2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
30 "A percentage of time allocated for copy on write");
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 * Device id is restricted to 24 bits.
42 #define MAX_DEV_ID ((1 << 24) - 1)
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
58 * Let's say we write to a shared block in what was the origin. The
61 * i) plug io further to this physical block. (see bio_prison code).
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
80 * Steps (ii) and (iii) occur in parallel.
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
90 * - The snap mapping still points to the old block. As it would after
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
102 /*----------------------------------------------------------------*/
107 static void build_data_key(struct dm_thin_device
*td
,
108 dm_block_t b
, struct dm_cell_key
*key
)
111 key
->dev
= dm_thin_dev_id(td
);
115 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
116 struct dm_cell_key
*key
)
119 key
->dev
= dm_thin_dev_id(td
);
123 /*----------------------------------------------------------------*/
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
130 struct dm_thin_new_mapping
;
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
136 PM_WRITE
, /* metadata may be changed */
137 PM_READ_ONLY
, /* metadata may not be changed */
138 PM_FAIL
, /* all I/O fails */
141 struct pool_features
{
144 bool zero_new_blocks
:1;
145 bool discard_enabled
:1;
146 bool discard_passdown
:1;
150 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
151 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
154 struct list_head list
;
155 struct dm_target
*ti
; /* Only set if a pool target is bound */
157 struct mapped_device
*pool_md
;
158 struct block_device
*md_dev
;
159 struct dm_pool_metadata
*pmd
;
161 dm_block_t low_water_blocks
;
162 uint32_t sectors_per_block
;
163 int sectors_per_block_shift
;
165 struct pool_features pf
;
166 unsigned low_water_triggered
:1; /* A dm event has been sent */
167 unsigned no_free_space
:1; /* A -ENOSPC warning has been issued */
169 struct dm_bio_prison
*prison
;
170 struct dm_kcopyd_client
*copier
;
172 struct workqueue_struct
*wq
;
173 struct work_struct worker
;
174 struct delayed_work waker
;
176 unsigned long last_commit_jiffies
;
180 struct bio_list deferred_bios
;
181 struct bio_list deferred_flush_bios
;
182 struct list_head prepared_mappings
;
183 struct list_head prepared_discards
;
185 struct bio_list retry_on_resume_list
;
187 struct dm_deferred_set
*shared_read_ds
;
188 struct dm_deferred_set
*all_io_ds
;
190 struct dm_thin_new_mapping
*next_mapping
;
191 mempool_t
*mapping_pool
;
193 process_bio_fn process_bio
;
194 process_bio_fn process_discard
;
196 process_mapping_fn process_prepared_mapping
;
197 process_mapping_fn process_prepared_discard
;
200 static enum pool_mode
get_pool_mode(struct pool
*pool
);
201 static void set_pool_mode(struct pool
*pool
, enum pool_mode mode
);
204 * Target context for a pool.
207 struct dm_target
*ti
;
209 struct dm_dev
*data_dev
;
210 struct dm_dev
*metadata_dev
;
211 struct dm_target_callbacks callbacks
;
213 dm_block_t low_water_blocks
;
214 struct pool_features requested_pf
; /* Features requested during table load */
215 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
219 * Target context for a thin.
222 struct dm_dev
*pool_dev
;
223 struct dm_dev
*origin_dev
;
227 struct dm_thin_device
*td
;
230 /*----------------------------------------------------------------*/
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
236 static void wake_worker(struct pool
*pool
)
238 queue_work(pool
->wq
, &pool
->worker
);
241 /*----------------------------------------------------------------*/
243 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
244 struct dm_bio_prison_cell
**cell_result
)
247 struct dm_bio_prison_cell
*cell_prealloc
;
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
253 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
255 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
258 * We reused an old cell; we can get rid of
261 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
266 static void cell_release(struct pool
*pool
,
267 struct dm_bio_prison_cell
*cell
,
268 struct bio_list
*bios
)
270 dm_cell_release(pool
->prison
, cell
, bios
);
271 dm_bio_prison_free_cell(pool
->prison
, cell
);
274 static void cell_release_no_holder(struct pool
*pool
,
275 struct dm_bio_prison_cell
*cell
,
276 struct bio_list
*bios
)
278 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
279 dm_bio_prison_free_cell(pool
->prison
, cell
);
282 static void cell_defer_no_holder_no_free(struct thin_c
*tc
,
283 struct dm_bio_prison_cell
*cell
)
285 struct pool
*pool
= tc
->pool
;
288 spin_lock_irqsave(&pool
->lock
, flags
);
289 dm_cell_release_no_holder(pool
->prison
, cell
, &pool
->deferred_bios
);
290 spin_unlock_irqrestore(&pool
->lock
, flags
);
295 static void cell_error(struct pool
*pool
,
296 struct dm_bio_prison_cell
*cell
)
298 dm_cell_error(pool
->prison
, cell
);
299 dm_bio_prison_free_cell(pool
->prison
, cell
);
302 /*----------------------------------------------------------------*/
305 * A global list of pools that uses a struct mapped_device as a key.
307 static struct dm_thin_pool_table
{
309 struct list_head pools
;
310 } dm_thin_pool_table
;
312 static void pool_table_init(void)
314 mutex_init(&dm_thin_pool_table
.mutex
);
315 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
318 static void __pool_table_insert(struct pool
*pool
)
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
321 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
324 static void __pool_table_remove(struct pool
*pool
)
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
327 list_del(&pool
->list
);
330 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
332 struct pool
*pool
= NULL
, *tmp
;
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
336 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
337 if (tmp
->pool_md
== md
) {
346 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
348 struct pool
*pool
= NULL
, *tmp
;
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
352 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
353 if (tmp
->md_dev
== md_dev
) {
362 /*----------------------------------------------------------------*/
364 struct dm_thin_endio_hook
{
366 struct dm_deferred_entry
*shared_read_entry
;
367 struct dm_deferred_entry
*all_io_entry
;
368 struct dm_thin_new_mapping
*overwrite_mapping
;
371 static void __requeue_bio_list(struct thin_c
*tc
, struct bio_list
*master
)
374 struct bio_list bios
;
376 bio_list_init(&bios
);
377 bio_list_merge(&bios
, master
);
378 bio_list_init(master
);
380 while ((bio
= bio_list_pop(&bios
))) {
381 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
384 bio_endio(bio
, DM_ENDIO_REQUEUE
);
386 bio_list_add(master
, bio
);
390 static void requeue_io(struct thin_c
*tc
)
392 struct pool
*pool
= tc
->pool
;
395 spin_lock_irqsave(&pool
->lock
, flags
);
396 __requeue_bio_list(tc
, &pool
->deferred_bios
);
397 __requeue_bio_list(tc
, &pool
->retry_on_resume_list
);
398 spin_unlock_irqrestore(&pool
->lock
, flags
);
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
408 static bool block_size_is_power_of_two(struct pool
*pool
)
410 return pool
->sectors_per_block_shift
>= 0;
413 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
415 struct pool
*pool
= tc
->pool
;
416 sector_t block_nr
= bio
->bi_sector
;
418 if (block_size_is_power_of_two(pool
))
419 block_nr
>>= pool
->sectors_per_block_shift
;
421 (void) sector_div(block_nr
, pool
->sectors_per_block
);
426 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
428 struct pool
*pool
= tc
->pool
;
429 sector_t bi_sector
= bio
->bi_sector
;
431 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
432 if (block_size_is_power_of_two(pool
))
433 bio
->bi_sector
= (block
<< pool
->sectors_per_block_shift
) |
434 (bi_sector
& (pool
->sectors_per_block
- 1));
436 bio
->bi_sector
= (block
* pool
->sectors_per_block
) +
437 sector_div(bi_sector
, pool
->sectors_per_block
);
440 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
442 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
445 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
447 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
448 dm_thin_changed_this_transaction(tc
->td
);
451 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
453 struct dm_thin_endio_hook
*h
;
455 if (bio
->bi_rw
& REQ_DISCARD
)
458 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
459 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
462 static void issue(struct thin_c
*tc
, struct bio
*bio
)
464 struct pool
*pool
= tc
->pool
;
467 if (!bio_triggers_commit(tc
, bio
)) {
468 generic_make_request(bio
);
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
477 if (dm_thin_aborted_changes(tc
->td
)) {
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
486 spin_lock_irqsave(&pool
->lock
, flags
);
487 bio_list_add(&pool
->deferred_flush_bios
, bio
);
488 spin_unlock_irqrestore(&pool
->lock
, flags
);
491 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
493 remap_to_origin(tc
, bio
);
497 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
500 remap(tc
, bio
, block
);
504 /*----------------------------------------------------------------*/
507 * Bio endio functions.
509 struct dm_thin_new_mapping
{
510 struct list_head list
;
514 unsigned pass_discard
:1;
517 dm_block_t virt_block
;
518 dm_block_t data_block
;
519 struct dm_bio_prison_cell
*cell
, *cell2
;
523 * If the bio covers the whole area of a block then we can avoid
524 * zeroing or copying. Instead this bio is hooked. The bio will
525 * still be in the cell, so care has to be taken to avoid issuing
529 bio_end_io_t
*saved_bi_end_io
;
532 static void __maybe_add_mapping(struct dm_thin_new_mapping
*m
)
534 struct pool
*pool
= m
->tc
->pool
;
536 if (m
->quiesced
&& m
->prepared
) {
537 list_add(&m
->list
, &pool
->prepared_mappings
);
542 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
545 struct dm_thin_new_mapping
*m
= context
;
546 struct pool
*pool
= m
->tc
->pool
;
548 m
->err
= read_err
|| write_err
? -EIO
: 0;
550 spin_lock_irqsave(&pool
->lock
, flags
);
552 __maybe_add_mapping(m
);
553 spin_unlock_irqrestore(&pool
->lock
, flags
);
556 static void overwrite_endio(struct bio
*bio
, int err
)
559 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
560 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
561 struct pool
*pool
= m
->tc
->pool
;
565 spin_lock_irqsave(&pool
->lock
, flags
);
567 __maybe_add_mapping(m
);
568 spin_unlock_irqrestore(&pool
->lock
, flags
);
571 /*----------------------------------------------------------------*/
578 * Prepared mapping jobs.
582 * This sends the bios in the cell back to the deferred_bios list.
584 static void cell_defer(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
586 struct pool
*pool
= tc
->pool
;
589 spin_lock_irqsave(&pool
->lock
, flags
);
590 cell_release(pool
, cell
, &pool
->deferred_bios
);
591 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
597 * Same as cell_defer above, except it omits the original holder of the cell.
599 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
601 struct pool
*pool
= tc
->pool
;
604 spin_lock_irqsave(&pool
->lock
, flags
);
605 cell_release_no_holder(pool
, cell
, &pool
->deferred_bios
);
606 spin_unlock_irqrestore(&pool
->lock
, flags
);
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
614 m
->bio
->bi_end_io
= m
->saved_bi_end_io
;
615 cell_error(m
->tc
->pool
, m
->cell
);
617 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
620 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
622 struct thin_c
*tc
= m
->tc
;
623 struct pool
*pool
= tc
->pool
;
629 bio
->bi_end_io
= m
->saved_bi_end_io
;
632 cell_error(pool
, m
->cell
);
637 * Commit the prepared block into the mapping btree.
638 * Any I/O for this block arriving after this point will get
639 * remapped to it directly.
641 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
643 DMERR_LIMIT("dm_thin_insert_block() failed");
644 cell_error(pool
, m
->cell
);
649 * Release any bios held while the block was being provisioned.
650 * If we are processing a write bio that completely covers the block,
651 * we already processed it so can ignore it now when processing
652 * the bios in the cell.
655 cell_defer_no_holder(tc
, m
->cell
);
658 cell_defer(tc
, m
->cell
);
662 mempool_free(m
, pool
->mapping_pool
);
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
667 struct thin_c
*tc
= m
->tc
;
669 bio_io_error(m
->bio
);
670 cell_defer_no_holder(tc
, m
->cell
);
671 cell_defer_no_holder(tc
, m
->cell2
);
672 mempool_free(m
, tc
->pool
->mapping_pool
);
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
677 struct thin_c
*tc
= m
->tc
;
679 inc_all_io_entry(tc
->pool
, m
->bio
);
680 cell_defer_no_holder(tc
, m
->cell
);
681 cell_defer_no_holder(tc
, m
->cell2
);
684 remap_and_issue(tc
, m
->bio
, m
->data_block
);
686 bio_endio(m
->bio
, 0);
688 mempool_free(m
, tc
->pool
->mapping_pool
);
691 static void process_prepared_discard(struct dm_thin_new_mapping
*m
)
694 struct thin_c
*tc
= m
->tc
;
696 r
= dm_thin_remove_block(tc
->td
, m
->virt_block
);
698 DMERR_LIMIT("dm_thin_remove_block() failed");
700 process_prepared_discard_passdown(m
);
703 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
704 process_mapping_fn
*fn
)
707 struct list_head maps
;
708 struct dm_thin_new_mapping
*m
, *tmp
;
710 INIT_LIST_HEAD(&maps
);
711 spin_lock_irqsave(&pool
->lock
, flags
);
712 list_splice_init(head
, &maps
);
713 spin_unlock_irqrestore(&pool
->lock
, flags
);
715 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
722 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
724 return bio
->bi_size
== (pool
->sectors_per_block
<< SECTOR_SHIFT
);
727 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
729 return (bio_data_dir(bio
) == WRITE
) &&
730 io_overlaps_block(pool
, bio
);
733 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
736 *save
= bio
->bi_end_io
;
740 static int ensure_next_mapping(struct pool
*pool
)
742 if (pool
->next_mapping
)
745 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
747 return pool
->next_mapping
? 0 : -ENOMEM
;
750 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
752 struct dm_thin_new_mapping
*r
= pool
->next_mapping
;
754 BUG_ON(!pool
->next_mapping
);
756 pool
->next_mapping
= NULL
;
761 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
762 struct dm_dev
*origin
, dm_block_t data_origin
,
763 dm_block_t data_dest
,
764 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
767 struct pool
*pool
= tc
->pool
;
768 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
770 INIT_LIST_HEAD(&m
->list
);
774 m
->virt_block
= virt_block
;
775 m
->data_block
= data_dest
;
780 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
784 * IO to pool_dev remaps to the pool target's data_dev.
786 * If the whole block of data is being overwritten, we can issue the
787 * bio immediately. Otherwise we use kcopyd to clone the data first.
789 if (io_overwrites_block(pool
, bio
)) {
790 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
792 h
->overwrite_mapping
= m
;
794 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
795 inc_all_io_entry(pool
, bio
);
796 remap_and_issue(tc
, bio
, data_dest
);
798 struct dm_io_region from
, to
;
800 from
.bdev
= origin
->bdev
;
801 from
.sector
= data_origin
* pool
->sectors_per_block
;
802 from
.count
= pool
->sectors_per_block
;
804 to
.bdev
= tc
->pool_dev
->bdev
;
805 to
.sector
= data_dest
* pool
->sectors_per_block
;
806 to
.count
= pool
->sectors_per_block
;
808 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
809 0, copy_complete
, m
);
811 mempool_free(m
, pool
->mapping_pool
);
812 DMERR_LIMIT("dm_kcopyd_copy() failed");
813 cell_error(pool
, cell
);
818 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
819 dm_block_t data_origin
, dm_block_t data_dest
,
820 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
822 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
823 data_origin
, data_dest
, cell
, bio
);
826 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
827 dm_block_t data_dest
,
828 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
830 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
831 virt_block
, data_dest
, cell
, bio
);
834 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
835 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
838 struct pool
*pool
= tc
->pool
;
839 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
841 INIT_LIST_HEAD(&m
->list
);
845 m
->virt_block
= virt_block
;
846 m
->data_block
= data_block
;
852 * If the whole block of data is being overwritten or we are not
853 * zeroing pre-existing data, we can issue the bio immediately.
854 * Otherwise we use kcopyd to zero the data first.
856 if (!pool
->pf
.zero_new_blocks
)
857 process_prepared_mapping(m
);
859 else if (io_overwrites_block(pool
, bio
)) {
860 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
862 h
->overwrite_mapping
= m
;
864 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
865 inc_all_io_entry(pool
, bio
);
866 remap_and_issue(tc
, bio
, data_block
);
869 struct dm_io_region to
;
871 to
.bdev
= tc
->pool_dev
->bdev
;
872 to
.sector
= data_block
* pool
->sectors_per_block
;
873 to
.count
= pool
->sectors_per_block
;
875 r
= dm_kcopyd_zero(pool
->copier
, 1, &to
, 0, copy_complete
, m
);
877 mempool_free(m
, pool
->mapping_pool
);
878 DMERR_LIMIT("dm_kcopyd_zero() failed");
879 cell_error(pool
, cell
);
884 static int commit(struct pool
*pool
)
888 r
= dm_pool_commit_metadata(pool
->pmd
);
890 DMERR_LIMIT("%s: commit failed: error = %d",
891 dm_device_name(pool
->pool_md
), r
);
897 * A non-zero return indicates read_only or fail_io mode.
898 * Many callers don't care about the return value.
900 static int commit_or_fallback(struct pool
*pool
)
904 if (get_pool_mode(pool
) != PM_WRITE
)
909 set_pool_mode(pool
, PM_READ_ONLY
);
914 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
917 dm_block_t free_blocks
;
919 struct pool
*pool
= tc
->pool
;
922 * Once no_free_space is set we must not allow allocation to succeed.
923 * Otherwise it is difficult to explain, debug, test and support.
925 if (pool
->no_free_space
)
928 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
932 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
933 DMWARN("%s: reached low water mark for data device: sending event.",
934 dm_device_name(pool
->pool_md
));
935 spin_lock_irqsave(&pool
->lock
, flags
);
936 pool
->low_water_triggered
= 1;
937 spin_unlock_irqrestore(&pool
->lock
, flags
);
938 dm_table_event(pool
->ti
->table
);
943 * Try to commit to see if that will free up some
946 (void) commit_or_fallback(pool
);
948 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
953 * If we still have no space we set a flag to avoid
954 * doing all this checking and return -ENOSPC. This
955 * flag serves as a latch that disallows allocations from
956 * this pool until the admin takes action (e.g. resize or
960 DMWARN("%s: no free space available.",
961 dm_device_name(pool
->pool_md
));
962 spin_lock_irqsave(&pool
->lock
, flags
);
963 pool
->no_free_space
= 1;
964 spin_unlock_irqrestore(&pool
->lock
, flags
);
969 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
977 * If we have run out of space, queue bios until the device is
978 * resumed, presumably after having been reloaded with more space.
980 static void retry_on_resume(struct bio
*bio
)
982 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
983 struct thin_c
*tc
= h
->tc
;
984 struct pool
*pool
= tc
->pool
;
987 spin_lock_irqsave(&pool
->lock
, flags
);
988 bio_list_add(&pool
->retry_on_resume_list
, bio
);
989 spin_unlock_irqrestore(&pool
->lock
, flags
);
992 static void no_space(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
995 struct bio_list bios
;
997 bio_list_init(&bios
);
998 cell_release(pool
, cell
, &bios
);
1000 while ((bio
= bio_list_pop(&bios
)))
1001 retry_on_resume(bio
);
1004 static void process_discard(struct thin_c
*tc
, struct bio
*bio
)
1007 unsigned long flags
;
1008 struct pool
*pool
= tc
->pool
;
1009 struct dm_bio_prison_cell
*cell
, *cell2
;
1010 struct dm_cell_key key
, key2
;
1011 dm_block_t block
= get_bio_block(tc
, bio
);
1012 struct dm_thin_lookup_result lookup_result
;
1013 struct dm_thin_new_mapping
*m
;
1015 build_virtual_key(tc
->td
, block
, &key
);
1016 if (bio_detain(tc
->pool
, &key
, bio
, &cell
))
1019 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1023 * Check nobody is fiddling with this pool block. This can
1024 * happen if someone's in the process of breaking sharing
1027 build_data_key(tc
->td
, lookup_result
.block
, &key2
);
1028 if (bio_detain(tc
->pool
, &key2
, bio
, &cell2
)) {
1029 cell_defer_no_holder(tc
, cell
);
1033 if (io_overlaps_block(pool
, bio
)) {
1035 * IO may still be going to the destination block. We must
1036 * quiesce before we can do the removal.
1038 m
= get_next_mapping(pool
);
1040 m
->pass_discard
= (!lookup_result
.shared
) && pool
->pf
.discard_passdown
;
1041 m
->virt_block
= block
;
1042 m
->data_block
= lookup_result
.block
;
1048 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
)) {
1049 spin_lock_irqsave(&pool
->lock
, flags
);
1050 list_add(&m
->list
, &pool
->prepared_discards
);
1051 spin_unlock_irqrestore(&pool
->lock
, flags
);
1055 inc_all_io_entry(pool
, bio
);
1056 cell_defer_no_holder(tc
, cell
);
1057 cell_defer_no_holder(tc
, cell2
);
1060 * The DM core makes sure that the discard doesn't span
1061 * a block boundary. So we submit the discard of a
1062 * partial block appropriately.
1064 if ((!lookup_result
.shared
) && pool
->pf
.discard_passdown
)
1065 remap_and_issue(tc
, bio
, lookup_result
.block
);
1073 * It isn't provisioned, just forget it.
1075 cell_defer_no_holder(tc
, cell
);
1080 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1082 cell_defer_no_holder(tc
, cell
);
1088 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1089 struct dm_cell_key
*key
,
1090 struct dm_thin_lookup_result
*lookup_result
,
1091 struct dm_bio_prison_cell
*cell
)
1094 dm_block_t data_block
;
1095 struct pool
*pool
= tc
->pool
;
1097 r
= alloc_data_block(tc
, &data_block
);
1100 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1101 data_block
, cell
, bio
);
1105 no_space(pool
, cell
);
1109 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1111 set_pool_mode(pool
, PM_READ_ONLY
);
1112 cell_error(pool
, cell
);
1117 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1119 struct dm_thin_lookup_result
*lookup_result
)
1121 struct dm_bio_prison_cell
*cell
;
1122 struct pool
*pool
= tc
->pool
;
1123 struct dm_cell_key key
;
1126 * If cell is already occupied, then sharing is already in the process
1127 * of being broken so we have nothing further to do here.
1129 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1130 if (bio_detain(pool
, &key
, bio
, &cell
))
1133 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_size
)
1134 break_sharing(tc
, bio
, block
, &key
, lookup_result
, cell
);
1136 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1138 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1139 inc_all_io_entry(pool
, bio
);
1140 cell_defer_no_holder(tc
, cell
);
1142 remap_and_issue(tc
, bio
, lookup_result
->block
);
1146 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1147 struct dm_bio_prison_cell
*cell
)
1150 dm_block_t data_block
;
1151 struct pool
*pool
= tc
->pool
;
1154 * Remap empty bios (flushes) immediately, without provisioning.
1156 if (!bio
->bi_size
) {
1157 inc_all_io_entry(pool
, bio
);
1158 cell_defer_no_holder(tc
, cell
);
1160 remap_and_issue(tc
, bio
, 0);
1165 * Fill read bios with zeroes and complete them immediately.
1167 if (bio_data_dir(bio
) == READ
) {
1169 cell_defer_no_holder(tc
, cell
);
1174 r
= alloc_data_block(tc
, &data_block
);
1178 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1180 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1184 no_space(pool
, cell
);
1188 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1190 set_pool_mode(pool
, PM_READ_ONLY
);
1191 cell_error(pool
, cell
);
1196 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1199 struct pool
*pool
= tc
->pool
;
1200 dm_block_t block
= get_bio_block(tc
, bio
);
1201 struct dm_bio_prison_cell
*cell
;
1202 struct dm_cell_key key
;
1203 struct dm_thin_lookup_result lookup_result
;
1206 * If cell is already occupied, then the block is already
1207 * being provisioned so we have nothing further to do here.
1209 build_virtual_key(tc
->td
, block
, &key
);
1210 if (bio_detain(pool
, &key
, bio
, &cell
))
1213 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1216 if (lookup_result
.shared
) {
1217 process_shared_bio(tc
, bio
, block
, &lookup_result
);
1218 cell_defer_no_holder(tc
, cell
); /* FIXME: pass this cell into process_shared? */
1220 inc_all_io_entry(pool
, bio
);
1221 cell_defer_no_holder(tc
, cell
);
1223 remap_and_issue(tc
, bio
, lookup_result
.block
);
1228 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1229 inc_all_io_entry(pool
, bio
);
1230 cell_defer_no_holder(tc
, cell
);
1232 remap_to_origin_and_issue(tc
, bio
);
1234 provision_block(tc
, bio
, block
, cell
);
1238 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1240 cell_defer_no_holder(tc
, cell
);
1246 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1249 int rw
= bio_data_dir(bio
);
1250 dm_block_t block
= get_bio_block(tc
, bio
);
1251 struct dm_thin_lookup_result lookup_result
;
1253 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1256 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_size
)
1259 inc_all_io_entry(tc
->pool
, bio
);
1260 remap_and_issue(tc
, bio
, lookup_result
.block
);
1270 if (tc
->origin_dev
) {
1271 inc_all_io_entry(tc
->pool
, bio
);
1272 remap_to_origin_and_issue(tc
, bio
);
1281 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1288 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1294 * FIXME: should we also commit due to size of transaction, measured in
1297 static int need_commit_due_to_time(struct pool
*pool
)
1299 return jiffies
< pool
->last_commit_jiffies
||
1300 jiffies
> pool
->last_commit_jiffies
+ COMMIT_PERIOD
;
1303 static void process_deferred_bios(struct pool
*pool
)
1305 unsigned long flags
;
1307 struct bio_list bios
;
1309 bio_list_init(&bios
);
1311 spin_lock_irqsave(&pool
->lock
, flags
);
1312 bio_list_merge(&bios
, &pool
->deferred_bios
);
1313 bio_list_init(&pool
->deferred_bios
);
1314 spin_unlock_irqrestore(&pool
->lock
, flags
);
1316 while ((bio
= bio_list_pop(&bios
))) {
1317 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1318 struct thin_c
*tc
= h
->tc
;
1321 * If we've got no free new_mapping structs, and processing
1322 * this bio might require one, we pause until there are some
1323 * prepared mappings to process.
1325 if (ensure_next_mapping(pool
)) {
1326 spin_lock_irqsave(&pool
->lock
, flags
);
1327 bio_list_merge(&pool
->deferred_bios
, &bios
);
1328 spin_unlock_irqrestore(&pool
->lock
, flags
);
1333 if (bio
->bi_rw
& REQ_DISCARD
)
1334 pool
->process_discard(tc
, bio
);
1336 pool
->process_bio(tc
, bio
);
1340 * If there are any deferred flush bios, we must commit
1341 * the metadata before issuing them.
1343 bio_list_init(&bios
);
1344 spin_lock_irqsave(&pool
->lock
, flags
);
1345 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1346 bio_list_init(&pool
->deferred_flush_bios
);
1347 spin_unlock_irqrestore(&pool
->lock
, flags
);
1349 if (bio_list_empty(&bios
) && !need_commit_due_to_time(pool
))
1352 if (commit_or_fallback(pool
)) {
1353 while ((bio
= bio_list_pop(&bios
)))
1357 pool
->last_commit_jiffies
= jiffies
;
1359 while ((bio
= bio_list_pop(&bios
)))
1360 generic_make_request(bio
);
1363 static void do_worker(struct work_struct
*ws
)
1365 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1367 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
1368 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
1369 process_deferred_bios(pool
);
1373 * We want to commit periodically so that not too much
1374 * unwritten data builds up.
1376 static void do_waker(struct work_struct
*ws
)
1378 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
1380 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
1383 /*----------------------------------------------------------------*/
1385 static enum pool_mode
get_pool_mode(struct pool
*pool
)
1387 return pool
->pf
.mode
;
1390 static void set_pool_mode(struct pool
*pool
, enum pool_mode mode
)
1394 pool
->pf
.mode
= mode
;
1398 DMERR("%s: switching pool to failure mode",
1399 dm_device_name(pool
->pool_md
));
1400 pool
->process_bio
= process_bio_fail
;
1401 pool
->process_discard
= process_bio_fail
;
1402 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1403 pool
->process_prepared_discard
= process_prepared_discard_fail
;
1407 DMERR("%s: switching pool to read-only mode",
1408 dm_device_name(pool
->pool_md
));
1409 r
= dm_pool_abort_metadata(pool
->pmd
);
1411 DMERR("%s: aborting transaction failed",
1412 dm_device_name(pool
->pool_md
));
1413 set_pool_mode(pool
, PM_FAIL
);
1415 dm_pool_metadata_read_only(pool
->pmd
);
1416 pool
->process_bio
= process_bio_read_only
;
1417 pool
->process_discard
= process_discard
;
1418 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1419 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
1424 pool
->process_bio
= process_bio
;
1425 pool
->process_discard
= process_discard
;
1426 pool
->process_prepared_mapping
= process_prepared_mapping
;
1427 pool
->process_prepared_discard
= process_prepared_discard
;
1432 /*----------------------------------------------------------------*/
1435 * Mapping functions.
1439 * Called only while mapping a thin bio to hand it over to the workqueue.
1441 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
1443 unsigned long flags
;
1444 struct pool
*pool
= tc
->pool
;
1446 spin_lock_irqsave(&pool
->lock
, flags
);
1447 bio_list_add(&pool
->deferred_bios
, bio
);
1448 spin_unlock_irqrestore(&pool
->lock
, flags
);
1453 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
1455 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1458 h
->shared_read_entry
= NULL
;
1459 h
->all_io_entry
= NULL
;
1460 h
->overwrite_mapping
= NULL
;
1464 * Non-blocking function called from the thin target's map function.
1466 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
1469 struct thin_c
*tc
= ti
->private;
1470 dm_block_t block
= get_bio_block(tc
, bio
);
1471 struct dm_thin_device
*td
= tc
->td
;
1472 struct dm_thin_lookup_result result
;
1473 struct dm_bio_prison_cell cell1
, cell2
;
1474 struct dm_bio_prison_cell
*cell_result
;
1475 struct dm_cell_key key
;
1477 thin_hook_bio(tc
, bio
);
1479 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
1481 return DM_MAPIO_SUBMITTED
;
1484 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
1485 thin_defer_bio(tc
, bio
);
1486 return DM_MAPIO_SUBMITTED
;
1489 r
= dm_thin_find_block(td
, block
, 0, &result
);
1492 * Note that we defer readahead too.
1496 if (unlikely(result
.shared
)) {
1498 * We have a race condition here between the
1499 * result.shared value returned by the lookup and
1500 * snapshot creation, which may cause new
1503 * To avoid this always quiesce the origin before
1504 * taking the snap. You want to do this anyway to
1505 * ensure a consistent application view
1508 * More distant ancestors are irrelevant. The
1509 * shared flag will be set in their case.
1511 thin_defer_bio(tc
, bio
);
1512 return DM_MAPIO_SUBMITTED
;
1515 build_virtual_key(tc
->td
, block
, &key
);
1516 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell1
, &cell_result
))
1517 return DM_MAPIO_SUBMITTED
;
1519 build_data_key(tc
->td
, result
.block
, &key
);
1520 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell2
, &cell_result
)) {
1521 cell_defer_no_holder_no_free(tc
, &cell1
);
1522 return DM_MAPIO_SUBMITTED
;
1525 inc_all_io_entry(tc
->pool
, bio
);
1526 cell_defer_no_holder_no_free(tc
, &cell2
);
1527 cell_defer_no_holder_no_free(tc
, &cell1
);
1529 remap(tc
, bio
, result
.block
);
1530 return DM_MAPIO_REMAPPED
;
1533 if (get_pool_mode(tc
->pool
) == PM_READ_ONLY
) {
1535 * This block isn't provisioned, and we have no way
1536 * of doing so. Just error it.
1539 return DM_MAPIO_SUBMITTED
;
1545 * In future, the failed dm_thin_find_block above could
1546 * provide the hint to load the metadata into cache.
1548 thin_defer_bio(tc
, bio
);
1549 return DM_MAPIO_SUBMITTED
;
1553 * Must always call bio_io_error on failure.
1554 * dm_thin_find_block can fail with -EINVAL if the
1555 * pool is switched to fail-io mode.
1558 return DM_MAPIO_SUBMITTED
;
1562 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
1565 unsigned long flags
;
1566 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
1568 spin_lock_irqsave(&pt
->pool
->lock
, flags
);
1569 r
= !bio_list_empty(&pt
->pool
->retry_on_resume_list
);
1570 spin_unlock_irqrestore(&pt
->pool
->lock
, flags
);
1573 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1574 r
= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1580 static void __requeue_bios(struct pool
*pool
)
1582 bio_list_merge(&pool
->deferred_bios
, &pool
->retry_on_resume_list
);
1583 bio_list_init(&pool
->retry_on_resume_list
);
1586 /*----------------------------------------------------------------
1587 * Binding of control targets to a pool object
1588 *--------------------------------------------------------------*/
1589 static bool data_dev_supports_discard(struct pool_c
*pt
)
1591 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1593 return q
&& blk_queue_discard(q
);
1596 static bool is_factor(sector_t block_size
, uint32_t n
)
1598 return !sector_div(block_size
, n
);
1602 * If discard_passdown was enabled verify that the data device
1603 * supports discards. Disable discard_passdown if not.
1605 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
1607 struct pool
*pool
= pt
->pool
;
1608 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
1609 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
1610 sector_t block_size
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
1611 const char *reason
= NULL
;
1612 char buf
[BDEVNAME_SIZE
];
1614 if (!pt
->adjusted_pf
.discard_passdown
)
1617 if (!data_dev_supports_discard(pt
))
1618 reason
= "discard unsupported";
1620 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
1621 reason
= "max discard sectors smaller than a block";
1623 else if (data_limits
->discard_granularity
> block_size
)
1624 reason
= "discard granularity larger than a block";
1626 else if (!is_factor(block_size
, data_limits
->discard_granularity
))
1627 reason
= "discard granularity not a factor of block size";
1630 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
1631 pt
->adjusted_pf
.discard_passdown
= false;
1635 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1637 struct pool_c
*pt
= ti
->private;
1640 * We want to make sure that degraded pools are never upgraded.
1642 enum pool_mode old_mode
= pool
->pf
.mode
;
1643 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
1645 if (old_mode
> new_mode
)
1646 new_mode
= old_mode
;
1649 pool
->low_water_blocks
= pt
->low_water_blocks
;
1650 pool
->pf
= pt
->adjusted_pf
;
1652 set_pool_mode(pool
, new_mode
);
1657 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1663 /*----------------------------------------------------------------
1665 *--------------------------------------------------------------*/
1666 /* Initialize pool features. */
1667 static void pool_features_init(struct pool_features
*pf
)
1669 pf
->mode
= PM_WRITE
;
1670 pf
->zero_new_blocks
= true;
1671 pf
->discard_enabled
= true;
1672 pf
->discard_passdown
= true;
1675 static void __pool_destroy(struct pool
*pool
)
1677 __pool_table_remove(pool
);
1679 if (dm_pool_metadata_close(pool
->pmd
) < 0)
1680 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1682 dm_bio_prison_destroy(pool
->prison
);
1683 dm_kcopyd_client_destroy(pool
->copier
);
1686 destroy_workqueue(pool
->wq
);
1688 if (pool
->next_mapping
)
1689 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
1690 mempool_destroy(pool
->mapping_pool
);
1691 dm_deferred_set_destroy(pool
->shared_read_ds
);
1692 dm_deferred_set_destroy(pool
->all_io_ds
);
1696 static struct kmem_cache
*_new_mapping_cache
;
1698 static struct pool
*pool_create(struct mapped_device
*pool_md
,
1699 struct block_device
*metadata_dev
,
1700 unsigned long block_size
,
1701 int read_only
, char **error
)
1706 struct dm_pool_metadata
*pmd
;
1707 bool format_device
= read_only
? false : true;
1709 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
1711 *error
= "Error creating metadata object";
1712 return (struct pool
*)pmd
;
1715 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
1717 *error
= "Error allocating memory for pool";
1718 err_p
= ERR_PTR(-ENOMEM
);
1723 pool
->sectors_per_block
= block_size
;
1724 if (block_size
& (block_size
- 1))
1725 pool
->sectors_per_block_shift
= -1;
1727 pool
->sectors_per_block_shift
= __ffs(block_size
);
1728 pool
->low_water_blocks
= 0;
1729 pool_features_init(&pool
->pf
);
1730 pool
->prison
= dm_bio_prison_create(PRISON_CELLS
);
1731 if (!pool
->prison
) {
1732 *error
= "Error creating pool's bio prison";
1733 err_p
= ERR_PTR(-ENOMEM
);
1737 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
1738 if (IS_ERR(pool
->copier
)) {
1739 r
= PTR_ERR(pool
->copier
);
1740 *error
= "Error creating pool's kcopyd client";
1742 goto bad_kcopyd_client
;
1746 * Create singlethreaded workqueue that will service all devices
1747 * that use this metadata.
1749 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
1751 *error
= "Error creating pool's workqueue";
1752 err_p
= ERR_PTR(-ENOMEM
);
1756 INIT_WORK(&pool
->worker
, do_worker
);
1757 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
1758 spin_lock_init(&pool
->lock
);
1759 bio_list_init(&pool
->deferred_bios
);
1760 bio_list_init(&pool
->deferred_flush_bios
);
1761 INIT_LIST_HEAD(&pool
->prepared_mappings
);
1762 INIT_LIST_HEAD(&pool
->prepared_discards
);
1763 pool
->low_water_triggered
= 0;
1764 pool
->no_free_space
= 0;
1765 bio_list_init(&pool
->retry_on_resume_list
);
1767 pool
->shared_read_ds
= dm_deferred_set_create();
1768 if (!pool
->shared_read_ds
) {
1769 *error
= "Error creating pool's shared read deferred set";
1770 err_p
= ERR_PTR(-ENOMEM
);
1771 goto bad_shared_read_ds
;
1774 pool
->all_io_ds
= dm_deferred_set_create();
1775 if (!pool
->all_io_ds
) {
1776 *error
= "Error creating pool's all io deferred set";
1777 err_p
= ERR_PTR(-ENOMEM
);
1781 pool
->next_mapping
= NULL
;
1782 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
1783 _new_mapping_cache
);
1784 if (!pool
->mapping_pool
) {
1785 *error
= "Error creating pool's mapping mempool";
1786 err_p
= ERR_PTR(-ENOMEM
);
1787 goto bad_mapping_pool
;
1790 pool
->ref_count
= 1;
1791 pool
->last_commit_jiffies
= jiffies
;
1792 pool
->pool_md
= pool_md
;
1793 pool
->md_dev
= metadata_dev
;
1794 __pool_table_insert(pool
);
1799 dm_deferred_set_destroy(pool
->all_io_ds
);
1801 dm_deferred_set_destroy(pool
->shared_read_ds
);
1803 destroy_workqueue(pool
->wq
);
1805 dm_kcopyd_client_destroy(pool
->copier
);
1807 dm_bio_prison_destroy(pool
->prison
);
1811 if (dm_pool_metadata_close(pmd
))
1812 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1817 static void __pool_inc(struct pool
*pool
)
1819 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1823 static void __pool_dec(struct pool
*pool
)
1825 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1826 BUG_ON(!pool
->ref_count
);
1827 if (!--pool
->ref_count
)
1828 __pool_destroy(pool
);
1831 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
1832 struct block_device
*metadata_dev
,
1833 unsigned long block_size
, int read_only
,
1834 char **error
, int *created
)
1836 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
1839 if (pool
->pool_md
!= pool_md
) {
1840 *error
= "metadata device already in use by a pool";
1841 return ERR_PTR(-EBUSY
);
1846 pool
= __pool_table_lookup(pool_md
);
1848 if (pool
->md_dev
!= metadata_dev
) {
1849 *error
= "different pool cannot replace a pool";
1850 return ERR_PTR(-EINVAL
);
1855 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
1863 /*----------------------------------------------------------------
1864 * Pool target methods
1865 *--------------------------------------------------------------*/
1866 static void pool_dtr(struct dm_target
*ti
)
1868 struct pool_c
*pt
= ti
->private;
1870 mutex_lock(&dm_thin_pool_table
.mutex
);
1872 unbind_control_target(pt
->pool
, ti
);
1873 __pool_dec(pt
->pool
);
1874 dm_put_device(ti
, pt
->metadata_dev
);
1875 dm_put_device(ti
, pt
->data_dev
);
1878 mutex_unlock(&dm_thin_pool_table
.mutex
);
1881 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
1882 struct dm_target
*ti
)
1886 const char *arg_name
;
1888 static struct dm_arg _args
[] = {
1889 {0, 3, "Invalid number of pool feature arguments"},
1893 * No feature arguments supplied.
1898 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
1902 while (argc
&& !r
) {
1903 arg_name
= dm_shift_arg(as
);
1906 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
1907 pf
->zero_new_blocks
= false;
1909 else if (!strcasecmp(arg_name
, "ignore_discard"))
1910 pf
->discard_enabled
= false;
1912 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
1913 pf
->discard_passdown
= false;
1915 else if (!strcasecmp(arg_name
, "read_only"))
1916 pf
->mode
= PM_READ_ONLY
;
1919 ti
->error
= "Unrecognised pool feature requested";
1928 static void metadata_low_callback(void *context
)
1930 struct pool
*pool
= context
;
1932 DMWARN("%s: reached low water mark for metadata device: sending event.",
1933 dm_device_name(pool
->pool_md
));
1935 dm_table_event(pool
->ti
->table
);
1938 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
1940 sector_t metadata_dev_size
= i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
1941 char buffer
[BDEVNAME_SIZE
];
1943 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
) {
1944 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1945 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
1946 metadata_dev_size
= THIN_METADATA_MAX_SECTORS_WARNING
;
1949 return metadata_dev_size
;
1952 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
1954 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
1956 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
>> SECTOR_SHIFT
);
1958 return metadata_dev_size
;
1962 * When a metadata threshold is crossed a dm event is triggered, and
1963 * userland should respond by growing the metadata device. We could let
1964 * userland set the threshold, like we do with the data threshold, but I'm
1965 * not sure they know enough to do this well.
1967 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
1970 * 4M is ample for all ops with the possible exception of thin
1971 * device deletion which is harmless if it fails (just retry the
1972 * delete after you've grown the device).
1974 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
1975 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
1979 * thin-pool <metadata dev> <data dev>
1980 * <data block size (sectors)>
1981 * <low water mark (blocks)>
1982 * [<#feature args> [<arg>]*]
1984 * Optional feature arguments are:
1985 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1986 * ignore_discard: disable discard
1987 * no_discard_passdown: don't pass discards down to the data device
1989 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
1991 int r
, pool_created
= 0;
1994 struct pool_features pf
;
1995 struct dm_arg_set as
;
1996 struct dm_dev
*data_dev
;
1997 unsigned long block_size
;
1998 dm_block_t low_water_blocks
;
1999 struct dm_dev
*metadata_dev
;
2000 fmode_t metadata_mode
;
2003 * FIXME Remove validation from scope of lock.
2005 mutex_lock(&dm_thin_pool_table
.mutex
);
2008 ti
->error
= "Invalid argument count";
2017 * Set default pool features.
2019 pool_features_init(&pf
);
2021 dm_consume_args(&as
, 4);
2022 r
= parse_pool_features(&as
, &pf
, ti
);
2026 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
2027 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
2029 ti
->error
= "Error opening metadata block device";
2034 * Run for the side-effect of possibly issuing a warning if the
2035 * device is too big.
2037 (void) get_metadata_dev_size(metadata_dev
->bdev
);
2039 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
2041 ti
->error
= "Error getting data device";
2045 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
2046 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2047 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2048 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2049 ti
->error
= "Invalid block size";
2054 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
2055 ti
->error
= "Invalid low water mark";
2060 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
2066 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
2067 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
2074 * 'pool_created' reflects whether this is the first table load.
2075 * Top level discard support is not allowed to be changed after
2076 * initial load. This would require a pool reload to trigger thin
2079 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
2080 ti
->error
= "Discard support cannot be disabled once enabled";
2082 goto out_flags_changed
;
2087 pt
->metadata_dev
= metadata_dev
;
2088 pt
->data_dev
= data_dev
;
2089 pt
->low_water_blocks
= low_water_blocks
;
2090 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
2091 ti
->num_flush_bios
= 1;
2094 * Only need to enable discards if the pool should pass
2095 * them down to the data device. The thin device's discard
2096 * processing will cause mappings to be removed from the btree.
2098 ti
->discard_zeroes_data_unsupported
= true;
2099 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
2100 ti
->num_discard_bios
= 1;
2103 * Setting 'discards_supported' circumvents the normal
2104 * stacking of discard limits (this keeps the pool and
2105 * thin devices' discard limits consistent).
2107 ti
->discards_supported
= true;
2111 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
2112 calc_metadata_threshold(pt
),
2113 metadata_low_callback
,
2118 pt
->callbacks
.congested_fn
= pool_is_congested
;
2119 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
2121 mutex_unlock(&dm_thin_pool_table
.mutex
);
2130 dm_put_device(ti
, data_dev
);
2132 dm_put_device(ti
, metadata_dev
);
2134 mutex_unlock(&dm_thin_pool_table
.mutex
);
2139 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
2142 struct pool_c
*pt
= ti
->private;
2143 struct pool
*pool
= pt
->pool
;
2144 unsigned long flags
;
2147 * As this is a singleton target, ti->begin is always zero.
2149 spin_lock_irqsave(&pool
->lock
, flags
);
2150 bio
->bi_bdev
= pt
->data_dev
->bdev
;
2151 r
= DM_MAPIO_REMAPPED
;
2152 spin_unlock_irqrestore(&pool
->lock
, flags
);
2157 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
2160 struct pool_c
*pt
= ti
->private;
2161 struct pool
*pool
= pt
->pool
;
2162 sector_t data_size
= ti
->len
;
2163 dm_block_t sb_data_size
;
2165 *need_commit
= false;
2167 (void) sector_div(data_size
, pool
->sectors_per_block
);
2169 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
2171 DMERR("%s: failed to retrieve data device size",
2172 dm_device_name(pool
->pool_md
));
2176 if (data_size
< sb_data_size
) {
2177 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2178 dm_device_name(pool
->pool_md
),
2179 (unsigned long long)data_size
, sb_data_size
);
2182 } else if (data_size
> sb_data_size
) {
2183 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
2185 DMERR("%s: failed to resize data device",
2186 dm_device_name(pool
->pool_md
));
2187 set_pool_mode(pool
, PM_READ_ONLY
);
2191 *need_commit
= true;
2197 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
2200 struct pool_c
*pt
= ti
->private;
2201 struct pool
*pool
= pt
->pool
;
2202 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
2204 *need_commit
= false;
2206 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
2208 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
2210 DMERR("%s: failed to retrieve metadata device size",
2211 dm_device_name(pool
->pool_md
));
2215 if (metadata_dev_size
< sb_metadata_dev_size
) {
2216 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2217 dm_device_name(pool
->pool_md
),
2218 metadata_dev_size
, sb_metadata_dev_size
);
2221 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
2222 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
2224 DMERR("%s: failed to resize metadata device",
2225 dm_device_name(pool
->pool_md
));
2229 *need_commit
= true;
2236 * Retrieves the number of blocks of the data device from
2237 * the superblock and compares it to the actual device size,
2238 * thus resizing the data device in case it has grown.
2240 * This both copes with opening preallocated data devices in the ctr
2241 * being followed by a resume
2243 * calling the resume method individually after userspace has
2244 * grown the data device in reaction to a table event.
2246 static int pool_preresume(struct dm_target
*ti
)
2249 bool need_commit1
, need_commit2
;
2250 struct pool_c
*pt
= ti
->private;
2251 struct pool
*pool
= pt
->pool
;
2254 * Take control of the pool object.
2256 r
= bind_control_target(pool
, ti
);
2260 r
= maybe_resize_data_dev(ti
, &need_commit1
);
2264 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
2268 if (need_commit1
|| need_commit2
)
2269 (void) commit_or_fallback(pool
);
2274 static void pool_resume(struct dm_target
*ti
)
2276 struct pool_c
*pt
= ti
->private;
2277 struct pool
*pool
= pt
->pool
;
2278 unsigned long flags
;
2280 spin_lock_irqsave(&pool
->lock
, flags
);
2281 pool
->low_water_triggered
= 0;
2282 pool
->no_free_space
= 0;
2283 __requeue_bios(pool
);
2284 spin_unlock_irqrestore(&pool
->lock
, flags
);
2286 do_waker(&pool
->waker
.work
);
2289 static void pool_postsuspend(struct dm_target
*ti
)
2291 struct pool_c
*pt
= ti
->private;
2292 struct pool
*pool
= pt
->pool
;
2294 cancel_delayed_work(&pool
->waker
);
2295 flush_workqueue(pool
->wq
);
2296 (void) commit_or_fallback(pool
);
2299 static int check_arg_count(unsigned argc
, unsigned args_required
)
2301 if (argc
!= args_required
) {
2302 DMWARN("Message received with %u arguments instead of %u.",
2303 argc
, args_required
);
2310 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
2312 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
2313 *dev_id
<= MAX_DEV_ID
)
2317 DMWARN("Message received with invalid device id: %s", arg
);
2322 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2327 r
= check_arg_count(argc
, 2);
2331 r
= read_dev_id(argv
[1], &dev_id
, 1);
2335 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
2337 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2345 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2348 dm_thin_id origin_dev_id
;
2351 r
= check_arg_count(argc
, 3);
2355 r
= read_dev_id(argv
[1], &dev_id
, 1);
2359 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
2363 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
2365 DMWARN("Creation of new snapshot %s of device %s failed.",
2373 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2378 r
= check_arg_count(argc
, 2);
2382 r
= read_dev_id(argv
[1], &dev_id
, 1);
2386 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
2388 DMWARN("Deletion of thin device %s failed.", argv
[1]);
2393 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2395 dm_thin_id old_id
, new_id
;
2398 r
= check_arg_count(argc
, 3);
2402 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
2403 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
2407 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
2408 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
2412 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
2414 DMWARN("Failed to change transaction id from %s to %s.",
2422 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2426 r
= check_arg_count(argc
, 1);
2430 (void) commit_or_fallback(pool
);
2432 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
2434 DMWARN("reserve_metadata_snap message failed.");
2439 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2443 r
= check_arg_count(argc
, 1);
2447 r
= dm_pool_release_metadata_snap(pool
->pmd
);
2449 DMWARN("release_metadata_snap message failed.");
2455 * Messages supported:
2456 * create_thin <dev_id>
2457 * create_snap <dev_id> <origin_id>
2459 * trim <dev_id> <new_size_in_sectors>
2460 * set_transaction_id <current_trans_id> <new_trans_id>
2461 * reserve_metadata_snap
2462 * release_metadata_snap
2464 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2467 struct pool_c
*pt
= ti
->private;
2468 struct pool
*pool
= pt
->pool
;
2470 if (!strcasecmp(argv
[0], "create_thin"))
2471 r
= process_create_thin_mesg(argc
, argv
, pool
);
2473 else if (!strcasecmp(argv
[0], "create_snap"))
2474 r
= process_create_snap_mesg(argc
, argv
, pool
);
2476 else if (!strcasecmp(argv
[0], "delete"))
2477 r
= process_delete_mesg(argc
, argv
, pool
);
2479 else if (!strcasecmp(argv
[0], "set_transaction_id"))
2480 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
2482 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
2483 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
2485 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
2486 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
2489 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
2492 (void) commit_or_fallback(pool
);
2497 static void emit_flags(struct pool_features
*pf
, char *result
,
2498 unsigned sz
, unsigned maxlen
)
2500 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
2501 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
);
2502 DMEMIT("%u ", count
);
2504 if (!pf
->zero_new_blocks
)
2505 DMEMIT("skip_block_zeroing ");
2507 if (!pf
->discard_enabled
)
2508 DMEMIT("ignore_discard ");
2510 if (!pf
->discard_passdown
)
2511 DMEMIT("no_discard_passdown ");
2513 if (pf
->mode
== PM_READ_ONLY
)
2514 DMEMIT("read_only ");
2519 * <transaction id> <used metadata sectors>/<total metadata sectors>
2520 * <used data sectors>/<total data sectors> <held metadata root>
2522 static void pool_status(struct dm_target
*ti
, status_type_t type
,
2523 unsigned status_flags
, char *result
, unsigned maxlen
)
2527 uint64_t transaction_id
;
2528 dm_block_t nr_free_blocks_data
;
2529 dm_block_t nr_free_blocks_metadata
;
2530 dm_block_t nr_blocks_data
;
2531 dm_block_t nr_blocks_metadata
;
2532 dm_block_t held_root
;
2533 char buf
[BDEVNAME_SIZE
];
2534 char buf2
[BDEVNAME_SIZE
];
2535 struct pool_c
*pt
= ti
->private;
2536 struct pool
*pool
= pt
->pool
;
2539 case STATUSTYPE_INFO
:
2540 if (get_pool_mode(pool
) == PM_FAIL
) {
2545 /* Commit to ensure statistics aren't out-of-date */
2546 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
2547 (void) commit_or_fallback(pool
);
2549 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
2551 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2552 dm_device_name(pool
->pool_md
), r
);
2556 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
2558 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2559 dm_device_name(pool
->pool_md
), r
);
2563 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
2565 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2566 dm_device_name(pool
->pool_md
), r
);
2570 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
2572 DMERR("%s: dm_pool_get_free_block_count returned %d",
2573 dm_device_name(pool
->pool_md
), r
);
2577 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
2579 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2580 dm_device_name(pool
->pool_md
), r
);
2584 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
2586 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2587 dm_device_name(pool
->pool_md
), r
);
2591 DMEMIT("%llu %llu/%llu %llu/%llu ",
2592 (unsigned long long)transaction_id
,
2593 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
2594 (unsigned long long)nr_blocks_metadata
,
2595 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
2596 (unsigned long long)nr_blocks_data
);
2599 DMEMIT("%llu ", held_root
);
2603 if (pool
->pf
.mode
== PM_READ_ONLY
)
2608 if (!pool
->pf
.discard_enabled
)
2609 DMEMIT("ignore_discard");
2610 else if (pool
->pf
.discard_passdown
)
2611 DMEMIT("discard_passdown");
2613 DMEMIT("no_discard_passdown");
2617 case STATUSTYPE_TABLE
:
2618 DMEMIT("%s %s %lu %llu ",
2619 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
2620 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
2621 (unsigned long)pool
->sectors_per_block
,
2622 (unsigned long long)pt
->low_water_blocks
);
2623 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
2632 static int pool_iterate_devices(struct dm_target
*ti
,
2633 iterate_devices_callout_fn fn
, void *data
)
2635 struct pool_c
*pt
= ti
->private;
2637 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
2640 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
2641 struct bio_vec
*biovec
, int max_size
)
2643 struct pool_c
*pt
= ti
->private;
2644 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2646 if (!q
->merge_bvec_fn
)
2649 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
2651 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
2654 static void set_discard_limits(struct pool_c
*pt
, struct queue_limits
*limits
)
2656 struct pool
*pool
= pt
->pool
;
2657 struct queue_limits
*data_limits
;
2659 limits
->max_discard_sectors
= pool
->sectors_per_block
;
2662 * discard_granularity is just a hint, and not enforced.
2664 if (pt
->adjusted_pf
.discard_passdown
) {
2665 data_limits
= &bdev_get_queue(pt
->data_dev
->bdev
)->limits
;
2666 limits
->discard_granularity
= data_limits
->discard_granularity
;
2668 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
2671 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2673 struct pool_c
*pt
= ti
->private;
2674 struct pool
*pool
= pt
->pool
;
2675 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
2678 * If the system-determined stacked limits are compatible with the
2679 * pool's blocksize (io_opt is a factor) do not override them.
2681 if (io_opt_sectors
< pool
->sectors_per_block
||
2682 do_div(io_opt_sectors
, pool
->sectors_per_block
)) {
2683 blk_limits_io_min(limits
, 0);
2684 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
2688 * pt->adjusted_pf is a staging area for the actual features to use.
2689 * They get transferred to the live pool in bind_control_target()
2690 * called from pool_preresume().
2692 if (!pt
->adjusted_pf
.discard_enabled
) {
2694 * Must explicitly disallow stacking discard limits otherwise the
2695 * block layer will stack them if pool's data device has support.
2696 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2697 * user to see that, so make sure to set all discard limits to 0.
2699 limits
->discard_granularity
= 0;
2703 disable_passdown_if_not_supported(pt
);
2705 set_discard_limits(pt
, limits
);
2708 static struct target_type pool_target
= {
2709 .name
= "thin-pool",
2710 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
2711 DM_TARGET_IMMUTABLE
,
2712 .version
= {1, 9, 0},
2713 .module
= THIS_MODULE
,
2717 .postsuspend
= pool_postsuspend
,
2718 .preresume
= pool_preresume
,
2719 .resume
= pool_resume
,
2720 .message
= pool_message
,
2721 .status
= pool_status
,
2722 .merge
= pool_merge
,
2723 .iterate_devices
= pool_iterate_devices
,
2724 .io_hints
= pool_io_hints
,
2727 /*----------------------------------------------------------------
2728 * Thin target methods
2729 *--------------------------------------------------------------*/
2730 static void thin_dtr(struct dm_target
*ti
)
2732 struct thin_c
*tc
= ti
->private;
2734 mutex_lock(&dm_thin_pool_table
.mutex
);
2736 __pool_dec(tc
->pool
);
2737 dm_pool_close_thin_device(tc
->td
);
2738 dm_put_device(ti
, tc
->pool_dev
);
2740 dm_put_device(ti
, tc
->origin_dev
);
2743 mutex_unlock(&dm_thin_pool_table
.mutex
);
2747 * Thin target parameters:
2749 * <pool_dev> <dev_id> [origin_dev]
2751 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2752 * dev_id: the internal device identifier
2753 * origin_dev: a device external to the pool that should act as the origin
2755 * If the pool device has discards disabled, they get disabled for the thin
2758 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2762 struct dm_dev
*pool_dev
, *origin_dev
;
2763 struct mapped_device
*pool_md
;
2765 mutex_lock(&dm_thin_pool_table
.mutex
);
2767 if (argc
!= 2 && argc
!= 3) {
2768 ti
->error
= "Invalid argument count";
2773 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
2775 ti
->error
= "Out of memory";
2781 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
2783 ti
->error
= "Error opening origin device";
2784 goto bad_origin_dev
;
2786 tc
->origin_dev
= origin_dev
;
2789 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
2791 ti
->error
= "Error opening pool device";
2794 tc
->pool_dev
= pool_dev
;
2796 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
2797 ti
->error
= "Invalid device id";
2802 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
2804 ti
->error
= "Couldn't get pool mapped device";
2809 tc
->pool
= __pool_table_lookup(pool_md
);
2811 ti
->error
= "Couldn't find pool object";
2813 goto bad_pool_lookup
;
2815 __pool_inc(tc
->pool
);
2817 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2818 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
2822 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
2824 ti
->error
= "Couldn't open thin internal device";
2828 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
2832 ti
->num_flush_bios
= 1;
2833 ti
->flush_supported
= true;
2834 ti
->per_bio_data_size
= sizeof(struct dm_thin_endio_hook
);
2836 /* In case the pool supports discards, pass them on. */
2837 ti
->discard_zeroes_data_unsupported
= true;
2838 if (tc
->pool
->pf
.discard_enabled
) {
2839 ti
->discards_supported
= true;
2840 ti
->num_discard_bios
= 1;
2841 /* Discard bios must be split on a block boundary */
2842 ti
->split_discard_bios
= true;
2847 mutex_unlock(&dm_thin_pool_table
.mutex
);
2852 __pool_dec(tc
->pool
);
2856 dm_put_device(ti
, tc
->pool_dev
);
2859 dm_put_device(ti
, tc
->origin_dev
);
2863 mutex_unlock(&dm_thin_pool_table
.mutex
);
2868 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
2870 bio
->bi_sector
= dm_target_offset(ti
, bio
->bi_sector
);
2872 return thin_bio_map(ti
, bio
);
2875 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
2877 unsigned long flags
;
2878 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2879 struct list_head work
;
2880 struct dm_thin_new_mapping
*m
, *tmp
;
2881 struct pool
*pool
= h
->tc
->pool
;
2883 if (h
->shared_read_entry
) {
2884 INIT_LIST_HEAD(&work
);
2885 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
2887 spin_lock_irqsave(&pool
->lock
, flags
);
2888 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
2891 __maybe_add_mapping(m
);
2893 spin_unlock_irqrestore(&pool
->lock
, flags
);
2896 if (h
->all_io_entry
) {
2897 INIT_LIST_HEAD(&work
);
2898 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
2899 if (!list_empty(&work
)) {
2900 spin_lock_irqsave(&pool
->lock
, flags
);
2901 list_for_each_entry_safe(m
, tmp
, &work
, list
)
2902 list_add(&m
->list
, &pool
->prepared_discards
);
2903 spin_unlock_irqrestore(&pool
->lock
, flags
);
2911 static void thin_postsuspend(struct dm_target
*ti
)
2913 if (dm_noflush_suspending(ti
))
2914 requeue_io((struct thin_c
*)ti
->private);
2918 * <nr mapped sectors> <highest mapped sector>
2920 static void thin_status(struct dm_target
*ti
, status_type_t type
,
2921 unsigned status_flags
, char *result
, unsigned maxlen
)
2925 dm_block_t mapped
, highest
;
2926 char buf
[BDEVNAME_SIZE
];
2927 struct thin_c
*tc
= ti
->private;
2929 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2938 case STATUSTYPE_INFO
:
2939 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
2941 DMERR("dm_thin_get_mapped_count returned %d", r
);
2945 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
2947 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
2951 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
2953 DMEMIT("%llu", ((highest
+ 1) *
2954 tc
->pool
->sectors_per_block
) - 1);
2959 case STATUSTYPE_TABLE
:
2961 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
2962 (unsigned long) tc
->dev_id
);
2964 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
2975 static int thin_iterate_devices(struct dm_target
*ti
,
2976 iterate_devices_callout_fn fn
, void *data
)
2979 struct thin_c
*tc
= ti
->private;
2980 struct pool
*pool
= tc
->pool
;
2983 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2984 * we follow a more convoluted path through to the pool's target.
2987 return 0; /* nothing is bound */
2989 blocks
= pool
->ti
->len
;
2990 (void) sector_div(blocks
, pool
->sectors_per_block
);
2992 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
2997 static struct target_type thin_target
= {
2999 .version
= {1, 9, 0},
3000 .module
= THIS_MODULE
,
3004 .end_io
= thin_endio
,
3005 .postsuspend
= thin_postsuspend
,
3006 .status
= thin_status
,
3007 .iterate_devices
= thin_iterate_devices
,
3010 /*----------------------------------------------------------------*/
3012 static int __init
dm_thin_init(void)
3018 r
= dm_register_target(&thin_target
);
3022 r
= dm_register_target(&pool_target
);
3024 goto bad_pool_target
;
3028 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
3029 if (!_new_mapping_cache
)
3030 goto bad_new_mapping_cache
;
3034 bad_new_mapping_cache
:
3035 dm_unregister_target(&pool_target
);
3037 dm_unregister_target(&thin_target
);
3042 static void dm_thin_exit(void)
3044 dm_unregister_target(&thin_target
);
3045 dm_unregister_target(&pool_target
);
3047 kmem_cache_destroy(_new_mapping_cache
);
3050 module_init(dm_thin_init
);
3051 module_exit(dm_thin_exit
);
3053 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
3054 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3055 MODULE_LICENSE("GPL");