2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency
= 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG
;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity
= 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency
= 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly
;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
83 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
86 * The exponential sliding window over which load is averaged for shares
90 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
92 #ifdef CONFIG_CFS_BANDWIDTH
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
101 * default: 5 msec, units: microseconds
103 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
106 static const struct sched_class fair_sched_class
;
108 /**************************************************************
109 * CFS operations on generic schedulable entities:
112 #ifdef CONFIG_FAIR_GROUP_SCHED
114 /* cpu runqueue to which this cfs_rq is attached */
115 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
120 /* An entity is a task if it doesn't "own" a runqueue */
121 #define entity_is_task(se) (!se->my_q)
123 static inline struct task_struct
*task_of(struct sched_entity
*se
)
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se
));
128 return container_of(se
, struct task_struct
, se
);
131 /* Walk up scheduling entities hierarchy */
132 #define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
135 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
140 /* runqueue on which this entity is (to be) queued */
141 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
146 /* runqueue "owned" by this group */
147 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
152 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
154 if (!cfs_rq
->on_list
) {
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
161 if (cfs_rq
->tg
->parent
&&
162 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
163 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
164 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
166 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
167 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
174 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
176 if (cfs_rq
->on_list
) {
177 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
182 /* Iterate thr' all leaf cfs_rq's on a runqueue */
183 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186 /* Do the two (enqueued) entities belong to the same group ? */
188 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
190 if (se
->cfs_rq
== pse
->cfs_rq
)
196 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
201 /* return depth at which a sched entity is present in the hierarchy */
202 static inline int depth_se(struct sched_entity
*se
)
206 for_each_sched_entity(se
)
213 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
215 int se_depth
, pse_depth
;
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
224 /* First walk up until both entities are at same depth */
225 se_depth
= depth_se(*se
);
226 pse_depth
= depth_se(*pse
);
228 while (se_depth
> pse_depth
) {
230 *se
= parent_entity(*se
);
233 while (pse_depth
> se_depth
) {
235 *pse
= parent_entity(*pse
);
238 while (!is_same_group(*se
, *pse
)) {
239 *se
= parent_entity(*se
);
240 *pse
= parent_entity(*pse
);
244 #else /* !CONFIG_FAIR_GROUP_SCHED */
246 static inline struct task_struct
*task_of(struct sched_entity
*se
)
248 return container_of(se
, struct task_struct
, se
);
251 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
253 return container_of(cfs_rq
, struct rq
, cfs
);
256 #define entity_is_task(se) 1
258 #define for_each_sched_entity(se) \
259 for (; se; se = NULL)
261 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
263 return &task_rq(p
)->cfs
;
266 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
268 struct task_struct
*p
= task_of(se
);
269 struct rq
*rq
= task_rq(p
);
274 /* runqueue "owned" by this group */
275 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
280 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
288 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
292 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
297 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
303 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
307 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
310 unsigned long delta_exec
);
312 /**************************************************************
313 * Scheduling class tree data structure manipulation methods:
316 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
318 s64 delta
= (s64
)(vruntime
- min_vruntime
);
320 min_vruntime
= vruntime
;
325 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
327 s64 delta
= (s64
)(vruntime
- min_vruntime
);
329 min_vruntime
= vruntime
;
334 static inline int entity_before(struct sched_entity
*a
,
335 struct sched_entity
*b
)
337 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
340 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
342 u64 vruntime
= cfs_rq
->min_vruntime
;
345 vruntime
= cfs_rq
->curr
->vruntime
;
347 if (cfs_rq
->rb_leftmost
) {
348 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
353 vruntime
= se
->vruntime
;
355 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
358 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
361 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
366 * Enqueue an entity into the rb-tree:
368 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
370 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
371 struct rb_node
*parent
= NULL
;
372 struct sched_entity
*entry
;
376 * Find the right place in the rbtree:
380 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
385 if (entity_before(se
, entry
)) {
386 link
= &parent
->rb_left
;
388 link
= &parent
->rb_right
;
394 * Maintain a cache of leftmost tree entries (it is frequently
398 cfs_rq
->rb_leftmost
= &se
->run_node
;
400 rb_link_node(&se
->run_node
, parent
, link
);
401 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
404 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
406 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
407 struct rb_node
*next_node
;
409 next_node
= rb_next(&se
->run_node
);
410 cfs_rq
->rb_leftmost
= next_node
;
413 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
416 static struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
418 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
423 return rb_entry(left
, struct sched_entity
, run_node
);
426 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
428 struct rb_node
*next
= rb_next(&se
->run_node
);
433 return rb_entry(next
, struct sched_entity
, run_node
);
436 #ifdef CONFIG_SCHED_DEBUG
437 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
439 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
444 return rb_entry(last
, struct sched_entity
, run_node
);
447 /**************************************************************
448 * Scheduling class statistics methods:
451 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
452 void __user
*buffer
, size_t *lenp
,
455 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
456 int factor
= get_update_sysctl_factor();
461 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
462 sysctl_sched_min_granularity
);
464 #define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity
);
467 WRT_SYSCTL(sched_latency
);
468 WRT_SYSCTL(sched_wakeup_granularity
);
478 static inline unsigned long
479 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
481 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
482 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
488 * The idea is to set a period in which each task runs once.
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
493 * p = (nr <= nl) ? l : l*nr/nl
495 static u64
__sched_period(unsigned long nr_running
)
497 u64 period
= sysctl_sched_latency
;
498 unsigned long nr_latency
= sched_nr_latency
;
500 if (unlikely(nr_running
> nr_latency
)) {
501 period
= sysctl_sched_min_granularity
;
502 period
*= nr_running
;
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
514 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
516 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
518 for_each_sched_entity(se
) {
519 struct load_weight
*load
;
520 struct load_weight lw
;
522 cfs_rq
= cfs_rq_of(se
);
523 load
= &cfs_rq
->load
;
525 if (unlikely(!se
->on_rq
)) {
528 update_load_add(&lw
, se
->load
.weight
);
531 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
537 * We calculate the vruntime slice of a to be inserted task
541 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
543 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
546 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
547 static void update_cfs_shares(struct cfs_rq
*cfs_rq
);
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
554 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
555 unsigned long delta_exec
)
557 unsigned long delta_exec_weighted
;
559 schedstat_set(curr
->statistics
.exec_max
,
560 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
562 curr
->sum_exec_runtime
+= delta_exec
;
563 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
564 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
566 curr
->vruntime
+= delta_exec_weighted
;
567 update_min_vruntime(cfs_rq
);
569 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
570 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
574 static void update_curr(struct cfs_rq
*cfs_rq
)
576 struct sched_entity
*curr
= cfs_rq
->curr
;
577 u64 now
= rq_of(cfs_rq
)->clock_task
;
578 unsigned long delta_exec
;
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
588 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
592 __update_curr(cfs_rq
, curr
, delta_exec
);
593 curr
->exec_start
= now
;
595 if (entity_is_task(curr
)) {
596 struct task_struct
*curtask
= task_of(curr
);
598 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
599 cpuacct_charge(curtask
, delta_exec
);
600 account_group_exec_runtime(curtask
, delta_exec
);
603 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
607 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
609 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
613 * Task is being enqueued - update stats:
615 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
621 if (se
!= cfs_rq
->curr
)
622 update_stats_wait_start(cfs_rq
, se
);
626 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
628 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
629 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
630 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
631 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
632 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
633 #ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se
)) {
635 trace_sched_stat_wait(task_of(se
),
636 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
639 schedstat_set(se
->statistics
.wait_start
, 0);
643 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
646 * Mark the end of the wait period if dequeueing a
649 if (se
!= cfs_rq
->curr
)
650 update_stats_wait_end(cfs_rq
, se
);
654 * We are picking a new current task - update its stats:
657 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
660 * We are starting a new run period:
662 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
665 /**************************************************
666 * Scheduling class queueing methods:
669 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
671 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
673 cfs_rq
->task_weight
+= weight
;
677 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
683 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
685 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
686 if (!parent_entity(se
))
687 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
688 if (entity_is_task(se
)) {
689 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
690 list_add(&se
->group_node
, &cfs_rq
->tasks
);
692 cfs_rq
->nr_running
++;
696 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
698 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
699 if (!parent_entity(se
))
700 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
701 if (entity_is_task(se
)) {
702 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
703 list_del_init(&se
->group_node
);
705 cfs_rq
->nr_running
--;
708 #ifdef CONFIG_FAIR_GROUP_SCHED
709 /* we need this in update_cfs_load and load-balance functions below */
710 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
712 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
715 struct task_group
*tg
= cfs_rq
->tg
;
718 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
719 load_avg
-= cfs_rq
->load_contribution
;
721 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
722 atomic_add(load_avg
, &tg
->load_weight
);
723 cfs_rq
->load_contribution
+= load_avg
;
727 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
729 u64 period
= sysctl_sched_shares_window
;
731 unsigned long load
= cfs_rq
->load
.weight
;
733 if (cfs_rq
->tg
== &root_task_group
|| throttled_hierarchy(cfs_rq
))
736 now
= rq_of(cfs_rq
)->clock_task
;
737 delta
= now
- cfs_rq
->load_stamp
;
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
741 now
- cfs_rq
->load_last
> 4 * period
) {
742 cfs_rq
->load_period
= 0;
743 cfs_rq
->load_avg
= 0;
747 cfs_rq
->load_stamp
= now
;
748 cfs_rq
->load_unacc_exec_time
= 0;
749 cfs_rq
->load_period
+= delta
;
751 cfs_rq
->load_last
= now
;
752 cfs_rq
->load_avg
+= delta
* load
;
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update
|| cfs_rq
->load_period
> period
757 || !cfs_rq
->load_period
)
758 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
760 while (cfs_rq
->load_period
> period
) {
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
766 asm("" : "+rm" (cfs_rq
->load_period
));
767 cfs_rq
->load_period
/= 2;
768 cfs_rq
->load_avg
/= 2;
771 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
772 list_del_leaf_cfs_rq(cfs_rq
);
775 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
777 long load_weight
, load
, shares
;
779 load
= cfs_rq
->load
.weight
;
781 load_weight
= atomic_read(&tg
->load_weight
);
783 load_weight
-= cfs_rq
->load_contribution
;
785 shares
= (tg
->shares
* load
);
787 shares
/= load_weight
;
789 if (shares
< MIN_SHARES
)
791 if (shares
> tg
->shares
)
797 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
799 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
800 update_cfs_load(cfs_rq
, 0);
801 update_cfs_shares(cfs_rq
);
804 # else /* CONFIG_SMP */
805 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
809 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
814 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
817 # endif /* CONFIG_SMP */
818 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
819 unsigned long weight
)
822 /* commit outstanding execution time */
823 if (cfs_rq
->curr
== se
)
825 account_entity_dequeue(cfs_rq
, se
);
828 update_load_set(&se
->load
, weight
);
831 account_entity_enqueue(cfs_rq
, se
);
834 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
836 struct task_group
*tg
;
837 struct sched_entity
*se
;
841 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
842 if (!se
|| throttled_hierarchy(cfs_rq
))
845 if (likely(se
->load
.weight
== tg
->shares
))
848 shares
= calc_cfs_shares(cfs_rq
, tg
);
850 reweight_entity(cfs_rq_of(se
), se
, shares
);
852 #else /* CONFIG_FAIR_GROUP_SCHED */
853 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
857 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
861 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
864 #endif /* CONFIG_FAIR_GROUP_SCHED */
866 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
868 #ifdef CONFIG_SCHEDSTATS
869 struct task_struct
*tsk
= NULL
;
871 if (entity_is_task(se
))
874 if (se
->statistics
.sleep_start
) {
875 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
880 if (unlikely(delta
> se
->statistics
.sleep_max
))
881 se
->statistics
.sleep_max
= delta
;
883 se
->statistics
.sleep_start
= 0;
884 se
->statistics
.sum_sleep_runtime
+= delta
;
887 account_scheduler_latency(tsk
, delta
>> 10, 1);
888 trace_sched_stat_sleep(tsk
, delta
);
891 if (se
->statistics
.block_start
) {
892 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
897 if (unlikely(delta
> se
->statistics
.block_max
))
898 se
->statistics
.block_max
= delta
;
900 se
->statistics
.block_start
= 0;
901 se
->statistics
.sum_sleep_runtime
+= delta
;
904 if (tsk
->in_iowait
) {
905 se
->statistics
.iowait_sum
+= delta
;
906 se
->statistics
.iowait_count
++;
907 trace_sched_stat_iowait(tsk
, delta
);
911 * Blocking time is in units of nanosecs, so shift by
912 * 20 to get a milliseconds-range estimation of the
913 * amount of time that the task spent sleeping:
915 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
916 profile_hits(SLEEP_PROFILING
,
917 (void *)get_wchan(tsk
),
920 account_scheduler_latency(tsk
, delta
>> 10, 0);
926 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
928 #ifdef CONFIG_SCHED_DEBUG
929 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
934 if (d
> 3*sysctl_sched_latency
)
935 schedstat_inc(cfs_rq
, nr_spread_over
);
940 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
942 u64 vruntime
= cfs_rq
->min_vruntime
;
945 * The 'current' period is already promised to the current tasks,
946 * however the extra weight of the new task will slow them down a
947 * little, place the new task so that it fits in the slot that
948 * stays open at the end.
950 if (initial
&& sched_feat(START_DEBIT
))
951 vruntime
+= sched_vslice(cfs_rq
, se
);
953 /* sleeps up to a single latency don't count. */
955 unsigned long thresh
= sysctl_sched_latency
;
958 * Halve their sleep time's effect, to allow
959 * for a gentler effect of sleepers:
961 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
967 /* ensure we never gain time by being placed backwards. */
968 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
970 se
->vruntime
= vruntime
;
973 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
976 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
979 * Update the normalized vruntime before updating min_vruntime
980 * through callig update_curr().
982 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
983 se
->vruntime
+= cfs_rq
->min_vruntime
;
986 * Update run-time statistics of the 'current'.
989 update_cfs_load(cfs_rq
, 0);
990 account_entity_enqueue(cfs_rq
, se
);
991 update_cfs_shares(cfs_rq
);
993 if (flags
& ENQUEUE_WAKEUP
) {
994 place_entity(cfs_rq
, se
, 0);
995 enqueue_sleeper(cfs_rq
, se
);
998 update_stats_enqueue(cfs_rq
, se
);
999 check_spread(cfs_rq
, se
);
1000 if (se
!= cfs_rq
->curr
)
1001 __enqueue_entity(cfs_rq
, se
);
1004 if (cfs_rq
->nr_running
== 1) {
1005 list_add_leaf_cfs_rq(cfs_rq
);
1006 check_enqueue_throttle(cfs_rq
);
1010 static void __clear_buddies_last(struct sched_entity
*se
)
1012 for_each_sched_entity(se
) {
1013 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1014 if (cfs_rq
->last
== se
)
1015 cfs_rq
->last
= NULL
;
1021 static void __clear_buddies_next(struct sched_entity
*se
)
1023 for_each_sched_entity(se
) {
1024 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1025 if (cfs_rq
->next
== se
)
1026 cfs_rq
->next
= NULL
;
1032 static void __clear_buddies_skip(struct sched_entity
*se
)
1034 for_each_sched_entity(se
) {
1035 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1036 if (cfs_rq
->skip
== se
)
1037 cfs_rq
->skip
= NULL
;
1043 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1045 if (cfs_rq
->last
== se
)
1046 __clear_buddies_last(se
);
1048 if (cfs_rq
->next
== se
)
1049 __clear_buddies_next(se
);
1051 if (cfs_rq
->skip
== se
)
1052 __clear_buddies_skip(se
);
1055 static void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
1058 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1061 * Update run-time statistics of the 'current'.
1063 update_curr(cfs_rq
);
1065 update_stats_dequeue(cfs_rq
, se
);
1066 if (flags
& DEQUEUE_SLEEP
) {
1067 #ifdef CONFIG_SCHEDSTATS
1068 if (entity_is_task(se
)) {
1069 struct task_struct
*tsk
= task_of(se
);
1071 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1072 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1073 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1074 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1079 clear_buddies(cfs_rq
, se
);
1081 if (se
!= cfs_rq
->curr
)
1082 __dequeue_entity(cfs_rq
, se
);
1084 update_cfs_load(cfs_rq
, 0);
1085 account_entity_dequeue(cfs_rq
, se
);
1088 * Normalize the entity after updating the min_vruntime because the
1089 * update can refer to the ->curr item and we need to reflect this
1090 * movement in our normalized position.
1092 if (!(flags
& DEQUEUE_SLEEP
))
1093 se
->vruntime
-= cfs_rq
->min_vruntime
;
1095 /* return excess runtime on last dequeue */
1096 return_cfs_rq_runtime(cfs_rq
);
1098 update_min_vruntime(cfs_rq
);
1099 update_cfs_shares(cfs_rq
);
1103 * Preempt the current task with a newly woken task if needed:
1106 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1108 unsigned long ideal_runtime
, delta_exec
;
1109 struct sched_entity
*se
;
1112 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1113 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1114 if (delta_exec
> ideal_runtime
) {
1115 resched_task(rq_of(cfs_rq
)->curr
);
1117 * The current task ran long enough, ensure it doesn't get
1118 * re-elected due to buddy favours.
1120 clear_buddies(cfs_rq
, curr
);
1125 * Ensure that a task that missed wakeup preemption by a
1126 * narrow margin doesn't have to wait for a full slice.
1127 * This also mitigates buddy induced latencies under load.
1129 if (delta_exec
< sysctl_sched_min_granularity
)
1132 se
= __pick_first_entity(cfs_rq
);
1133 delta
= curr
->vruntime
- se
->vruntime
;
1138 if (delta
> ideal_runtime
)
1139 resched_task(rq_of(cfs_rq
)->curr
);
1143 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1145 /* 'current' is not kept within the tree. */
1148 * Any task has to be enqueued before it get to execute on
1149 * a CPU. So account for the time it spent waiting on the
1152 update_stats_wait_end(cfs_rq
, se
);
1153 __dequeue_entity(cfs_rq
, se
);
1156 update_stats_curr_start(cfs_rq
, se
);
1158 #ifdef CONFIG_SCHEDSTATS
1160 * Track our maximum slice length, if the CPU's load is at
1161 * least twice that of our own weight (i.e. dont track it
1162 * when there are only lesser-weight tasks around):
1164 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1165 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1166 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1169 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1173 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1176 * Pick the next process, keeping these things in mind, in this order:
1177 * 1) keep things fair between processes/task groups
1178 * 2) pick the "next" process, since someone really wants that to run
1179 * 3) pick the "last" process, for cache locality
1180 * 4) do not run the "skip" process, if something else is available
1182 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1184 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1185 struct sched_entity
*left
= se
;
1188 * Avoid running the skip buddy, if running something else can
1189 * be done without getting too unfair.
1191 if (cfs_rq
->skip
== se
) {
1192 struct sched_entity
*second
= __pick_next_entity(se
);
1193 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
1198 * Prefer last buddy, try to return the CPU to a preempted task.
1200 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1204 * Someone really wants this to run. If it's not unfair, run it.
1206 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1209 clear_buddies(cfs_rq
, se
);
1214 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
1216 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1219 * If still on the runqueue then deactivate_task()
1220 * was not called and update_curr() has to be done:
1223 update_curr(cfs_rq
);
1225 /* throttle cfs_rqs exceeding runtime */
1226 check_cfs_rq_runtime(cfs_rq
);
1228 check_spread(cfs_rq
, prev
);
1230 update_stats_wait_start(cfs_rq
, prev
);
1231 /* Put 'current' back into the tree. */
1232 __enqueue_entity(cfs_rq
, prev
);
1234 cfs_rq
->curr
= NULL
;
1238 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1241 * Update run-time statistics of the 'current'.
1243 update_curr(cfs_rq
);
1246 * Update share accounting for long-running entities.
1248 update_entity_shares_tick(cfs_rq
);
1250 #ifdef CONFIG_SCHED_HRTICK
1252 * queued ticks are scheduled to match the slice, so don't bother
1253 * validating it and just reschedule.
1256 resched_task(rq_of(cfs_rq
)->curr
);
1260 * don't let the period tick interfere with the hrtick preemption
1262 if (!sched_feat(DOUBLE_TICK
) &&
1263 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1267 if (cfs_rq
->nr_running
> 1)
1268 check_preempt_tick(cfs_rq
, curr
);
1272 /**************************************************
1273 * CFS bandwidth control machinery
1276 #ifdef CONFIG_CFS_BANDWIDTH
1278 * default period for cfs group bandwidth.
1279 * default: 0.1s, units: nanoseconds
1281 static inline u64
default_cfs_period(void)
1283 return 100000000ULL;
1286 static inline u64
sched_cfs_bandwidth_slice(void)
1288 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
1292 * Replenish runtime according to assigned quota and update expiration time.
1293 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1294 * additional synchronization around rq->lock.
1296 * requires cfs_b->lock
1298 static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
1302 if (cfs_b
->quota
== RUNTIME_INF
)
1305 now
= sched_clock_cpu(smp_processor_id());
1306 cfs_b
->runtime
= cfs_b
->quota
;
1307 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
1310 /* returns 0 on failure to allocate runtime */
1311 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1313 struct task_group
*tg
= cfs_rq
->tg
;
1314 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
1315 u64 amount
= 0, min_amount
, expires
;
1317 /* note: this is a positive sum as runtime_remaining <= 0 */
1318 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
1320 raw_spin_lock(&cfs_b
->lock
);
1321 if (cfs_b
->quota
== RUNTIME_INF
)
1322 amount
= min_amount
;
1325 * If the bandwidth pool has become inactive, then at least one
1326 * period must have elapsed since the last consumption.
1327 * Refresh the global state and ensure bandwidth timer becomes
1330 if (!cfs_b
->timer_active
) {
1331 __refill_cfs_bandwidth_runtime(cfs_b
);
1332 __start_cfs_bandwidth(cfs_b
);
1335 if (cfs_b
->runtime
> 0) {
1336 amount
= min(cfs_b
->runtime
, min_amount
);
1337 cfs_b
->runtime
-= amount
;
1341 expires
= cfs_b
->runtime_expires
;
1342 raw_spin_unlock(&cfs_b
->lock
);
1344 cfs_rq
->runtime_remaining
+= amount
;
1346 * we may have advanced our local expiration to account for allowed
1347 * spread between our sched_clock and the one on which runtime was
1350 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
1351 cfs_rq
->runtime_expires
= expires
;
1353 return cfs_rq
->runtime_remaining
> 0;
1357 * Note: This depends on the synchronization provided by sched_clock and the
1358 * fact that rq->clock snapshots this value.
1360 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1362 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1363 struct rq
*rq
= rq_of(cfs_rq
);
1365 /* if the deadline is ahead of our clock, nothing to do */
1366 if (likely((s64
)(rq
->clock
- cfs_rq
->runtime_expires
) < 0))
1369 if (cfs_rq
->runtime_remaining
< 0)
1373 * If the local deadline has passed we have to consider the
1374 * possibility that our sched_clock is 'fast' and the global deadline
1375 * has not truly expired.
1377 * Fortunately we can check determine whether this the case by checking
1378 * whether the global deadline has advanced.
1381 if ((s64
)(cfs_rq
->runtime_expires
- cfs_b
->runtime_expires
) >= 0) {
1382 /* extend local deadline, drift is bounded above by 2 ticks */
1383 cfs_rq
->runtime_expires
+= TICK_NSEC
;
1385 /* global deadline is ahead, expiration has passed */
1386 cfs_rq
->runtime_remaining
= 0;
1390 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1391 unsigned long delta_exec
)
1393 /* dock delta_exec before expiring quota (as it could span periods) */
1394 cfs_rq
->runtime_remaining
-= delta_exec
;
1395 expire_cfs_rq_runtime(cfs_rq
);
1397 if (likely(cfs_rq
->runtime_remaining
> 0))
1401 * if we're unable to extend our runtime we resched so that the active
1402 * hierarchy can be throttled
1404 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
1405 resched_task(rq_of(cfs_rq
)->curr
);
1408 static __always_inline
void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1409 unsigned long delta_exec
)
1411 if (!cfs_rq
->runtime_enabled
)
1414 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
1417 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
1419 return cfs_rq
->throttled
;
1422 /* check whether cfs_rq, or any parent, is throttled */
1423 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
1425 return cfs_rq
->throttle_count
;
1429 * Ensure that neither of the group entities corresponding to src_cpu or
1430 * dest_cpu are members of a throttled hierarchy when performing group
1431 * load-balance operations.
1433 static inline int throttled_lb_pair(struct task_group
*tg
,
1434 int src_cpu
, int dest_cpu
)
1436 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
1438 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
1439 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
1441 return throttled_hierarchy(src_cfs_rq
) ||
1442 throttled_hierarchy(dest_cfs_rq
);
1445 /* updated child weight may affect parent so we have to do this bottom up */
1446 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
1448 struct rq
*rq
= data
;
1449 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
1451 cfs_rq
->throttle_count
--;
1453 if (!cfs_rq
->throttle_count
) {
1454 u64 delta
= rq
->clock_task
- cfs_rq
->load_stamp
;
1456 /* leaving throttled state, advance shares averaging windows */
1457 cfs_rq
->load_stamp
+= delta
;
1458 cfs_rq
->load_last
+= delta
;
1460 /* update entity weight now that we are on_rq again */
1461 update_cfs_shares(cfs_rq
);
1468 static int tg_throttle_down(struct task_group
*tg
, void *data
)
1470 struct rq
*rq
= data
;
1471 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
1473 /* group is entering throttled state, record last load */
1474 if (!cfs_rq
->throttle_count
)
1475 update_cfs_load(cfs_rq
, 0);
1476 cfs_rq
->throttle_count
++;
1481 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
1483 struct rq
*rq
= rq_of(cfs_rq
);
1484 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1485 struct sched_entity
*se
;
1486 long task_delta
, dequeue
= 1;
1488 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
1490 /* account load preceding throttle */
1492 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
1495 task_delta
= cfs_rq
->h_nr_running
;
1496 for_each_sched_entity(se
) {
1497 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
1498 /* throttled entity or throttle-on-deactivate */
1503 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
1504 qcfs_rq
->h_nr_running
-= task_delta
;
1506 if (qcfs_rq
->load
.weight
)
1511 rq
->nr_running
-= task_delta
;
1513 cfs_rq
->throttled
= 1;
1514 cfs_rq
->throttled_timestamp
= rq
->clock
;
1515 raw_spin_lock(&cfs_b
->lock
);
1516 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
1517 raw_spin_unlock(&cfs_b
->lock
);
1520 static void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
1522 struct rq
*rq
= rq_of(cfs_rq
);
1523 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1524 struct sched_entity
*se
;
1528 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
1530 cfs_rq
->throttled
= 0;
1531 raw_spin_lock(&cfs_b
->lock
);
1532 cfs_b
->throttled_time
+= rq
->clock
- cfs_rq
->throttled_timestamp
;
1533 list_del_rcu(&cfs_rq
->throttled_list
);
1534 raw_spin_unlock(&cfs_b
->lock
);
1535 cfs_rq
->throttled_timestamp
= 0;
1537 update_rq_clock(rq
);
1538 /* update hierarchical throttle state */
1539 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
1541 if (!cfs_rq
->load
.weight
)
1544 task_delta
= cfs_rq
->h_nr_running
;
1545 for_each_sched_entity(se
) {
1549 cfs_rq
= cfs_rq_of(se
);
1551 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
1552 cfs_rq
->h_nr_running
+= task_delta
;
1554 if (cfs_rq_throttled(cfs_rq
))
1559 rq
->nr_running
+= task_delta
;
1561 /* determine whether we need to wake up potentially idle cpu */
1562 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
1563 resched_task(rq
->curr
);
1566 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
1567 u64 remaining
, u64 expires
)
1569 struct cfs_rq
*cfs_rq
;
1570 u64 runtime
= remaining
;
1573 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
1575 struct rq
*rq
= rq_of(cfs_rq
);
1577 raw_spin_lock(&rq
->lock
);
1578 if (!cfs_rq_throttled(cfs_rq
))
1581 runtime
= -cfs_rq
->runtime_remaining
+ 1;
1582 if (runtime
> remaining
)
1583 runtime
= remaining
;
1584 remaining
-= runtime
;
1586 cfs_rq
->runtime_remaining
+= runtime
;
1587 cfs_rq
->runtime_expires
= expires
;
1589 /* we check whether we're throttled above */
1590 if (cfs_rq
->runtime_remaining
> 0)
1591 unthrottle_cfs_rq(cfs_rq
);
1594 raw_spin_unlock(&rq
->lock
);
1605 * Responsible for refilling a task_group's bandwidth and unthrottling its
1606 * cfs_rqs as appropriate. If there has been no activity within the last
1607 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1608 * used to track this state.
1610 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
1612 u64 runtime
, runtime_expires
;
1613 int idle
= 1, throttled
;
1615 raw_spin_lock(&cfs_b
->lock
);
1616 /* no need to continue the timer with no bandwidth constraint */
1617 if (cfs_b
->quota
== RUNTIME_INF
)
1620 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
1621 /* idle depends on !throttled (for the case of a large deficit) */
1622 idle
= cfs_b
->idle
&& !throttled
;
1623 cfs_b
->nr_periods
+= overrun
;
1625 /* if we're going inactive then everything else can be deferred */
1629 __refill_cfs_bandwidth_runtime(cfs_b
);
1632 /* mark as potentially idle for the upcoming period */
1637 /* account preceding periods in which throttling occurred */
1638 cfs_b
->nr_throttled
+= overrun
;
1641 * There are throttled entities so we must first use the new bandwidth
1642 * to unthrottle them before making it generally available. This
1643 * ensures that all existing debts will be paid before a new cfs_rq is
1646 runtime
= cfs_b
->runtime
;
1647 runtime_expires
= cfs_b
->runtime_expires
;
1651 * This check is repeated as we are holding onto the new bandwidth
1652 * while we unthrottle. This can potentially race with an unthrottled
1653 * group trying to acquire new bandwidth from the global pool.
1655 while (throttled
&& runtime
> 0) {
1656 raw_spin_unlock(&cfs_b
->lock
);
1657 /* we can't nest cfs_b->lock while distributing bandwidth */
1658 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
1660 raw_spin_lock(&cfs_b
->lock
);
1662 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
1665 /* return (any) remaining runtime */
1666 cfs_b
->runtime
= runtime
;
1668 * While we are ensured activity in the period following an
1669 * unthrottle, this also covers the case in which the new bandwidth is
1670 * insufficient to cover the existing bandwidth deficit. (Forcing the
1671 * timer to remain active while there are any throttled entities.)
1676 cfs_b
->timer_active
= 0;
1677 raw_spin_unlock(&cfs_b
->lock
);
1682 /* a cfs_rq won't donate quota below this amount */
1683 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
1684 /* minimum remaining period time to redistribute slack quota */
1685 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
1686 /* how long we wait to gather additional slack before distributing */
1687 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
1689 /* are we near the end of the current quota period? */
1690 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
1692 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
1695 /* if the call-back is running a quota refresh is already occurring */
1696 if (hrtimer_callback_running(refresh_timer
))
1699 /* is a quota refresh about to occur? */
1700 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
1701 if (remaining
< min_expire
)
1707 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
1709 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
1711 /* if there's a quota refresh soon don't bother with slack */
1712 if (runtime_refresh_within(cfs_b
, min_left
))
1715 start_bandwidth_timer(&cfs_b
->slack_timer
,
1716 ns_to_ktime(cfs_bandwidth_slack_period
));
1719 /* we know any runtime found here is valid as update_curr() precedes return */
1720 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1722 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1723 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
1725 if (slack_runtime
<= 0)
1728 raw_spin_lock(&cfs_b
->lock
);
1729 if (cfs_b
->quota
!= RUNTIME_INF
&&
1730 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
1731 cfs_b
->runtime
+= slack_runtime
;
1733 /* we are under rq->lock, defer unthrottling using a timer */
1734 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
1735 !list_empty(&cfs_b
->throttled_cfs_rq
))
1736 start_cfs_slack_bandwidth(cfs_b
);
1738 raw_spin_unlock(&cfs_b
->lock
);
1740 /* even if it's not valid for return we don't want to try again */
1741 cfs_rq
->runtime_remaining
-= slack_runtime
;
1744 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1746 if (!cfs_rq
->runtime_enabled
|| !cfs_rq
->nr_running
)
1749 __return_cfs_rq_runtime(cfs_rq
);
1753 * This is done with a timer (instead of inline with bandwidth return) since
1754 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1756 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
1758 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
1761 /* confirm we're still not at a refresh boundary */
1762 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
))
1765 raw_spin_lock(&cfs_b
->lock
);
1766 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
) {
1767 runtime
= cfs_b
->runtime
;
1770 expires
= cfs_b
->runtime_expires
;
1771 raw_spin_unlock(&cfs_b
->lock
);
1776 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
1778 raw_spin_lock(&cfs_b
->lock
);
1779 if (expires
== cfs_b
->runtime_expires
)
1780 cfs_b
->runtime
= runtime
;
1781 raw_spin_unlock(&cfs_b
->lock
);
1785 * When a group wakes up we want to make sure that its quota is not already
1786 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1787 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1789 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
1791 /* an active group must be handled by the update_curr()->put() path */
1792 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
1795 /* ensure the group is not already throttled */
1796 if (cfs_rq_throttled(cfs_rq
))
1799 /* update runtime allocation */
1800 account_cfs_rq_runtime(cfs_rq
, 0);
1801 if (cfs_rq
->runtime_remaining
<= 0)
1802 throttle_cfs_rq(cfs_rq
);
1805 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1806 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1808 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
1812 * it's possible for a throttled entity to be forced into a running
1813 * state (e.g. set_curr_task), in this case we're finished.
1815 if (cfs_rq_throttled(cfs_rq
))
1818 throttle_cfs_rq(cfs_rq
);
1821 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1822 unsigned long delta_exec
) {}
1823 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
1824 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
1825 static void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
1827 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
1832 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
1837 static inline int throttled_lb_pair(struct task_group
*tg
,
1838 int src_cpu
, int dest_cpu
)
1844 /**************************************************
1845 * CFS operations on tasks:
1848 #ifdef CONFIG_SCHED_HRTICK
1849 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1851 struct sched_entity
*se
= &p
->se
;
1852 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1854 WARN_ON(task_rq(p
) != rq
);
1856 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1857 u64 slice
= sched_slice(cfs_rq
, se
);
1858 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1859 s64 delta
= slice
- ran
;
1868 * Don't schedule slices shorter than 10000ns, that just
1869 * doesn't make sense. Rely on vruntime for fairness.
1872 delta
= max_t(s64
, 10000LL, delta
);
1874 hrtick_start(rq
, delta
);
1879 * called from enqueue/dequeue and updates the hrtick when the
1880 * current task is from our class and nr_running is low enough
1883 static void hrtick_update(struct rq
*rq
)
1885 struct task_struct
*curr
= rq
->curr
;
1887 if (curr
->sched_class
!= &fair_sched_class
)
1890 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1891 hrtick_start_fair(rq
, curr
);
1893 #else /* !CONFIG_SCHED_HRTICK */
1895 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1899 static inline void hrtick_update(struct rq
*rq
)
1905 * The enqueue_task method is called before nr_running is
1906 * increased. Here we update the fair scheduling stats and
1907 * then put the task into the rbtree:
1910 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1912 struct cfs_rq
*cfs_rq
;
1913 struct sched_entity
*se
= &p
->se
;
1915 for_each_sched_entity(se
) {
1918 cfs_rq
= cfs_rq_of(se
);
1919 enqueue_entity(cfs_rq
, se
, flags
);
1922 * end evaluation on encountering a throttled cfs_rq
1924 * note: in the case of encountering a throttled cfs_rq we will
1925 * post the final h_nr_running increment below.
1927 if (cfs_rq_throttled(cfs_rq
))
1929 cfs_rq
->h_nr_running
++;
1931 flags
= ENQUEUE_WAKEUP
;
1934 for_each_sched_entity(se
) {
1935 cfs_rq
= cfs_rq_of(se
);
1936 cfs_rq
->h_nr_running
++;
1938 if (cfs_rq_throttled(cfs_rq
))
1941 update_cfs_load(cfs_rq
, 0);
1942 update_cfs_shares(cfs_rq
);
1950 static void set_next_buddy(struct sched_entity
*se
);
1953 * The dequeue_task method is called before nr_running is
1954 * decreased. We remove the task from the rbtree and
1955 * update the fair scheduling stats:
1957 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1959 struct cfs_rq
*cfs_rq
;
1960 struct sched_entity
*se
= &p
->se
;
1961 int task_sleep
= flags
& DEQUEUE_SLEEP
;
1963 for_each_sched_entity(se
) {
1964 cfs_rq
= cfs_rq_of(se
);
1965 dequeue_entity(cfs_rq
, se
, flags
);
1968 * end evaluation on encountering a throttled cfs_rq
1970 * note: in the case of encountering a throttled cfs_rq we will
1971 * post the final h_nr_running decrement below.
1973 if (cfs_rq_throttled(cfs_rq
))
1975 cfs_rq
->h_nr_running
--;
1977 /* Don't dequeue parent if it has other entities besides us */
1978 if (cfs_rq
->load
.weight
) {
1980 * Bias pick_next to pick a task from this cfs_rq, as
1981 * p is sleeping when it is within its sched_slice.
1983 if (task_sleep
&& parent_entity(se
))
1984 set_next_buddy(parent_entity(se
));
1986 /* avoid re-evaluating load for this entity */
1987 se
= parent_entity(se
);
1990 flags
|= DEQUEUE_SLEEP
;
1993 for_each_sched_entity(se
) {
1994 cfs_rq
= cfs_rq_of(se
);
1995 cfs_rq
->h_nr_running
--;
1997 if (cfs_rq_throttled(cfs_rq
))
2000 update_cfs_load(cfs_rq
, 0);
2001 update_cfs_shares(cfs_rq
);
2011 static void task_waking_fair(struct task_struct
*p
)
2013 struct sched_entity
*se
= &p
->se
;
2014 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2017 #ifndef CONFIG_64BIT
2018 u64 min_vruntime_copy
;
2021 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
2023 min_vruntime
= cfs_rq
->min_vruntime
;
2024 } while (min_vruntime
!= min_vruntime_copy
);
2026 min_vruntime
= cfs_rq
->min_vruntime
;
2029 se
->vruntime
-= min_vruntime
;
2032 #ifdef CONFIG_FAIR_GROUP_SCHED
2034 * effective_load() calculates the load change as seen from the root_task_group
2036 * Adding load to a group doesn't make a group heavier, but can cause movement
2037 * of group shares between cpus. Assuming the shares were perfectly aligned one
2038 * can calculate the shift in shares.
2040 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
2042 struct sched_entity
*se
= tg
->se
[cpu
];
2047 for_each_sched_entity(se
) {
2051 w
= se
->my_q
->load
.weight
;
2053 /* use this cpu's instantaneous contribution */
2054 lw
= atomic_read(&tg
->load_weight
);
2055 lw
-= se
->my_q
->load_contribution
;
2060 if (lw
> 0 && wl
< lw
)
2061 wl
= (wl
* tg
->shares
) / lw
;
2065 /* zero point is MIN_SHARES */
2066 if (wl
< MIN_SHARES
)
2068 wl
-= se
->load
.weight
;
2076 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
2077 unsigned long wl
, unsigned long wg
)
2084 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
2086 s64 this_load
, load
;
2087 int idx
, this_cpu
, prev_cpu
;
2088 unsigned long tl_per_task
;
2089 struct task_group
*tg
;
2090 unsigned long weight
;
2094 this_cpu
= smp_processor_id();
2095 prev_cpu
= task_cpu(p
);
2096 load
= source_load(prev_cpu
, idx
);
2097 this_load
= target_load(this_cpu
, idx
);
2100 * If sync wakeup then subtract the (maximum possible)
2101 * effect of the currently running task from the load
2102 * of the current CPU:
2105 tg
= task_group(current
);
2106 weight
= current
->se
.load
.weight
;
2108 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
2109 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
2113 weight
= p
->se
.load
.weight
;
2116 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2117 * due to the sync cause above having dropped this_load to 0, we'll
2118 * always have an imbalance, but there's really nothing you can do
2119 * about that, so that's good too.
2121 * Otherwise check if either cpus are near enough in load to allow this
2122 * task to be woken on this_cpu.
2124 if (this_load
> 0) {
2125 s64 this_eff_load
, prev_eff_load
;
2127 this_eff_load
= 100;
2128 this_eff_load
*= power_of(prev_cpu
);
2129 this_eff_load
*= this_load
+
2130 effective_load(tg
, this_cpu
, weight
, weight
);
2132 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
2133 prev_eff_load
*= power_of(this_cpu
);
2134 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
2136 balanced
= this_eff_load
<= prev_eff_load
;
2141 * If the currently running task will sleep within
2142 * a reasonable amount of time then attract this newly
2145 if (sync
&& balanced
)
2148 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
2149 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
2152 (this_load
<= load
&&
2153 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
2155 * This domain has SD_WAKE_AFFINE and
2156 * p is cache cold in this domain, and
2157 * there is no bad imbalance.
2159 schedstat_inc(sd
, ttwu_move_affine
);
2160 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
2168 * find_idlest_group finds and returns the least busy CPU group within the
2171 static struct sched_group
*
2172 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
2173 int this_cpu
, int load_idx
)
2175 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
2176 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2177 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2180 unsigned long load
, avg_load
;
2184 /* Skip over this group if it has no CPUs allowed */
2185 if (!cpumask_intersects(sched_group_cpus(group
),
2186 tsk_cpus_allowed(p
)))
2189 local_group
= cpumask_test_cpu(this_cpu
,
2190 sched_group_cpus(group
));
2192 /* Tally up the load of all CPUs in the group */
2195 for_each_cpu(i
, sched_group_cpus(group
)) {
2196 /* Bias balancing toward cpus of our domain */
2198 load
= source_load(i
, load_idx
);
2200 load
= target_load(i
, load_idx
);
2205 /* Adjust by relative CPU power of the group */
2206 avg_load
= (avg_load
* SCHED_POWER_SCALE
) / group
->sgp
->power
;
2209 this_load
= avg_load
;
2210 } else if (avg_load
< min_load
) {
2211 min_load
= avg_load
;
2214 } while (group
= group
->next
, group
!= sd
->groups
);
2216 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2222 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2225 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2227 unsigned long load
, min_load
= ULONG_MAX
;
2231 /* Traverse only the allowed CPUs */
2232 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
2233 load
= weighted_cpuload(i
);
2235 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2245 * Try and locate an idle CPU in the sched_domain.
2247 static int select_idle_sibling(struct task_struct
*p
, int target
)
2249 int cpu
= smp_processor_id();
2250 int prev_cpu
= task_cpu(p
);
2251 struct sched_domain
*sd
;
2255 * If the task is going to be woken-up on this cpu and if it is
2256 * already idle, then it is the right target.
2258 if (target
== cpu
&& idle_cpu(cpu
))
2262 * If the task is going to be woken-up on the cpu where it previously
2263 * ran and if it is currently idle, then it the right target.
2265 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
2269 * Otherwise, iterate the domains and find an elegible idle cpu.
2272 for_each_domain(target
, sd
) {
2273 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
2276 for_each_cpu_and(i
, sched_domain_span(sd
), tsk_cpus_allowed(p
)) {
2284 * Lets stop looking for an idle sibling when we reached
2285 * the domain that spans the current cpu and prev_cpu.
2287 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
2288 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
2297 * sched_balance_self: balance the current task (running on cpu) in domains
2298 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2301 * Balance, ie. select the least loaded group.
2303 * Returns the target CPU number, or the same CPU if no balancing is needed.
2305 * preempt must be disabled.
2308 select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
2310 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
2311 int cpu
= smp_processor_id();
2312 int prev_cpu
= task_cpu(p
);
2314 int want_affine
= 0;
2316 int sync
= wake_flags
& WF_SYNC
;
2318 if (sd_flag
& SD_BALANCE_WAKE
) {
2319 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
2325 for_each_domain(cpu
, tmp
) {
2326 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
2330 * If power savings logic is enabled for a domain, see if we
2331 * are not overloaded, if so, don't balance wider.
2333 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
2334 unsigned long power
= 0;
2335 unsigned long nr_running
= 0;
2336 unsigned long capacity
;
2339 for_each_cpu(i
, sched_domain_span(tmp
)) {
2340 power
+= power_of(i
);
2341 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
2344 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_POWER_SCALE
);
2346 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2349 if (nr_running
< capacity
)
2354 * If both cpu and prev_cpu are part of this domain,
2355 * cpu is a valid SD_WAKE_AFFINE target.
2357 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
2358 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
2363 if (!want_sd
&& !want_affine
)
2366 if (!(tmp
->flags
& sd_flag
))
2374 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
2377 new_cpu
= select_idle_sibling(p
, prev_cpu
);
2382 int load_idx
= sd
->forkexec_idx
;
2383 struct sched_group
*group
;
2386 if (!(sd
->flags
& sd_flag
)) {
2391 if (sd_flag
& SD_BALANCE_WAKE
)
2392 load_idx
= sd
->wake_idx
;
2394 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
2400 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
2401 if (new_cpu
== -1 || new_cpu
== cpu
) {
2402 /* Now try balancing at a lower domain level of cpu */
2407 /* Now try balancing at a lower domain level of new_cpu */
2409 weight
= sd
->span_weight
;
2411 for_each_domain(cpu
, tmp
) {
2412 if (weight
<= tmp
->span_weight
)
2414 if (tmp
->flags
& sd_flag
)
2417 /* while loop will break here if sd == NULL */
2424 #endif /* CONFIG_SMP */
2426 static unsigned long
2427 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
2429 unsigned long gran
= sysctl_sched_wakeup_granularity
;
2432 * Since its curr running now, convert the gran from real-time
2433 * to virtual-time in his units.
2435 * By using 'se' instead of 'curr' we penalize light tasks, so
2436 * they get preempted easier. That is, if 'se' < 'curr' then
2437 * the resulting gran will be larger, therefore penalizing the
2438 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2439 * be smaller, again penalizing the lighter task.
2441 * This is especially important for buddies when the leftmost
2442 * task is higher priority than the buddy.
2444 return calc_delta_fair(gran
, se
);
2448 * Should 'se' preempt 'curr'.
2462 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
2464 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
2469 gran
= wakeup_gran(curr
, se
);
2476 static void set_last_buddy(struct sched_entity
*se
)
2478 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
2481 for_each_sched_entity(se
)
2482 cfs_rq_of(se
)->last
= se
;
2485 static void set_next_buddy(struct sched_entity
*se
)
2487 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
2490 for_each_sched_entity(se
)
2491 cfs_rq_of(se
)->next
= se
;
2494 static void set_skip_buddy(struct sched_entity
*se
)
2496 for_each_sched_entity(se
)
2497 cfs_rq_of(se
)->skip
= se
;
2501 * Preempt the current task with a newly woken task if needed:
2503 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2505 struct task_struct
*curr
= rq
->curr
;
2506 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
2507 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
2508 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
2509 int next_buddy_marked
= 0;
2511 if (unlikely(se
== pse
))
2515 * This is possible from callers such as pull_task(), in which we
2516 * unconditionally check_prempt_curr() after an enqueue (which may have
2517 * lead to a throttle). This both saves work and prevents false
2518 * next-buddy nomination below.
2520 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
2523 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
2524 set_next_buddy(pse
);
2525 next_buddy_marked
= 1;
2529 * We can come here with TIF_NEED_RESCHED already set from new task
2532 * Note: this also catches the edge-case of curr being in a throttled
2533 * group (e.g. via set_curr_task), since update_curr() (in the
2534 * enqueue of curr) will have resulted in resched being set. This
2535 * prevents us from potentially nominating it as a false LAST_BUDDY
2538 if (test_tsk_need_resched(curr
))
2541 /* Idle tasks are by definition preempted by non-idle tasks. */
2542 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
2543 likely(p
->policy
!= SCHED_IDLE
))
2547 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2548 * is driven by the tick):
2550 if (unlikely(p
->policy
!= SCHED_NORMAL
))
2553 find_matching_se(&se
, &pse
);
2554 update_curr(cfs_rq_of(se
));
2556 if (wakeup_preempt_entity(se
, pse
) == 1) {
2558 * Bias pick_next to pick the sched entity that is
2559 * triggering this preemption.
2561 if (!next_buddy_marked
)
2562 set_next_buddy(pse
);
2571 * Only set the backward buddy when the current task is still
2572 * on the rq. This can happen when a wakeup gets interleaved
2573 * with schedule on the ->pre_schedule() or idle_balance()
2574 * point, either of which can * drop the rq lock.
2576 * Also, during early boot the idle thread is in the fair class,
2577 * for obvious reasons its a bad idea to schedule back to it.
2579 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
2582 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
2586 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
2588 struct task_struct
*p
;
2589 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
2590 struct sched_entity
*se
;
2592 if (!cfs_rq
->nr_running
)
2596 se
= pick_next_entity(cfs_rq
);
2597 set_next_entity(cfs_rq
, se
);
2598 cfs_rq
= group_cfs_rq(se
);
2602 hrtick_start_fair(rq
, p
);
2608 * Account for a descheduled task:
2610 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
2612 struct sched_entity
*se
= &prev
->se
;
2613 struct cfs_rq
*cfs_rq
;
2615 for_each_sched_entity(se
) {
2616 cfs_rq
= cfs_rq_of(se
);
2617 put_prev_entity(cfs_rq
, se
);
2622 * sched_yield() is very simple
2624 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2626 static void yield_task_fair(struct rq
*rq
)
2628 struct task_struct
*curr
= rq
->curr
;
2629 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
2630 struct sched_entity
*se
= &curr
->se
;
2633 * Are we the only task in the tree?
2635 if (unlikely(rq
->nr_running
== 1))
2638 clear_buddies(cfs_rq
, se
);
2640 if (curr
->policy
!= SCHED_BATCH
) {
2641 update_rq_clock(rq
);
2643 * Update run-time statistics of the 'current'.
2645 update_curr(cfs_rq
);
2651 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
2653 struct sched_entity
*se
= &p
->se
;
2655 /* throttled hierarchies are not runnable */
2656 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
2659 /* Tell the scheduler that we'd really like pse to run next. */
2662 yield_task_fair(rq
);
2668 /**************************************************
2669 * Fair scheduling class load-balancing methods:
2673 * pull_task - move a task from a remote runqueue to the local runqueue.
2674 * Both runqueues must be locked.
2676 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2677 struct rq
*this_rq
, int this_cpu
)
2679 deactivate_task(src_rq
, p
, 0);
2680 set_task_cpu(p
, this_cpu
);
2681 activate_task(this_rq
, p
, 0);
2682 check_preempt_curr(this_rq
, p
, 0);
2686 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2689 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2690 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2693 int tsk_cache_hot
= 0;
2695 * We do not migrate tasks that are:
2696 * 1) running (obviously), or
2697 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2698 * 3) are cache-hot on their current CPU.
2700 if (!cpumask_test_cpu(this_cpu
, tsk_cpus_allowed(p
))) {
2701 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
2706 if (task_running(rq
, p
)) {
2707 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
2712 * Aggressive migration if:
2713 * 1) task is cache cold, or
2714 * 2) too many balance attempts have failed.
2717 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
2718 if (!tsk_cache_hot
||
2719 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2720 #ifdef CONFIG_SCHEDSTATS
2721 if (tsk_cache_hot
) {
2722 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2723 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
2729 if (tsk_cache_hot
) {
2730 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
2737 * move_one_task tries to move exactly one task from busiest to this_rq, as
2738 * part of active balancing operations within "domain".
2739 * Returns 1 if successful and 0 otherwise.
2741 * Called with both runqueues locked.
2744 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2745 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2747 struct task_struct
*p
, *n
;
2748 struct cfs_rq
*cfs_rq
;
2751 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
2752 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
2753 if (throttled_lb_pair(task_group(p
),
2754 busiest
->cpu
, this_cpu
))
2757 if (!can_migrate_task(p
, busiest
, this_cpu
,
2761 pull_task(busiest
, p
, this_rq
, this_cpu
);
2763 * Right now, this is only the second place pull_task()
2764 * is called, so we can safely collect pull_task()
2765 * stats here rather than inside pull_task().
2767 schedstat_inc(sd
, lb_gained
[idle
]);
2775 static unsigned long
2776 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2777 unsigned long max_load_move
, struct sched_domain
*sd
,
2778 enum cpu_idle_type idle
, int *all_pinned
,
2779 struct cfs_rq
*busiest_cfs_rq
)
2781 int loops
= 0, pulled
= 0;
2782 long rem_load_move
= max_load_move
;
2783 struct task_struct
*p
, *n
;
2785 if (max_load_move
== 0)
2788 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
2789 if (loops
++ > sysctl_sched_nr_migrate
)
2792 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2793 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
,
2797 pull_task(busiest
, p
, this_rq
, this_cpu
);
2799 rem_load_move
-= p
->se
.load
.weight
;
2801 #ifdef CONFIG_PREEMPT
2803 * NEWIDLE balancing is a source of latency, so preemptible
2804 * kernels will stop after the first task is pulled to minimize
2805 * the critical section.
2807 if (idle
== CPU_NEWLY_IDLE
)
2812 * We only want to steal up to the prescribed amount of
2815 if (rem_load_move
<= 0)
2820 * Right now, this is one of only two places pull_task() is called,
2821 * so we can safely collect pull_task() stats here rather than
2822 * inside pull_task().
2824 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2826 return max_load_move
- rem_load_move
;
2829 #ifdef CONFIG_FAIR_GROUP_SCHED
2831 * update tg->load_weight by folding this cpu's load_avg
2833 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
2835 struct cfs_rq
*cfs_rq
;
2836 unsigned long flags
;
2843 cfs_rq
= tg
->cfs_rq
[cpu
];
2845 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2847 update_rq_clock(rq
);
2848 update_cfs_load(cfs_rq
, 1);
2851 * We need to update shares after updating tg->load_weight in
2852 * order to adjust the weight of groups with long running tasks.
2854 update_cfs_shares(cfs_rq
);
2856 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2861 static void update_shares(int cpu
)
2863 struct cfs_rq
*cfs_rq
;
2864 struct rq
*rq
= cpu_rq(cpu
);
2868 * Iterates the task_group tree in a bottom up fashion, see
2869 * list_add_leaf_cfs_rq() for details.
2871 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
2872 /* throttled entities do not contribute to load */
2873 if (throttled_hierarchy(cfs_rq
))
2876 update_shares_cpu(cfs_rq
->tg
, cpu
);
2882 * Compute the cpu's hierarchical load factor for each task group.
2883 * This needs to be done in a top-down fashion because the load of a child
2884 * group is a fraction of its parents load.
2886 static int tg_load_down(struct task_group
*tg
, void *data
)
2889 long cpu
= (long)data
;
2892 load
= cpu_rq(cpu
)->load
.weight
;
2894 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
2895 load
*= tg
->se
[cpu
]->load
.weight
;
2896 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
2899 tg
->cfs_rq
[cpu
]->h_load
= load
;
2904 static void update_h_load(long cpu
)
2906 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
2909 static unsigned long
2910 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2911 unsigned long max_load_move
,
2912 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2915 long rem_load_move
= max_load_move
;
2916 struct cfs_rq
*busiest_cfs_rq
;
2919 update_h_load(cpu_of(busiest
));
2921 for_each_leaf_cfs_rq(busiest
, busiest_cfs_rq
) {
2922 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
2923 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
2924 u64 rem_load
, moved_load
;
2927 * empty group or part of a throttled hierarchy
2929 if (!busiest_cfs_rq
->task_weight
||
2930 throttled_lb_pair(busiest_cfs_rq
->tg
, cpu_of(busiest
), this_cpu
))
2933 rem_load
= (u64
)rem_load_move
* busiest_weight
;
2934 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
2936 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
2937 rem_load
, sd
, idle
, all_pinned
,
2943 moved_load
*= busiest_h_load
;
2944 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
2946 rem_load_move
-= moved_load
;
2947 if (rem_load_move
< 0)
2952 return max_load_move
- rem_load_move
;
2955 static inline void update_shares(int cpu
)
2959 static unsigned long
2960 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2961 unsigned long max_load_move
,
2962 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2965 return balance_tasks(this_rq
, this_cpu
, busiest
,
2966 max_load_move
, sd
, idle
, all_pinned
,
2972 * move_tasks tries to move up to max_load_move weighted load from busiest to
2973 * this_rq, as part of a balancing operation within domain "sd".
2974 * Returns 1 if successful and 0 otherwise.
2976 * Called with both runqueues locked.
2978 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2979 unsigned long max_load_move
,
2980 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2983 unsigned long total_load_moved
= 0, load_moved
;
2986 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
2987 max_load_move
- total_load_moved
,
2988 sd
, idle
, all_pinned
);
2990 total_load_moved
+= load_moved
;
2992 #ifdef CONFIG_PREEMPT
2994 * NEWIDLE balancing is a source of latency, so preemptible
2995 * kernels will stop after the first task is pulled to minimize
2996 * the critical section.
2998 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3001 if (raw_spin_is_contended(&this_rq
->lock
) ||
3002 raw_spin_is_contended(&busiest
->lock
))
3005 } while (load_moved
&& max_load_move
> total_load_moved
);
3007 return total_load_moved
> 0;
3010 /********** Helpers for find_busiest_group ************************/
3012 * sd_lb_stats - Structure to store the statistics of a sched_domain
3013 * during load balancing.
3015 struct sd_lb_stats
{
3016 struct sched_group
*busiest
; /* Busiest group in this sd */
3017 struct sched_group
*this; /* Local group in this sd */
3018 unsigned long total_load
; /* Total load of all groups in sd */
3019 unsigned long total_pwr
; /* Total power of all groups in sd */
3020 unsigned long avg_load
; /* Average load across all groups in sd */
3022 /** Statistics of this group */
3023 unsigned long this_load
;
3024 unsigned long this_load_per_task
;
3025 unsigned long this_nr_running
;
3026 unsigned long this_has_capacity
;
3027 unsigned int this_idle_cpus
;
3029 /* Statistics of the busiest group */
3030 unsigned int busiest_idle_cpus
;
3031 unsigned long max_load
;
3032 unsigned long busiest_load_per_task
;
3033 unsigned long busiest_nr_running
;
3034 unsigned long busiest_group_capacity
;
3035 unsigned long busiest_has_capacity
;
3036 unsigned int busiest_group_weight
;
3038 int group_imb
; /* Is there imbalance in this sd */
3039 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3040 int power_savings_balance
; /* Is powersave balance needed for this sd */
3041 struct sched_group
*group_min
; /* Least loaded group in sd */
3042 struct sched_group
*group_leader
; /* Group which relieves group_min */
3043 unsigned long min_load_per_task
; /* load_per_task in group_min */
3044 unsigned long leader_nr_running
; /* Nr running of group_leader */
3045 unsigned long min_nr_running
; /* Nr running of group_min */
3050 * sg_lb_stats - stats of a sched_group required for load_balancing
3052 struct sg_lb_stats
{
3053 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3054 unsigned long group_load
; /* Total load over the CPUs of the group */
3055 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3056 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3057 unsigned long group_capacity
;
3058 unsigned long idle_cpus
;
3059 unsigned long group_weight
;
3060 int group_imb
; /* Is there an imbalance in the group ? */
3061 int group_has_capacity
; /* Is there extra capacity in the group? */
3065 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3066 * @group: The group whose first cpu is to be returned.
3068 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3070 return cpumask_first(sched_group_cpus(group
));
3074 * get_sd_load_idx - Obtain the load index for a given sched domain.
3075 * @sd: The sched_domain whose load_idx is to be obtained.
3076 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3078 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3079 enum cpu_idle_type idle
)
3085 load_idx
= sd
->busy_idx
;
3088 case CPU_NEWLY_IDLE
:
3089 load_idx
= sd
->newidle_idx
;
3092 load_idx
= sd
->idle_idx
;
3100 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3102 * init_sd_power_savings_stats - Initialize power savings statistics for
3103 * the given sched_domain, during load balancing.
3105 * @sd: Sched domain whose power-savings statistics are to be initialized.
3106 * @sds: Variable containing the statistics for sd.
3107 * @idle: Idle status of the CPU at which we're performing load-balancing.
3109 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3110 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3113 * Busy processors will not participate in power savings
3116 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3117 sds
->power_savings_balance
= 0;
3119 sds
->power_savings_balance
= 1;
3120 sds
->min_nr_running
= ULONG_MAX
;
3121 sds
->leader_nr_running
= 0;
3126 * update_sd_power_savings_stats - Update the power saving stats for a
3127 * sched_domain while performing load balancing.
3129 * @group: sched_group belonging to the sched_domain under consideration.
3130 * @sds: Variable containing the statistics of the sched_domain
3131 * @local_group: Does group contain the CPU for which we're performing
3133 * @sgs: Variable containing the statistics of the group.
3135 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3136 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3139 if (!sds
->power_savings_balance
)
3143 * If the local group is idle or completely loaded
3144 * no need to do power savings balance at this domain
3146 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3147 !sds
->this_nr_running
))
3148 sds
->power_savings_balance
= 0;
3151 * If a group is already running at full capacity or idle,
3152 * don't include that group in power savings calculations
3154 if (!sds
->power_savings_balance
||
3155 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3156 !sgs
->sum_nr_running
)
3160 * Calculate the group which has the least non-idle load.
3161 * This is the group from where we need to pick up the load
3164 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3165 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3166 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3167 sds
->group_min
= group
;
3168 sds
->min_nr_running
= sgs
->sum_nr_running
;
3169 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3170 sgs
->sum_nr_running
;
3174 * Calculate the group which is almost near its
3175 * capacity but still has some space to pick up some load
3176 * from other group and save more power
3178 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3181 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3182 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3183 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3184 sds
->group_leader
= group
;
3185 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3190 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3191 * @sds: Variable containing the statistics of the sched_domain
3192 * under consideration.
3193 * @this_cpu: Cpu at which we're currently performing load-balancing.
3194 * @imbalance: Variable to store the imbalance.
3197 * Check if we have potential to perform some power-savings balance.
3198 * If yes, set the busiest group to be the least loaded group in the
3199 * sched_domain, so that it's CPUs can be put to idle.
3201 * Returns 1 if there is potential to perform power-savings balance.
3204 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3205 int this_cpu
, unsigned long *imbalance
)
3207 if (!sds
->power_savings_balance
)
3210 if (sds
->this != sds
->group_leader
||
3211 sds
->group_leader
== sds
->group_min
)
3214 *imbalance
= sds
->min_load_per_task
;
3215 sds
->busiest
= sds
->group_min
;
3220 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3221 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3222 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3227 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3228 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3233 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3234 int this_cpu
, unsigned long *imbalance
)
3238 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3241 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3243 return SCHED_POWER_SCALE
;
3246 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3248 return default_scale_freq_power(sd
, cpu
);
3251 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3253 unsigned long weight
= sd
->span_weight
;
3254 unsigned long smt_gain
= sd
->smt_gain
;
3261 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3263 return default_scale_smt_power(sd
, cpu
);
3266 unsigned long scale_rt_power(int cpu
)
3268 struct rq
*rq
= cpu_rq(cpu
);
3269 u64 total
, available
;
3271 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3273 if (unlikely(total
< rq
->rt_avg
)) {
3274 /* Ensures that power won't end up being negative */
3277 available
= total
- rq
->rt_avg
;
3280 if (unlikely((s64
)total
< SCHED_POWER_SCALE
))
3281 total
= SCHED_POWER_SCALE
;
3283 total
>>= SCHED_POWER_SHIFT
;
3285 return div_u64(available
, total
);
3288 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3290 unsigned long weight
= sd
->span_weight
;
3291 unsigned long power
= SCHED_POWER_SCALE
;
3292 struct sched_group
*sdg
= sd
->groups
;
3294 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3295 if (sched_feat(ARCH_POWER
))
3296 power
*= arch_scale_smt_power(sd
, cpu
);
3298 power
*= default_scale_smt_power(sd
, cpu
);
3300 power
>>= SCHED_POWER_SHIFT
;
3303 sdg
->sgp
->power_orig
= power
;
3305 if (sched_feat(ARCH_POWER
))
3306 power
*= arch_scale_freq_power(sd
, cpu
);
3308 power
*= default_scale_freq_power(sd
, cpu
);
3310 power
>>= SCHED_POWER_SHIFT
;
3312 power
*= scale_rt_power(cpu
);
3313 power
>>= SCHED_POWER_SHIFT
;
3318 cpu_rq(cpu
)->cpu_power
= power
;
3319 sdg
->sgp
->power
= power
;
3322 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3324 struct sched_domain
*child
= sd
->child
;
3325 struct sched_group
*group
, *sdg
= sd
->groups
;
3326 unsigned long power
;
3329 update_cpu_power(sd
, cpu
);
3335 group
= child
->groups
;
3337 power
+= group
->sgp
->power
;
3338 group
= group
->next
;
3339 } while (group
!= child
->groups
);
3341 sdg
->sgp
->power
= power
;
3345 * Try and fix up capacity for tiny siblings, this is needed when
3346 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3347 * which on its own isn't powerful enough.
3349 * See update_sd_pick_busiest() and check_asym_packing().
3352 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
3355 * Only siblings can have significantly less than SCHED_POWER_SCALE
3357 if (!(sd
->flags
& SD_SHARE_CPUPOWER
))
3361 * If ~90% of the cpu_power is still there, we're good.
3363 if (group
->sgp
->power
* 32 > group
->sgp
->power_orig
* 29)
3370 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3371 * @sd: The sched_domain whose statistics are to be updated.
3372 * @group: sched_group whose statistics are to be updated.
3373 * @this_cpu: Cpu for which load balance is currently performed.
3374 * @idle: Idle status of this_cpu
3375 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3376 * @local_group: Does group contain this_cpu.
3377 * @cpus: Set of cpus considered for load balancing.
3378 * @balance: Should we balance.
3379 * @sgs: variable to hold the statistics for this group.
3381 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3382 struct sched_group
*group
, int this_cpu
,
3383 enum cpu_idle_type idle
, int load_idx
,
3384 int local_group
, const struct cpumask
*cpus
,
3385 int *balance
, struct sg_lb_stats
*sgs
)
3387 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
3389 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3390 unsigned long avg_load_per_task
= 0;
3393 balance_cpu
= group_first_cpu(group
);
3395 /* Tally up the load of all CPUs in the group */
3397 min_cpu_load
= ~0UL;
3400 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3401 struct rq
*rq
= cpu_rq(i
);
3403 /* Bias balancing toward cpus of our domain */
3405 if (idle_cpu(i
) && !first_idle_cpu
) {
3410 load
= target_load(i
, load_idx
);
3412 load
= source_load(i
, load_idx
);
3413 if (load
> max_cpu_load
) {
3414 max_cpu_load
= load
;
3415 max_nr_running
= rq
->nr_running
;
3417 if (min_cpu_load
> load
)
3418 min_cpu_load
= load
;
3421 sgs
->group_load
+= load
;
3422 sgs
->sum_nr_running
+= rq
->nr_running
;
3423 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3429 * First idle cpu or the first cpu(busiest) in this sched group
3430 * is eligible for doing load balancing at this and above
3431 * domains. In the newly idle case, we will allow all the cpu's
3432 * to do the newly idle load balance.
3434 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
3435 if (balance_cpu
!= this_cpu
) {
3439 update_group_power(sd
, this_cpu
);
3442 /* Adjust by relative CPU power of the group */
3443 sgs
->avg_load
= (sgs
->group_load
*SCHED_POWER_SCALE
) / group
->sgp
->power
;
3446 * Consider the group unbalanced when the imbalance is larger
3447 * than the average weight of a task.
3449 * APZ: with cgroup the avg task weight can vary wildly and
3450 * might not be a suitable number - should we keep a
3451 * normalized nr_running number somewhere that negates
3454 if (sgs
->sum_nr_running
)
3455 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
3457 if ((max_cpu_load
- min_cpu_load
) >= avg_load_per_task
&& max_nr_running
> 1)
3460 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->sgp
->power
,
3462 if (!sgs
->group_capacity
)
3463 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
3464 sgs
->group_weight
= group
->group_weight
;
3466 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
3467 sgs
->group_has_capacity
= 1;
3471 * update_sd_pick_busiest - return 1 on busiest group
3472 * @sd: sched_domain whose statistics are to be checked
3473 * @sds: sched_domain statistics
3474 * @sg: sched_group candidate to be checked for being the busiest
3475 * @sgs: sched_group statistics
3476 * @this_cpu: the current cpu
3478 * Determine if @sg is a busier group than the previously selected
3481 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
3482 struct sd_lb_stats
*sds
,
3483 struct sched_group
*sg
,
3484 struct sg_lb_stats
*sgs
,
3487 if (sgs
->avg_load
<= sds
->max_load
)
3490 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
3497 * ASYM_PACKING needs to move all the work to the lowest
3498 * numbered CPUs in the group, therefore mark all groups
3499 * higher than ourself as busy.
3501 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
3502 this_cpu
< group_first_cpu(sg
)) {
3506 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
3514 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3515 * @sd: sched_domain whose statistics are to be updated.
3516 * @this_cpu: Cpu for which load balance is currently performed.
3517 * @idle: Idle status of this_cpu
3518 * @cpus: Set of cpus considered for load balancing.
3519 * @balance: Should we balance.
3520 * @sds: variable to hold the statistics for this sched_domain.
3522 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3523 enum cpu_idle_type idle
, const struct cpumask
*cpus
,
3524 int *balance
, struct sd_lb_stats
*sds
)
3526 struct sched_domain
*child
= sd
->child
;
3527 struct sched_group
*sg
= sd
->groups
;
3528 struct sg_lb_stats sgs
;
3529 int load_idx
, prefer_sibling
= 0;
3531 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3534 init_sd_power_savings_stats(sd
, sds
, idle
);
3535 load_idx
= get_sd_load_idx(sd
, idle
);
3540 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
3541 memset(&sgs
, 0, sizeof(sgs
));
3542 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
,
3543 local_group
, cpus
, balance
, &sgs
);
3545 if (local_group
&& !(*balance
))
3548 sds
->total_load
+= sgs
.group_load
;
3549 sds
->total_pwr
+= sg
->sgp
->power
;
3552 * In case the child domain prefers tasks go to siblings
3553 * first, lower the sg capacity to one so that we'll try
3554 * and move all the excess tasks away. We lower the capacity
3555 * of a group only if the local group has the capacity to fit
3556 * these excess tasks, i.e. nr_running < group_capacity. The
3557 * extra check prevents the case where you always pull from the
3558 * heaviest group when it is already under-utilized (possible
3559 * with a large weight task outweighs the tasks on the system).
3561 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
3562 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3565 sds
->this_load
= sgs
.avg_load
;
3567 sds
->this_nr_running
= sgs
.sum_nr_running
;
3568 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3569 sds
->this_has_capacity
= sgs
.group_has_capacity
;
3570 sds
->this_idle_cpus
= sgs
.idle_cpus
;
3571 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
3572 sds
->max_load
= sgs
.avg_load
;
3574 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3575 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
3576 sds
->busiest_group_capacity
= sgs
.group_capacity
;
3577 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3578 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
3579 sds
->busiest_group_weight
= sgs
.group_weight
;
3580 sds
->group_imb
= sgs
.group_imb
;
3583 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
3585 } while (sg
!= sd
->groups
);
3588 int __weak
arch_sd_sibling_asym_packing(void)
3590 return 0*SD_ASYM_PACKING
;
3594 * check_asym_packing - Check to see if the group is packed into the
3597 * This is primarily intended to used at the sibling level. Some
3598 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3599 * case of POWER7, it can move to lower SMT modes only when higher
3600 * threads are idle. When in lower SMT modes, the threads will
3601 * perform better since they share less core resources. Hence when we
3602 * have idle threads, we want them to be the higher ones.
3604 * This packing function is run on idle threads. It checks to see if
3605 * the busiest CPU in this domain (core in the P7 case) has a higher
3606 * CPU number than the packing function is being run on. Here we are
3607 * assuming lower CPU number will be equivalent to lower a SMT thread
3610 * Returns 1 when packing is required and a task should be moved to
3611 * this CPU. The amount of the imbalance is returned in *imbalance.
3613 * @sd: The sched_domain whose packing is to be checked.
3614 * @sds: Statistics of the sched_domain which is to be packed
3615 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3616 * @imbalance: returns amount of imbalanced due to packing.
3618 static int check_asym_packing(struct sched_domain
*sd
,
3619 struct sd_lb_stats
*sds
,
3620 int this_cpu
, unsigned long *imbalance
)
3624 if (!(sd
->flags
& SD_ASYM_PACKING
))
3630 busiest_cpu
= group_first_cpu(sds
->busiest
);
3631 if (this_cpu
> busiest_cpu
)
3634 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->sgp
->power
,
3640 * fix_small_imbalance - Calculate the minor imbalance that exists
3641 * amongst the groups of a sched_domain, during
3643 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3644 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3645 * @imbalance: Variable to store the imbalance.
3647 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3648 int this_cpu
, unsigned long *imbalance
)
3650 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3651 unsigned int imbn
= 2;
3652 unsigned long scaled_busy_load_per_task
;
3654 if (sds
->this_nr_running
) {
3655 sds
->this_load_per_task
/= sds
->this_nr_running
;
3656 if (sds
->busiest_load_per_task
>
3657 sds
->this_load_per_task
)
3660 sds
->this_load_per_task
=
3661 cpu_avg_load_per_task(this_cpu
);
3663 scaled_busy_load_per_task
= sds
->busiest_load_per_task
3664 * SCHED_POWER_SCALE
;
3665 scaled_busy_load_per_task
/= sds
->busiest
->sgp
->power
;
3667 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
3668 (scaled_busy_load_per_task
* imbn
)) {
3669 *imbalance
= sds
->busiest_load_per_task
;
3674 * OK, we don't have enough imbalance to justify moving tasks,
3675 * however we may be able to increase total CPU power used by
3679 pwr_now
+= sds
->busiest
->sgp
->power
*
3680 min(sds
->busiest_load_per_task
, sds
->max_load
);
3681 pwr_now
+= sds
->this->sgp
->power
*
3682 min(sds
->this_load_per_task
, sds
->this_load
);
3683 pwr_now
/= SCHED_POWER_SCALE
;
3685 /* Amount of load we'd subtract */
3686 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
3687 sds
->busiest
->sgp
->power
;
3688 if (sds
->max_load
> tmp
)
3689 pwr_move
+= sds
->busiest
->sgp
->power
*
3690 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3692 /* Amount of load we'd add */
3693 if (sds
->max_load
* sds
->busiest
->sgp
->power
<
3694 sds
->busiest_load_per_task
* SCHED_POWER_SCALE
)
3695 tmp
= (sds
->max_load
* sds
->busiest
->sgp
->power
) /
3696 sds
->this->sgp
->power
;
3698 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
3699 sds
->this->sgp
->power
;
3700 pwr_move
+= sds
->this->sgp
->power
*
3701 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3702 pwr_move
/= SCHED_POWER_SCALE
;
3704 /* Move if we gain throughput */
3705 if (pwr_move
> pwr_now
)
3706 *imbalance
= sds
->busiest_load_per_task
;
3710 * calculate_imbalance - Calculate the amount of imbalance present within the
3711 * groups of a given sched_domain during load balance.
3712 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3713 * @this_cpu: Cpu for which currently load balance is being performed.
3714 * @imbalance: The variable to store the imbalance.
3716 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3717 unsigned long *imbalance
)
3719 unsigned long max_pull
, load_above_capacity
= ~0UL;
3721 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
3722 if (sds
->group_imb
) {
3723 sds
->busiest_load_per_task
=
3724 min(sds
->busiest_load_per_task
, sds
->avg_load
);
3728 * In the presence of smp nice balancing, certain scenarios can have
3729 * max load less than avg load(as we skip the groups at or below
3730 * its cpu_power, while calculating max_load..)
3732 if (sds
->max_load
< sds
->avg_load
) {
3734 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3737 if (!sds
->group_imb
) {
3739 * Don't want to pull so many tasks that a group would go idle.
3741 load_above_capacity
= (sds
->busiest_nr_running
-
3742 sds
->busiest_group_capacity
);
3744 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_POWER_SCALE
);
3746 load_above_capacity
/= sds
->busiest
->sgp
->power
;
3750 * We're trying to get all the cpus to the average_load, so we don't
3751 * want to push ourselves above the average load, nor do we wish to
3752 * reduce the max loaded cpu below the average load. At the same time,
3753 * we also don't want to reduce the group load below the group capacity
3754 * (so that we can implement power-savings policies etc). Thus we look
3755 * for the minimum possible imbalance.
3756 * Be careful of negative numbers as they'll appear as very large values
3757 * with unsigned longs.
3759 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
3761 /* How much load to actually move to equalise the imbalance */
3762 *imbalance
= min(max_pull
* sds
->busiest
->sgp
->power
,
3763 (sds
->avg_load
- sds
->this_load
) * sds
->this->sgp
->power
)
3764 / SCHED_POWER_SCALE
;
3767 * if *imbalance is less than the average load per runnable task
3768 * there is no guarantee that any tasks will be moved so we'll have
3769 * a think about bumping its value to force at least one task to be
3772 if (*imbalance
< sds
->busiest_load_per_task
)
3773 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3777 /******* find_busiest_group() helpers end here *********************/
3780 * find_busiest_group - Returns the busiest group within the sched_domain
3781 * if there is an imbalance. If there isn't an imbalance, and
3782 * the user has opted for power-savings, it returns a group whose
3783 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3784 * such a group exists.
3786 * Also calculates the amount of weighted load which should be moved
3787 * to restore balance.
3789 * @sd: The sched_domain whose busiest group is to be returned.
3790 * @this_cpu: The cpu for which load balancing is currently being performed.
3791 * @imbalance: Variable which stores amount of weighted load which should
3792 * be moved to restore balance/put a group to idle.
3793 * @idle: The idle status of this_cpu.
3794 * @cpus: The set of CPUs under consideration for load-balancing.
3795 * @balance: Pointer to a variable indicating if this_cpu
3796 * is the appropriate cpu to perform load balancing at this_level.
3798 * Returns: - the busiest group if imbalance exists.
3799 * - If no imbalance and user has opted for power-savings balance,
3800 * return the least loaded group whose CPUs can be
3801 * put to idle by rebalancing its tasks onto our group.
3803 static struct sched_group
*
3804 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3805 unsigned long *imbalance
, enum cpu_idle_type idle
,
3806 const struct cpumask
*cpus
, int *balance
)
3808 struct sd_lb_stats sds
;
3810 memset(&sds
, 0, sizeof(sds
));
3813 * Compute the various statistics relavent for load balancing at
3816 update_sd_lb_stats(sd
, this_cpu
, idle
, cpus
, balance
, &sds
);
3819 * this_cpu is not the appropriate cpu to perform load balancing at
3825 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
3826 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
3829 /* There is no busy sibling group to pull tasks from */
3830 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3833 sds
.avg_load
= (SCHED_POWER_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3836 * If the busiest group is imbalanced the below checks don't
3837 * work because they assumes all things are equal, which typically
3838 * isn't true due to cpus_allowed constraints and the like.
3843 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3844 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
3845 !sds
.busiest_has_capacity
)
3849 * If the local group is more busy than the selected busiest group
3850 * don't try and pull any tasks.
3852 if (sds
.this_load
>= sds
.max_load
)
3856 * Don't pull any tasks if this group is already above the domain
3859 if (sds
.this_load
>= sds
.avg_load
)
3862 if (idle
== CPU_IDLE
) {
3864 * This cpu is idle. If the busiest group load doesn't
3865 * have more tasks than the number of available cpu's and
3866 * there is no imbalance between this and busiest group
3867 * wrt to idle cpu's, it is balanced.
3869 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
3870 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
3874 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3875 * imbalance_pct to be conservative.
3877 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3882 /* Looks like there is an imbalance. Compute it */
3883 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3888 * There is no obvious imbalance. But check if we can do some balancing
3891 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3899 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3902 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
3903 enum cpu_idle_type idle
, unsigned long imbalance
,
3904 const struct cpumask
*cpus
)
3906 struct rq
*busiest
= NULL
, *rq
;
3907 unsigned long max_load
= 0;
3910 for_each_cpu(i
, sched_group_cpus(group
)) {
3911 unsigned long power
= power_of(i
);
3912 unsigned long capacity
= DIV_ROUND_CLOSEST(power
,
3917 capacity
= fix_small_capacity(sd
, group
);
3919 if (!cpumask_test_cpu(i
, cpus
))
3923 wl
= weighted_cpuload(i
);
3926 * When comparing with imbalance, use weighted_cpuload()
3927 * which is not scaled with the cpu power.
3929 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
3933 * For the load comparisons with the other cpu's, consider
3934 * the weighted_cpuload() scaled with the cpu power, so that
3935 * the load can be moved away from the cpu that is potentially
3936 * running at a lower capacity.
3938 wl
= (wl
* SCHED_POWER_SCALE
) / power
;
3940 if (wl
> max_load
) {
3950 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3951 * so long as it is large enough.
3953 #define MAX_PINNED_INTERVAL 512
3955 /* Working cpumask for load_balance and load_balance_newidle. */
3956 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3958 static int need_active_balance(struct sched_domain
*sd
, int idle
,
3959 int busiest_cpu
, int this_cpu
)
3961 if (idle
== CPU_NEWLY_IDLE
) {
3964 * ASYM_PACKING needs to force migrate tasks from busy but
3965 * higher numbered CPUs in order to pack all tasks in the
3966 * lowest numbered CPUs.
3968 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
3972 * The only task running in a non-idle cpu can be moved to this
3973 * cpu in an attempt to completely freeup the other CPU
3976 * The package power saving logic comes from
3977 * find_busiest_group(). If there are no imbalance, then
3978 * f_b_g() will return NULL. However when sched_mc={1,2} then
3979 * f_b_g() will select a group from which a running task may be
3980 * pulled to this cpu in order to make the other package idle.
3981 * If there is no opportunity to make a package idle and if
3982 * there are no imbalance, then f_b_g() will return NULL and no
3983 * action will be taken in load_balance_newidle().
3985 * Under normal task pull operation due to imbalance, there
3986 * will be more than one task in the source run queue and
3987 * move_tasks() will succeed. ld_moved will be true and this
3988 * active balance code will not be triggered.
3990 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3994 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
3997 static int active_load_balance_cpu_stop(void *data
);
4000 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4001 * tasks if there is an imbalance.
4003 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4004 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4007 int ld_moved
, all_pinned
= 0, active_balance
= 0;
4008 struct sched_group
*group
;
4009 unsigned long imbalance
;
4011 unsigned long flags
;
4012 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4014 cpumask_copy(cpus
, cpu_active_mask
);
4016 schedstat_inc(sd
, lb_count
[idle
]);
4019 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
,
4026 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4030 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
4032 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4036 BUG_ON(busiest
== this_rq
);
4038 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4041 if (busiest
->nr_running
> 1) {
4043 * Attempt to move tasks. If find_busiest_group has found
4044 * an imbalance but busiest->nr_running <= 1, the group is
4045 * still unbalanced. ld_moved simply stays zero, so it is
4046 * correctly treated as an imbalance.
4049 local_irq_save(flags
);
4050 double_rq_lock(this_rq
, busiest
);
4051 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4052 imbalance
, sd
, idle
, &all_pinned
);
4053 double_rq_unlock(this_rq
, busiest
);
4054 local_irq_restore(flags
);
4057 * some other cpu did the load balance for us.
4059 if (ld_moved
&& this_cpu
!= smp_processor_id())
4060 resched_cpu(this_cpu
);
4062 /* All tasks on this runqueue were pinned by CPU affinity */
4063 if (unlikely(all_pinned
)) {
4064 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4065 if (!cpumask_empty(cpus
))
4072 schedstat_inc(sd
, lb_failed
[idle
]);
4074 * Increment the failure counter only on periodic balance.
4075 * We do not want newidle balance, which can be very
4076 * frequent, pollute the failure counter causing
4077 * excessive cache_hot migrations and active balances.
4079 if (idle
!= CPU_NEWLY_IDLE
)
4080 sd
->nr_balance_failed
++;
4082 if (need_active_balance(sd
, idle
, cpu_of(busiest
), this_cpu
)) {
4083 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
4085 /* don't kick the active_load_balance_cpu_stop,
4086 * if the curr task on busiest cpu can't be
4089 if (!cpumask_test_cpu(this_cpu
,
4090 tsk_cpus_allowed(busiest
->curr
))) {
4091 raw_spin_unlock_irqrestore(&busiest
->lock
,
4094 goto out_one_pinned
;
4098 * ->active_balance synchronizes accesses to
4099 * ->active_balance_work. Once set, it's cleared
4100 * only after active load balance is finished.
4102 if (!busiest
->active_balance
) {
4103 busiest
->active_balance
= 1;
4104 busiest
->push_cpu
= this_cpu
;
4107 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
4110 stop_one_cpu_nowait(cpu_of(busiest
),
4111 active_load_balance_cpu_stop
, busiest
,
4112 &busiest
->active_balance_work
);
4115 * We've kicked active balancing, reset the failure
4118 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4121 sd
->nr_balance_failed
= 0;
4123 if (likely(!active_balance
)) {
4124 /* We were unbalanced, so reset the balancing interval */
4125 sd
->balance_interval
= sd
->min_interval
;
4128 * If we've begun active balancing, start to back off. This
4129 * case may not be covered by the all_pinned logic if there
4130 * is only 1 task on the busy runqueue (because we don't call
4133 if (sd
->balance_interval
< sd
->max_interval
)
4134 sd
->balance_interval
*= 2;
4140 schedstat_inc(sd
, lb_balanced
[idle
]);
4142 sd
->nr_balance_failed
= 0;
4145 /* tune up the balancing interval */
4146 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4147 (sd
->balance_interval
< sd
->max_interval
))
4148 sd
->balance_interval
*= 2;
4156 * idle_balance is called by schedule() if this_cpu is about to become
4157 * idle. Attempts to pull tasks from other CPUs.
4159 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4161 struct sched_domain
*sd
;
4162 int pulled_task
= 0;
4163 unsigned long next_balance
= jiffies
+ HZ
;
4165 this_rq
->idle_stamp
= this_rq
->clock
;
4167 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4171 * Drop the rq->lock, but keep IRQ/preempt disabled.
4173 raw_spin_unlock(&this_rq
->lock
);
4175 update_shares(this_cpu
);
4177 for_each_domain(this_cpu
, sd
) {
4178 unsigned long interval
;
4181 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4184 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
4185 /* If we've pulled tasks over stop searching: */
4186 pulled_task
= load_balance(this_cpu
, this_rq
,
4187 sd
, CPU_NEWLY_IDLE
, &balance
);
4190 interval
= msecs_to_jiffies(sd
->balance_interval
);
4191 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4192 next_balance
= sd
->last_balance
+ interval
;
4194 this_rq
->idle_stamp
= 0;
4200 raw_spin_lock(&this_rq
->lock
);
4202 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4204 * We are going idle. next_balance may be set based on
4205 * a busy processor. So reset next_balance.
4207 this_rq
->next_balance
= next_balance
;
4212 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4213 * running tasks off the busiest CPU onto idle CPUs. It requires at
4214 * least 1 task to be running on each physical CPU where possible, and
4215 * avoids physical / logical imbalances.
4217 static int active_load_balance_cpu_stop(void *data
)
4219 struct rq
*busiest_rq
= data
;
4220 int busiest_cpu
= cpu_of(busiest_rq
);
4221 int target_cpu
= busiest_rq
->push_cpu
;
4222 struct rq
*target_rq
= cpu_rq(target_cpu
);
4223 struct sched_domain
*sd
;
4225 raw_spin_lock_irq(&busiest_rq
->lock
);
4227 /* make sure the requested cpu hasn't gone down in the meantime */
4228 if (unlikely(busiest_cpu
!= smp_processor_id() ||
4229 !busiest_rq
->active_balance
))
4232 /* Is there any task to move? */
4233 if (busiest_rq
->nr_running
<= 1)
4237 * This condition is "impossible", if it occurs
4238 * we need to fix it. Originally reported by
4239 * Bjorn Helgaas on a 128-cpu setup.
4241 BUG_ON(busiest_rq
== target_rq
);
4243 /* move a task from busiest_rq to target_rq */
4244 double_lock_balance(busiest_rq
, target_rq
);
4246 /* Search for an sd spanning us and the target CPU. */
4248 for_each_domain(target_cpu
, sd
) {
4249 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4250 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4255 schedstat_inc(sd
, alb_count
);
4257 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4259 schedstat_inc(sd
, alb_pushed
);
4261 schedstat_inc(sd
, alb_failed
);
4264 double_unlock_balance(busiest_rq
, target_rq
);
4266 busiest_rq
->active_balance
= 0;
4267 raw_spin_unlock_irq(&busiest_rq
->lock
);
4273 * idle load balancing details
4274 * - One of the idle CPUs nominates itself as idle load_balancer, while
4276 * - This idle load balancer CPU will also go into tickless mode when
4277 * it is idle, just like all other idle CPUs
4278 * - When one of the busy CPUs notice that there may be an idle rebalancing
4279 * needed, they will kick the idle load balancer, which then does idle
4280 * load balancing for all the idle CPUs.
4283 atomic_t load_balancer
;
4284 atomic_t first_pick_cpu
;
4285 atomic_t second_pick_cpu
;
4286 cpumask_var_t idle_cpus_mask
;
4287 cpumask_var_t grp_idle_mask
;
4288 unsigned long next_balance
; /* in jiffy units */
4289 } nohz ____cacheline_aligned
;
4291 int get_nohz_load_balancer(void)
4293 return atomic_read(&nohz
.load_balancer
);
4296 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4298 * lowest_flag_domain - Return lowest sched_domain containing flag.
4299 * @cpu: The cpu whose lowest level of sched domain is to
4301 * @flag: The flag to check for the lowest sched_domain
4302 * for the given cpu.
4304 * Returns the lowest sched_domain of a cpu which contains the given flag.
4306 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4308 struct sched_domain
*sd
;
4310 for_each_domain(cpu
, sd
)
4311 if (sd
->flags
& flag
)
4318 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4319 * @cpu: The cpu whose domains we're iterating over.
4320 * @sd: variable holding the value of the power_savings_sd
4322 * @flag: The flag to filter the sched_domains to be iterated.
4324 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4325 * set, starting from the lowest sched_domain to the highest.
4327 #define for_each_flag_domain(cpu, sd, flag) \
4328 for (sd = lowest_flag_domain(cpu, flag); \
4329 (sd && (sd->flags & flag)); sd = sd->parent)
4332 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4333 * @ilb_group: group to be checked for semi-idleness
4335 * Returns: 1 if the group is semi-idle. 0 otherwise.
4337 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4338 * and atleast one non-idle CPU. This helper function checks if the given
4339 * sched_group is semi-idle or not.
4341 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4343 cpumask_and(nohz
.grp_idle_mask
, nohz
.idle_cpus_mask
,
4344 sched_group_cpus(ilb_group
));
4347 * A sched_group is semi-idle when it has atleast one busy cpu
4348 * and atleast one idle cpu.
4350 if (cpumask_empty(nohz
.grp_idle_mask
))
4353 if (cpumask_equal(nohz
.grp_idle_mask
, sched_group_cpus(ilb_group
)))
4359 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4360 * @cpu: The cpu which is nominating a new idle_load_balancer.
4362 * Returns: Returns the id of the idle load balancer if it exists,
4363 * Else, returns >= nr_cpu_ids.
4365 * This algorithm picks the idle load balancer such that it belongs to a
4366 * semi-idle powersavings sched_domain. The idea is to try and avoid
4367 * completely idle packages/cores just for the purpose of idle load balancing
4368 * when there are other idle cpu's which are better suited for that job.
4370 static int find_new_ilb(int cpu
)
4372 struct sched_domain
*sd
;
4373 struct sched_group
*ilb_group
;
4374 int ilb
= nr_cpu_ids
;
4377 * Have idle load balancer selection from semi-idle packages only
4378 * when power-aware load balancing is enabled
4380 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4384 * Optimize for the case when we have no idle CPUs or only one
4385 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4387 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
4391 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4392 ilb_group
= sd
->groups
;
4395 if (is_semi_idle_group(ilb_group
)) {
4396 ilb
= cpumask_first(nohz
.grp_idle_mask
);
4400 ilb_group
= ilb_group
->next
;
4402 } while (ilb_group
!= sd
->groups
);
4410 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4411 static inline int find_new_ilb(int call_cpu
)
4418 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4419 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4420 * CPU (if there is one).
4422 static void nohz_balancer_kick(int cpu
)
4426 nohz
.next_balance
++;
4428 ilb_cpu
= get_nohz_load_balancer();
4430 if (ilb_cpu
>= nr_cpu_ids
) {
4431 ilb_cpu
= cpumask_first(nohz
.idle_cpus_mask
);
4432 if (ilb_cpu
>= nr_cpu_ids
)
4436 if (!cpu_rq(ilb_cpu
)->nohz_balance_kick
) {
4437 cpu_rq(ilb_cpu
)->nohz_balance_kick
= 1;
4441 * Use smp_send_reschedule() instead of resched_cpu().
4442 * This way we generate a sched IPI on the target cpu which
4443 * is idle. And the softirq performing nohz idle load balance
4444 * will be run before returning from the IPI.
4446 smp_send_reschedule(ilb_cpu
);
4452 * This routine will try to nominate the ilb (idle load balancing)
4453 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4454 * load balancing on behalf of all those cpus.
4456 * When the ilb owner becomes busy, we will not have new ilb owner until some
4457 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4458 * idle load balancing by kicking one of the idle CPUs.
4460 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4461 * ilb owner CPU in future (when there is a need for idle load balancing on
4462 * behalf of all idle CPUs).
4464 void select_nohz_load_balancer(int stop_tick
)
4466 int cpu
= smp_processor_id();
4469 if (!cpu_active(cpu
)) {
4470 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4474 * If we are going offline and still the leader,
4477 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
4484 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
4486 if (atomic_read(&nohz
.first_pick_cpu
) == cpu
)
4487 atomic_cmpxchg(&nohz
.first_pick_cpu
, cpu
, nr_cpu_ids
);
4488 if (atomic_read(&nohz
.second_pick_cpu
) == cpu
)
4489 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
4491 if (atomic_read(&nohz
.load_balancer
) >= nr_cpu_ids
) {
4494 /* make me the ilb owner */
4495 if (atomic_cmpxchg(&nohz
.load_balancer
, nr_cpu_ids
,
4500 * Check to see if there is a more power-efficient
4503 new_ilb
= find_new_ilb(cpu
);
4504 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4505 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
4506 resched_cpu(new_ilb
);
4512 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
4515 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
4517 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4518 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
4526 static DEFINE_SPINLOCK(balancing
);
4528 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
4531 * Scale the max load_balance interval with the number of CPUs in the system.
4532 * This trades load-balance latency on larger machines for less cross talk.
4534 static void update_max_interval(void)
4536 max_load_balance_interval
= HZ
*num_online_cpus()/10;
4540 * It checks each scheduling domain to see if it is due to be balanced,
4541 * and initiates a balancing operation if so.
4543 * Balancing parameters are set up in arch_init_sched_domains.
4545 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4548 struct rq
*rq
= cpu_rq(cpu
);
4549 unsigned long interval
;
4550 struct sched_domain
*sd
;
4551 /* Earliest time when we have to do rebalance again */
4552 unsigned long next_balance
= jiffies
+ 60*HZ
;
4553 int update_next_balance
= 0;
4559 for_each_domain(cpu
, sd
) {
4560 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4563 interval
= sd
->balance_interval
;
4564 if (idle
!= CPU_IDLE
)
4565 interval
*= sd
->busy_factor
;
4567 /* scale ms to jiffies */
4568 interval
= msecs_to_jiffies(interval
);
4569 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
4571 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4573 if (need_serialize
) {
4574 if (!spin_trylock(&balancing
))
4578 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4579 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4581 * We've pulled tasks over so either we're no
4584 idle
= CPU_NOT_IDLE
;
4586 sd
->last_balance
= jiffies
;
4589 spin_unlock(&balancing
);
4591 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4592 next_balance
= sd
->last_balance
+ interval
;
4593 update_next_balance
= 1;
4597 * Stop the load balance at this level. There is another
4598 * CPU in our sched group which is doing load balancing more
4607 * next_balance will be updated only when there is a need.
4608 * When the cpu is attached to null domain for ex, it will not be
4611 if (likely(update_next_balance
))
4612 rq
->next_balance
= next_balance
;
4617 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4618 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4620 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
4622 struct rq
*this_rq
= cpu_rq(this_cpu
);
4626 if (idle
!= CPU_IDLE
|| !this_rq
->nohz_balance_kick
)
4629 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
4630 if (balance_cpu
== this_cpu
)
4634 * If this cpu gets work to do, stop the load balancing
4635 * work being done for other cpus. Next load
4636 * balancing owner will pick it up.
4638 if (need_resched()) {
4639 this_rq
->nohz_balance_kick
= 0;
4643 raw_spin_lock_irq(&this_rq
->lock
);
4644 update_rq_clock(this_rq
);
4645 update_cpu_load(this_rq
);
4646 raw_spin_unlock_irq(&this_rq
->lock
);
4648 rebalance_domains(balance_cpu
, CPU_IDLE
);
4650 rq
= cpu_rq(balance_cpu
);
4651 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4652 this_rq
->next_balance
= rq
->next_balance
;
4654 nohz
.next_balance
= this_rq
->next_balance
;
4655 this_rq
->nohz_balance_kick
= 0;
4659 * Current heuristic for kicking the idle load balancer
4660 * - first_pick_cpu is the one of the busy CPUs. It will kick
4661 * idle load balancer when it has more than one process active. This
4662 * eliminates the need for idle load balancing altogether when we have
4663 * only one running process in the system (common case).
4664 * - If there are more than one busy CPU, idle load balancer may have
4665 * to run for active_load_balance to happen (i.e., two busy CPUs are
4666 * SMT or core siblings and can run better if they move to different
4667 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4668 * which will kick idle load balancer as soon as it has any load.
4670 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
4672 unsigned long now
= jiffies
;
4674 int first_pick_cpu
, second_pick_cpu
;
4676 if (time_before(now
, nohz
.next_balance
))
4682 first_pick_cpu
= atomic_read(&nohz
.first_pick_cpu
);
4683 second_pick_cpu
= atomic_read(&nohz
.second_pick_cpu
);
4685 if (first_pick_cpu
< nr_cpu_ids
&& first_pick_cpu
!= cpu
&&
4686 second_pick_cpu
< nr_cpu_ids
&& second_pick_cpu
!= cpu
)
4689 ret
= atomic_cmpxchg(&nohz
.first_pick_cpu
, nr_cpu_ids
, cpu
);
4690 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4691 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
4692 if (rq
->nr_running
> 1)
4695 ret
= atomic_cmpxchg(&nohz
.second_pick_cpu
, nr_cpu_ids
, cpu
);
4696 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
4704 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
4708 * run_rebalance_domains is triggered when needed from the scheduler tick.
4709 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4711 static void run_rebalance_domains(struct softirq_action
*h
)
4713 int this_cpu
= smp_processor_id();
4714 struct rq
*this_rq
= cpu_rq(this_cpu
);
4715 enum cpu_idle_type idle
= this_rq
->idle_balance
?
4716 CPU_IDLE
: CPU_NOT_IDLE
;
4718 rebalance_domains(this_cpu
, idle
);
4721 * If this cpu has a pending nohz_balance_kick, then do the
4722 * balancing on behalf of the other idle cpus whose ticks are
4725 nohz_idle_balance(this_cpu
, idle
);
4728 static inline int on_null_domain(int cpu
)
4730 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
4734 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4736 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4738 /* Don't need to rebalance while attached to NULL domain */
4739 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4740 likely(!on_null_domain(cpu
)))
4741 raise_softirq(SCHED_SOFTIRQ
);
4743 else if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
4744 nohz_balancer_kick(cpu
);
4748 static void rq_online_fair(struct rq
*rq
)
4753 static void rq_offline_fair(struct rq
*rq
)
4758 #else /* CONFIG_SMP */
4761 * on UP we do not need to balance between CPUs:
4763 static inline void idle_balance(int cpu
, struct rq
*rq
)
4767 #endif /* CONFIG_SMP */
4770 * scheduler tick hitting a task of our scheduling class:
4772 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
4774 struct cfs_rq
*cfs_rq
;
4775 struct sched_entity
*se
= &curr
->se
;
4777 for_each_sched_entity(se
) {
4778 cfs_rq
= cfs_rq_of(se
);
4779 entity_tick(cfs_rq
, se
, queued
);
4784 * called on fork with the child task as argument from the parent's context
4785 * - child not yet on the tasklist
4786 * - preemption disabled
4788 static void task_fork_fair(struct task_struct
*p
)
4790 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
4791 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
4792 int this_cpu
= smp_processor_id();
4793 struct rq
*rq
= this_rq();
4794 unsigned long flags
;
4796 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4798 update_rq_clock(rq
);
4800 if (unlikely(task_cpu(p
) != this_cpu
)) {
4802 __set_task_cpu(p
, this_cpu
);
4806 update_curr(cfs_rq
);
4809 se
->vruntime
= curr
->vruntime
;
4810 place_entity(cfs_rq
, se
, 1);
4812 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
4814 * Upon rescheduling, sched_class::put_prev_task() will place
4815 * 'current' within the tree based on its new key value.
4817 swap(curr
->vruntime
, se
->vruntime
);
4818 resched_task(rq
->curr
);
4821 se
->vruntime
-= cfs_rq
->min_vruntime
;
4823 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4827 * Priority of the task has changed. Check to see if we preempt
4831 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
4837 * Reschedule if we are currently running on this runqueue and
4838 * our priority decreased, or if we are not currently running on
4839 * this runqueue and our priority is higher than the current's
4841 if (rq
->curr
== p
) {
4842 if (p
->prio
> oldprio
)
4843 resched_task(rq
->curr
);
4845 check_preempt_curr(rq
, p
, 0);
4848 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
4850 struct sched_entity
*se
= &p
->se
;
4851 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4854 * Ensure the task's vruntime is normalized, so that when its
4855 * switched back to the fair class the enqueue_entity(.flags=0) will
4856 * do the right thing.
4858 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4859 * have normalized the vruntime, if it was !on_rq, then only when
4860 * the task is sleeping will it still have non-normalized vruntime.
4862 if (!se
->on_rq
&& p
->state
!= TASK_RUNNING
) {
4864 * Fix up our vruntime so that the current sleep doesn't
4865 * cause 'unlimited' sleep bonus.
4867 place_entity(cfs_rq
, se
, 0);
4868 se
->vruntime
-= cfs_rq
->min_vruntime
;
4873 * We switched to the sched_fair class.
4875 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
4881 * We were most likely switched from sched_rt, so
4882 * kick off the schedule if running, otherwise just see
4883 * if we can still preempt the current task.
4886 resched_task(rq
->curr
);
4888 check_preempt_curr(rq
, p
, 0);
4891 /* Account for a task changing its policy or group.
4893 * This routine is mostly called to set cfs_rq->curr field when a task
4894 * migrates between groups/classes.
4896 static void set_curr_task_fair(struct rq
*rq
)
4898 struct sched_entity
*se
= &rq
->curr
->se
;
4900 for_each_sched_entity(se
) {
4901 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4903 set_next_entity(cfs_rq
, se
);
4904 /* ensure bandwidth has been allocated on our new cfs_rq */
4905 account_cfs_rq_runtime(cfs_rq
, 0);
4909 #ifdef CONFIG_FAIR_GROUP_SCHED
4910 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
4913 * If the task was not on the rq at the time of this cgroup movement
4914 * it must have been asleep, sleeping tasks keep their ->vruntime
4915 * absolute on their old rq until wakeup (needed for the fair sleeper
4916 * bonus in place_entity()).
4918 * If it was on the rq, we've just 'preempted' it, which does convert
4919 * ->vruntime to a relative base.
4921 * Make sure both cases convert their relative position when migrating
4922 * to another cgroup's rq. This does somewhat interfere with the
4923 * fair sleeper stuff for the first placement, but who cares.
4926 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
4927 set_task_rq(p
, task_cpu(p
));
4929 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
4933 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
4935 struct sched_entity
*se
= &task
->se
;
4936 unsigned int rr_interval
= 0;
4939 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4942 if (rq
->cfs
.load
.weight
)
4943 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4949 * All the scheduling class methods:
4951 static const struct sched_class fair_sched_class
= {
4952 .next
= &idle_sched_class
,
4953 .enqueue_task
= enqueue_task_fair
,
4954 .dequeue_task
= dequeue_task_fair
,
4955 .yield_task
= yield_task_fair
,
4956 .yield_to_task
= yield_to_task_fair
,
4958 .check_preempt_curr
= check_preempt_wakeup
,
4960 .pick_next_task
= pick_next_task_fair
,
4961 .put_prev_task
= put_prev_task_fair
,
4964 .select_task_rq
= select_task_rq_fair
,
4966 .rq_online
= rq_online_fair
,
4967 .rq_offline
= rq_offline_fair
,
4969 .task_waking
= task_waking_fair
,
4972 .set_curr_task
= set_curr_task_fair
,
4973 .task_tick
= task_tick_fair
,
4974 .task_fork
= task_fork_fair
,
4976 .prio_changed
= prio_changed_fair
,
4977 .switched_from
= switched_from_fair
,
4978 .switched_to
= switched_to_fair
,
4980 .get_rr_interval
= get_rr_interval_fair
,
4982 #ifdef CONFIG_FAIR_GROUP_SCHED
4983 .task_move_group
= task_move_group_fair
,
4987 #ifdef CONFIG_SCHED_DEBUG
4988 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
4990 struct cfs_rq
*cfs_rq
;
4993 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
4994 print_cfs_rq(m
, cpu
, cfs_rq
);