ip6tnl: allow to use rtnl ops on fb tunnel
[linux-2.6.git] / fs / buffer.c
blob4d7433534f5cd77b7f9b240fba57ac7923df07e6
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 inline void touch_buffer(struct buffer_head *bh)
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
62 EXPORT_SYMBOL(touch_buffer);
64 static int sleep_on_buffer(void *word)
66 io_schedule();
67 return 0;
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
83 EXPORT_SYMBOL(unlock_buffer);
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
90 void buffer_check_dirty_writeback(struct page *page,
91 bool *dirty, bool *writeback)
93 struct buffer_head *head, *bh;
94 *dirty = false;
95 *writeback = false;
97 BUG_ON(!PageLocked(page));
99 if (!page_has_buffers(page))
100 return;
102 if (PageWriteback(page))
103 *writeback = true;
105 head = page_buffers(page);
106 bh = head;
107 do {
108 if (buffer_locked(bh))
109 *writeback = true;
111 if (buffer_dirty(bh))
112 *dirty = true;
114 bh = bh->b_this_page;
115 } while (bh != head);
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
120 * Block until a buffer comes unlocked. This doesn't stop it
121 * from becoming locked again - you have to lock it yourself
122 * if you want to preserve its state.
124 void __wait_on_buffer(struct buffer_head * bh)
126 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
128 EXPORT_SYMBOL(__wait_on_buffer);
130 static void
131 __clear_page_buffers(struct page *page)
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
135 page_cache_release(page);
139 static int quiet_error(struct buffer_head *bh)
141 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142 return 0;
143 return 1;
147 static void buffer_io_error(struct buffer_head *bh)
149 char b[BDEVNAME_SIZE];
150 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151 bdevname(bh->b_bdev, b),
152 (unsigned long long)bh->b_blocknr);
156 * End-of-IO handler helper function which does not touch the bh after
157 * unlocking it.
158 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159 * a race there is benign: unlock_buffer() only use the bh's address for
160 * hashing after unlocking the buffer, so it doesn't actually touch the bh
161 * itself.
163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
165 if (uptodate) {
166 set_buffer_uptodate(bh);
167 } else {
168 /* This happens, due to failed READA attempts. */
169 clear_buffer_uptodate(bh);
171 unlock_buffer(bh);
175 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
176 * unlock the buffer. This is what ll_rw_block uses too.
178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
180 __end_buffer_read_notouch(bh, uptodate);
181 put_bh(bh);
183 EXPORT_SYMBOL(end_buffer_read_sync);
185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
187 char b[BDEVNAME_SIZE];
189 if (uptodate) {
190 set_buffer_uptodate(bh);
191 } else {
192 if (!quiet_error(bh)) {
193 buffer_io_error(bh);
194 printk(KERN_WARNING "lost page write due to "
195 "I/O error on %s\n",
196 bdevname(bh->b_bdev, b));
198 set_buffer_write_io_error(bh);
199 clear_buffer_uptodate(bh);
201 unlock_buffer(bh);
202 put_bh(bh);
204 EXPORT_SYMBOL(end_buffer_write_sync);
207 * Various filesystems appear to want __find_get_block to be non-blocking.
208 * But it's the page lock which protects the buffers. To get around this,
209 * we get exclusion from try_to_free_buffers with the blockdev mapping's
210 * private_lock.
212 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213 * may be quite high. This code could TryLock the page, and if that
214 * succeeds, there is no need to take private_lock. (But if
215 * private_lock is contended then so is mapping->tree_lock).
217 static struct buffer_head *
218 __find_get_block_slow(struct block_device *bdev, sector_t block)
220 struct inode *bd_inode = bdev->bd_inode;
221 struct address_space *bd_mapping = bd_inode->i_mapping;
222 struct buffer_head *ret = NULL;
223 pgoff_t index;
224 struct buffer_head *bh;
225 struct buffer_head *head;
226 struct page *page;
227 int all_mapped = 1;
229 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230 page = find_get_page(bd_mapping, index);
231 if (!page)
232 goto out;
234 spin_lock(&bd_mapping->private_lock);
235 if (!page_has_buffers(page))
236 goto out_unlock;
237 head = page_buffers(page);
238 bh = head;
239 do {
240 if (!buffer_mapped(bh))
241 all_mapped = 0;
242 else if (bh->b_blocknr == block) {
243 ret = bh;
244 get_bh(bh);
245 goto out_unlock;
247 bh = bh->b_this_page;
248 } while (bh != head);
250 /* we might be here because some of the buffers on this page are
251 * not mapped. This is due to various races between
252 * file io on the block device and getblk. It gets dealt with
253 * elsewhere, don't buffer_error if we had some unmapped buffers
255 if (all_mapped) {
256 char b[BDEVNAME_SIZE];
258 printk("__find_get_block_slow() failed. "
259 "block=%llu, b_blocknr=%llu\n",
260 (unsigned long long)block,
261 (unsigned long long)bh->b_blocknr);
262 printk("b_state=0x%08lx, b_size=%zu\n",
263 bh->b_state, bh->b_size);
264 printk("device %s blocksize: %d\n", bdevname(bdev, b),
265 1 << bd_inode->i_blkbits);
267 out_unlock:
268 spin_unlock(&bd_mapping->private_lock);
269 page_cache_release(page);
270 out:
271 return ret;
275 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
277 static void free_more_memory(void)
279 struct zone *zone;
280 int nid;
282 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
283 yield();
285 for_each_online_node(nid) {
286 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287 gfp_zone(GFP_NOFS), NULL,
288 &zone);
289 if (zone)
290 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
291 GFP_NOFS, NULL);
296 * I/O completion handler for block_read_full_page() - pages
297 * which come unlocked at the end of I/O.
299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
301 unsigned long flags;
302 struct buffer_head *first;
303 struct buffer_head *tmp;
304 struct page *page;
305 int page_uptodate = 1;
307 BUG_ON(!buffer_async_read(bh));
309 page = bh->b_page;
310 if (uptodate) {
311 set_buffer_uptodate(bh);
312 } else {
313 clear_buffer_uptodate(bh);
314 if (!quiet_error(bh))
315 buffer_io_error(bh);
316 SetPageError(page);
320 * Be _very_ careful from here on. Bad things can happen if
321 * two buffer heads end IO at almost the same time and both
322 * decide that the page is now completely done.
324 first = page_buffers(page);
325 local_irq_save(flags);
326 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
327 clear_buffer_async_read(bh);
328 unlock_buffer(bh);
329 tmp = bh;
330 do {
331 if (!buffer_uptodate(tmp))
332 page_uptodate = 0;
333 if (buffer_async_read(tmp)) {
334 BUG_ON(!buffer_locked(tmp));
335 goto still_busy;
337 tmp = tmp->b_this_page;
338 } while (tmp != bh);
339 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340 local_irq_restore(flags);
343 * If none of the buffers had errors and they are all
344 * uptodate then we can set the page uptodate.
346 if (page_uptodate && !PageError(page))
347 SetPageUptodate(page);
348 unlock_page(page);
349 return;
351 still_busy:
352 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 local_irq_restore(flags);
354 return;
358 * Completion handler for block_write_full_page() - pages which are unlocked
359 * during I/O, and which have PageWriteback cleared upon I/O completion.
361 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
363 char b[BDEVNAME_SIZE];
364 unsigned long flags;
365 struct buffer_head *first;
366 struct buffer_head *tmp;
367 struct page *page;
369 BUG_ON(!buffer_async_write(bh));
371 page = bh->b_page;
372 if (uptodate) {
373 set_buffer_uptodate(bh);
374 } else {
375 if (!quiet_error(bh)) {
376 buffer_io_error(bh);
377 printk(KERN_WARNING "lost page write due to "
378 "I/O error on %s\n",
379 bdevname(bh->b_bdev, b));
381 set_bit(AS_EIO, &page->mapping->flags);
382 set_buffer_write_io_error(bh);
383 clear_buffer_uptodate(bh);
384 SetPageError(page);
387 first = page_buffers(page);
388 local_irq_save(flags);
389 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
391 clear_buffer_async_write(bh);
392 unlock_buffer(bh);
393 tmp = bh->b_this_page;
394 while (tmp != bh) {
395 if (buffer_async_write(tmp)) {
396 BUG_ON(!buffer_locked(tmp));
397 goto still_busy;
399 tmp = tmp->b_this_page;
401 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402 local_irq_restore(flags);
403 end_page_writeback(page);
404 return;
406 still_busy:
407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 local_irq_restore(flags);
409 return;
411 EXPORT_SYMBOL(end_buffer_async_write);
414 * If a page's buffers are under async readin (end_buffer_async_read
415 * completion) then there is a possibility that another thread of
416 * control could lock one of the buffers after it has completed
417 * but while some of the other buffers have not completed. This
418 * locked buffer would confuse end_buffer_async_read() into not unlocking
419 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
420 * that this buffer is not under async I/O.
422 * The page comes unlocked when it has no locked buffer_async buffers
423 * left.
425 * PageLocked prevents anyone starting new async I/O reads any of
426 * the buffers.
428 * PageWriteback is used to prevent simultaneous writeout of the same
429 * page.
431 * PageLocked prevents anyone from starting writeback of a page which is
432 * under read I/O (PageWriteback is only ever set against a locked page).
434 static void mark_buffer_async_read(struct buffer_head *bh)
436 bh->b_end_io = end_buffer_async_read;
437 set_buffer_async_read(bh);
440 static void mark_buffer_async_write_endio(struct buffer_head *bh,
441 bh_end_io_t *handler)
443 bh->b_end_io = handler;
444 set_buffer_async_write(bh);
447 void mark_buffer_async_write(struct buffer_head *bh)
449 mark_buffer_async_write_endio(bh, end_buffer_async_write);
451 EXPORT_SYMBOL(mark_buffer_async_write);
455 * fs/buffer.c contains helper functions for buffer-backed address space's
456 * fsync functions. A common requirement for buffer-based filesystems is
457 * that certain data from the backing blockdev needs to be written out for
458 * a successful fsync(). For example, ext2 indirect blocks need to be
459 * written back and waited upon before fsync() returns.
461 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463 * management of a list of dependent buffers at ->i_mapping->private_list.
465 * Locking is a little subtle: try_to_free_buffers() will remove buffers
466 * from their controlling inode's queue when they are being freed. But
467 * try_to_free_buffers() will be operating against the *blockdev* mapping
468 * at the time, not against the S_ISREG file which depends on those buffers.
469 * So the locking for private_list is via the private_lock in the address_space
470 * which backs the buffers. Which is different from the address_space
471 * against which the buffers are listed. So for a particular address_space,
472 * mapping->private_lock does *not* protect mapping->private_list! In fact,
473 * mapping->private_list will always be protected by the backing blockdev's
474 * ->private_lock.
476 * Which introduces a requirement: all buffers on an address_space's
477 * ->private_list must be from the same address_space: the blockdev's.
479 * address_spaces which do not place buffers at ->private_list via these
480 * utility functions are free to use private_lock and private_list for
481 * whatever they want. The only requirement is that list_empty(private_list)
482 * be true at clear_inode() time.
484 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
485 * filesystems should do that. invalidate_inode_buffers() should just go
486 * BUG_ON(!list_empty).
488 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
489 * take an address_space, not an inode. And it should be called
490 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491 * queued up.
493 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494 * list if it is already on a list. Because if the buffer is on a list,
495 * it *must* already be on the right one. If not, the filesystem is being
496 * silly. This will save a ton of locking. But first we have to ensure
497 * that buffers are taken *off* the old inode's list when they are freed
498 * (presumably in truncate). That requires careful auditing of all
499 * filesystems (do it inside bforget()). It could also be done by bringing
500 * b_inode back.
504 * The buffer's backing address_space's private_lock must be held
506 static void __remove_assoc_queue(struct buffer_head *bh)
508 list_del_init(&bh->b_assoc_buffers);
509 WARN_ON(!bh->b_assoc_map);
510 if (buffer_write_io_error(bh))
511 set_bit(AS_EIO, &bh->b_assoc_map->flags);
512 bh->b_assoc_map = NULL;
515 int inode_has_buffers(struct inode *inode)
517 return !list_empty(&inode->i_data.private_list);
521 * osync is designed to support O_SYNC io. It waits synchronously for
522 * all already-submitted IO to complete, but does not queue any new
523 * writes to the disk.
525 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526 * you dirty the buffers, and then use osync_inode_buffers to wait for
527 * completion. Any other dirty buffers which are not yet queued for
528 * write will not be flushed to disk by the osync.
530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
532 struct buffer_head *bh;
533 struct list_head *p;
534 int err = 0;
536 spin_lock(lock);
537 repeat:
538 list_for_each_prev(p, list) {
539 bh = BH_ENTRY(p);
540 if (buffer_locked(bh)) {
541 get_bh(bh);
542 spin_unlock(lock);
543 wait_on_buffer(bh);
544 if (!buffer_uptodate(bh))
545 err = -EIO;
546 brelse(bh);
547 spin_lock(lock);
548 goto repeat;
551 spin_unlock(lock);
552 return err;
555 static void do_thaw_one(struct super_block *sb, void *unused)
557 char b[BDEVNAME_SIZE];
558 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559 printk(KERN_WARNING "Emergency Thaw on %s\n",
560 bdevname(sb->s_bdev, b));
563 static void do_thaw_all(struct work_struct *work)
565 iterate_supers(do_thaw_one, NULL);
566 kfree(work);
567 printk(KERN_WARNING "Emergency Thaw complete\n");
571 * emergency_thaw_all -- forcibly thaw every frozen filesystem
573 * Used for emergency unfreeze of all filesystems via SysRq
575 void emergency_thaw_all(void)
577 struct work_struct *work;
579 work = kmalloc(sizeof(*work), GFP_ATOMIC);
580 if (work) {
581 INIT_WORK(work, do_thaw_all);
582 schedule_work(work);
587 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588 * @mapping: the mapping which wants those buffers written
590 * Starts I/O against the buffers at mapping->private_list, and waits upon
591 * that I/O.
593 * Basically, this is a convenience function for fsync().
594 * @mapping is a file or directory which needs those buffers to be written for
595 * a successful fsync().
597 int sync_mapping_buffers(struct address_space *mapping)
599 struct address_space *buffer_mapping = mapping->private_data;
601 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602 return 0;
604 return fsync_buffers_list(&buffer_mapping->private_lock,
605 &mapping->private_list);
607 EXPORT_SYMBOL(sync_mapping_buffers);
610 * Called when we've recently written block `bblock', and it is known that
611 * `bblock' was for a buffer_boundary() buffer. This means that the block at
612 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
613 * dirty, schedule it for IO. So that indirects merge nicely with their data.
615 void write_boundary_block(struct block_device *bdev,
616 sector_t bblock, unsigned blocksize)
618 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619 if (bh) {
620 if (buffer_dirty(bh))
621 ll_rw_block(WRITE, 1, &bh);
622 put_bh(bh);
626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
628 struct address_space *mapping = inode->i_mapping;
629 struct address_space *buffer_mapping = bh->b_page->mapping;
631 mark_buffer_dirty(bh);
632 if (!mapping->private_data) {
633 mapping->private_data = buffer_mapping;
634 } else {
635 BUG_ON(mapping->private_data != buffer_mapping);
637 if (!bh->b_assoc_map) {
638 spin_lock(&buffer_mapping->private_lock);
639 list_move_tail(&bh->b_assoc_buffers,
640 &mapping->private_list);
641 bh->b_assoc_map = mapping;
642 spin_unlock(&buffer_mapping->private_lock);
645 EXPORT_SYMBOL(mark_buffer_dirty_inode);
648 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649 * dirty.
651 * If warn is true, then emit a warning if the page is not uptodate and has
652 * not been truncated.
654 static void __set_page_dirty(struct page *page,
655 struct address_space *mapping, int warn)
657 spin_lock_irq(&mapping->tree_lock);
658 if (page->mapping) { /* Race with truncate? */
659 WARN_ON_ONCE(warn && !PageUptodate(page));
660 account_page_dirtied(page, mapping);
661 radix_tree_tag_set(&mapping->page_tree,
662 page_index(page), PAGECACHE_TAG_DIRTY);
664 spin_unlock_irq(&mapping->tree_lock);
665 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
669 * Add a page to the dirty page list.
671 * It is a sad fact of life that this function is called from several places
672 * deeply under spinlocking. It may not sleep.
674 * If the page has buffers, the uptodate buffers are set dirty, to preserve
675 * dirty-state coherency between the page and the buffers. It the page does
676 * not have buffers then when they are later attached they will all be set
677 * dirty.
679 * The buffers are dirtied before the page is dirtied. There's a small race
680 * window in which a writepage caller may see the page cleanness but not the
681 * buffer dirtiness. That's fine. If this code were to set the page dirty
682 * before the buffers, a concurrent writepage caller could clear the page dirty
683 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
684 * page on the dirty page list.
686 * We use private_lock to lock against try_to_free_buffers while using the
687 * page's buffer list. Also use this to protect against clean buffers being
688 * added to the page after it was set dirty.
690 * FIXME: may need to call ->reservepage here as well. That's rather up to the
691 * address_space though.
693 int __set_page_dirty_buffers(struct page *page)
695 int newly_dirty;
696 struct address_space *mapping = page_mapping(page);
698 if (unlikely(!mapping))
699 return !TestSetPageDirty(page);
701 spin_lock(&mapping->private_lock);
702 if (page_has_buffers(page)) {
703 struct buffer_head *head = page_buffers(page);
704 struct buffer_head *bh = head;
706 do {
707 set_buffer_dirty(bh);
708 bh = bh->b_this_page;
709 } while (bh != head);
711 newly_dirty = !TestSetPageDirty(page);
712 spin_unlock(&mapping->private_lock);
714 if (newly_dirty)
715 __set_page_dirty(page, mapping, 1);
716 return newly_dirty;
718 EXPORT_SYMBOL(__set_page_dirty_buffers);
721 * Write out and wait upon a list of buffers.
723 * We have conflicting pressures: we want to make sure that all
724 * initially dirty buffers get waited on, but that any subsequently
725 * dirtied buffers don't. After all, we don't want fsync to last
726 * forever if somebody is actively writing to the file.
728 * Do this in two main stages: first we copy dirty buffers to a
729 * temporary inode list, queueing the writes as we go. Then we clean
730 * up, waiting for those writes to complete.
732 * During this second stage, any subsequent updates to the file may end
733 * up refiling the buffer on the original inode's dirty list again, so
734 * there is a chance we will end up with a buffer queued for write but
735 * not yet completed on that list. So, as a final cleanup we go through
736 * the osync code to catch these locked, dirty buffers without requeuing
737 * any newly dirty buffers for write.
739 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
741 struct buffer_head *bh;
742 struct list_head tmp;
743 struct address_space *mapping;
744 int err = 0, err2;
745 struct blk_plug plug;
747 INIT_LIST_HEAD(&tmp);
748 blk_start_plug(&plug);
750 spin_lock(lock);
751 while (!list_empty(list)) {
752 bh = BH_ENTRY(list->next);
753 mapping = bh->b_assoc_map;
754 __remove_assoc_queue(bh);
755 /* Avoid race with mark_buffer_dirty_inode() which does
756 * a lockless check and we rely on seeing the dirty bit */
757 smp_mb();
758 if (buffer_dirty(bh) || buffer_locked(bh)) {
759 list_add(&bh->b_assoc_buffers, &tmp);
760 bh->b_assoc_map = mapping;
761 if (buffer_dirty(bh)) {
762 get_bh(bh);
763 spin_unlock(lock);
765 * Ensure any pending I/O completes so that
766 * write_dirty_buffer() actually writes the
767 * current contents - it is a noop if I/O is
768 * still in flight on potentially older
769 * contents.
771 write_dirty_buffer(bh, WRITE_SYNC);
774 * Kick off IO for the previous mapping. Note
775 * that we will not run the very last mapping,
776 * wait_on_buffer() will do that for us
777 * through sync_buffer().
779 brelse(bh);
780 spin_lock(lock);
785 spin_unlock(lock);
786 blk_finish_plug(&plug);
787 spin_lock(lock);
789 while (!list_empty(&tmp)) {
790 bh = BH_ENTRY(tmp.prev);
791 get_bh(bh);
792 mapping = bh->b_assoc_map;
793 __remove_assoc_queue(bh);
794 /* Avoid race with mark_buffer_dirty_inode() which does
795 * a lockless check and we rely on seeing the dirty bit */
796 smp_mb();
797 if (buffer_dirty(bh)) {
798 list_add(&bh->b_assoc_buffers,
799 &mapping->private_list);
800 bh->b_assoc_map = mapping;
802 spin_unlock(lock);
803 wait_on_buffer(bh);
804 if (!buffer_uptodate(bh))
805 err = -EIO;
806 brelse(bh);
807 spin_lock(lock);
810 spin_unlock(lock);
811 err2 = osync_buffers_list(lock, list);
812 if (err)
813 return err;
814 else
815 return err2;
819 * Invalidate any and all dirty buffers on a given inode. We are
820 * probably unmounting the fs, but that doesn't mean we have already
821 * done a sync(). Just drop the buffers from the inode list.
823 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
824 * assumes that all the buffers are against the blockdev. Not true
825 * for reiserfs.
827 void invalidate_inode_buffers(struct inode *inode)
829 if (inode_has_buffers(inode)) {
830 struct address_space *mapping = &inode->i_data;
831 struct list_head *list = &mapping->private_list;
832 struct address_space *buffer_mapping = mapping->private_data;
834 spin_lock(&buffer_mapping->private_lock);
835 while (!list_empty(list))
836 __remove_assoc_queue(BH_ENTRY(list->next));
837 spin_unlock(&buffer_mapping->private_lock);
840 EXPORT_SYMBOL(invalidate_inode_buffers);
843 * Remove any clean buffers from the inode's buffer list. This is called
844 * when we're trying to free the inode itself. Those buffers can pin it.
846 * Returns true if all buffers were removed.
848 int remove_inode_buffers(struct inode *inode)
850 int ret = 1;
852 if (inode_has_buffers(inode)) {
853 struct address_space *mapping = &inode->i_data;
854 struct list_head *list = &mapping->private_list;
855 struct address_space *buffer_mapping = mapping->private_data;
857 spin_lock(&buffer_mapping->private_lock);
858 while (!list_empty(list)) {
859 struct buffer_head *bh = BH_ENTRY(list->next);
860 if (buffer_dirty(bh)) {
861 ret = 0;
862 break;
864 __remove_assoc_queue(bh);
866 spin_unlock(&buffer_mapping->private_lock);
868 return ret;
872 * Create the appropriate buffers when given a page for data area and
873 * the size of each buffer.. Use the bh->b_this_page linked list to
874 * follow the buffers created. Return NULL if unable to create more
875 * buffers.
877 * The retry flag is used to differentiate async IO (paging, swapping)
878 * which may not fail from ordinary buffer allocations.
880 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
881 int retry)
883 struct buffer_head *bh, *head;
884 long offset;
886 try_again:
887 head = NULL;
888 offset = PAGE_SIZE;
889 while ((offset -= size) >= 0) {
890 bh = alloc_buffer_head(GFP_NOFS);
891 if (!bh)
892 goto no_grow;
894 bh->b_this_page = head;
895 bh->b_blocknr = -1;
896 head = bh;
898 bh->b_size = size;
900 /* Link the buffer to its page */
901 set_bh_page(bh, page, offset);
903 return head;
905 * In case anything failed, we just free everything we got.
907 no_grow:
908 if (head) {
909 do {
910 bh = head;
911 head = head->b_this_page;
912 free_buffer_head(bh);
913 } while (head);
917 * Return failure for non-async IO requests. Async IO requests
918 * are not allowed to fail, so we have to wait until buffer heads
919 * become available. But we don't want tasks sleeping with
920 * partially complete buffers, so all were released above.
922 if (!retry)
923 return NULL;
925 /* We're _really_ low on memory. Now we just
926 * wait for old buffer heads to become free due to
927 * finishing IO. Since this is an async request and
928 * the reserve list is empty, we're sure there are
929 * async buffer heads in use.
931 free_more_memory();
932 goto try_again;
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
939 struct buffer_head *bh, *tail;
941 bh = head;
942 do {
943 tail = bh;
944 bh = bh->b_this_page;
945 } while (bh);
946 tail->b_this_page = head;
947 attach_page_buffers(page, head);
950 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
952 sector_t retval = ~((sector_t)0);
953 loff_t sz = i_size_read(bdev->bd_inode);
955 if (sz) {
956 unsigned int sizebits = blksize_bits(size);
957 retval = (sz >> sizebits);
959 return retval;
963 * Initialise the state of a blockdev page's buffers.
965 static sector_t
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 sector_t block, int size)
969 struct buffer_head *head = page_buffers(page);
970 struct buffer_head *bh = head;
971 int uptodate = PageUptodate(page);
972 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
974 do {
975 if (!buffer_mapped(bh)) {
976 init_buffer(bh, NULL, NULL);
977 bh->b_bdev = bdev;
978 bh->b_blocknr = block;
979 if (uptodate)
980 set_buffer_uptodate(bh);
981 if (block < end_block)
982 set_buffer_mapped(bh);
984 block++;
985 bh = bh->b_this_page;
986 } while (bh != head);
989 * Caller needs to validate requested block against end of device.
991 return end_block;
995 * Create the page-cache page that contains the requested block.
997 * This is used purely for blockdev mappings.
999 static int
1000 grow_dev_page(struct block_device *bdev, sector_t block,
1001 pgoff_t index, int size, int sizebits)
1003 struct inode *inode = bdev->bd_inode;
1004 struct page *page;
1005 struct buffer_head *bh;
1006 sector_t end_block;
1007 int ret = 0; /* Will call free_more_memory() */
1009 page = find_or_create_page(inode->i_mapping, index,
1010 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1011 if (!page)
1012 return ret;
1014 BUG_ON(!PageLocked(page));
1016 if (page_has_buffers(page)) {
1017 bh = page_buffers(page);
1018 if (bh->b_size == size) {
1019 end_block = init_page_buffers(page, bdev,
1020 index << sizebits, size);
1021 goto done;
1023 if (!try_to_free_buffers(page))
1024 goto failed;
1028 * Allocate some buffers for this page
1030 bh = alloc_page_buffers(page, size, 0);
1031 if (!bh)
1032 goto failed;
1035 * Link the page to the buffers and initialise them. Take the
1036 * lock to be atomic wrt __find_get_block(), which does not
1037 * run under the page lock.
1039 spin_lock(&inode->i_mapping->private_lock);
1040 link_dev_buffers(page, bh);
1041 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1042 spin_unlock(&inode->i_mapping->private_lock);
1043 done:
1044 ret = (block < end_block) ? 1 : -ENXIO;
1045 failed:
1046 unlock_page(page);
1047 page_cache_release(page);
1048 return ret;
1052 * Create buffers for the specified block device block's page. If
1053 * that page was dirty, the buffers are set dirty also.
1055 static int
1056 grow_buffers(struct block_device *bdev, sector_t block, int size)
1058 pgoff_t index;
1059 int sizebits;
1061 sizebits = -1;
1062 do {
1063 sizebits++;
1064 } while ((size << sizebits) < PAGE_SIZE);
1066 index = block >> sizebits;
1069 * Check for a block which wants to lie outside our maximum possible
1070 * pagecache index. (this comparison is done using sector_t types).
1072 if (unlikely(index != block >> sizebits)) {
1073 char b[BDEVNAME_SIZE];
1075 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1076 "device %s\n",
1077 __func__, (unsigned long long)block,
1078 bdevname(bdev, b));
1079 return -EIO;
1082 /* Create a page with the proper size buffers.. */
1083 return grow_dev_page(bdev, block, index, size, sizebits);
1086 static struct buffer_head *
1087 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1089 /* Size must be multiple of hard sectorsize */
1090 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1091 (size < 512 || size > PAGE_SIZE))) {
1092 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1093 size);
1094 printk(KERN_ERR "logical block size: %d\n",
1095 bdev_logical_block_size(bdev));
1097 dump_stack();
1098 return NULL;
1101 for (;;) {
1102 struct buffer_head *bh;
1103 int ret;
1105 bh = __find_get_block(bdev, block, size);
1106 if (bh)
1107 return bh;
1109 ret = grow_buffers(bdev, block, size);
1110 if (ret < 0)
1111 return NULL;
1112 if (ret == 0)
1113 free_more_memory();
1118 * The relationship between dirty buffers and dirty pages:
1120 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1121 * the page is tagged dirty in its radix tree.
1123 * At all times, the dirtiness of the buffers represents the dirtiness of
1124 * subsections of the page. If the page has buffers, the page dirty bit is
1125 * merely a hint about the true dirty state.
1127 * When a page is set dirty in its entirety, all its buffers are marked dirty
1128 * (if the page has buffers).
1130 * When a buffer is marked dirty, its page is dirtied, but the page's other
1131 * buffers are not.
1133 * Also. When blockdev buffers are explicitly read with bread(), they
1134 * individually become uptodate. But their backing page remains not
1135 * uptodate - even if all of its buffers are uptodate. A subsequent
1136 * block_read_full_page() against that page will discover all the uptodate
1137 * buffers, will set the page uptodate and will perform no I/O.
1141 * mark_buffer_dirty - mark a buffer_head as needing writeout
1142 * @bh: the buffer_head to mark dirty
1144 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1145 * backing page dirty, then tag the page as dirty in its address_space's radix
1146 * tree and then attach the address_space's inode to its superblock's dirty
1147 * inode list.
1149 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1150 * mapping->tree_lock and mapping->host->i_lock.
1152 void mark_buffer_dirty(struct buffer_head *bh)
1154 WARN_ON_ONCE(!buffer_uptodate(bh));
1156 trace_block_dirty_buffer(bh);
1159 * Very *carefully* optimize the it-is-already-dirty case.
1161 * Don't let the final "is it dirty" escape to before we
1162 * perhaps modified the buffer.
1164 if (buffer_dirty(bh)) {
1165 smp_mb();
1166 if (buffer_dirty(bh))
1167 return;
1170 if (!test_set_buffer_dirty(bh)) {
1171 struct page *page = bh->b_page;
1172 if (!TestSetPageDirty(page)) {
1173 struct address_space *mapping = page_mapping(page);
1174 if (mapping)
1175 __set_page_dirty(page, mapping, 0);
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1182 * Decrement a buffer_head's reference count. If all buffers against a page
1183 * have zero reference count, are clean and unlocked, and if the page is clean
1184 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1185 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1186 * a page but it ends up not being freed, and buffers may later be reattached).
1188 void __brelse(struct buffer_head * buf)
1190 if (atomic_read(&buf->b_count)) {
1191 put_bh(buf);
1192 return;
1194 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1196 EXPORT_SYMBOL(__brelse);
1199 * bforget() is like brelse(), except it discards any
1200 * potentially dirty data.
1202 void __bforget(struct buffer_head *bh)
1204 clear_buffer_dirty(bh);
1205 if (bh->b_assoc_map) {
1206 struct address_space *buffer_mapping = bh->b_page->mapping;
1208 spin_lock(&buffer_mapping->private_lock);
1209 list_del_init(&bh->b_assoc_buffers);
1210 bh->b_assoc_map = NULL;
1211 spin_unlock(&buffer_mapping->private_lock);
1213 __brelse(bh);
1215 EXPORT_SYMBOL(__bforget);
1217 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1219 lock_buffer(bh);
1220 if (buffer_uptodate(bh)) {
1221 unlock_buffer(bh);
1222 return bh;
1223 } else {
1224 get_bh(bh);
1225 bh->b_end_io = end_buffer_read_sync;
1226 submit_bh(READ, bh);
1227 wait_on_buffer(bh);
1228 if (buffer_uptodate(bh))
1229 return bh;
1231 brelse(bh);
1232 return NULL;
1236 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1237 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1238 * refcount elevated by one when they're in an LRU. A buffer can only appear
1239 * once in a particular CPU's LRU. A single buffer can be present in multiple
1240 * CPU's LRUs at the same time.
1242 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1243 * sb_find_get_block().
1245 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1246 * a local interrupt disable for that.
1249 #define BH_LRU_SIZE 8
1251 struct bh_lru {
1252 struct buffer_head *bhs[BH_LRU_SIZE];
1255 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1257 #ifdef CONFIG_SMP
1258 #define bh_lru_lock() local_irq_disable()
1259 #define bh_lru_unlock() local_irq_enable()
1260 #else
1261 #define bh_lru_lock() preempt_disable()
1262 #define bh_lru_unlock() preempt_enable()
1263 #endif
1265 static inline void check_irqs_on(void)
1267 #ifdef irqs_disabled
1268 BUG_ON(irqs_disabled());
1269 #endif
1273 * The LRU management algorithm is dopey-but-simple. Sorry.
1275 static void bh_lru_install(struct buffer_head *bh)
1277 struct buffer_head *evictee = NULL;
1279 check_irqs_on();
1280 bh_lru_lock();
1281 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1282 struct buffer_head *bhs[BH_LRU_SIZE];
1283 int in;
1284 int out = 0;
1286 get_bh(bh);
1287 bhs[out++] = bh;
1288 for (in = 0; in < BH_LRU_SIZE; in++) {
1289 struct buffer_head *bh2 =
1290 __this_cpu_read(bh_lrus.bhs[in]);
1292 if (bh2 == bh) {
1293 __brelse(bh2);
1294 } else {
1295 if (out >= BH_LRU_SIZE) {
1296 BUG_ON(evictee != NULL);
1297 evictee = bh2;
1298 } else {
1299 bhs[out++] = bh2;
1303 while (out < BH_LRU_SIZE)
1304 bhs[out++] = NULL;
1305 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1307 bh_lru_unlock();
1309 if (evictee)
1310 __brelse(evictee);
1314 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1316 static struct buffer_head *
1317 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1319 struct buffer_head *ret = NULL;
1320 unsigned int i;
1322 check_irqs_on();
1323 bh_lru_lock();
1324 for (i = 0; i < BH_LRU_SIZE; i++) {
1325 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1327 if (bh && bh->b_bdev == bdev &&
1328 bh->b_blocknr == block && bh->b_size == size) {
1329 if (i) {
1330 while (i) {
1331 __this_cpu_write(bh_lrus.bhs[i],
1332 __this_cpu_read(bh_lrus.bhs[i - 1]));
1333 i--;
1335 __this_cpu_write(bh_lrus.bhs[0], bh);
1337 get_bh(bh);
1338 ret = bh;
1339 break;
1342 bh_lru_unlock();
1343 return ret;
1347 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1348 * it in the LRU and mark it as accessed. If it is not present then return
1349 * NULL
1351 struct buffer_head *
1352 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1354 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1356 if (bh == NULL) {
1357 bh = __find_get_block_slow(bdev, block);
1358 if (bh)
1359 bh_lru_install(bh);
1361 if (bh)
1362 touch_buffer(bh);
1363 return bh;
1365 EXPORT_SYMBOL(__find_get_block);
1368 * __getblk will locate (and, if necessary, create) the buffer_head
1369 * which corresponds to the passed block_device, block and size. The
1370 * returned buffer has its reference count incremented.
1372 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1373 * attempt is failing. FIXME, perhaps?
1375 struct buffer_head *
1376 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1378 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380 might_sleep();
1381 if (bh == NULL)
1382 bh = __getblk_slow(bdev, block, size);
1383 return bh;
1385 EXPORT_SYMBOL(__getblk);
1388 * Do async read-ahead on a buffer..
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 struct buffer_head *bh = __getblk(bdev, block, size);
1393 if (likely(bh)) {
1394 ll_rw_block(READA, 1, &bh);
1395 brelse(bh);
1398 EXPORT_SYMBOL(__breadahead);
1401 * __bread() - reads a specified block and returns the bh
1402 * @bdev: the block_device to read from
1403 * @block: number of block
1404 * @size: size (in bytes) to read
1406 * Reads a specified block, and returns buffer head that contains it.
1407 * It returns NULL if the block was unreadable.
1409 struct buffer_head *
1410 __bread(struct block_device *bdev, sector_t block, unsigned size)
1412 struct buffer_head *bh = __getblk(bdev, block, size);
1414 if (likely(bh) && !buffer_uptodate(bh))
1415 bh = __bread_slow(bh);
1416 return bh;
1418 EXPORT_SYMBOL(__bread);
1421 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1422 * This doesn't race because it runs in each cpu either in irq
1423 * or with preempt disabled.
1425 static void invalidate_bh_lru(void *arg)
1427 struct bh_lru *b = &get_cpu_var(bh_lrus);
1428 int i;
1430 for (i = 0; i < BH_LRU_SIZE; i++) {
1431 brelse(b->bhs[i]);
1432 b->bhs[i] = NULL;
1434 put_cpu_var(bh_lrus);
1437 static bool has_bh_in_lru(int cpu, void *dummy)
1439 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1440 int i;
1442 for (i = 0; i < BH_LRU_SIZE; i++) {
1443 if (b->bhs[i])
1444 return 1;
1447 return 0;
1450 void invalidate_bh_lrus(void)
1452 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1454 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1456 void set_bh_page(struct buffer_head *bh,
1457 struct page *page, unsigned long offset)
1459 bh->b_page = page;
1460 BUG_ON(offset >= PAGE_SIZE);
1461 if (PageHighMem(page))
1463 * This catches illegal uses and preserves the offset:
1465 bh->b_data = (char *)(0 + offset);
1466 else
1467 bh->b_data = page_address(page) + offset;
1469 EXPORT_SYMBOL(set_bh_page);
1472 * Called when truncating a buffer on a page completely.
1474 static void discard_buffer(struct buffer_head * bh)
1476 lock_buffer(bh);
1477 clear_buffer_dirty(bh);
1478 bh->b_bdev = NULL;
1479 clear_buffer_mapped(bh);
1480 clear_buffer_req(bh);
1481 clear_buffer_new(bh);
1482 clear_buffer_delay(bh);
1483 clear_buffer_unwritten(bh);
1484 unlock_buffer(bh);
1488 * block_invalidatepage - invalidate part or all of a buffer-backed page
1490 * @page: the page which is affected
1491 * @offset: start of the range to invalidate
1492 * @length: length of the range to invalidate
1494 * block_invalidatepage() is called when all or part of the page has become
1495 * invalidated by a truncate operation.
1497 * block_invalidatepage() does not have to release all buffers, but it must
1498 * ensure that no dirty buffer is left outside @offset and that no I/O
1499 * is underway against any of the blocks which are outside the truncation
1500 * point. Because the caller is about to free (and possibly reuse) those
1501 * blocks on-disk.
1503 void block_invalidatepage(struct page *page, unsigned int offset,
1504 unsigned int length)
1506 struct buffer_head *head, *bh, *next;
1507 unsigned int curr_off = 0;
1508 unsigned int stop = length + offset;
1510 BUG_ON(!PageLocked(page));
1511 if (!page_has_buffers(page))
1512 goto out;
1515 * Check for overflow
1517 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1519 head = page_buffers(page);
1520 bh = head;
1521 do {
1522 unsigned int next_off = curr_off + bh->b_size;
1523 next = bh->b_this_page;
1526 * Are we still fully in range ?
1528 if (next_off > stop)
1529 goto out;
1532 * is this block fully invalidated?
1534 if (offset <= curr_off)
1535 discard_buffer(bh);
1536 curr_off = next_off;
1537 bh = next;
1538 } while (bh != head);
1541 * We release buffers only if the entire page is being invalidated.
1542 * The get_block cached value has been unconditionally invalidated,
1543 * so real IO is not possible anymore.
1545 if (offset == 0)
1546 try_to_release_page(page, 0);
1547 out:
1548 return;
1550 EXPORT_SYMBOL(block_invalidatepage);
1554 * We attach and possibly dirty the buffers atomically wrt
1555 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1556 * is already excluded via the page lock.
1558 void create_empty_buffers(struct page *page,
1559 unsigned long blocksize, unsigned long b_state)
1561 struct buffer_head *bh, *head, *tail;
1563 head = alloc_page_buffers(page, blocksize, 1);
1564 bh = head;
1565 do {
1566 bh->b_state |= b_state;
1567 tail = bh;
1568 bh = bh->b_this_page;
1569 } while (bh);
1570 tail->b_this_page = head;
1572 spin_lock(&page->mapping->private_lock);
1573 if (PageUptodate(page) || PageDirty(page)) {
1574 bh = head;
1575 do {
1576 if (PageDirty(page))
1577 set_buffer_dirty(bh);
1578 if (PageUptodate(page))
1579 set_buffer_uptodate(bh);
1580 bh = bh->b_this_page;
1581 } while (bh != head);
1583 attach_page_buffers(page, head);
1584 spin_unlock(&page->mapping->private_lock);
1586 EXPORT_SYMBOL(create_empty_buffers);
1589 * We are taking a block for data and we don't want any output from any
1590 * buffer-cache aliases starting from return from that function and
1591 * until the moment when something will explicitly mark the buffer
1592 * dirty (hopefully that will not happen until we will free that block ;-)
1593 * We don't even need to mark it not-uptodate - nobody can expect
1594 * anything from a newly allocated buffer anyway. We used to used
1595 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1596 * don't want to mark the alias unmapped, for example - it would confuse
1597 * anyone who might pick it with bread() afterwards...
1599 * Also.. Note that bforget() doesn't lock the buffer. So there can
1600 * be writeout I/O going on against recently-freed buffers. We don't
1601 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1602 * only if we really need to. That happens here.
1604 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1606 struct buffer_head *old_bh;
1608 might_sleep();
1610 old_bh = __find_get_block_slow(bdev, block);
1611 if (old_bh) {
1612 clear_buffer_dirty(old_bh);
1613 wait_on_buffer(old_bh);
1614 clear_buffer_req(old_bh);
1615 __brelse(old_bh);
1618 EXPORT_SYMBOL(unmap_underlying_metadata);
1621 * Size is a power-of-two in the range 512..PAGE_SIZE,
1622 * and the case we care about most is PAGE_SIZE.
1624 * So this *could* possibly be written with those
1625 * constraints in mind (relevant mostly if some
1626 * architecture has a slow bit-scan instruction)
1628 static inline int block_size_bits(unsigned int blocksize)
1630 return ilog2(blocksize);
1633 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1635 BUG_ON(!PageLocked(page));
1637 if (!page_has_buffers(page))
1638 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1639 return page_buffers(page);
1643 * NOTE! All mapped/uptodate combinations are valid:
1645 * Mapped Uptodate Meaning
1647 * No No "unknown" - must do get_block()
1648 * No Yes "hole" - zero-filled
1649 * Yes No "allocated" - allocated on disk, not read in
1650 * Yes Yes "valid" - allocated and up-to-date in memory.
1652 * "Dirty" is valid only with the last case (mapped+uptodate).
1656 * While block_write_full_page is writing back the dirty buffers under
1657 * the page lock, whoever dirtied the buffers may decide to clean them
1658 * again at any time. We handle that by only looking at the buffer
1659 * state inside lock_buffer().
1661 * If block_write_full_page() is called for regular writeback
1662 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1663 * locked buffer. This only can happen if someone has written the buffer
1664 * directly, with submit_bh(). At the address_space level PageWriteback
1665 * prevents this contention from occurring.
1667 * If block_write_full_page() is called with wbc->sync_mode ==
1668 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1669 * causes the writes to be flagged as synchronous writes.
1671 static int __block_write_full_page(struct inode *inode, struct page *page,
1672 get_block_t *get_block, struct writeback_control *wbc,
1673 bh_end_io_t *handler)
1675 int err;
1676 sector_t block;
1677 sector_t last_block;
1678 struct buffer_head *bh, *head;
1679 unsigned int blocksize, bbits;
1680 int nr_underway = 0;
1681 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1682 WRITE_SYNC : WRITE);
1684 head = create_page_buffers(page, inode,
1685 (1 << BH_Dirty)|(1 << BH_Uptodate));
1688 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1689 * here, and the (potentially unmapped) buffers may become dirty at
1690 * any time. If a buffer becomes dirty here after we've inspected it
1691 * then we just miss that fact, and the page stays dirty.
1693 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1694 * handle that here by just cleaning them.
1697 bh = head;
1698 blocksize = bh->b_size;
1699 bbits = block_size_bits(blocksize);
1701 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1702 last_block = (i_size_read(inode) - 1) >> bbits;
1705 * Get all the dirty buffers mapped to disk addresses and
1706 * handle any aliases from the underlying blockdev's mapping.
1708 do {
1709 if (block > last_block) {
1711 * mapped buffers outside i_size will occur, because
1712 * this page can be outside i_size when there is a
1713 * truncate in progress.
1716 * The buffer was zeroed by block_write_full_page()
1718 clear_buffer_dirty(bh);
1719 set_buffer_uptodate(bh);
1720 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1721 buffer_dirty(bh)) {
1722 WARN_ON(bh->b_size != blocksize);
1723 err = get_block(inode, block, bh, 1);
1724 if (err)
1725 goto recover;
1726 clear_buffer_delay(bh);
1727 if (buffer_new(bh)) {
1728 /* blockdev mappings never come here */
1729 clear_buffer_new(bh);
1730 unmap_underlying_metadata(bh->b_bdev,
1731 bh->b_blocknr);
1734 bh = bh->b_this_page;
1735 block++;
1736 } while (bh != head);
1738 do {
1739 if (!buffer_mapped(bh))
1740 continue;
1742 * If it's a fully non-blocking write attempt and we cannot
1743 * lock the buffer then redirty the page. Note that this can
1744 * potentially cause a busy-wait loop from writeback threads
1745 * and kswapd activity, but those code paths have their own
1746 * higher-level throttling.
1748 if (wbc->sync_mode != WB_SYNC_NONE) {
1749 lock_buffer(bh);
1750 } else if (!trylock_buffer(bh)) {
1751 redirty_page_for_writepage(wbc, page);
1752 continue;
1754 if (test_clear_buffer_dirty(bh)) {
1755 mark_buffer_async_write_endio(bh, handler);
1756 } else {
1757 unlock_buffer(bh);
1759 } while ((bh = bh->b_this_page) != head);
1762 * The page and its buffers are protected by PageWriteback(), so we can
1763 * drop the bh refcounts early.
1765 BUG_ON(PageWriteback(page));
1766 set_page_writeback(page);
1768 do {
1769 struct buffer_head *next = bh->b_this_page;
1770 if (buffer_async_write(bh)) {
1771 submit_bh(write_op, bh);
1772 nr_underway++;
1774 bh = next;
1775 } while (bh != head);
1776 unlock_page(page);
1778 err = 0;
1779 done:
1780 if (nr_underway == 0) {
1782 * The page was marked dirty, but the buffers were
1783 * clean. Someone wrote them back by hand with
1784 * ll_rw_block/submit_bh. A rare case.
1786 end_page_writeback(page);
1789 * The page and buffer_heads can be released at any time from
1790 * here on.
1793 return err;
1795 recover:
1797 * ENOSPC, or some other error. We may already have added some
1798 * blocks to the file, so we need to write these out to avoid
1799 * exposing stale data.
1800 * The page is currently locked and not marked for writeback
1802 bh = head;
1803 /* Recovery: lock and submit the mapped buffers */
1804 do {
1805 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1806 !buffer_delay(bh)) {
1807 lock_buffer(bh);
1808 mark_buffer_async_write_endio(bh, handler);
1809 } else {
1811 * The buffer may have been set dirty during
1812 * attachment to a dirty page.
1814 clear_buffer_dirty(bh);
1816 } while ((bh = bh->b_this_page) != head);
1817 SetPageError(page);
1818 BUG_ON(PageWriteback(page));
1819 mapping_set_error(page->mapping, err);
1820 set_page_writeback(page);
1821 do {
1822 struct buffer_head *next = bh->b_this_page;
1823 if (buffer_async_write(bh)) {
1824 clear_buffer_dirty(bh);
1825 submit_bh(write_op, bh);
1826 nr_underway++;
1828 bh = next;
1829 } while (bh != head);
1830 unlock_page(page);
1831 goto done;
1835 * If a page has any new buffers, zero them out here, and mark them uptodate
1836 * and dirty so they'll be written out (in order to prevent uninitialised
1837 * block data from leaking). And clear the new bit.
1839 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1841 unsigned int block_start, block_end;
1842 struct buffer_head *head, *bh;
1844 BUG_ON(!PageLocked(page));
1845 if (!page_has_buffers(page))
1846 return;
1848 bh = head = page_buffers(page);
1849 block_start = 0;
1850 do {
1851 block_end = block_start + bh->b_size;
1853 if (buffer_new(bh)) {
1854 if (block_end > from && block_start < to) {
1855 if (!PageUptodate(page)) {
1856 unsigned start, size;
1858 start = max(from, block_start);
1859 size = min(to, block_end) - start;
1861 zero_user(page, start, size);
1862 set_buffer_uptodate(bh);
1865 clear_buffer_new(bh);
1866 mark_buffer_dirty(bh);
1870 block_start = block_end;
1871 bh = bh->b_this_page;
1872 } while (bh != head);
1874 EXPORT_SYMBOL(page_zero_new_buffers);
1876 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1877 get_block_t *get_block)
1879 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1880 unsigned to = from + len;
1881 struct inode *inode = page->mapping->host;
1882 unsigned block_start, block_end;
1883 sector_t block;
1884 int err = 0;
1885 unsigned blocksize, bbits;
1886 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1888 BUG_ON(!PageLocked(page));
1889 BUG_ON(from > PAGE_CACHE_SIZE);
1890 BUG_ON(to > PAGE_CACHE_SIZE);
1891 BUG_ON(from > to);
1893 head = create_page_buffers(page, inode, 0);
1894 blocksize = head->b_size;
1895 bbits = block_size_bits(blocksize);
1897 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1899 for(bh = head, block_start = 0; bh != head || !block_start;
1900 block++, block_start=block_end, bh = bh->b_this_page) {
1901 block_end = block_start + blocksize;
1902 if (block_end <= from || block_start >= to) {
1903 if (PageUptodate(page)) {
1904 if (!buffer_uptodate(bh))
1905 set_buffer_uptodate(bh);
1907 continue;
1909 if (buffer_new(bh))
1910 clear_buffer_new(bh);
1911 if (!buffer_mapped(bh)) {
1912 WARN_ON(bh->b_size != blocksize);
1913 err = get_block(inode, block, bh, 1);
1914 if (err)
1915 break;
1916 if (buffer_new(bh)) {
1917 unmap_underlying_metadata(bh->b_bdev,
1918 bh->b_blocknr);
1919 if (PageUptodate(page)) {
1920 clear_buffer_new(bh);
1921 set_buffer_uptodate(bh);
1922 mark_buffer_dirty(bh);
1923 continue;
1925 if (block_end > to || block_start < from)
1926 zero_user_segments(page,
1927 to, block_end,
1928 block_start, from);
1929 continue;
1932 if (PageUptodate(page)) {
1933 if (!buffer_uptodate(bh))
1934 set_buffer_uptodate(bh);
1935 continue;
1937 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1938 !buffer_unwritten(bh) &&
1939 (block_start < from || block_end > to)) {
1940 ll_rw_block(READ, 1, &bh);
1941 *wait_bh++=bh;
1945 * If we issued read requests - let them complete.
1947 while(wait_bh > wait) {
1948 wait_on_buffer(*--wait_bh);
1949 if (!buffer_uptodate(*wait_bh))
1950 err = -EIO;
1952 if (unlikely(err))
1953 page_zero_new_buffers(page, from, to);
1954 return err;
1956 EXPORT_SYMBOL(__block_write_begin);
1958 static int __block_commit_write(struct inode *inode, struct page *page,
1959 unsigned from, unsigned to)
1961 unsigned block_start, block_end;
1962 int partial = 0;
1963 unsigned blocksize;
1964 struct buffer_head *bh, *head;
1966 bh = head = page_buffers(page);
1967 blocksize = bh->b_size;
1969 block_start = 0;
1970 do {
1971 block_end = block_start + blocksize;
1972 if (block_end <= from || block_start >= to) {
1973 if (!buffer_uptodate(bh))
1974 partial = 1;
1975 } else {
1976 set_buffer_uptodate(bh);
1977 mark_buffer_dirty(bh);
1979 clear_buffer_new(bh);
1981 block_start = block_end;
1982 bh = bh->b_this_page;
1983 } while (bh != head);
1986 * If this is a partial write which happened to make all buffers
1987 * uptodate then we can optimize away a bogus readpage() for
1988 * the next read(). Here we 'discover' whether the page went
1989 * uptodate as a result of this (potentially partial) write.
1991 if (!partial)
1992 SetPageUptodate(page);
1993 return 0;
1997 * block_write_begin takes care of the basic task of block allocation and
1998 * bringing partial write blocks uptodate first.
2000 * The filesystem needs to handle block truncation upon failure.
2002 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2003 unsigned flags, struct page **pagep, get_block_t *get_block)
2005 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2006 struct page *page;
2007 int status;
2009 page = grab_cache_page_write_begin(mapping, index, flags);
2010 if (!page)
2011 return -ENOMEM;
2013 status = __block_write_begin(page, pos, len, get_block);
2014 if (unlikely(status)) {
2015 unlock_page(page);
2016 page_cache_release(page);
2017 page = NULL;
2020 *pagep = page;
2021 return status;
2023 EXPORT_SYMBOL(block_write_begin);
2025 int block_write_end(struct file *file, struct address_space *mapping,
2026 loff_t pos, unsigned len, unsigned copied,
2027 struct page *page, void *fsdata)
2029 struct inode *inode = mapping->host;
2030 unsigned start;
2032 start = pos & (PAGE_CACHE_SIZE - 1);
2034 if (unlikely(copied < len)) {
2036 * The buffers that were written will now be uptodate, so we
2037 * don't have to worry about a readpage reading them and
2038 * overwriting a partial write. However if we have encountered
2039 * a short write and only partially written into a buffer, it
2040 * will not be marked uptodate, so a readpage might come in and
2041 * destroy our partial write.
2043 * Do the simplest thing, and just treat any short write to a
2044 * non uptodate page as a zero-length write, and force the
2045 * caller to redo the whole thing.
2047 if (!PageUptodate(page))
2048 copied = 0;
2050 page_zero_new_buffers(page, start+copied, start+len);
2052 flush_dcache_page(page);
2054 /* This could be a short (even 0-length) commit */
2055 __block_commit_write(inode, page, start, start+copied);
2057 return copied;
2059 EXPORT_SYMBOL(block_write_end);
2061 int generic_write_end(struct file *file, struct address_space *mapping,
2062 loff_t pos, unsigned len, unsigned copied,
2063 struct page *page, void *fsdata)
2065 struct inode *inode = mapping->host;
2066 int i_size_changed = 0;
2068 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2071 * No need to use i_size_read() here, the i_size
2072 * cannot change under us because we hold i_mutex.
2074 * But it's important to update i_size while still holding page lock:
2075 * page writeout could otherwise come in and zero beyond i_size.
2077 if (pos+copied > inode->i_size) {
2078 i_size_write(inode, pos+copied);
2079 i_size_changed = 1;
2082 unlock_page(page);
2083 page_cache_release(page);
2086 * Don't mark the inode dirty under page lock. First, it unnecessarily
2087 * makes the holding time of page lock longer. Second, it forces lock
2088 * ordering of page lock and transaction start for journaling
2089 * filesystems.
2091 if (i_size_changed)
2092 mark_inode_dirty(inode);
2094 return copied;
2096 EXPORT_SYMBOL(generic_write_end);
2099 * block_is_partially_uptodate checks whether buffers within a page are
2100 * uptodate or not.
2102 * Returns true if all buffers which correspond to a file portion
2103 * we want to read are uptodate.
2105 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2106 unsigned long from)
2108 unsigned block_start, block_end, blocksize;
2109 unsigned to;
2110 struct buffer_head *bh, *head;
2111 int ret = 1;
2113 if (!page_has_buffers(page))
2114 return 0;
2116 head = page_buffers(page);
2117 blocksize = head->b_size;
2118 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2119 to = from + to;
2120 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2121 return 0;
2123 bh = head;
2124 block_start = 0;
2125 do {
2126 block_end = block_start + blocksize;
2127 if (block_end > from && block_start < to) {
2128 if (!buffer_uptodate(bh)) {
2129 ret = 0;
2130 break;
2132 if (block_end >= to)
2133 break;
2135 block_start = block_end;
2136 bh = bh->b_this_page;
2137 } while (bh != head);
2139 return ret;
2141 EXPORT_SYMBOL(block_is_partially_uptodate);
2144 * Generic "read page" function for block devices that have the normal
2145 * get_block functionality. This is most of the block device filesystems.
2146 * Reads the page asynchronously --- the unlock_buffer() and
2147 * set/clear_buffer_uptodate() functions propagate buffer state into the
2148 * page struct once IO has completed.
2150 int block_read_full_page(struct page *page, get_block_t *get_block)
2152 struct inode *inode = page->mapping->host;
2153 sector_t iblock, lblock;
2154 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2155 unsigned int blocksize, bbits;
2156 int nr, i;
2157 int fully_mapped = 1;
2159 head = create_page_buffers(page, inode, 0);
2160 blocksize = head->b_size;
2161 bbits = block_size_bits(blocksize);
2163 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2164 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2165 bh = head;
2166 nr = 0;
2167 i = 0;
2169 do {
2170 if (buffer_uptodate(bh))
2171 continue;
2173 if (!buffer_mapped(bh)) {
2174 int err = 0;
2176 fully_mapped = 0;
2177 if (iblock < lblock) {
2178 WARN_ON(bh->b_size != blocksize);
2179 err = get_block(inode, iblock, bh, 0);
2180 if (err)
2181 SetPageError(page);
2183 if (!buffer_mapped(bh)) {
2184 zero_user(page, i * blocksize, blocksize);
2185 if (!err)
2186 set_buffer_uptodate(bh);
2187 continue;
2190 * get_block() might have updated the buffer
2191 * synchronously
2193 if (buffer_uptodate(bh))
2194 continue;
2196 arr[nr++] = bh;
2197 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2199 if (fully_mapped)
2200 SetPageMappedToDisk(page);
2202 if (!nr) {
2204 * All buffers are uptodate - we can set the page uptodate
2205 * as well. But not if get_block() returned an error.
2207 if (!PageError(page))
2208 SetPageUptodate(page);
2209 unlock_page(page);
2210 return 0;
2213 /* Stage two: lock the buffers */
2214 for (i = 0; i < nr; i++) {
2215 bh = arr[i];
2216 lock_buffer(bh);
2217 mark_buffer_async_read(bh);
2221 * Stage 3: start the IO. Check for uptodateness
2222 * inside the buffer lock in case another process reading
2223 * the underlying blockdev brought it uptodate (the sct fix).
2225 for (i = 0; i < nr; i++) {
2226 bh = arr[i];
2227 if (buffer_uptodate(bh))
2228 end_buffer_async_read(bh, 1);
2229 else
2230 submit_bh(READ, bh);
2232 return 0;
2234 EXPORT_SYMBOL(block_read_full_page);
2236 /* utility function for filesystems that need to do work on expanding
2237 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2238 * deal with the hole.
2240 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2242 struct address_space *mapping = inode->i_mapping;
2243 struct page *page;
2244 void *fsdata;
2245 int err;
2247 err = inode_newsize_ok(inode, size);
2248 if (err)
2249 goto out;
2251 err = pagecache_write_begin(NULL, mapping, size, 0,
2252 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2253 &page, &fsdata);
2254 if (err)
2255 goto out;
2257 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2258 BUG_ON(err > 0);
2260 out:
2261 return err;
2263 EXPORT_SYMBOL(generic_cont_expand_simple);
2265 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2266 loff_t pos, loff_t *bytes)
2268 struct inode *inode = mapping->host;
2269 unsigned blocksize = 1 << inode->i_blkbits;
2270 struct page *page;
2271 void *fsdata;
2272 pgoff_t index, curidx;
2273 loff_t curpos;
2274 unsigned zerofrom, offset, len;
2275 int err = 0;
2277 index = pos >> PAGE_CACHE_SHIFT;
2278 offset = pos & ~PAGE_CACHE_MASK;
2280 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2281 zerofrom = curpos & ~PAGE_CACHE_MASK;
2282 if (zerofrom & (blocksize-1)) {
2283 *bytes |= (blocksize-1);
2284 (*bytes)++;
2286 len = PAGE_CACHE_SIZE - zerofrom;
2288 err = pagecache_write_begin(file, mapping, curpos, len,
2289 AOP_FLAG_UNINTERRUPTIBLE,
2290 &page, &fsdata);
2291 if (err)
2292 goto out;
2293 zero_user(page, zerofrom, len);
2294 err = pagecache_write_end(file, mapping, curpos, len, len,
2295 page, fsdata);
2296 if (err < 0)
2297 goto out;
2298 BUG_ON(err != len);
2299 err = 0;
2301 balance_dirty_pages_ratelimited(mapping);
2304 /* page covers the boundary, find the boundary offset */
2305 if (index == curidx) {
2306 zerofrom = curpos & ~PAGE_CACHE_MASK;
2307 /* if we will expand the thing last block will be filled */
2308 if (offset <= zerofrom) {
2309 goto out;
2311 if (zerofrom & (blocksize-1)) {
2312 *bytes |= (blocksize-1);
2313 (*bytes)++;
2315 len = offset - zerofrom;
2317 err = pagecache_write_begin(file, mapping, curpos, len,
2318 AOP_FLAG_UNINTERRUPTIBLE,
2319 &page, &fsdata);
2320 if (err)
2321 goto out;
2322 zero_user(page, zerofrom, len);
2323 err = pagecache_write_end(file, mapping, curpos, len, len,
2324 page, fsdata);
2325 if (err < 0)
2326 goto out;
2327 BUG_ON(err != len);
2328 err = 0;
2330 out:
2331 return err;
2335 * For moronic filesystems that do not allow holes in file.
2336 * We may have to extend the file.
2338 int cont_write_begin(struct file *file, struct address_space *mapping,
2339 loff_t pos, unsigned len, unsigned flags,
2340 struct page **pagep, void **fsdata,
2341 get_block_t *get_block, loff_t *bytes)
2343 struct inode *inode = mapping->host;
2344 unsigned blocksize = 1 << inode->i_blkbits;
2345 unsigned zerofrom;
2346 int err;
2348 err = cont_expand_zero(file, mapping, pos, bytes);
2349 if (err)
2350 return err;
2352 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2353 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2354 *bytes |= (blocksize-1);
2355 (*bytes)++;
2358 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2360 EXPORT_SYMBOL(cont_write_begin);
2362 int block_commit_write(struct page *page, unsigned from, unsigned to)
2364 struct inode *inode = page->mapping->host;
2365 __block_commit_write(inode,page,from,to);
2366 return 0;
2368 EXPORT_SYMBOL(block_commit_write);
2371 * block_page_mkwrite() is not allowed to change the file size as it gets
2372 * called from a page fault handler when a page is first dirtied. Hence we must
2373 * be careful to check for EOF conditions here. We set the page up correctly
2374 * for a written page which means we get ENOSPC checking when writing into
2375 * holes and correct delalloc and unwritten extent mapping on filesystems that
2376 * support these features.
2378 * We are not allowed to take the i_mutex here so we have to play games to
2379 * protect against truncate races as the page could now be beyond EOF. Because
2380 * truncate writes the inode size before removing pages, once we have the
2381 * page lock we can determine safely if the page is beyond EOF. If it is not
2382 * beyond EOF, then the page is guaranteed safe against truncation until we
2383 * unlock the page.
2385 * Direct callers of this function should protect against filesystem freezing
2386 * using sb_start_write() - sb_end_write() functions.
2388 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2389 get_block_t get_block)
2391 struct page *page = vmf->page;
2392 struct inode *inode = file_inode(vma->vm_file);
2393 unsigned long end;
2394 loff_t size;
2395 int ret;
2397 lock_page(page);
2398 size = i_size_read(inode);
2399 if ((page->mapping != inode->i_mapping) ||
2400 (page_offset(page) > size)) {
2401 /* We overload EFAULT to mean page got truncated */
2402 ret = -EFAULT;
2403 goto out_unlock;
2406 /* page is wholly or partially inside EOF */
2407 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2408 end = size & ~PAGE_CACHE_MASK;
2409 else
2410 end = PAGE_CACHE_SIZE;
2412 ret = __block_write_begin(page, 0, end, get_block);
2413 if (!ret)
2414 ret = block_commit_write(page, 0, end);
2416 if (unlikely(ret < 0))
2417 goto out_unlock;
2418 set_page_dirty(page);
2419 wait_for_stable_page(page);
2420 return 0;
2421 out_unlock:
2422 unlock_page(page);
2423 return ret;
2425 EXPORT_SYMBOL(__block_page_mkwrite);
2427 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2428 get_block_t get_block)
2430 int ret;
2431 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2433 sb_start_pagefault(sb);
2436 * Update file times before taking page lock. We may end up failing the
2437 * fault so this update may be superfluous but who really cares...
2439 file_update_time(vma->vm_file);
2441 ret = __block_page_mkwrite(vma, vmf, get_block);
2442 sb_end_pagefault(sb);
2443 return block_page_mkwrite_return(ret);
2445 EXPORT_SYMBOL(block_page_mkwrite);
2448 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2449 * immediately, while under the page lock. So it needs a special end_io
2450 * handler which does not touch the bh after unlocking it.
2452 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2454 __end_buffer_read_notouch(bh, uptodate);
2458 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2459 * the page (converting it to circular linked list and taking care of page
2460 * dirty races).
2462 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2464 struct buffer_head *bh;
2466 BUG_ON(!PageLocked(page));
2468 spin_lock(&page->mapping->private_lock);
2469 bh = head;
2470 do {
2471 if (PageDirty(page))
2472 set_buffer_dirty(bh);
2473 if (!bh->b_this_page)
2474 bh->b_this_page = head;
2475 bh = bh->b_this_page;
2476 } while (bh != head);
2477 attach_page_buffers(page, head);
2478 spin_unlock(&page->mapping->private_lock);
2482 * On entry, the page is fully not uptodate.
2483 * On exit the page is fully uptodate in the areas outside (from,to)
2484 * The filesystem needs to handle block truncation upon failure.
2486 int nobh_write_begin(struct address_space *mapping,
2487 loff_t pos, unsigned len, unsigned flags,
2488 struct page **pagep, void **fsdata,
2489 get_block_t *get_block)
2491 struct inode *inode = mapping->host;
2492 const unsigned blkbits = inode->i_blkbits;
2493 const unsigned blocksize = 1 << blkbits;
2494 struct buffer_head *head, *bh;
2495 struct page *page;
2496 pgoff_t index;
2497 unsigned from, to;
2498 unsigned block_in_page;
2499 unsigned block_start, block_end;
2500 sector_t block_in_file;
2501 int nr_reads = 0;
2502 int ret = 0;
2503 int is_mapped_to_disk = 1;
2505 index = pos >> PAGE_CACHE_SHIFT;
2506 from = pos & (PAGE_CACHE_SIZE - 1);
2507 to = from + len;
2509 page = grab_cache_page_write_begin(mapping, index, flags);
2510 if (!page)
2511 return -ENOMEM;
2512 *pagep = page;
2513 *fsdata = NULL;
2515 if (page_has_buffers(page)) {
2516 ret = __block_write_begin(page, pos, len, get_block);
2517 if (unlikely(ret))
2518 goto out_release;
2519 return ret;
2522 if (PageMappedToDisk(page))
2523 return 0;
2526 * Allocate buffers so that we can keep track of state, and potentially
2527 * attach them to the page if an error occurs. In the common case of
2528 * no error, they will just be freed again without ever being attached
2529 * to the page (which is all OK, because we're under the page lock).
2531 * Be careful: the buffer linked list is a NULL terminated one, rather
2532 * than the circular one we're used to.
2534 head = alloc_page_buffers(page, blocksize, 0);
2535 if (!head) {
2536 ret = -ENOMEM;
2537 goto out_release;
2540 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2543 * We loop across all blocks in the page, whether or not they are
2544 * part of the affected region. This is so we can discover if the
2545 * page is fully mapped-to-disk.
2547 for (block_start = 0, block_in_page = 0, bh = head;
2548 block_start < PAGE_CACHE_SIZE;
2549 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2550 int create;
2552 block_end = block_start + blocksize;
2553 bh->b_state = 0;
2554 create = 1;
2555 if (block_start >= to)
2556 create = 0;
2557 ret = get_block(inode, block_in_file + block_in_page,
2558 bh, create);
2559 if (ret)
2560 goto failed;
2561 if (!buffer_mapped(bh))
2562 is_mapped_to_disk = 0;
2563 if (buffer_new(bh))
2564 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2565 if (PageUptodate(page)) {
2566 set_buffer_uptodate(bh);
2567 continue;
2569 if (buffer_new(bh) || !buffer_mapped(bh)) {
2570 zero_user_segments(page, block_start, from,
2571 to, block_end);
2572 continue;
2574 if (buffer_uptodate(bh))
2575 continue; /* reiserfs does this */
2576 if (block_start < from || block_end > to) {
2577 lock_buffer(bh);
2578 bh->b_end_io = end_buffer_read_nobh;
2579 submit_bh(READ, bh);
2580 nr_reads++;
2584 if (nr_reads) {
2586 * The page is locked, so these buffers are protected from
2587 * any VM or truncate activity. Hence we don't need to care
2588 * for the buffer_head refcounts.
2590 for (bh = head; bh; bh = bh->b_this_page) {
2591 wait_on_buffer(bh);
2592 if (!buffer_uptodate(bh))
2593 ret = -EIO;
2595 if (ret)
2596 goto failed;
2599 if (is_mapped_to_disk)
2600 SetPageMappedToDisk(page);
2602 *fsdata = head; /* to be released by nobh_write_end */
2604 return 0;
2606 failed:
2607 BUG_ON(!ret);
2609 * Error recovery is a bit difficult. We need to zero out blocks that
2610 * were newly allocated, and dirty them to ensure they get written out.
2611 * Buffers need to be attached to the page at this point, otherwise
2612 * the handling of potential IO errors during writeout would be hard
2613 * (could try doing synchronous writeout, but what if that fails too?)
2615 attach_nobh_buffers(page, head);
2616 page_zero_new_buffers(page, from, to);
2618 out_release:
2619 unlock_page(page);
2620 page_cache_release(page);
2621 *pagep = NULL;
2623 return ret;
2625 EXPORT_SYMBOL(nobh_write_begin);
2627 int nobh_write_end(struct file *file, struct address_space *mapping,
2628 loff_t pos, unsigned len, unsigned copied,
2629 struct page *page, void *fsdata)
2631 struct inode *inode = page->mapping->host;
2632 struct buffer_head *head = fsdata;
2633 struct buffer_head *bh;
2634 BUG_ON(fsdata != NULL && page_has_buffers(page));
2636 if (unlikely(copied < len) && head)
2637 attach_nobh_buffers(page, head);
2638 if (page_has_buffers(page))
2639 return generic_write_end(file, mapping, pos, len,
2640 copied, page, fsdata);
2642 SetPageUptodate(page);
2643 set_page_dirty(page);
2644 if (pos+copied > inode->i_size) {
2645 i_size_write(inode, pos+copied);
2646 mark_inode_dirty(inode);
2649 unlock_page(page);
2650 page_cache_release(page);
2652 while (head) {
2653 bh = head;
2654 head = head->b_this_page;
2655 free_buffer_head(bh);
2658 return copied;
2660 EXPORT_SYMBOL(nobh_write_end);
2663 * nobh_writepage() - based on block_full_write_page() except
2664 * that it tries to operate without attaching bufferheads to
2665 * the page.
2667 int nobh_writepage(struct page *page, get_block_t *get_block,
2668 struct writeback_control *wbc)
2670 struct inode * const inode = page->mapping->host;
2671 loff_t i_size = i_size_read(inode);
2672 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2673 unsigned offset;
2674 int ret;
2676 /* Is the page fully inside i_size? */
2677 if (page->index < end_index)
2678 goto out;
2680 /* Is the page fully outside i_size? (truncate in progress) */
2681 offset = i_size & (PAGE_CACHE_SIZE-1);
2682 if (page->index >= end_index+1 || !offset) {
2684 * The page may have dirty, unmapped buffers. For example,
2685 * they may have been added in ext3_writepage(). Make them
2686 * freeable here, so the page does not leak.
2688 #if 0
2689 /* Not really sure about this - do we need this ? */
2690 if (page->mapping->a_ops->invalidatepage)
2691 page->mapping->a_ops->invalidatepage(page, offset);
2692 #endif
2693 unlock_page(page);
2694 return 0; /* don't care */
2698 * The page straddles i_size. It must be zeroed out on each and every
2699 * writepage invocation because it may be mmapped. "A file is mapped
2700 * in multiples of the page size. For a file that is not a multiple of
2701 * the page size, the remaining memory is zeroed when mapped, and
2702 * writes to that region are not written out to the file."
2704 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2705 out:
2706 ret = mpage_writepage(page, get_block, wbc);
2707 if (ret == -EAGAIN)
2708 ret = __block_write_full_page(inode, page, get_block, wbc,
2709 end_buffer_async_write);
2710 return ret;
2712 EXPORT_SYMBOL(nobh_writepage);
2714 int nobh_truncate_page(struct address_space *mapping,
2715 loff_t from, get_block_t *get_block)
2717 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2718 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2719 unsigned blocksize;
2720 sector_t iblock;
2721 unsigned length, pos;
2722 struct inode *inode = mapping->host;
2723 struct page *page;
2724 struct buffer_head map_bh;
2725 int err;
2727 blocksize = 1 << inode->i_blkbits;
2728 length = offset & (blocksize - 1);
2730 /* Block boundary? Nothing to do */
2731 if (!length)
2732 return 0;
2734 length = blocksize - length;
2735 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2737 page = grab_cache_page(mapping, index);
2738 err = -ENOMEM;
2739 if (!page)
2740 goto out;
2742 if (page_has_buffers(page)) {
2743 has_buffers:
2744 unlock_page(page);
2745 page_cache_release(page);
2746 return block_truncate_page(mapping, from, get_block);
2749 /* Find the buffer that contains "offset" */
2750 pos = blocksize;
2751 while (offset >= pos) {
2752 iblock++;
2753 pos += blocksize;
2756 map_bh.b_size = blocksize;
2757 map_bh.b_state = 0;
2758 err = get_block(inode, iblock, &map_bh, 0);
2759 if (err)
2760 goto unlock;
2761 /* unmapped? It's a hole - nothing to do */
2762 if (!buffer_mapped(&map_bh))
2763 goto unlock;
2765 /* Ok, it's mapped. Make sure it's up-to-date */
2766 if (!PageUptodate(page)) {
2767 err = mapping->a_ops->readpage(NULL, page);
2768 if (err) {
2769 page_cache_release(page);
2770 goto out;
2772 lock_page(page);
2773 if (!PageUptodate(page)) {
2774 err = -EIO;
2775 goto unlock;
2777 if (page_has_buffers(page))
2778 goto has_buffers;
2780 zero_user(page, offset, length);
2781 set_page_dirty(page);
2782 err = 0;
2784 unlock:
2785 unlock_page(page);
2786 page_cache_release(page);
2787 out:
2788 return err;
2790 EXPORT_SYMBOL(nobh_truncate_page);
2792 int block_truncate_page(struct address_space *mapping,
2793 loff_t from, get_block_t *get_block)
2795 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2796 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2797 unsigned blocksize;
2798 sector_t iblock;
2799 unsigned length, pos;
2800 struct inode *inode = mapping->host;
2801 struct page *page;
2802 struct buffer_head *bh;
2803 int err;
2805 blocksize = 1 << inode->i_blkbits;
2806 length = offset & (blocksize - 1);
2808 /* Block boundary? Nothing to do */
2809 if (!length)
2810 return 0;
2812 length = blocksize - length;
2813 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2815 page = grab_cache_page(mapping, index);
2816 err = -ENOMEM;
2817 if (!page)
2818 goto out;
2820 if (!page_has_buffers(page))
2821 create_empty_buffers(page, blocksize, 0);
2823 /* Find the buffer that contains "offset" */
2824 bh = page_buffers(page);
2825 pos = blocksize;
2826 while (offset >= pos) {
2827 bh = bh->b_this_page;
2828 iblock++;
2829 pos += blocksize;
2832 err = 0;
2833 if (!buffer_mapped(bh)) {
2834 WARN_ON(bh->b_size != blocksize);
2835 err = get_block(inode, iblock, bh, 0);
2836 if (err)
2837 goto unlock;
2838 /* unmapped? It's a hole - nothing to do */
2839 if (!buffer_mapped(bh))
2840 goto unlock;
2843 /* Ok, it's mapped. Make sure it's up-to-date */
2844 if (PageUptodate(page))
2845 set_buffer_uptodate(bh);
2847 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2848 err = -EIO;
2849 ll_rw_block(READ, 1, &bh);
2850 wait_on_buffer(bh);
2851 /* Uhhuh. Read error. Complain and punt. */
2852 if (!buffer_uptodate(bh))
2853 goto unlock;
2856 zero_user(page, offset, length);
2857 mark_buffer_dirty(bh);
2858 err = 0;
2860 unlock:
2861 unlock_page(page);
2862 page_cache_release(page);
2863 out:
2864 return err;
2866 EXPORT_SYMBOL(block_truncate_page);
2869 * The generic ->writepage function for buffer-backed address_spaces
2870 * this form passes in the end_io handler used to finish the IO.
2872 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2873 struct writeback_control *wbc, bh_end_io_t *handler)
2875 struct inode * const inode = page->mapping->host;
2876 loff_t i_size = i_size_read(inode);
2877 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2878 unsigned offset;
2880 /* Is the page fully inside i_size? */
2881 if (page->index < end_index)
2882 return __block_write_full_page(inode, page, get_block, wbc,
2883 handler);
2885 /* Is the page fully outside i_size? (truncate in progress) */
2886 offset = i_size & (PAGE_CACHE_SIZE-1);
2887 if (page->index >= end_index+1 || !offset) {
2889 * The page may have dirty, unmapped buffers. For example,
2890 * they may have been added in ext3_writepage(). Make them
2891 * freeable here, so the page does not leak.
2893 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2894 unlock_page(page);
2895 return 0; /* don't care */
2899 * The page straddles i_size. It must be zeroed out on each and every
2900 * writepage invocation because it may be mmapped. "A file is mapped
2901 * in multiples of the page size. For a file that is not a multiple of
2902 * the page size, the remaining memory is zeroed when mapped, and
2903 * writes to that region are not written out to the file."
2905 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2906 return __block_write_full_page(inode, page, get_block, wbc, handler);
2908 EXPORT_SYMBOL(block_write_full_page_endio);
2911 * The generic ->writepage function for buffer-backed address_spaces
2913 int block_write_full_page(struct page *page, get_block_t *get_block,
2914 struct writeback_control *wbc)
2916 return block_write_full_page_endio(page, get_block, wbc,
2917 end_buffer_async_write);
2919 EXPORT_SYMBOL(block_write_full_page);
2921 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2922 get_block_t *get_block)
2924 struct buffer_head tmp;
2925 struct inode *inode = mapping->host;
2926 tmp.b_state = 0;
2927 tmp.b_blocknr = 0;
2928 tmp.b_size = 1 << inode->i_blkbits;
2929 get_block(inode, block, &tmp, 0);
2930 return tmp.b_blocknr;
2932 EXPORT_SYMBOL(generic_block_bmap);
2934 static void end_bio_bh_io_sync(struct bio *bio, int err)
2936 struct buffer_head *bh = bio->bi_private;
2938 if (err == -EOPNOTSUPP) {
2939 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2942 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2943 set_bit(BH_Quiet, &bh->b_state);
2945 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2946 bio_put(bio);
2950 * This allows us to do IO even on the odd last sectors
2951 * of a device, even if the bh block size is some multiple
2952 * of the physical sector size.
2954 * We'll just truncate the bio to the size of the device,
2955 * and clear the end of the buffer head manually.
2957 * Truly out-of-range accesses will turn into actual IO
2958 * errors, this only handles the "we need to be able to
2959 * do IO at the final sector" case.
2961 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2963 sector_t maxsector;
2964 unsigned bytes;
2966 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2967 if (!maxsector)
2968 return;
2971 * If the *whole* IO is past the end of the device,
2972 * let it through, and the IO layer will turn it into
2973 * an EIO.
2975 if (unlikely(bio->bi_sector >= maxsector))
2976 return;
2978 maxsector -= bio->bi_sector;
2979 bytes = bio->bi_size;
2980 if (likely((bytes >> 9) <= maxsector))
2981 return;
2983 /* Uhhuh. We've got a bh that straddles the device size! */
2984 bytes = maxsector << 9;
2986 /* Truncate the bio.. */
2987 bio->bi_size = bytes;
2988 bio->bi_io_vec[0].bv_len = bytes;
2990 /* ..and clear the end of the buffer for reads */
2991 if ((rw & RW_MASK) == READ) {
2992 void *kaddr = kmap_atomic(bh->b_page);
2993 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2994 kunmap_atomic(kaddr);
2995 flush_dcache_page(bh->b_page);
2999 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3001 struct bio *bio;
3002 int ret = 0;
3004 BUG_ON(!buffer_locked(bh));
3005 BUG_ON(!buffer_mapped(bh));
3006 BUG_ON(!bh->b_end_io);
3007 BUG_ON(buffer_delay(bh));
3008 BUG_ON(buffer_unwritten(bh));
3011 * Only clear out a write error when rewriting
3013 if (test_set_buffer_req(bh) && (rw & WRITE))
3014 clear_buffer_write_io_error(bh);
3017 * from here on down, it's all bio -- do the initial mapping,
3018 * submit_bio -> generic_make_request may further map this bio around
3020 bio = bio_alloc(GFP_NOIO, 1);
3022 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3023 bio->bi_bdev = bh->b_bdev;
3024 bio->bi_io_vec[0].bv_page = bh->b_page;
3025 bio->bi_io_vec[0].bv_len = bh->b_size;
3026 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3028 bio->bi_vcnt = 1;
3029 bio->bi_size = bh->b_size;
3031 bio->bi_end_io = end_bio_bh_io_sync;
3032 bio->bi_private = bh;
3033 bio->bi_flags |= bio_flags;
3035 /* Take care of bh's that straddle the end of the device */
3036 guard_bh_eod(rw, bio, bh);
3038 if (buffer_meta(bh))
3039 rw |= REQ_META;
3040 if (buffer_prio(bh))
3041 rw |= REQ_PRIO;
3043 bio_get(bio);
3044 submit_bio(rw, bio);
3046 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3047 ret = -EOPNOTSUPP;
3049 bio_put(bio);
3050 return ret;
3052 EXPORT_SYMBOL_GPL(_submit_bh);
3054 int submit_bh(int rw, struct buffer_head *bh)
3056 return _submit_bh(rw, bh, 0);
3058 EXPORT_SYMBOL(submit_bh);
3061 * ll_rw_block: low-level access to block devices (DEPRECATED)
3062 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3063 * @nr: number of &struct buffer_heads in the array
3064 * @bhs: array of pointers to &struct buffer_head
3066 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3067 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3068 * %READA option is described in the documentation for generic_make_request()
3069 * which ll_rw_block() calls.
3071 * This function drops any buffer that it cannot get a lock on (with the
3072 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3073 * request, and any buffer that appears to be up-to-date when doing read
3074 * request. Further it marks as clean buffers that are processed for
3075 * writing (the buffer cache won't assume that they are actually clean
3076 * until the buffer gets unlocked).
3078 * ll_rw_block sets b_end_io to simple completion handler that marks
3079 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3080 * any waiters.
3082 * All of the buffers must be for the same device, and must also be a
3083 * multiple of the current approved size for the device.
3085 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3087 int i;
3089 for (i = 0; i < nr; i++) {
3090 struct buffer_head *bh = bhs[i];
3092 if (!trylock_buffer(bh))
3093 continue;
3094 if (rw == WRITE) {
3095 if (test_clear_buffer_dirty(bh)) {
3096 bh->b_end_io = end_buffer_write_sync;
3097 get_bh(bh);
3098 submit_bh(WRITE, bh);
3099 continue;
3101 } else {
3102 if (!buffer_uptodate(bh)) {
3103 bh->b_end_io = end_buffer_read_sync;
3104 get_bh(bh);
3105 submit_bh(rw, bh);
3106 continue;
3109 unlock_buffer(bh);
3112 EXPORT_SYMBOL(ll_rw_block);
3114 void write_dirty_buffer(struct buffer_head *bh, int rw)
3116 lock_buffer(bh);
3117 if (!test_clear_buffer_dirty(bh)) {
3118 unlock_buffer(bh);
3119 return;
3121 bh->b_end_io = end_buffer_write_sync;
3122 get_bh(bh);
3123 submit_bh(rw, bh);
3125 EXPORT_SYMBOL(write_dirty_buffer);
3128 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3129 * and then start new I/O and then wait upon it. The caller must have a ref on
3130 * the buffer_head.
3132 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3134 int ret = 0;
3136 WARN_ON(atomic_read(&bh->b_count) < 1);
3137 lock_buffer(bh);
3138 if (test_clear_buffer_dirty(bh)) {
3139 get_bh(bh);
3140 bh->b_end_io = end_buffer_write_sync;
3141 ret = submit_bh(rw, bh);
3142 wait_on_buffer(bh);
3143 if (!ret && !buffer_uptodate(bh))
3144 ret = -EIO;
3145 } else {
3146 unlock_buffer(bh);
3148 return ret;
3150 EXPORT_SYMBOL(__sync_dirty_buffer);
3152 int sync_dirty_buffer(struct buffer_head *bh)
3154 return __sync_dirty_buffer(bh, WRITE_SYNC);
3156 EXPORT_SYMBOL(sync_dirty_buffer);
3159 * try_to_free_buffers() checks if all the buffers on this particular page
3160 * are unused, and releases them if so.
3162 * Exclusion against try_to_free_buffers may be obtained by either
3163 * locking the page or by holding its mapping's private_lock.
3165 * If the page is dirty but all the buffers are clean then we need to
3166 * be sure to mark the page clean as well. This is because the page
3167 * may be against a block device, and a later reattachment of buffers
3168 * to a dirty page will set *all* buffers dirty. Which would corrupt
3169 * filesystem data on the same device.
3171 * The same applies to regular filesystem pages: if all the buffers are
3172 * clean then we set the page clean and proceed. To do that, we require
3173 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3174 * private_lock.
3176 * try_to_free_buffers() is non-blocking.
3178 static inline int buffer_busy(struct buffer_head *bh)
3180 return atomic_read(&bh->b_count) |
3181 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3184 static int
3185 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3187 struct buffer_head *head = page_buffers(page);
3188 struct buffer_head *bh;
3190 bh = head;
3191 do {
3192 if (buffer_write_io_error(bh) && page->mapping)
3193 set_bit(AS_EIO, &page->mapping->flags);
3194 if (buffer_busy(bh))
3195 goto failed;
3196 bh = bh->b_this_page;
3197 } while (bh != head);
3199 do {
3200 struct buffer_head *next = bh->b_this_page;
3202 if (bh->b_assoc_map)
3203 __remove_assoc_queue(bh);
3204 bh = next;
3205 } while (bh != head);
3206 *buffers_to_free = head;
3207 __clear_page_buffers(page);
3208 return 1;
3209 failed:
3210 return 0;
3213 int try_to_free_buffers(struct page *page)
3215 struct address_space * const mapping = page->mapping;
3216 struct buffer_head *buffers_to_free = NULL;
3217 int ret = 0;
3219 BUG_ON(!PageLocked(page));
3220 if (PageWriteback(page))
3221 return 0;
3223 if (mapping == NULL) { /* can this still happen? */
3224 ret = drop_buffers(page, &buffers_to_free);
3225 goto out;
3228 spin_lock(&mapping->private_lock);
3229 ret = drop_buffers(page, &buffers_to_free);
3232 * If the filesystem writes its buffers by hand (eg ext3)
3233 * then we can have clean buffers against a dirty page. We
3234 * clean the page here; otherwise the VM will never notice
3235 * that the filesystem did any IO at all.
3237 * Also, during truncate, discard_buffer will have marked all
3238 * the page's buffers clean. We discover that here and clean
3239 * the page also.
3241 * private_lock must be held over this entire operation in order
3242 * to synchronise against __set_page_dirty_buffers and prevent the
3243 * dirty bit from being lost.
3245 if (ret)
3246 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3247 spin_unlock(&mapping->private_lock);
3248 out:
3249 if (buffers_to_free) {
3250 struct buffer_head *bh = buffers_to_free;
3252 do {
3253 struct buffer_head *next = bh->b_this_page;
3254 free_buffer_head(bh);
3255 bh = next;
3256 } while (bh != buffers_to_free);
3258 return ret;
3260 EXPORT_SYMBOL(try_to_free_buffers);
3263 * There are no bdflush tunables left. But distributions are
3264 * still running obsolete flush daemons, so we terminate them here.
3266 * Use of bdflush() is deprecated and will be removed in a future kernel.
3267 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3269 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3271 static int msg_count;
3273 if (!capable(CAP_SYS_ADMIN))
3274 return -EPERM;
3276 if (msg_count < 5) {
3277 msg_count++;
3278 printk(KERN_INFO
3279 "warning: process `%s' used the obsolete bdflush"
3280 " system call\n", current->comm);
3281 printk(KERN_INFO "Fix your initscripts?\n");
3284 if (func == 1)
3285 do_exit(0);
3286 return 0;
3290 * Buffer-head allocation
3292 static struct kmem_cache *bh_cachep __read_mostly;
3295 * Once the number of bh's in the machine exceeds this level, we start
3296 * stripping them in writeback.
3298 static unsigned long max_buffer_heads;
3300 int buffer_heads_over_limit;
3302 struct bh_accounting {
3303 int nr; /* Number of live bh's */
3304 int ratelimit; /* Limit cacheline bouncing */
3307 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3309 static void recalc_bh_state(void)
3311 int i;
3312 int tot = 0;
3314 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3315 return;
3316 __this_cpu_write(bh_accounting.ratelimit, 0);
3317 for_each_online_cpu(i)
3318 tot += per_cpu(bh_accounting, i).nr;
3319 buffer_heads_over_limit = (tot > max_buffer_heads);
3322 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3324 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3325 if (ret) {
3326 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3327 preempt_disable();
3328 __this_cpu_inc(bh_accounting.nr);
3329 recalc_bh_state();
3330 preempt_enable();
3332 return ret;
3334 EXPORT_SYMBOL(alloc_buffer_head);
3336 void free_buffer_head(struct buffer_head *bh)
3338 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3339 kmem_cache_free(bh_cachep, bh);
3340 preempt_disable();
3341 __this_cpu_dec(bh_accounting.nr);
3342 recalc_bh_state();
3343 preempt_enable();
3345 EXPORT_SYMBOL(free_buffer_head);
3347 static void buffer_exit_cpu(int cpu)
3349 int i;
3350 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3352 for (i = 0; i < BH_LRU_SIZE; i++) {
3353 brelse(b->bhs[i]);
3354 b->bhs[i] = NULL;
3356 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3357 per_cpu(bh_accounting, cpu).nr = 0;
3360 static int buffer_cpu_notify(struct notifier_block *self,
3361 unsigned long action, void *hcpu)
3363 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3364 buffer_exit_cpu((unsigned long)hcpu);
3365 return NOTIFY_OK;
3369 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3370 * @bh: struct buffer_head
3372 * Return true if the buffer is up-to-date and false,
3373 * with the buffer locked, if not.
3375 int bh_uptodate_or_lock(struct buffer_head *bh)
3377 if (!buffer_uptodate(bh)) {
3378 lock_buffer(bh);
3379 if (!buffer_uptodate(bh))
3380 return 0;
3381 unlock_buffer(bh);
3383 return 1;
3385 EXPORT_SYMBOL(bh_uptodate_or_lock);
3388 * bh_submit_read - Submit a locked buffer for reading
3389 * @bh: struct buffer_head
3391 * Returns zero on success and -EIO on error.
3393 int bh_submit_read(struct buffer_head *bh)
3395 BUG_ON(!buffer_locked(bh));
3397 if (buffer_uptodate(bh)) {
3398 unlock_buffer(bh);
3399 return 0;
3402 get_bh(bh);
3403 bh->b_end_io = end_buffer_read_sync;
3404 submit_bh(READ, bh);
3405 wait_on_buffer(bh);
3406 if (buffer_uptodate(bh))
3407 return 0;
3408 return -EIO;
3410 EXPORT_SYMBOL(bh_submit_read);
3412 void __init buffer_init(void)
3414 unsigned long nrpages;
3416 bh_cachep = kmem_cache_create("buffer_head",
3417 sizeof(struct buffer_head), 0,
3418 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3419 SLAB_MEM_SPREAD),
3420 NULL);
3423 * Limit the bh occupancy to 10% of ZONE_NORMAL
3425 nrpages = (nr_free_buffer_pages() * 10) / 100;
3426 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3427 hotcpu_notifier(buffer_cpu_notify, 0);