975 break;
976 dev->fsa_dev[container].config_needed = DELETE;
977 dev->fsa_dev[container].config_waiting_on =
978 AifEnConfigChange;
979 dev->fsa_dev[container].config_waiting_stamp = jiffies;
980 break;
983 * Container change detected. If we currently are not
984 * waiting on something else, setup to wait on a Config Change.
986 case AifEnContainerChange:
987 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
988 if (container >= dev->maximum_num_containers)
989 break;
990 if (dev->fsa_dev[container].config_waiting_on &&
991 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
992 break;
993 dev->fsa_dev[container].config_needed = CHANGE;
994 dev->fsa_dev[container].config_waiting_on =
995 AifEnConfigChange;
996 dev->fsa_dev[container].config_waiting_stamp = jiffies;
997 break;
999 case AifEnConfigChange:
1000 break;
1002 case AifEnAddJBOD:
1003 case AifEnDeleteJBOD:
1004 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1005 if ((container >> 28)) {
1006 container = (u32)-1;
1007 break;
1009 channel = (container >> 24) & 0xF;
1010 if (channel >= dev->maximum_num_channels) {
1011 container = (u32)-1;
1012 break;
1014 id = container & 0xFFFF;
1015 if (id >= dev->maximum_num_physicals) {
1016 container = (u32)-1;
1017 break;
1019 lun = (container >> 16) & 0xFF;
1020 container = (u32)-1;
1021 channel = aac_phys_to_logical(channel);
1022 device_config_needed =
1023 (((__le32 *)aifcmd->data)[0] ==
1024 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1025 if (device_config_needed == ADD) {
1026 device = scsi_device_lookup(dev->scsi_host_ptr,
1027 channel,
1029 lun);
1030 if (device) {
1031 scsi_remove_device(device);
1032 scsi_device_put(device);
1035 break;
1037 case AifEnEnclosureManagement:
1039 * If in JBOD mode, automatic exposure of new
1040 * physical target to be suppressed until configured.
1042 if (dev->jbod)
1043 break;
1044 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1045 case EM_DRIVE_INSERTION:
1046 case EM_DRIVE_REMOVAL:
1047 container = le32_to_cpu(
1048 ((__le32 *)aifcmd->data)[2]);
1049 if ((container >> 28)) {
1050 container = (u32)-1;
1051 break;
1053 channel = (container >> 24) & 0xF;
1054 if (channel >= dev->maximum_num_channels) {
1055 container = (u32)-1;
1056 break;
1058 id = container & 0xFFFF;
1059 lun = (container >> 16) & 0xFF;
1060 container = (u32)-1;
1061 if (id >= dev->maximum_num_physicals) {
1062 /* legacy dev_t ? */
1063 if ((0x2000 <= id) || lun || channel ||
1064 ((channel = (id >> 7) & 0x3F) >=
1065 dev->maximum_num_channels))
1066 break;
1067 lun = (id >> 4) & 7;
1068 id &= 0xF;
1070 channel = aac_phys_to_logical(channel);
1071 device_config_needed =
1072 (((__le32 *)aifcmd->data)[3]
1073 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1074 ADD : DELETE;
1075 break;
1077 break;
1081 * If we are waiting on something and this happens to be
1082 * that thing then set the re-configure flag.
1084 if (container != (u32)-1) {
1085 if (container >= dev->maximum_num_containers)
1086 break;
1087 if ((dev->fsa_dev[container].config_waiting_on ==
1088 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1089 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1090 dev->fsa_dev[container].config_waiting_on = 0;
1091 } else for (container = 0;
1092 container < dev->maximum_num_containers; ++container) {
1093 if ((dev->fsa_dev[container].config_waiting_on ==
1094 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1095 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1096 dev->fsa_dev[container].config_waiting_on = 0;
1098 break;
1100 case AifCmdJobProgress:
1102 * These are job progress AIF's. When a Clear is being
1103 * done on a container it is initially created then hidden from
1104 * the OS. When the clear completes we don't get a config
1105 * change so we monitor the job status complete on a clear then
1106 * wait for a container change.
1109 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1110 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1111 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1112 for (container = 0;
1113 container < dev->maximum_num_containers;
1114 ++container) {
1116 * Stomp on all config sequencing for all
1117 * containers?
1119 dev->fsa_dev[container].config_waiting_on =
1120 AifEnContainerChange;
1121 dev->fsa_dev[container].config_needed = ADD;
1122 dev->fsa_dev[container].config_waiting_stamp =
1123 jiffies;
1126 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1127 ((__le32 *)aifcmd->data)[6] == 0 &&
1128 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1129 for (container = 0;
1130 container < dev->maximum_num_containers;
1131 ++container) {
1133 * Stomp on all config sequencing for all
1134 * containers?
1136 dev->fsa_dev[container].config_waiting_on =
1137 AifEnContainerChange;
1138 dev->fsa_dev[container].config_needed = DELETE;
1139 dev->fsa_dev[container].config_waiting_stamp =
1140 jiffies;
1143 break;
1146 container = 0;
1147 retry_next:
1148 if (device_config_needed == NOTHING)
1149 for (; container < dev->maximum_num_containers; ++container) {
1150 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1151 (dev->fsa_dev[container].config_needed != NOTHING) &&
1152 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1153 device_config_needed =
1154 dev->fsa_dev[container].config_needed;
1155 dev->fsa_dev[container].config_needed = NOTHING;
1156 channel = CONTAINER_TO_CHANNEL(container);
1157 id = CONTAINER_TO_ID(container);
1158 lun = CONTAINER_TO_LUN(container);
1159 break;
1162 if (device_config_needed == NOTHING)
1163 return;
1166 * If we decided that a re-configuration needs to be done,
1167 * schedule it here on the way out the door, please close the door
1168 * behind you.
1172 * Find the scsi_device associated with the SCSI address,
1173 * and mark it as changed, invalidating the cache. This deals
1174 * with changes to existing device IDs.
1177 if (!dev || !dev->scsi_host_ptr)
1178 return;
1180 * force reload of disk info via aac_probe_container
1182 if ((channel == CONTAINER_CHANNEL) &&
1183 (device_config_needed != NOTHING)) {
1184 if (dev->fsa_dev[container].valid == 1)
1185 dev->fsa_dev[container].valid = 2;
1186 aac_probe_container(dev, container);
1188 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1189 if (device) {
1190 switch (device_config_needed) {
1191 case DELETE:
1192 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1193 scsi_remove_device(device);
1194 #else
1195 if (scsi_device_online(device)) {
1196 scsi_device_set_state(device, SDEV_OFFLINE);
1197 sdev_printk(KERN_INFO, device,
1198 "Device offlined - %s\n",
1199 (channel == CONTAINER_CHANNEL) ?
1200 "array deleted" :
1201 "enclosure services event");
1203 #endif
1204 break;
1205 case ADD:
1206 if (!scsi_device_online(device)) {
1207 sdev_printk(KERN_INFO, device,
1208 "Device online - %s\n",
1209 (channel == CONTAINER_CHANNEL) ?
1210 "array created" :
1211 "enclosure services event");
1212 scsi_device_set_state(device, SDEV_RUNNING);
1214 /* FALLTHRU */
1215 case CHANGE:
1216 if ((channel == CONTAINER_CHANNEL)
1217 && (!dev->fsa_dev[container].valid)) {
1218 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1219 scsi_remove_device(device);
1220 #else
1221 if (!scsi_device_online(device))
1222 break;
1223 scsi_device_set_state(device, SDEV_OFFLINE);
1224 sdev_printk(KERN_INFO, device,
1225 "Device offlined - %s\n",
1226 "array failed");
1227 #endif
1228 break;
1230 scsi_rescan_device(&device->sdev_gendev);
1232 default:
1233 break;
1235 scsi_device_put(device);
1236 device_config_needed = NOTHING;
1238 if (device_config_needed == ADD)
1239 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1240 if (channel == CONTAINER_CHANNEL) {
1241 container++;
1242 device_config_needed = NOTHING;
1243 goto retry_next;
1247 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1249 int index, quirks;
1250 int retval;
1251 struct Scsi_Host *host;
1252 struct scsi_device *dev;
1253 struct scsi_cmnd *command;
1254 struct scsi_cmnd *command_list;
1255 int jafo = 0;
1258 * Assumptions:
1259 * - host is locked, unless called by the aacraid thread.
1260 * (a matter of convenience, due to legacy issues surrounding
1261 * eh_host_adapter_reset).
1262 * - in_reset is asserted, so no new i/o is getting to the
1263 * card.
1264 * - The card is dead, or will be very shortly ;-/ so no new
1265 * commands are completing in the interrupt service.
1267 host = aac->scsi_host_ptr;
1268 scsi_block_requests(host);
1269 aac_adapter_disable_int(aac);
1270 if (aac->thread->pid != current->pid) {
1271 spin_unlock_irq(host->host_lock);
1272 kthread_stop(aac->thread);
1273 jafo = 1;
1277 * If a positive health, means in a known DEAD PANIC
1278 * state and the adapter could be reset to `try again'.
1280 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1282 if (retval)
1283 goto out;
1286 * Loop through the fibs, close the synchronous FIBS
1288 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1289 struct fib *fib = &aac->fibs[index];
1290 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1291 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1292 unsigned long flagv;
1293 spin_lock_irqsave(&fib->event_lock, flagv);
1294 up(&fib->event_wait);
1295 spin_unlock_irqrestore(&fib->event_lock, flagv);
1296 schedule();
1297 retval = 0;
1300 /* Give some extra time for ioctls to complete. */
1301 if (retval == 0)
1302 ssleep(2);
1303 index = aac->cardtype;
1306 * Re-initialize the adapter, first free resources, then carefully
1307 * apply the initialization sequence to come back again. Only risk
1308 * is a change in Firmware dropping cache, it is assumed the caller
1309 * will ensure that i/o is queisced and the card is flushed in that
1310 * case.
1312 aac_fib_map_free(aac);
1313 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1314 aac->comm_addr = NULL;
1315 aac->comm_phys = 0;
1316 kfree(aac->queues);
1317 aac->queues = NULL;
1318 free_irq(aac->pdev->irq, aac);
1319 if (aac->msi)
1320 pci_disable_msi(aac->pdev);
1321 kfree(aac->fsa_dev);
1322 aac->fsa_dev = NULL;
1323 quirks = aac_get_driver_ident(index)->quirks;
1324 if (quirks & AAC_QUIRK_31BIT) {
1325 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1326 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1327 goto out;
1328 } else {
1329 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1330 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1331 goto out;
1333 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1334 goto out;
1335 if (quirks & AAC_QUIRK_31BIT)
1336 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1337 goto out;
1338 if (jafo) {
1339 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1340 aac->name);
1341 if (IS_ERR(aac->thread)) {
1342 retval = PTR_ERR(aac->thread);
1343 goto out;
1346 (void)aac_get_adapter_info(aac);
1347 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1348 host->sg_tablesize = 34;
1349 host->max_sectors = (host->sg_tablesize * 8) + 112;
1351 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1352 host->sg_tablesize = 17;
1353 host->max_sectors = (host->sg_tablesize * 8) + 112;
1355 aac_get_config_status(aac, 1);
1356 aac_get_containers(aac);
1358 * This is where the assumption that the Adapter is quiesced
1359 * is important.
1361 command_list = NULL;
1362 __shost_for_each_device(dev, host) {
1363 unsigned long flags;
1364 spin_lock_irqsave(&dev->list_lock, flags);
1365 list_for_each_entry(command, &dev->cmd_list, list)
1366 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1367 command->SCp.buffer = (struct scatterlist *)command_list;
1368 command_list = command;
1370 spin_unlock_irqrestore(&dev->list_lock, flags);
1372 while ((command = command_list)) {
1373 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1374 command->SCp.buffer = NULL;
1375 command->result = DID_OK << 16
1376 | COMMAND_COMPLETE << 8
1377 | SAM_STAT_TASK_SET_FULL;
1378 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1379 command->scsi_done(command);
1381 retval = 0;
1383 out:
1384 aac->in_reset = 0;
1385 scsi_unblock_requests(host);
1386 if (jafo) {
1387 spin_lock_irq(host->host_lock);
1389 return retval;
1392 int aac_reset_adapter(struct aac_dev * aac, int forced)
1394 unsigned long flagv = 0;
1395 int retval;
1396 struct Scsi_Host * host;
1398 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1399 return -EBUSY;
1401 if (aac->in_reset) {
1402 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1403 return -EBUSY;
1405 aac->in_reset = 1;
1406 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1409 * Wait for all commands to complete to this specific
1410 * target (block maximum 60 seconds). Although not necessary,
1411 * it does make us a good storage citizen.
1413 host = aac->scsi_host_ptr;
1414 scsi_block_requests(host);
1415 if (forced < 2) for (retval = 60; retval; --retval) {
1416 struct scsi_device * dev;
1417 struct scsi_cmnd * command;
1418 int active = 0;
1420 __shost_for_each_device(dev, host) {
1421 spin_lock_irqsave(&dev->list_lock, flagv);
1422 list_for_each_entry(command, &dev->cmd_list, list) {
1423 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1424 active++;
1425 break;
1428 spin_unlock_irqrestore(&dev->list_lock, flagv);
1429 if (active)
1430 break;
1434 * We can exit If all the commands are complete
1436 if (active == 0)
1437 break;
1438 ssleep(1);
1441 /* Quiesce build, flush cache, write through mode */
1442 if (forced < 2)
1443 aac_send_shutdown(aac);
1444 spin_lock_irqsave(host->host_lock, flagv);
1445 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1446 spin_unlock_irqrestore(host->host_lock, flagv);
1448 if ((forced < 2) && (retval == -ENODEV)) {
1449 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1450 struct fib * fibctx = aac_fib_alloc(aac);
1451 if (fibctx) {
1452 struct aac_pause *cmd;
1453 int status;
1455 aac_fib_init(fibctx);
1457 cmd = (struct aac_pause *) fib_data(fibctx);
1459 cmd->command = cpu_to_le32(VM_ContainerConfig);
1460 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1461 cmd->timeout = cpu_to_le32(1);
1462 cmd->min = cpu_to_le32(1);
1463 cmd->noRescan = cpu_to_le32(1);
1464 cmd->count = cpu_to_le32(0);
1466 status = aac_fib_send(ContainerCommand,
1467 fibctx,
1468 sizeof(struct aac_pause),
1469 FsaNormal,
1470 -2 /* Timeout silently */, 1,
1471 NULL, NULL);
1473 if (status >= 0)
1474 aac_fib_complete(fibctx);
1475 /* FIB should be freed only after getting
1476 * the response from the F/W */
1477 if (status != -ERESTARTSYS)
1478 aac_fib_free(fibctx);
1482 return retval;
1485 int aac_check_health(struct aac_dev * aac)
1487 int BlinkLED;
1488 unsigned long time_now, flagv = 0;
1489 struct list_head * entry;
1490 struct Scsi_Host * host;
1492 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1493 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1494 return 0;
1496 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1497 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1498 return 0; /* OK */
1501 aac->in_reset = 1;
1503 /* Fake up an AIF:
1504 * aac_aifcmd.command = AifCmdEventNotify = 1
1505 * aac_aifcmd.seqnum = 0xFFFFFFFF
1506 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1507 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1508 * aac.aifcmd.data[2] = AifHighPriority = 3
1509 * aac.aifcmd.data[3] = BlinkLED
1512 time_now = jiffies/HZ;
1513 entry = aac->fib_list.next;
1516 * For each Context that is on the
1517 * fibctxList, make a copy of the
1518 * fib, and then set the event to wake up the
1519 * thread that is waiting for it.
1521 while (entry != &aac->fib_list) {
1523 * Extract the fibctx
1525 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1526 struct hw_fib * hw_fib;
1527 struct fib * fib;
1529 * Check if the queue is getting
1530 * backlogged
1532 if (fibctx->count > 20) {
1534 * It's *not* jiffies folks,
1535 * but jiffies / HZ, so do not
1536 * panic ...
1538 u32 time_last = fibctx->jiffies;
1540 * Has it been > 2 minutes
1541 * since the last read off
1542 * the queue?
1544 if ((time_now - time_last) > aif_timeout) {
1545 entry = entry->next;
1546 aac_close_fib_context(aac, fibctx);
1547 continue;
1551 * Warning: no sleep allowed while
1552 * holding spinlock
1554 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1555 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1556 if (fib && hw_fib) {
1557 struct aac_aifcmd * aif;
1559 fib->hw_fib_va = hw_fib;
1560 fib->dev = aac;
1561 aac_fib_init(fib);
1562 fib->type = FSAFS_NTC_FIB_CONTEXT;
1563 fib->size = sizeof (struct fib);
1564 fib->data = hw_fib->data;
1565 aif = (struct aac_aifcmd *)hw_fib->data;
1566 aif->command = cpu_to_le32(AifCmdEventNotify);
1567 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1568 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1569 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1570 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1571 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1574 * Put the FIB onto the
1575 * fibctx's fibs
1577 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1578 fibctx->count++;
1580 * Set the event to wake up the
1581 * thread that will waiting.
1583 up(&fibctx->wait_sem);
1584 } else {
1585 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1586 kfree(fib);
1587 kfree(hw_fib);
1589 entry = entry->next;
1592 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1594 if (BlinkLED < 0) {
1595 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1596 goto out;
1599 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1601 if (!aac_check_reset || ((aac_check_reset == 1) &&
1602 (aac->supplement_adapter_info.SupportedOptions2 &
1603 AAC_OPTION_IGNORE_RESET)))
1604 goto out;
1605 host = aac->scsi_host_ptr;
1606 if (aac->thread->pid != current->pid)
1607 spin_lock_irqsave(host->host_lock, flagv);
1608 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1609 if (aac->thread->pid != current->pid)
1610 spin_unlock_irqrestore(host->host_lock, flagv);
1611 return BlinkLED;
1613 out:
1614 aac->in_reset = 0;
1615 return BlinkLED;
1620 * aac_command_thread - command processing thread
1621 * @dev: Adapter to monitor
1623 * Waits on the commandready event in it's queue. When the event gets set
1624 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1625 * until the queue is empty. When the queue is empty it will wait for
1626 * more FIBs.
1629 int aac_command_thread(void *data)
1631 struct aac_dev *dev = data;
1632 struct hw_fib *hw_fib, *hw_newfib;
1633 struct fib *fib, *newfib;
1634 struct aac_fib_context *fibctx;
1635 unsigned long flags;
1636 DECLARE_WAITQUEUE(wait, current);
1637 unsigned long next_jiffies = jiffies + HZ;
1638 unsigned long next_check_jiffies = next_jiffies;
1639 long difference = HZ;
1642 * We can only have one thread per adapter for AIF's.
1644 if (dev->aif_thread)
1645 return -EINVAL;
1648 * Let the DPC know it has a place to send the AIF's to.
1650 dev->aif_thread = 1;
1651 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1652 set_current_state(TASK_INTERRUPTIBLE);
1653 dprintk ((KERN_INFO "aac_command_thread start\n"));
1654 while (1) {
1655 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1656 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1657 struct list_head *entry;
1658 struct aac_aifcmd * aifcmd;
1660 set_current_state(TASK_RUNNING);
1662 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1663 list_del(entry);
1665 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1666 fib = list_entry(entry, struct fib, fiblink);
1668 * We will process the FIB here or pass it to a
1669 * worker thread that is TBD. We Really can't
1670 * do anything at this point since we don't have
1671 * anything defined for this thread to do.
1673 hw_fib = fib->hw_fib_va;
1674 memset(fib, 0, sizeof(struct fib));
1675 fib->type = FSAFS_NTC_FIB_CONTEXT;
1676 fib->size = sizeof(struct fib);
1677 fib->hw_fib_va = hw_fib;
1678 fib->data = hw_fib->data;
1679 fib->dev = dev;
1681 * We only handle AifRequest fibs from the adapter.
1683 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1684 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1685 /* Handle Driver Notify Events */
1686 aac_handle_aif(dev, fib);
1687 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1688 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1689 } else {
1690 /* The u32 here is important and intended. We are using
1691 32bit wrapping time to fit the adapter field */
1693 u32 time_now, time_last;
1694 unsigned long flagv;
1695 unsigned num;
1696 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1697 struct fib ** fib_pool, ** fib_p;
1699 /* Sniff events */
1700 if ((aifcmd->command ==
1701 cpu_to_le32(AifCmdEventNotify)) ||
1702 (aifcmd->command ==
1703 cpu_to_le32(AifCmdJobProgress))) {
1704 aac_handle_aif(dev, fib);
1707 time_now = jiffies/HZ;
1710 * Warning: no sleep allowed while
1711 * holding spinlock. We take the estimate
1712 * and pre-allocate a set of fibs outside the
1713 * lock.
1715 num = le32_to_cpu(dev->init->AdapterFibsSize)
1716 / sizeof(struct hw_fib); /* some extra */
1717 spin_lock_irqsave(&dev->fib_lock, flagv);
1718 entry = dev->fib_list.next;
1719 while (entry != &dev->fib_list) {
1720 entry = entry->next;
1721 ++num;
1723 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1724 hw_fib_pool = NULL;
1725 fib_pool = NULL;
1726 if (num
1727 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1728 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1729 hw_fib_p = hw_fib_pool;
1730 fib_p = fib_pool;
1731 while (hw_fib_p < &hw_fib_pool[num]) {
1732 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1733 --hw_fib_p;
1734 break;
1736 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1737 kfree(*(--hw_fib_p));
1738 break;
1741 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1742 kfree(fib_pool);
1743 fib_pool = NULL;
1744 kfree(hw_fib_pool);
1745 hw_fib_pool = NULL;
1747 } else {
1748 kfree(hw_fib_pool);
1749 hw_fib_pool = NULL;
1751 spin_lock_irqsave(&dev->fib_lock, flagv);
1752 entry = dev->fib_list.next;
1754 * For each Context that is on the
1755 * fibctxList, make a copy of the
1756 * fib, and then set the event to wake up the
1757 * thread that is waiting for it.
1759 hw_fib_p = hw_fib_pool;
1760 fib_p = fib_pool;
1761 while (entry != &dev->fib_list) {
1763 * Extract the fibctx
1765 fibctx = list_entry(entry, struct aac_fib_context, next);
1767 * Check if the queue is getting
1768 * backlogged
1770 if (fibctx->count > 20)
1773 * It's *not* jiffies folks,
1774 * but jiffies / HZ so do not
1775 * panic ...
1777 time_last = fibctx->jiffies;
1779 * Has it been > 2 minutes
1780 * since the last read off
1781 * the queue?
1783 if ((time_now - time_last) > aif_timeout) {
1784 entry = entry->next;
1785 aac_close_fib_context(dev, fibctx);
1786 continue;
1790 * Warning: no sleep allowed while
1791 * holding spinlock
1793 if (hw_fib_p < &hw_fib_pool[num]) {
1794 hw_newfib = *hw_fib_p;
1795 *(hw_fib_p++) = NULL;
1796 newfib = *fib_p;
1797 *(fib_p++) = NULL;
1799 * Make the copy of the FIB
1801 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1802 memcpy(newfib, fib, sizeof(struct fib));
1803 newfib->hw_fib_va = hw_newfib;
1805 * Put the FIB onto the
1806 * fibctx's fibs
1808 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1809 fibctx->count++;
1811 * Set the event to wake up the
1812 * thread that is waiting.
1814 up(&fibctx->wait_sem);
1815 } else {
1816 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1818 entry = entry->next;
1821 * Set the status of this FIB
1823 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1824 aac_fib_adapter_complete(fib, sizeof(u32));
1825 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1826 /* Free up the remaining resources */
1827 hw_fib_p = hw_fib_pool;
1828 fib_p = fib_pool;
1829 while (hw_fib_p < &hw_fib_pool[num]) {
1830 kfree(*hw_fib_p);
1831 kfree(*fib_p);
1832 ++fib_p;
1833 ++hw_fib_p;
1835 kfree(hw_fib_pool);
1836 kfree(fib_pool);
1838 kfree(fib);
1839 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1842 * There are no more AIF's
1844 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1847 * Background activity
1849 if ((time_before(next_check_jiffies,next_jiffies))
1850 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1851 next_check_jiffies = next_jiffies;
1852 if (aac_check_health(dev) == 0) {
1853 difference = ((long)(unsigned)check_interval)
1854 * HZ;
1855 next_check_jiffies = jiffies + difference;
1856 } else if (!dev->queues)
1857 break;
1859 if (!time_before(next_check_jiffies,next_jiffies)
1860 && ((difference = next_jiffies - jiffies) <= 0)) {
1861 struct timeval now;
1862 int ret;
1864 /* Don't even try to talk to adapter if its sick */
1865 ret = aac_check_health(dev);
1866 if (!ret && !dev->queues)
1867 break;
1868 next_check_jiffies = jiffies
1869 + ((long)(unsigned)check_interval)
1870 * HZ;
1871 do_gettimeofday(&now);
1873 /* Synchronize our watches */
1874 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1875 && (now.tv_usec > (1000000 / HZ)))
1876 difference = (((1000000 - now.tv_usec) * HZ)
1877 + 500000) / 1000000;
1878 else if (ret == 0) {
1879 struct fib *fibptr;
1881 if ((fibptr = aac_fib_alloc(dev))) {
1882 int status;
1883 __le32 *info;
1885 aac_fib_init(fibptr);
1887 info = (__le32 *) fib_data(fibptr);
1888 if (now.tv_usec > 500000)
1889 ++now.tv_sec;
1891 *info = cpu_to_le32(now.tv_sec);
1893 status = aac_fib_send(SendHostTime,
1894 fibptr,
1895 sizeof(*info),
1896 FsaNormal,
1897 1, 1,
1898 NULL,
1899 NULL);
1900 /* Do not set XferState to zero unless
1901 * receives a response from F/W */
1902 if (status >= 0)
1903 aac_fib_complete(fibptr);
1904 /* FIB should be freed only after
1905 * getting the response from the F/W */
1906 if (status != -ERESTARTSYS)
1907 aac_fib_free(fibptr);
1909 difference = (long)(unsigned)update_interval*HZ;
1910 } else {
1911 /* retry shortly */
1912 difference = 10 * HZ;
1914 next_jiffies = jiffies + difference;
1915 if (time_before(next_check_jiffies,next_jiffies))
1916 difference = next_check_jiffies - jiffies;
1918 if (difference <= 0)
1919 difference = 1;
1920 set_current_state(TASK_INTERRUPTIBLE);
1921 schedule_timeout(difference);
1923 if (kthread_should_stop())
1924 break;
1926 if (dev->queues)
1927 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1928 dev->aif_thread = 0;
1929 return 0;