ext3: NULL dereference in ext3_evict_inode()
[linux-2.6.git] / fs / fs-writeback.c
blob73c3992b2bb4aa765d3dc2418e907ca0a7ba78f2
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 unsigned long *older_than_this;
39 enum writeback_sync_modes sync_mode;
40 unsigned int tagged_writepages:1;
41 unsigned int for_kupdate:1;
42 unsigned int range_cyclic:1;
43 unsigned int for_background:1;
44 enum wb_reason reason; /* why was writeback initiated? */
46 struct list_head list; /* pending work list */
47 struct completion *done; /* set if the caller waits */
50 const char *wb_reason_name[] = {
51 [WB_REASON_BACKGROUND] = "background",
52 [WB_REASON_TRY_TO_FREE_PAGES] = "try_to_free_pages",
53 [WB_REASON_SYNC] = "sync",
54 [WB_REASON_PERIODIC] = "periodic",
55 [WB_REASON_LAPTOP_TIMER] = "laptop_timer",
56 [WB_REASON_FREE_MORE_MEM] = "free_more_memory",
57 [WB_REASON_FS_FREE_SPACE] = "fs_free_space",
58 [WB_REASON_FORKER_THREAD] = "forker_thread"
62 * Include the creation of the trace points after defining the
63 * wb_writeback_work structure so that the definition remains local to this
64 * file.
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/writeback.h>
70 * We don't actually have pdflush, but this one is exported though /proc...
72 int nr_pdflush_threads;
74 /**
75 * writeback_in_progress - determine whether there is writeback in progress
76 * @bdi: the device's backing_dev_info structure.
78 * Determine whether there is writeback waiting to be handled against a
79 * backing device.
81 int writeback_in_progress(struct backing_dev_info *bdi)
83 return test_bit(BDI_writeback_running, &bdi->state);
86 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
88 struct super_block *sb = inode->i_sb;
90 if (strcmp(sb->s_type->name, "bdev") == 0)
91 return inode->i_mapping->backing_dev_info;
93 return sb->s_bdi;
96 static inline struct inode *wb_inode(struct list_head *head)
98 return list_entry(head, struct inode, i_wb_list);
101 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
102 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
104 if (bdi->wb.task) {
105 wake_up_process(bdi->wb.task);
106 } else {
108 * The bdi thread isn't there, wake up the forker thread which
109 * will create and run it.
111 wake_up_process(default_backing_dev_info.wb.task);
115 static void bdi_queue_work(struct backing_dev_info *bdi,
116 struct wb_writeback_work *work)
118 trace_writeback_queue(bdi, work);
120 spin_lock_bh(&bdi->wb_lock);
121 list_add_tail(&work->list, &bdi->work_list);
122 if (!bdi->wb.task)
123 trace_writeback_nothread(bdi, work);
124 bdi_wakeup_flusher(bdi);
125 spin_unlock_bh(&bdi->wb_lock);
128 static void
129 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
130 bool range_cyclic, enum wb_reason reason)
132 struct wb_writeback_work *work;
135 * This is WB_SYNC_NONE writeback, so if allocation fails just
136 * wakeup the thread for old dirty data writeback
138 work = kzalloc(sizeof(*work), GFP_ATOMIC);
139 if (!work) {
140 if (bdi->wb.task) {
141 trace_writeback_nowork(bdi);
142 wake_up_process(bdi->wb.task);
144 return;
147 work->sync_mode = WB_SYNC_NONE;
148 work->nr_pages = nr_pages;
149 work->range_cyclic = range_cyclic;
150 work->reason = reason;
152 bdi_queue_work(bdi, work);
156 * bdi_start_writeback - start writeback
157 * @bdi: the backing device to write from
158 * @nr_pages: the number of pages to write
160 * Description:
161 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
162 * started when this function returns, we make no guarantees on
163 * completion. Caller need not hold sb s_umount semaphore.
166 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
167 enum wb_reason reason)
169 __bdi_start_writeback(bdi, nr_pages, true, reason);
173 * bdi_start_background_writeback - start background writeback
174 * @bdi: the backing device to write from
176 * Description:
177 * This makes sure WB_SYNC_NONE background writeback happens. When
178 * this function returns, it is only guaranteed that for given BDI
179 * some IO is happening if we are over background dirty threshold.
180 * Caller need not hold sb s_umount semaphore.
182 void bdi_start_background_writeback(struct backing_dev_info *bdi)
185 * We just wake up the flusher thread. It will perform background
186 * writeback as soon as there is no other work to do.
188 trace_writeback_wake_background(bdi);
189 spin_lock_bh(&bdi->wb_lock);
190 bdi_wakeup_flusher(bdi);
191 spin_unlock_bh(&bdi->wb_lock);
195 * Remove the inode from the writeback list it is on.
197 void inode_wb_list_del(struct inode *inode)
199 struct backing_dev_info *bdi = inode_to_bdi(inode);
201 spin_lock(&bdi->wb.list_lock);
202 list_del_init(&inode->i_wb_list);
203 spin_unlock(&bdi->wb.list_lock);
207 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
208 * furthest end of its superblock's dirty-inode list.
210 * Before stamping the inode's ->dirtied_when, we check to see whether it is
211 * already the most-recently-dirtied inode on the b_dirty list. If that is
212 * the case then the inode must have been redirtied while it was being written
213 * out and we don't reset its dirtied_when.
215 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
217 assert_spin_locked(&wb->list_lock);
218 if (!list_empty(&wb->b_dirty)) {
219 struct inode *tail;
221 tail = wb_inode(wb->b_dirty.next);
222 if (time_before(inode->dirtied_when, tail->dirtied_when))
223 inode->dirtied_when = jiffies;
225 list_move(&inode->i_wb_list, &wb->b_dirty);
229 * requeue inode for re-scanning after bdi->b_io list is exhausted.
231 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
233 assert_spin_locked(&wb->list_lock);
234 list_move(&inode->i_wb_list, &wb->b_more_io);
237 static void inode_sync_complete(struct inode *inode)
240 * Prevent speculative execution through
241 * spin_unlock(&wb->list_lock);
244 smp_mb();
245 wake_up_bit(&inode->i_state, __I_SYNC);
248 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
250 bool ret = time_after(inode->dirtied_when, t);
251 #ifndef CONFIG_64BIT
253 * For inodes being constantly redirtied, dirtied_when can get stuck.
254 * It _appears_ to be in the future, but is actually in distant past.
255 * This test is necessary to prevent such wrapped-around relative times
256 * from permanently stopping the whole bdi writeback.
258 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
259 #endif
260 return ret;
264 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
266 static int move_expired_inodes(struct list_head *delaying_queue,
267 struct list_head *dispatch_queue,
268 struct wb_writeback_work *work)
270 LIST_HEAD(tmp);
271 struct list_head *pos, *node;
272 struct super_block *sb = NULL;
273 struct inode *inode;
274 int do_sb_sort = 0;
275 int moved = 0;
277 while (!list_empty(delaying_queue)) {
278 inode = wb_inode(delaying_queue->prev);
279 if (work->older_than_this &&
280 inode_dirtied_after(inode, *work->older_than_this))
281 break;
282 if (sb && sb != inode->i_sb)
283 do_sb_sort = 1;
284 sb = inode->i_sb;
285 list_move(&inode->i_wb_list, &tmp);
286 moved++;
289 /* just one sb in list, splice to dispatch_queue and we're done */
290 if (!do_sb_sort) {
291 list_splice(&tmp, dispatch_queue);
292 goto out;
295 /* Move inodes from one superblock together */
296 while (!list_empty(&tmp)) {
297 sb = wb_inode(tmp.prev)->i_sb;
298 list_for_each_prev_safe(pos, node, &tmp) {
299 inode = wb_inode(pos);
300 if (inode->i_sb == sb)
301 list_move(&inode->i_wb_list, dispatch_queue);
304 out:
305 return moved;
309 * Queue all expired dirty inodes for io, eldest first.
310 * Before
311 * newly dirtied b_dirty b_io b_more_io
312 * =============> gf edc BA
313 * After
314 * newly dirtied b_dirty b_io b_more_io
315 * =============> g fBAedc
317 * +--> dequeue for IO
319 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
321 int moved;
322 assert_spin_locked(&wb->list_lock);
323 list_splice_init(&wb->b_more_io, &wb->b_io);
324 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
325 trace_writeback_queue_io(wb, work, moved);
328 static int write_inode(struct inode *inode, struct writeback_control *wbc)
330 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
331 return inode->i_sb->s_op->write_inode(inode, wbc);
332 return 0;
336 * Wait for writeback on an inode to complete.
338 static void inode_wait_for_writeback(struct inode *inode,
339 struct bdi_writeback *wb)
341 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
342 wait_queue_head_t *wqh;
344 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
345 while (inode->i_state & I_SYNC) {
346 spin_unlock(&inode->i_lock);
347 spin_unlock(&wb->list_lock);
348 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
349 spin_lock(&wb->list_lock);
350 spin_lock(&inode->i_lock);
355 * Write out an inode's dirty pages. Called under wb->list_lock and
356 * inode->i_lock. Either the caller has an active reference on the inode or
357 * the inode has I_WILL_FREE set.
359 * If `wait' is set, wait on the writeout.
361 * The whole writeout design is quite complex and fragile. We want to avoid
362 * starvation of particular inodes when others are being redirtied, prevent
363 * livelocks, etc.
365 static int
366 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
367 struct writeback_control *wbc)
369 struct address_space *mapping = inode->i_mapping;
370 long nr_to_write = wbc->nr_to_write;
371 unsigned dirty;
372 int ret;
374 assert_spin_locked(&wb->list_lock);
375 assert_spin_locked(&inode->i_lock);
377 if (!atomic_read(&inode->i_count))
378 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
379 else
380 WARN_ON(inode->i_state & I_WILL_FREE);
382 if (inode->i_state & I_SYNC) {
384 * If this inode is locked for writeback and we are not doing
385 * writeback-for-data-integrity, move it to b_more_io so that
386 * writeback can proceed with the other inodes on s_io.
388 * We'll have another go at writing back this inode when we
389 * completed a full scan of b_io.
391 if (wbc->sync_mode != WB_SYNC_ALL) {
392 requeue_io(inode, wb);
393 trace_writeback_single_inode_requeue(inode, wbc,
394 nr_to_write);
395 return 0;
399 * It's a data-integrity sync. We must wait.
401 inode_wait_for_writeback(inode, wb);
404 BUG_ON(inode->i_state & I_SYNC);
406 /* Set I_SYNC, reset I_DIRTY_PAGES */
407 inode->i_state |= I_SYNC;
408 inode->i_state &= ~I_DIRTY_PAGES;
409 spin_unlock(&inode->i_lock);
410 spin_unlock(&wb->list_lock);
412 ret = do_writepages(mapping, wbc);
415 * Make sure to wait on the data before writing out the metadata.
416 * This is important for filesystems that modify metadata on data
417 * I/O completion.
419 if (wbc->sync_mode == WB_SYNC_ALL) {
420 int err = filemap_fdatawait(mapping);
421 if (ret == 0)
422 ret = err;
426 * Some filesystems may redirty the inode during the writeback
427 * due to delalloc, clear dirty metadata flags right before
428 * write_inode()
430 spin_lock(&inode->i_lock);
431 dirty = inode->i_state & I_DIRTY;
432 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
433 spin_unlock(&inode->i_lock);
434 /* Don't write the inode if only I_DIRTY_PAGES was set */
435 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
436 int err = write_inode(inode, wbc);
437 if (ret == 0)
438 ret = err;
441 spin_lock(&wb->list_lock);
442 spin_lock(&inode->i_lock);
443 inode->i_state &= ~I_SYNC;
444 if (!(inode->i_state & I_FREEING)) {
446 * Sync livelock prevention. Each inode is tagged and synced in
447 * one shot. If still dirty, it will be redirty_tail()'ed below.
448 * Update the dirty time to prevent enqueue and sync it again.
450 if ((inode->i_state & I_DIRTY) &&
451 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
452 inode->dirtied_when = jiffies;
454 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
456 * We didn't write back all the pages. nfs_writepages()
457 * sometimes bales out without doing anything.
459 inode->i_state |= I_DIRTY_PAGES;
460 if (wbc->nr_to_write <= 0) {
462 * slice used up: queue for next turn
464 requeue_io(inode, wb);
465 } else {
467 * Writeback blocked by something other than
468 * congestion. Delay the inode for some time to
469 * avoid spinning on the CPU (100% iowait)
470 * retrying writeback of the dirty page/inode
471 * that cannot be performed immediately.
473 redirty_tail(inode, wb);
475 } else if (inode->i_state & I_DIRTY) {
477 * Filesystems can dirty the inode during writeback
478 * operations, such as delayed allocation during
479 * submission or metadata updates after data IO
480 * completion.
482 redirty_tail(inode, wb);
483 } else {
485 * The inode is clean. At this point we either have
486 * a reference to the inode or it's on it's way out.
487 * No need to add it back to the LRU.
489 list_del_init(&inode->i_wb_list);
492 inode_sync_complete(inode);
493 trace_writeback_single_inode(inode, wbc, nr_to_write);
494 return ret;
497 static long writeback_chunk_size(struct backing_dev_info *bdi,
498 struct wb_writeback_work *work)
500 long pages;
503 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
504 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
505 * here avoids calling into writeback_inodes_wb() more than once.
507 * The intended call sequence for WB_SYNC_ALL writeback is:
509 * wb_writeback()
510 * writeback_sb_inodes() <== called only once
511 * write_cache_pages() <== called once for each inode
512 * (quickly) tag currently dirty pages
513 * (maybe slowly) sync all tagged pages
515 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
516 pages = LONG_MAX;
517 else {
518 pages = min(bdi->avg_write_bandwidth / 2,
519 global_dirty_limit / DIRTY_SCOPE);
520 pages = min(pages, work->nr_pages);
521 pages = round_down(pages + MIN_WRITEBACK_PAGES,
522 MIN_WRITEBACK_PAGES);
525 return pages;
529 * Write a portion of b_io inodes which belong to @sb.
531 * If @only_this_sb is true, then find and write all such
532 * inodes. Otherwise write only ones which go sequentially
533 * in reverse order.
535 * Return the number of pages and/or inodes written.
537 static long writeback_sb_inodes(struct super_block *sb,
538 struct bdi_writeback *wb,
539 struct wb_writeback_work *work)
541 struct writeback_control wbc = {
542 .sync_mode = work->sync_mode,
543 .tagged_writepages = work->tagged_writepages,
544 .for_kupdate = work->for_kupdate,
545 .for_background = work->for_background,
546 .range_cyclic = work->range_cyclic,
547 .range_start = 0,
548 .range_end = LLONG_MAX,
550 unsigned long start_time = jiffies;
551 long write_chunk;
552 long wrote = 0; /* count both pages and inodes */
554 while (!list_empty(&wb->b_io)) {
555 struct inode *inode = wb_inode(wb->b_io.prev);
557 if (inode->i_sb != sb) {
558 if (work->sb) {
560 * We only want to write back data for this
561 * superblock, move all inodes not belonging
562 * to it back onto the dirty list.
564 redirty_tail(inode, wb);
565 continue;
569 * The inode belongs to a different superblock.
570 * Bounce back to the caller to unpin this and
571 * pin the next superblock.
573 break;
577 * Don't bother with new inodes or inodes beeing freed, first
578 * kind does not need peridic writeout yet, and for the latter
579 * kind writeout is handled by the freer.
581 spin_lock(&inode->i_lock);
582 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
583 spin_unlock(&inode->i_lock);
584 redirty_tail(inode, wb);
585 continue;
587 __iget(inode);
588 write_chunk = writeback_chunk_size(wb->bdi, work);
589 wbc.nr_to_write = write_chunk;
590 wbc.pages_skipped = 0;
592 writeback_single_inode(inode, wb, &wbc);
594 work->nr_pages -= write_chunk - wbc.nr_to_write;
595 wrote += write_chunk - wbc.nr_to_write;
596 if (!(inode->i_state & I_DIRTY))
597 wrote++;
598 if (wbc.pages_skipped) {
600 * writeback is not making progress due to locked
601 * buffers. Skip this inode for now.
603 redirty_tail(inode, wb);
605 spin_unlock(&inode->i_lock);
606 spin_unlock(&wb->list_lock);
607 iput(inode);
608 cond_resched();
609 spin_lock(&wb->list_lock);
611 * bail out to wb_writeback() often enough to check
612 * background threshold and other termination conditions.
614 if (wrote) {
615 if (time_is_before_jiffies(start_time + HZ / 10UL))
616 break;
617 if (work->nr_pages <= 0)
618 break;
621 return wrote;
624 static long __writeback_inodes_wb(struct bdi_writeback *wb,
625 struct wb_writeback_work *work)
627 unsigned long start_time = jiffies;
628 long wrote = 0;
630 while (!list_empty(&wb->b_io)) {
631 struct inode *inode = wb_inode(wb->b_io.prev);
632 struct super_block *sb = inode->i_sb;
634 if (!grab_super_passive(sb)) {
636 * grab_super_passive() may fail consistently due to
637 * s_umount being grabbed by someone else. Don't use
638 * requeue_io() to avoid busy retrying the inode/sb.
640 redirty_tail(inode, wb);
641 continue;
643 wrote += writeback_sb_inodes(sb, wb, work);
644 drop_super(sb);
646 /* refer to the same tests at the end of writeback_sb_inodes */
647 if (wrote) {
648 if (time_is_before_jiffies(start_time + HZ / 10UL))
649 break;
650 if (work->nr_pages <= 0)
651 break;
654 /* Leave any unwritten inodes on b_io */
655 return wrote;
658 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
659 enum wb_reason reason)
661 struct wb_writeback_work work = {
662 .nr_pages = nr_pages,
663 .sync_mode = WB_SYNC_NONE,
664 .range_cyclic = 1,
665 .reason = reason,
668 spin_lock(&wb->list_lock);
669 if (list_empty(&wb->b_io))
670 queue_io(wb, &work);
671 __writeback_inodes_wb(wb, &work);
672 spin_unlock(&wb->list_lock);
674 return nr_pages - work.nr_pages;
677 static bool over_bground_thresh(struct backing_dev_info *bdi)
679 unsigned long background_thresh, dirty_thresh;
681 global_dirty_limits(&background_thresh, &dirty_thresh);
683 if (global_page_state(NR_FILE_DIRTY) +
684 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
685 return true;
687 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
688 bdi_dirty_limit(bdi, background_thresh))
689 return true;
691 return false;
695 * Called under wb->list_lock. If there are multiple wb per bdi,
696 * only the flusher working on the first wb should do it.
698 static void wb_update_bandwidth(struct bdi_writeback *wb,
699 unsigned long start_time)
701 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
705 * Explicit flushing or periodic writeback of "old" data.
707 * Define "old": the first time one of an inode's pages is dirtied, we mark the
708 * dirtying-time in the inode's address_space. So this periodic writeback code
709 * just walks the superblock inode list, writing back any inodes which are
710 * older than a specific point in time.
712 * Try to run once per dirty_writeback_interval. But if a writeback event
713 * takes longer than a dirty_writeback_interval interval, then leave a
714 * one-second gap.
716 * older_than_this takes precedence over nr_to_write. So we'll only write back
717 * all dirty pages if they are all attached to "old" mappings.
719 static long wb_writeback(struct bdi_writeback *wb,
720 struct wb_writeback_work *work)
722 unsigned long wb_start = jiffies;
723 long nr_pages = work->nr_pages;
724 unsigned long oldest_jif;
725 struct inode *inode;
726 long progress;
728 oldest_jif = jiffies;
729 work->older_than_this = &oldest_jif;
731 spin_lock(&wb->list_lock);
732 for (;;) {
734 * Stop writeback when nr_pages has been consumed
736 if (work->nr_pages <= 0)
737 break;
740 * Background writeout and kupdate-style writeback may
741 * run forever. Stop them if there is other work to do
742 * so that e.g. sync can proceed. They'll be restarted
743 * after the other works are all done.
745 if ((work->for_background || work->for_kupdate) &&
746 !list_empty(&wb->bdi->work_list))
747 break;
750 * For background writeout, stop when we are below the
751 * background dirty threshold
753 if (work->for_background && !over_bground_thresh(wb->bdi))
754 break;
756 if (work->for_kupdate) {
757 oldest_jif = jiffies -
758 msecs_to_jiffies(dirty_expire_interval * 10);
759 work->older_than_this = &oldest_jif;
762 trace_writeback_start(wb->bdi, work);
763 if (list_empty(&wb->b_io))
764 queue_io(wb, work);
765 if (work->sb)
766 progress = writeback_sb_inodes(work->sb, wb, work);
767 else
768 progress = __writeback_inodes_wb(wb, work);
769 trace_writeback_written(wb->bdi, work);
771 wb_update_bandwidth(wb, wb_start);
774 * Did we write something? Try for more
776 * Dirty inodes are moved to b_io for writeback in batches.
777 * The completion of the current batch does not necessarily
778 * mean the overall work is done. So we keep looping as long
779 * as made some progress on cleaning pages or inodes.
781 if (progress)
782 continue;
784 * No more inodes for IO, bail
786 if (list_empty(&wb->b_more_io))
787 break;
789 * Nothing written. Wait for some inode to
790 * become available for writeback. Otherwise
791 * we'll just busyloop.
793 if (!list_empty(&wb->b_more_io)) {
794 trace_writeback_wait(wb->bdi, work);
795 inode = wb_inode(wb->b_more_io.prev);
796 spin_lock(&inode->i_lock);
797 inode_wait_for_writeback(inode, wb);
798 spin_unlock(&inode->i_lock);
801 spin_unlock(&wb->list_lock);
803 return nr_pages - work->nr_pages;
807 * Return the next wb_writeback_work struct that hasn't been processed yet.
809 static struct wb_writeback_work *
810 get_next_work_item(struct backing_dev_info *bdi)
812 struct wb_writeback_work *work = NULL;
814 spin_lock_bh(&bdi->wb_lock);
815 if (!list_empty(&bdi->work_list)) {
816 work = list_entry(bdi->work_list.next,
817 struct wb_writeback_work, list);
818 list_del_init(&work->list);
820 spin_unlock_bh(&bdi->wb_lock);
821 return work;
825 * Add in the number of potentially dirty inodes, because each inode
826 * write can dirty pagecache in the underlying blockdev.
828 static unsigned long get_nr_dirty_pages(void)
830 return global_page_state(NR_FILE_DIRTY) +
831 global_page_state(NR_UNSTABLE_NFS) +
832 get_nr_dirty_inodes();
835 static long wb_check_background_flush(struct bdi_writeback *wb)
837 if (over_bground_thresh(wb->bdi)) {
839 struct wb_writeback_work work = {
840 .nr_pages = LONG_MAX,
841 .sync_mode = WB_SYNC_NONE,
842 .for_background = 1,
843 .range_cyclic = 1,
844 .reason = WB_REASON_BACKGROUND,
847 return wb_writeback(wb, &work);
850 return 0;
853 static long wb_check_old_data_flush(struct bdi_writeback *wb)
855 unsigned long expired;
856 long nr_pages;
859 * When set to zero, disable periodic writeback
861 if (!dirty_writeback_interval)
862 return 0;
864 expired = wb->last_old_flush +
865 msecs_to_jiffies(dirty_writeback_interval * 10);
866 if (time_before(jiffies, expired))
867 return 0;
869 wb->last_old_flush = jiffies;
870 nr_pages = get_nr_dirty_pages();
872 if (nr_pages) {
873 struct wb_writeback_work work = {
874 .nr_pages = nr_pages,
875 .sync_mode = WB_SYNC_NONE,
876 .for_kupdate = 1,
877 .range_cyclic = 1,
878 .reason = WB_REASON_PERIODIC,
881 return wb_writeback(wb, &work);
884 return 0;
888 * Retrieve work items and do the writeback they describe
890 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
892 struct backing_dev_info *bdi = wb->bdi;
893 struct wb_writeback_work *work;
894 long wrote = 0;
896 set_bit(BDI_writeback_running, &wb->bdi->state);
897 while ((work = get_next_work_item(bdi)) != NULL) {
899 * Override sync mode, in case we must wait for completion
900 * because this thread is exiting now.
902 if (force_wait)
903 work->sync_mode = WB_SYNC_ALL;
905 trace_writeback_exec(bdi, work);
907 wrote += wb_writeback(wb, work);
910 * Notify the caller of completion if this is a synchronous
911 * work item, otherwise just free it.
913 if (work->done)
914 complete(work->done);
915 else
916 kfree(work);
920 * Check for periodic writeback, kupdated() style
922 wrote += wb_check_old_data_flush(wb);
923 wrote += wb_check_background_flush(wb);
924 clear_bit(BDI_writeback_running, &wb->bdi->state);
926 return wrote;
930 * Handle writeback of dirty data for the device backed by this bdi. Also
931 * wakes up periodically and does kupdated style flushing.
933 int bdi_writeback_thread(void *data)
935 struct bdi_writeback *wb = data;
936 struct backing_dev_info *bdi = wb->bdi;
937 long pages_written;
939 current->flags |= PF_SWAPWRITE;
940 set_freezable();
941 wb->last_active = jiffies;
944 * Our parent may run at a different priority, just set us to normal
946 set_user_nice(current, 0);
948 trace_writeback_thread_start(bdi);
950 while (!kthread_should_stop()) {
952 * Remove own delayed wake-up timer, since we are already awake
953 * and we'll take care of the preriodic write-back.
955 del_timer(&wb->wakeup_timer);
957 pages_written = wb_do_writeback(wb, 0);
959 trace_writeback_pages_written(pages_written);
961 if (pages_written)
962 wb->last_active = jiffies;
964 set_current_state(TASK_INTERRUPTIBLE);
965 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
966 __set_current_state(TASK_RUNNING);
967 continue;
970 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
971 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
972 else {
974 * We have nothing to do, so can go sleep without any
975 * timeout and save power. When a work is queued or
976 * something is made dirty - we will be woken up.
978 schedule();
981 try_to_freeze();
984 /* Flush any work that raced with us exiting */
985 if (!list_empty(&bdi->work_list))
986 wb_do_writeback(wb, 1);
988 trace_writeback_thread_stop(bdi);
989 return 0;
994 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
995 * the whole world.
997 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
999 struct backing_dev_info *bdi;
1001 if (!nr_pages) {
1002 nr_pages = global_page_state(NR_FILE_DIRTY) +
1003 global_page_state(NR_UNSTABLE_NFS);
1006 rcu_read_lock();
1007 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1008 if (!bdi_has_dirty_io(bdi))
1009 continue;
1010 __bdi_start_writeback(bdi, nr_pages, false, reason);
1012 rcu_read_unlock();
1015 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1017 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1018 struct dentry *dentry;
1019 const char *name = "?";
1021 dentry = d_find_alias(inode);
1022 if (dentry) {
1023 spin_lock(&dentry->d_lock);
1024 name = (const char *) dentry->d_name.name;
1026 printk(KERN_DEBUG
1027 "%s(%d): dirtied inode %lu (%s) on %s\n",
1028 current->comm, task_pid_nr(current), inode->i_ino,
1029 name, inode->i_sb->s_id);
1030 if (dentry) {
1031 spin_unlock(&dentry->d_lock);
1032 dput(dentry);
1038 * __mark_inode_dirty - internal function
1039 * @inode: inode to mark
1040 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1041 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1042 * mark_inode_dirty_sync.
1044 * Put the inode on the super block's dirty list.
1046 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1047 * dirty list only if it is hashed or if it refers to a blockdev.
1048 * If it was not hashed, it will never be added to the dirty list
1049 * even if it is later hashed, as it will have been marked dirty already.
1051 * In short, make sure you hash any inodes _before_ you start marking
1052 * them dirty.
1054 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1055 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1056 * the kernel-internal blockdev inode represents the dirtying time of the
1057 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1058 * page->mapping->host, so the page-dirtying time is recorded in the internal
1059 * blockdev inode.
1061 void __mark_inode_dirty(struct inode *inode, int flags)
1063 struct super_block *sb = inode->i_sb;
1064 struct backing_dev_info *bdi = NULL;
1067 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1068 * dirty the inode itself
1070 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1071 if (sb->s_op->dirty_inode)
1072 sb->s_op->dirty_inode(inode, flags);
1076 * make sure that changes are seen by all cpus before we test i_state
1077 * -- mikulas
1079 smp_mb();
1081 /* avoid the locking if we can */
1082 if ((inode->i_state & flags) == flags)
1083 return;
1085 if (unlikely(block_dump))
1086 block_dump___mark_inode_dirty(inode);
1088 spin_lock(&inode->i_lock);
1089 if ((inode->i_state & flags) != flags) {
1090 const int was_dirty = inode->i_state & I_DIRTY;
1092 inode->i_state |= flags;
1095 * If the inode is being synced, just update its dirty state.
1096 * The unlocker will place the inode on the appropriate
1097 * superblock list, based upon its state.
1099 if (inode->i_state & I_SYNC)
1100 goto out_unlock_inode;
1103 * Only add valid (hashed) inodes to the superblock's
1104 * dirty list. Add blockdev inodes as well.
1106 if (!S_ISBLK(inode->i_mode)) {
1107 if (inode_unhashed(inode))
1108 goto out_unlock_inode;
1110 if (inode->i_state & I_FREEING)
1111 goto out_unlock_inode;
1114 * If the inode was already on b_dirty/b_io/b_more_io, don't
1115 * reposition it (that would break b_dirty time-ordering).
1117 if (!was_dirty) {
1118 bool wakeup_bdi = false;
1119 bdi = inode_to_bdi(inode);
1121 if (bdi_cap_writeback_dirty(bdi)) {
1122 WARN(!test_bit(BDI_registered, &bdi->state),
1123 "bdi-%s not registered\n", bdi->name);
1126 * If this is the first dirty inode for this
1127 * bdi, we have to wake-up the corresponding
1128 * bdi thread to make sure background
1129 * write-back happens later.
1131 if (!wb_has_dirty_io(&bdi->wb))
1132 wakeup_bdi = true;
1135 spin_unlock(&inode->i_lock);
1136 spin_lock(&bdi->wb.list_lock);
1137 inode->dirtied_when = jiffies;
1138 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1139 spin_unlock(&bdi->wb.list_lock);
1141 if (wakeup_bdi)
1142 bdi_wakeup_thread_delayed(bdi);
1143 return;
1146 out_unlock_inode:
1147 spin_unlock(&inode->i_lock);
1150 EXPORT_SYMBOL(__mark_inode_dirty);
1153 * Write out a superblock's list of dirty inodes. A wait will be performed
1154 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1156 * If older_than_this is non-NULL, then only write out inodes which
1157 * had their first dirtying at a time earlier than *older_than_this.
1159 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1160 * This function assumes that the blockdev superblock's inodes are backed by
1161 * a variety of queues, so all inodes are searched. For other superblocks,
1162 * assume that all inodes are backed by the same queue.
1164 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1165 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1166 * on the writer throttling path, and we get decent balancing between many
1167 * throttled threads: we don't want them all piling up on inode_sync_wait.
1169 static void wait_sb_inodes(struct super_block *sb)
1171 struct inode *inode, *old_inode = NULL;
1174 * We need to be protected against the filesystem going from
1175 * r/o to r/w or vice versa.
1177 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1179 spin_lock(&inode_sb_list_lock);
1182 * Data integrity sync. Must wait for all pages under writeback,
1183 * because there may have been pages dirtied before our sync
1184 * call, but which had writeout started before we write it out.
1185 * In which case, the inode may not be on the dirty list, but
1186 * we still have to wait for that writeout.
1188 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1189 struct address_space *mapping = inode->i_mapping;
1191 spin_lock(&inode->i_lock);
1192 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1193 (mapping->nrpages == 0)) {
1194 spin_unlock(&inode->i_lock);
1195 continue;
1197 __iget(inode);
1198 spin_unlock(&inode->i_lock);
1199 spin_unlock(&inode_sb_list_lock);
1202 * We hold a reference to 'inode' so it couldn't have been
1203 * removed from s_inodes list while we dropped the
1204 * inode_sb_list_lock. We cannot iput the inode now as we can
1205 * be holding the last reference and we cannot iput it under
1206 * inode_sb_list_lock. So we keep the reference and iput it
1207 * later.
1209 iput(old_inode);
1210 old_inode = inode;
1212 filemap_fdatawait(mapping);
1214 cond_resched();
1216 spin_lock(&inode_sb_list_lock);
1218 spin_unlock(&inode_sb_list_lock);
1219 iput(old_inode);
1223 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1224 * @sb: the superblock
1225 * @nr: the number of pages to write
1227 * Start writeback on some inodes on this super_block. No guarantees are made
1228 * on how many (if any) will be written, and this function does not wait
1229 * for IO completion of submitted IO.
1231 void writeback_inodes_sb_nr(struct super_block *sb,
1232 unsigned long nr,
1233 enum wb_reason reason)
1235 DECLARE_COMPLETION_ONSTACK(done);
1236 struct wb_writeback_work work = {
1237 .sb = sb,
1238 .sync_mode = WB_SYNC_NONE,
1239 .tagged_writepages = 1,
1240 .done = &done,
1241 .nr_pages = nr,
1242 .reason = reason,
1245 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1246 bdi_queue_work(sb->s_bdi, &work);
1247 wait_for_completion(&done);
1249 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1252 * writeback_inodes_sb - writeback dirty inodes from given super_block
1253 * @sb: the superblock
1255 * Start writeback on some inodes on this super_block. No guarantees are made
1256 * on how many (if any) will be written, and this function does not wait
1257 * for IO completion of submitted IO.
1259 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1261 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1263 EXPORT_SYMBOL(writeback_inodes_sb);
1266 * writeback_inodes_sb_if_idle - start writeback if none underway
1267 * @sb: the superblock
1269 * Invoke writeback_inodes_sb if no writeback is currently underway.
1270 * Returns 1 if writeback was started, 0 if not.
1272 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1274 if (!writeback_in_progress(sb->s_bdi)) {
1275 down_read(&sb->s_umount);
1276 writeback_inodes_sb(sb, reason);
1277 up_read(&sb->s_umount);
1278 return 1;
1279 } else
1280 return 0;
1282 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1285 * writeback_inodes_sb_if_idle - start writeback if none underway
1286 * @sb: the superblock
1287 * @nr: the number of pages to write
1289 * Invoke writeback_inodes_sb if no writeback is currently underway.
1290 * Returns 1 if writeback was started, 0 if not.
1292 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1293 unsigned long nr,
1294 enum wb_reason reason)
1296 if (!writeback_in_progress(sb->s_bdi)) {
1297 down_read(&sb->s_umount);
1298 writeback_inodes_sb_nr(sb, nr, reason);
1299 up_read(&sb->s_umount);
1300 return 1;
1301 } else
1302 return 0;
1304 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1307 * sync_inodes_sb - sync sb inode pages
1308 * @sb: the superblock
1310 * This function writes and waits on any dirty inode belonging to this
1311 * super_block.
1313 void sync_inodes_sb(struct super_block *sb)
1315 DECLARE_COMPLETION_ONSTACK(done);
1316 struct wb_writeback_work work = {
1317 .sb = sb,
1318 .sync_mode = WB_SYNC_ALL,
1319 .nr_pages = LONG_MAX,
1320 .range_cyclic = 0,
1321 .done = &done,
1322 .reason = WB_REASON_SYNC,
1325 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1327 bdi_queue_work(sb->s_bdi, &work);
1328 wait_for_completion(&done);
1330 wait_sb_inodes(sb);
1332 EXPORT_SYMBOL(sync_inodes_sb);
1335 * write_inode_now - write an inode to disk
1336 * @inode: inode to write to disk
1337 * @sync: whether the write should be synchronous or not
1339 * This function commits an inode to disk immediately if it is dirty. This is
1340 * primarily needed by knfsd.
1342 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1344 int write_inode_now(struct inode *inode, int sync)
1346 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1347 int ret;
1348 struct writeback_control wbc = {
1349 .nr_to_write = LONG_MAX,
1350 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1351 .range_start = 0,
1352 .range_end = LLONG_MAX,
1355 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1356 wbc.nr_to_write = 0;
1358 might_sleep();
1359 spin_lock(&wb->list_lock);
1360 spin_lock(&inode->i_lock);
1361 ret = writeback_single_inode(inode, wb, &wbc);
1362 spin_unlock(&inode->i_lock);
1363 spin_unlock(&wb->list_lock);
1364 if (sync)
1365 inode_sync_wait(inode);
1366 return ret;
1368 EXPORT_SYMBOL(write_inode_now);
1371 * sync_inode - write an inode and its pages to disk.
1372 * @inode: the inode to sync
1373 * @wbc: controls the writeback mode
1375 * sync_inode() will write an inode and its pages to disk. It will also
1376 * correctly update the inode on its superblock's dirty inode lists and will
1377 * update inode->i_state.
1379 * The caller must have a ref on the inode.
1381 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1383 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1384 int ret;
1386 spin_lock(&wb->list_lock);
1387 spin_lock(&inode->i_lock);
1388 ret = writeback_single_inode(inode, wb, wbc);
1389 spin_unlock(&inode->i_lock);
1390 spin_unlock(&wb->list_lock);
1391 return ret;
1393 EXPORT_SYMBOL(sync_inode);
1396 * sync_inode_metadata - write an inode to disk
1397 * @inode: the inode to sync
1398 * @wait: wait for I/O to complete.
1400 * Write an inode to disk and adjust its dirty state after completion.
1402 * Note: only writes the actual inode, no associated data or other metadata.
1404 int sync_inode_metadata(struct inode *inode, int wait)
1406 struct writeback_control wbc = {
1407 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1408 .nr_to_write = 0, /* metadata-only */
1411 return sync_inode(inode, &wbc);
1413 EXPORT_SYMBOL(sync_inode_metadata);