xfs: create internal eofblocks structure with kuid_t types
[linux-2.6.git] / drivers / usb / host / ehci-sched.c
blobf80d0330d548d36564e9332d60392c9671360263
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 /* this file is part of ehci-hcd.c */
22 /*-------------------------------------------------------------------------*/
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
37 static int ehci_get_frame (struct usb_hcd *hcd);
40 * periodic_next_shadow - return "next" pointer on shadow list
41 * @periodic: host pointer to qh/itd/sitd
42 * @tag: hardware tag for type of this record
44 static union ehci_shadow *
45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 __hc32 tag)
48 switch (hc32_to_cpu(ehci, tag)) {
49 case Q_TYPE_QH:
50 return &periodic->qh->qh_next;
51 case Q_TYPE_FSTN:
52 return &periodic->fstn->fstn_next;
53 case Q_TYPE_ITD:
54 return &periodic->itd->itd_next;
55 // case Q_TYPE_SITD:
56 default:
57 return &periodic->sitd->sitd_next;
61 static __hc32 *
62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 __hc32 tag)
65 switch (hc32_to_cpu(ehci, tag)) {
66 /* our ehci_shadow.qh is actually software part */
67 case Q_TYPE_QH:
68 return &periodic->qh->hw->hw_next;
69 /* others are hw parts */
70 default:
71 return periodic->hw_next;
75 /* caller must hold ehci->lock */
76 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
78 union ehci_shadow *prev_p = &ehci->pshadow[frame];
79 __hc32 *hw_p = &ehci->periodic[frame];
80 union ehci_shadow here = *prev_p;
82 /* find predecessor of "ptr"; hw and shadow lists are in sync */
83 while (here.ptr && here.ptr != ptr) {
84 prev_p = periodic_next_shadow(ehci, prev_p,
85 Q_NEXT_TYPE(ehci, *hw_p));
86 hw_p = shadow_next_periodic(ehci, &here,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 here = *prev_p;
90 /* an interrupt entry (at list end) could have been shared */
91 if (!here.ptr)
92 return;
94 /* update shadow and hardware lists ... the old "next" pointers
95 * from ptr may still be in use, the caller updates them.
97 *prev_p = *periodic_next_shadow(ehci, &here,
98 Q_NEXT_TYPE(ehci, *hw_p));
100 if (!ehci->use_dummy_qh ||
101 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 != EHCI_LIST_END(ehci))
103 *hw_p = *shadow_next_periodic(ehci, &here,
104 Q_NEXT_TYPE(ehci, *hw_p));
105 else
106 *hw_p = ehci->dummy->qh_dma;
109 /* how many of the uframe's 125 usecs are allocated? */
110 static unsigned short
111 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
113 __hc32 *hw_p = &ehci->periodic [frame];
114 union ehci_shadow *q = &ehci->pshadow [frame];
115 unsigned usecs = 0;
116 struct ehci_qh_hw *hw;
118 while (q->ptr) {
119 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
120 case Q_TYPE_QH:
121 hw = q->qh->hw;
122 /* is it in the S-mask? */
123 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
124 usecs += q->qh->usecs;
125 /* ... or C-mask? */
126 if (hw->hw_info2 & cpu_to_hc32(ehci,
127 1 << (8 + uframe)))
128 usecs += q->qh->c_usecs;
129 hw_p = &hw->hw_next;
130 q = &q->qh->qh_next;
131 break;
132 // case Q_TYPE_FSTN:
133 default:
134 /* for "save place" FSTNs, count the relevant INTR
135 * bandwidth from the previous frame
137 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
138 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
140 hw_p = &q->fstn->hw_next;
141 q = &q->fstn->fstn_next;
142 break;
143 case Q_TYPE_ITD:
144 if (q->itd->hw_transaction[uframe])
145 usecs += q->itd->stream->usecs;
146 hw_p = &q->itd->hw_next;
147 q = &q->itd->itd_next;
148 break;
149 case Q_TYPE_SITD:
150 /* is it in the S-mask? (count SPLIT, DATA) */
151 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
152 1 << uframe)) {
153 if (q->sitd->hw_fullspeed_ep &
154 cpu_to_hc32(ehci, 1<<31))
155 usecs += q->sitd->stream->usecs;
156 else /* worst case for OUT start-split */
157 usecs += HS_USECS_ISO (188);
160 /* ... C-mask? (count CSPLIT, DATA) */
161 if (q->sitd->hw_uframe &
162 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
163 /* worst case for IN complete-split */
164 usecs += q->sitd->stream->c_usecs;
167 hw_p = &q->sitd->hw_next;
168 q = &q->sitd->sitd_next;
169 break;
172 #ifdef DEBUG
173 if (usecs > ehci->uframe_periodic_max)
174 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
175 frame * 8 + uframe, usecs);
176 #endif
177 return usecs;
180 /*-------------------------------------------------------------------------*/
182 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
184 if (!dev1->tt || !dev2->tt)
185 return 0;
186 if (dev1->tt != dev2->tt)
187 return 0;
188 if (dev1->tt->multi)
189 return dev1->ttport == dev2->ttport;
190 else
191 return 1;
194 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
196 /* Which uframe does the low/fullspeed transfer start in?
198 * The parameter is the mask of ssplits in "H-frame" terms
199 * and this returns the transfer start uframe in "B-frame" terms,
200 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
201 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
202 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
204 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
206 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
207 if (!smask) {
208 ehci_err(ehci, "invalid empty smask!\n");
209 /* uframe 7 can't have bw so this will indicate failure */
210 return 7;
212 return ffs(smask) - 1;
215 static const unsigned char
216 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
218 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
219 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
221 int i;
222 for (i=0; i<7; i++) {
223 if (max_tt_usecs[i] < tt_usecs[i]) {
224 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
225 tt_usecs[i] = max_tt_usecs[i];
230 /* How many of the tt's periodic downstream 1000 usecs are allocated?
232 * While this measures the bandwidth in terms of usecs/uframe,
233 * the low/fullspeed bus has no notion of uframes, so any particular
234 * low/fullspeed transfer can "carry over" from one uframe to the next,
235 * since the TT just performs downstream transfers in sequence.
237 * For example two separate 100 usec transfers can start in the same uframe,
238 * and the second one would "carry over" 75 usecs into the next uframe.
240 static void
241 periodic_tt_usecs (
242 struct ehci_hcd *ehci,
243 struct usb_device *dev,
244 unsigned frame,
245 unsigned short tt_usecs[8]
248 __hc32 *hw_p = &ehci->periodic [frame];
249 union ehci_shadow *q = &ehci->pshadow [frame];
250 unsigned char uf;
252 memset(tt_usecs, 0, 16);
254 while (q->ptr) {
255 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
256 case Q_TYPE_ITD:
257 hw_p = &q->itd->hw_next;
258 q = &q->itd->itd_next;
259 continue;
260 case Q_TYPE_QH:
261 if (same_tt(dev, q->qh->dev)) {
262 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
263 tt_usecs[uf] += q->qh->tt_usecs;
265 hw_p = &q->qh->hw->hw_next;
266 q = &q->qh->qh_next;
267 continue;
268 case Q_TYPE_SITD:
269 if (same_tt(dev, q->sitd->urb->dev)) {
270 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
271 tt_usecs[uf] += q->sitd->stream->tt_usecs;
273 hw_p = &q->sitd->hw_next;
274 q = &q->sitd->sitd_next;
275 continue;
276 // case Q_TYPE_FSTN:
277 default:
278 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
279 frame);
280 hw_p = &q->fstn->hw_next;
281 q = &q->fstn->fstn_next;
285 carryover_tt_bandwidth(tt_usecs);
287 if (max_tt_usecs[7] < tt_usecs[7])
288 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
289 frame, tt_usecs[7] - max_tt_usecs[7]);
293 * Return true if the device's tt's downstream bus is available for a
294 * periodic transfer of the specified length (usecs), starting at the
295 * specified frame/uframe. Note that (as summarized in section 11.19
296 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
297 * uframe.
299 * The uframe parameter is when the fullspeed/lowspeed transfer
300 * should be executed in "B-frame" terms, which is the same as the
301 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
302 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
303 * See the EHCI spec sec 4.5 and fig 4.7.
305 * This checks if the full/lowspeed bus, at the specified starting uframe,
306 * has the specified bandwidth available, according to rules listed
307 * in USB 2.0 spec section 11.18.1 fig 11-60.
309 * This does not check if the transfer would exceed the max ssplit
310 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
311 * since proper scheduling limits ssplits to less than 16 per uframe.
313 static int tt_available (
314 struct ehci_hcd *ehci,
315 unsigned period,
316 struct usb_device *dev,
317 unsigned frame,
318 unsigned uframe,
319 u16 usecs
322 if ((period == 0) || (uframe >= 7)) /* error */
323 return 0;
325 for (; frame < ehci->periodic_size; frame += period) {
326 unsigned short tt_usecs[8];
328 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
330 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
331 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
332 frame, usecs, uframe,
333 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
334 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
336 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
337 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
338 frame, uframe);
339 return 0;
342 /* special case for isoc transfers larger than 125us:
343 * the first and each subsequent fully used uframe
344 * must be empty, so as to not illegally delay
345 * already scheduled transactions
347 if (125 < usecs) {
348 int ufs = (usecs / 125);
349 int i;
350 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
351 if (0 < tt_usecs[i]) {
352 ehci_vdbg(ehci,
353 "multi-uframe xfer can't fit "
354 "in frame %d uframe %d\n",
355 frame, i);
356 return 0;
360 tt_usecs[uframe] += usecs;
362 carryover_tt_bandwidth(tt_usecs);
364 /* fail if the carryover pushed bw past the last uframe's limit */
365 if (max_tt_usecs[7] < tt_usecs[7]) {
366 ehci_vdbg(ehci,
367 "tt unavailable usecs %d frame %d uframe %d\n",
368 usecs, frame, uframe);
369 return 0;
373 return 1;
376 #else
378 /* return true iff the device's transaction translator is available
379 * for a periodic transfer starting at the specified frame, using
380 * all the uframes in the mask.
382 static int tt_no_collision (
383 struct ehci_hcd *ehci,
384 unsigned period,
385 struct usb_device *dev,
386 unsigned frame,
387 u32 uf_mask
390 if (period == 0) /* error */
391 return 0;
393 /* note bandwidth wastage: split never follows csplit
394 * (different dev or endpoint) until the next uframe.
395 * calling convention doesn't make that distinction.
397 for (; frame < ehci->periodic_size; frame += period) {
398 union ehci_shadow here;
399 __hc32 type;
400 struct ehci_qh_hw *hw;
402 here = ehci->pshadow [frame];
403 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
404 while (here.ptr) {
405 switch (hc32_to_cpu(ehci, type)) {
406 case Q_TYPE_ITD:
407 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
408 here = here.itd->itd_next;
409 continue;
410 case Q_TYPE_QH:
411 hw = here.qh->hw;
412 if (same_tt (dev, here.qh->dev)) {
413 u32 mask;
415 mask = hc32_to_cpu(ehci,
416 hw->hw_info2);
417 /* "knows" no gap is needed */
418 mask |= mask >> 8;
419 if (mask & uf_mask)
420 break;
422 type = Q_NEXT_TYPE(ehci, hw->hw_next);
423 here = here.qh->qh_next;
424 continue;
425 case Q_TYPE_SITD:
426 if (same_tt (dev, here.sitd->urb->dev)) {
427 u16 mask;
429 mask = hc32_to_cpu(ehci, here.sitd
430 ->hw_uframe);
431 /* FIXME assumes no gap for IN! */
432 mask |= mask >> 8;
433 if (mask & uf_mask)
434 break;
436 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
437 here = here.sitd->sitd_next;
438 continue;
439 // case Q_TYPE_FSTN:
440 default:
441 ehci_dbg (ehci,
442 "periodic frame %d bogus type %d\n",
443 frame, type);
446 /* collision or error */
447 return 0;
451 /* no collision */
452 return 1;
455 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
457 /*-------------------------------------------------------------------------*/
459 static void enable_periodic(struct ehci_hcd *ehci)
461 if (ehci->periodic_count++)
462 return;
464 /* Stop waiting to turn off the periodic schedule */
465 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
467 /* Don't start the schedule until PSS is 0 */
468 ehci_poll_PSS(ehci);
469 turn_on_io_watchdog(ehci);
472 static void disable_periodic(struct ehci_hcd *ehci)
474 if (--ehci->periodic_count)
475 return;
477 /* Don't turn off the schedule until PSS is 1 */
478 ehci_poll_PSS(ehci);
481 /*-------------------------------------------------------------------------*/
483 /* periodic schedule slots have iso tds (normal or split) first, then a
484 * sparse tree for active interrupt transfers.
486 * this just links in a qh; caller guarantees uframe masks are set right.
487 * no FSTN support (yet; ehci 0.96+)
489 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
491 unsigned i;
492 unsigned period = qh->period;
494 dev_dbg (&qh->dev->dev,
495 "link qh%d-%04x/%p start %d [%d/%d us]\n",
496 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
497 & (QH_CMASK | QH_SMASK),
498 qh, qh->start, qh->usecs, qh->c_usecs);
500 /* high bandwidth, or otherwise every microframe */
501 if (period == 0)
502 period = 1;
504 for (i = qh->start; i < ehci->periodic_size; i += period) {
505 union ehci_shadow *prev = &ehci->pshadow[i];
506 __hc32 *hw_p = &ehci->periodic[i];
507 union ehci_shadow here = *prev;
508 __hc32 type = 0;
510 /* skip the iso nodes at list head */
511 while (here.ptr) {
512 type = Q_NEXT_TYPE(ehci, *hw_p);
513 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
514 break;
515 prev = periodic_next_shadow(ehci, prev, type);
516 hw_p = shadow_next_periodic(ehci, &here, type);
517 here = *prev;
520 /* sorting each branch by period (slow-->fast)
521 * enables sharing interior tree nodes
523 while (here.ptr && qh != here.qh) {
524 if (qh->period > here.qh->period)
525 break;
526 prev = &here.qh->qh_next;
527 hw_p = &here.qh->hw->hw_next;
528 here = *prev;
530 /* link in this qh, unless some earlier pass did that */
531 if (qh != here.qh) {
532 qh->qh_next = here;
533 if (here.qh)
534 qh->hw->hw_next = *hw_p;
535 wmb ();
536 prev->qh = qh;
537 *hw_p = QH_NEXT (ehci, qh->qh_dma);
540 qh->qh_state = QH_STATE_LINKED;
541 qh->xacterrs = 0;
542 qh->exception = 0;
544 /* update per-qh bandwidth for usbfs */
545 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
546 ? ((qh->usecs + qh->c_usecs) / qh->period)
547 : (qh->usecs * 8);
549 list_add(&qh->intr_node, &ehci->intr_qh_list);
551 /* maybe enable periodic schedule processing */
552 ++ehci->intr_count;
553 enable_periodic(ehci);
556 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
558 unsigned i;
559 unsigned period;
562 * If qh is for a low/full-speed device, simply unlinking it
563 * could interfere with an ongoing split transaction. To unlink
564 * it safely would require setting the QH_INACTIVATE bit and
565 * waiting at least one frame, as described in EHCI 4.12.2.5.
567 * We won't bother with any of this. Instead, we assume that the
568 * only reason for unlinking an interrupt QH while the current URB
569 * is still active is to dequeue all the URBs (flush the whole
570 * endpoint queue).
572 * If rebalancing the periodic schedule is ever implemented, this
573 * approach will no longer be valid.
576 /* high bandwidth, or otherwise part of every microframe */
577 if ((period = qh->period) == 0)
578 period = 1;
580 for (i = qh->start; i < ehci->periodic_size; i += period)
581 periodic_unlink (ehci, i, qh);
583 /* update per-qh bandwidth for usbfs */
584 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
585 ? ((qh->usecs + qh->c_usecs) / qh->period)
586 : (qh->usecs * 8);
588 dev_dbg (&qh->dev->dev,
589 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
590 qh->period,
591 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
592 qh, qh->start, qh->usecs, qh->c_usecs);
594 /* qh->qh_next still "live" to HC */
595 qh->qh_state = QH_STATE_UNLINK;
596 qh->qh_next.ptr = NULL;
598 if (ehci->qh_scan_next == qh)
599 ehci->qh_scan_next = list_entry(qh->intr_node.next,
600 struct ehci_qh, intr_node);
601 list_del(&qh->intr_node);
604 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
606 /* If the QH isn't linked then there's nothing we can do. */
607 if (qh->qh_state != QH_STATE_LINKED)
608 return;
610 qh_unlink_periodic (ehci, qh);
612 /* Make sure the unlinks are visible before starting the timer */
613 wmb();
616 * The EHCI spec doesn't say how long it takes the controller to
617 * stop accessing an unlinked interrupt QH. The timer delay is
618 * 9 uframes; presumably that will be long enough.
620 qh->unlink_cycle = ehci->intr_unlink_cycle;
622 /* New entries go at the end of the intr_unlink list */
623 list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
625 if (ehci->intr_unlinking)
626 ; /* Avoid recursive calls */
627 else if (ehci->rh_state < EHCI_RH_RUNNING)
628 ehci_handle_intr_unlinks(ehci);
629 else if (ehci->intr_unlink.next == &qh->unlink_node) {
630 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
631 ++ehci->intr_unlink_cycle;
635 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
637 struct ehci_qh_hw *hw = qh->hw;
638 int rc;
640 qh->qh_state = QH_STATE_IDLE;
641 hw->hw_next = EHCI_LIST_END(ehci);
643 if (!list_empty(&qh->qtd_list))
644 qh_completions(ehci, qh);
646 /* reschedule QH iff another request is queued */
647 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
648 rc = qh_schedule(ehci, qh);
649 if (rc == 0) {
650 qh_refresh(ehci, qh);
651 qh_link_periodic(ehci, qh);
654 /* An error here likely indicates handshake failure
655 * or no space left in the schedule. Neither fault
656 * should happen often ...
658 * FIXME kill the now-dysfunctional queued urbs
660 else {
661 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
662 qh, rc);
666 /* maybe turn off periodic schedule */
667 --ehci->intr_count;
668 disable_periodic(ehci);
671 /*-------------------------------------------------------------------------*/
673 static int check_period (
674 struct ehci_hcd *ehci,
675 unsigned frame,
676 unsigned uframe,
677 unsigned period,
678 unsigned usecs
680 int claimed;
682 /* complete split running into next frame?
683 * given FSTN support, we could sometimes check...
685 if (uframe >= 8)
686 return 0;
688 /* convert "usecs we need" to "max already claimed" */
689 usecs = ehci->uframe_periodic_max - usecs;
691 /* we "know" 2 and 4 uframe intervals were rejected; so
692 * for period 0, check _every_ microframe in the schedule.
694 if (unlikely (period == 0)) {
695 do {
696 for (uframe = 0; uframe < 7; uframe++) {
697 claimed = periodic_usecs (ehci, frame, uframe);
698 if (claimed > usecs)
699 return 0;
701 } while ((frame += 1) < ehci->periodic_size);
703 /* just check the specified uframe, at that period */
704 } else {
705 do {
706 claimed = periodic_usecs (ehci, frame, uframe);
707 if (claimed > usecs)
708 return 0;
709 } while ((frame += period) < ehci->periodic_size);
712 // success!
713 return 1;
716 static int check_intr_schedule (
717 struct ehci_hcd *ehci,
718 unsigned frame,
719 unsigned uframe,
720 const struct ehci_qh *qh,
721 __hc32 *c_maskp
724 int retval = -ENOSPC;
725 u8 mask = 0;
727 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
728 goto done;
730 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
731 goto done;
732 if (!qh->c_usecs) {
733 retval = 0;
734 *c_maskp = 0;
735 goto done;
738 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
739 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
740 qh->tt_usecs)) {
741 unsigned i;
743 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
744 for (i=uframe+1; i<8 && i<uframe+4; i++)
745 if (!check_period (ehci, frame, i,
746 qh->period, qh->c_usecs))
747 goto done;
748 else
749 mask |= 1 << i;
751 retval = 0;
753 *c_maskp = cpu_to_hc32(ehci, mask << 8);
755 #else
756 /* Make sure this tt's buffer is also available for CSPLITs.
757 * We pessimize a bit; probably the typical full speed case
758 * doesn't need the second CSPLIT.
760 * NOTE: both SPLIT and CSPLIT could be checked in just
761 * one smart pass...
763 mask = 0x03 << (uframe + qh->gap_uf);
764 *c_maskp = cpu_to_hc32(ehci, mask << 8);
766 mask |= 1 << uframe;
767 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
768 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
769 qh->period, qh->c_usecs))
770 goto done;
771 if (!check_period (ehci, frame, uframe + qh->gap_uf,
772 qh->period, qh->c_usecs))
773 goto done;
774 retval = 0;
776 #endif
777 done:
778 return retval;
781 /* "first fit" scheduling policy used the first time through,
782 * or when the previous schedule slot can't be re-used.
784 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
786 int status;
787 unsigned uframe;
788 __hc32 c_mask;
789 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
790 struct ehci_qh_hw *hw = qh->hw;
792 hw->hw_next = EHCI_LIST_END(ehci);
793 frame = qh->start;
795 /* reuse the previous schedule slots, if we can */
796 if (frame < qh->period) {
797 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
798 status = check_intr_schedule (ehci, frame, --uframe,
799 qh, &c_mask);
800 } else {
801 uframe = 0;
802 c_mask = 0;
803 status = -ENOSPC;
806 /* else scan the schedule to find a group of slots such that all
807 * uframes have enough periodic bandwidth available.
809 if (status) {
810 /* "normal" case, uframing flexible except with splits */
811 if (qh->period) {
812 int i;
814 for (i = qh->period; status && i > 0; --i) {
815 frame = ++ehci->random_frame % qh->period;
816 for (uframe = 0; uframe < 8; uframe++) {
817 status = check_intr_schedule (ehci,
818 frame, uframe, qh,
819 &c_mask);
820 if (status == 0)
821 break;
825 /* qh->period == 0 means every uframe */
826 } else {
827 frame = 0;
828 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
830 if (status)
831 goto done;
832 qh->start = frame;
834 /* reset S-frame and (maybe) C-frame masks */
835 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
836 hw->hw_info2 |= qh->period
837 ? cpu_to_hc32(ehci, 1 << uframe)
838 : cpu_to_hc32(ehci, QH_SMASK);
839 hw->hw_info2 |= c_mask;
840 } else
841 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
843 done:
844 return status;
847 static int intr_submit (
848 struct ehci_hcd *ehci,
849 struct urb *urb,
850 struct list_head *qtd_list,
851 gfp_t mem_flags
853 unsigned epnum;
854 unsigned long flags;
855 struct ehci_qh *qh;
856 int status;
857 struct list_head empty;
859 /* get endpoint and transfer/schedule data */
860 epnum = urb->ep->desc.bEndpointAddress;
862 spin_lock_irqsave (&ehci->lock, flags);
864 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
865 status = -ESHUTDOWN;
866 goto done_not_linked;
868 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
869 if (unlikely(status))
870 goto done_not_linked;
872 /* get qh and force any scheduling errors */
873 INIT_LIST_HEAD (&empty);
874 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
875 if (qh == NULL) {
876 status = -ENOMEM;
877 goto done;
879 if (qh->qh_state == QH_STATE_IDLE) {
880 if ((status = qh_schedule (ehci, qh)) != 0)
881 goto done;
884 /* then queue the urb's tds to the qh */
885 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
886 BUG_ON (qh == NULL);
888 /* stuff into the periodic schedule */
889 if (qh->qh_state == QH_STATE_IDLE) {
890 qh_refresh(ehci, qh);
891 qh_link_periodic(ehci, qh);
894 /* ... update usbfs periodic stats */
895 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
897 done:
898 if (unlikely(status))
899 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
900 done_not_linked:
901 spin_unlock_irqrestore (&ehci->lock, flags);
902 if (status)
903 qtd_list_free (ehci, urb, qtd_list);
905 return status;
908 static void scan_intr(struct ehci_hcd *ehci)
910 struct ehci_qh *qh;
912 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
913 intr_node) {
915 /* clean any finished work for this qh */
916 if (!list_empty(&qh->qtd_list)) {
917 int temp;
920 * Unlinks could happen here; completion reporting
921 * drops the lock. That's why ehci->qh_scan_next
922 * always holds the next qh to scan; if the next qh
923 * gets unlinked then ehci->qh_scan_next is adjusted
924 * in qh_unlink_periodic().
926 temp = qh_completions(ehci, qh);
927 if (unlikely(temp || (list_empty(&qh->qtd_list) &&
928 qh->qh_state == QH_STATE_LINKED)))
929 start_unlink_intr(ehci, qh);
934 /*-------------------------------------------------------------------------*/
936 /* ehci_iso_stream ops work with both ITD and SITD */
938 static struct ehci_iso_stream *
939 iso_stream_alloc (gfp_t mem_flags)
941 struct ehci_iso_stream *stream;
943 stream = kzalloc(sizeof *stream, mem_flags);
944 if (likely (stream != NULL)) {
945 INIT_LIST_HEAD(&stream->td_list);
946 INIT_LIST_HEAD(&stream->free_list);
947 stream->next_uframe = -1;
949 return stream;
952 static void
953 iso_stream_init (
954 struct ehci_hcd *ehci,
955 struct ehci_iso_stream *stream,
956 struct usb_device *dev,
957 int pipe,
958 unsigned interval
961 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
963 u32 buf1;
964 unsigned epnum, maxp;
965 int is_input;
966 long bandwidth;
969 * this might be a "high bandwidth" highspeed endpoint,
970 * as encoded in the ep descriptor's wMaxPacket field
972 epnum = usb_pipeendpoint (pipe);
973 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
974 maxp = usb_maxpacket(dev, pipe, !is_input);
975 if (is_input) {
976 buf1 = (1 << 11);
977 } else {
978 buf1 = 0;
981 /* knows about ITD vs SITD */
982 if (dev->speed == USB_SPEED_HIGH) {
983 unsigned multi = hb_mult(maxp);
985 stream->highspeed = 1;
987 maxp = max_packet(maxp);
988 buf1 |= maxp;
989 maxp *= multi;
991 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
992 stream->buf1 = cpu_to_hc32(ehci, buf1);
993 stream->buf2 = cpu_to_hc32(ehci, multi);
995 /* usbfs wants to report the average usecs per frame tied up
996 * when transfers on this endpoint are scheduled ...
998 stream->usecs = HS_USECS_ISO (maxp);
999 bandwidth = stream->usecs * 8;
1000 bandwidth /= interval;
1002 } else {
1003 u32 addr;
1004 int think_time;
1005 int hs_transfers;
1007 addr = dev->ttport << 24;
1008 if (!ehci_is_TDI(ehci)
1009 || (dev->tt->hub !=
1010 ehci_to_hcd(ehci)->self.root_hub))
1011 addr |= dev->tt->hub->devnum << 16;
1012 addr |= epnum << 8;
1013 addr |= dev->devnum;
1014 stream->usecs = HS_USECS_ISO (maxp);
1015 think_time = dev->tt ? dev->tt->think_time : 0;
1016 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1017 dev->speed, is_input, 1, maxp));
1018 hs_transfers = max (1u, (maxp + 187) / 188);
1019 if (is_input) {
1020 u32 tmp;
1022 addr |= 1 << 31;
1023 stream->c_usecs = stream->usecs;
1024 stream->usecs = HS_USECS_ISO (1);
1025 stream->raw_mask = 1;
1027 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1028 tmp = (1 << (hs_transfers + 2)) - 1;
1029 stream->raw_mask |= tmp << (8 + 2);
1030 } else
1031 stream->raw_mask = smask_out [hs_transfers - 1];
1032 bandwidth = stream->usecs + stream->c_usecs;
1033 bandwidth /= interval << 3;
1035 /* stream->splits gets created from raw_mask later */
1036 stream->address = cpu_to_hc32(ehci, addr);
1038 stream->bandwidth = bandwidth;
1040 stream->udev = dev;
1042 stream->bEndpointAddress = is_input | epnum;
1043 stream->interval = interval;
1044 stream->maxp = maxp;
1047 static struct ehci_iso_stream *
1048 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1050 unsigned epnum;
1051 struct ehci_iso_stream *stream;
1052 struct usb_host_endpoint *ep;
1053 unsigned long flags;
1055 epnum = usb_pipeendpoint (urb->pipe);
1056 if (usb_pipein(urb->pipe))
1057 ep = urb->dev->ep_in[epnum];
1058 else
1059 ep = urb->dev->ep_out[epnum];
1061 spin_lock_irqsave (&ehci->lock, flags);
1062 stream = ep->hcpriv;
1064 if (unlikely (stream == NULL)) {
1065 stream = iso_stream_alloc(GFP_ATOMIC);
1066 if (likely (stream != NULL)) {
1067 ep->hcpriv = stream;
1068 stream->ep = ep;
1069 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1070 urb->interval);
1073 /* if dev->ep [epnum] is a QH, hw is set */
1074 } else if (unlikely (stream->hw != NULL)) {
1075 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1076 urb->dev->devpath, epnum,
1077 usb_pipein(urb->pipe) ? "in" : "out");
1078 stream = NULL;
1081 spin_unlock_irqrestore (&ehci->lock, flags);
1082 return stream;
1085 /*-------------------------------------------------------------------------*/
1087 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1089 static struct ehci_iso_sched *
1090 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1092 struct ehci_iso_sched *iso_sched;
1093 int size = sizeof *iso_sched;
1095 size += packets * sizeof (struct ehci_iso_packet);
1096 iso_sched = kzalloc(size, mem_flags);
1097 if (likely (iso_sched != NULL)) {
1098 INIT_LIST_HEAD (&iso_sched->td_list);
1100 return iso_sched;
1103 static inline void
1104 itd_sched_init(
1105 struct ehci_hcd *ehci,
1106 struct ehci_iso_sched *iso_sched,
1107 struct ehci_iso_stream *stream,
1108 struct urb *urb
1111 unsigned i;
1112 dma_addr_t dma = urb->transfer_dma;
1114 /* how many uframes are needed for these transfers */
1115 iso_sched->span = urb->number_of_packets * stream->interval;
1117 /* figure out per-uframe itd fields that we'll need later
1118 * when we fit new itds into the schedule.
1120 for (i = 0; i < urb->number_of_packets; i++) {
1121 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1122 unsigned length;
1123 dma_addr_t buf;
1124 u32 trans;
1126 length = urb->iso_frame_desc [i].length;
1127 buf = dma + urb->iso_frame_desc [i].offset;
1129 trans = EHCI_ISOC_ACTIVE;
1130 trans |= buf & 0x0fff;
1131 if (unlikely (((i + 1) == urb->number_of_packets))
1132 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1133 trans |= EHCI_ITD_IOC;
1134 trans |= length << 16;
1135 uframe->transaction = cpu_to_hc32(ehci, trans);
1137 /* might need to cross a buffer page within a uframe */
1138 uframe->bufp = (buf & ~(u64)0x0fff);
1139 buf += length;
1140 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1141 uframe->cross = 1;
1145 static void
1146 iso_sched_free (
1147 struct ehci_iso_stream *stream,
1148 struct ehci_iso_sched *iso_sched
1151 if (!iso_sched)
1152 return;
1153 // caller must hold ehci->lock!
1154 list_splice (&iso_sched->td_list, &stream->free_list);
1155 kfree (iso_sched);
1158 static int
1159 itd_urb_transaction (
1160 struct ehci_iso_stream *stream,
1161 struct ehci_hcd *ehci,
1162 struct urb *urb,
1163 gfp_t mem_flags
1166 struct ehci_itd *itd;
1167 dma_addr_t itd_dma;
1168 int i;
1169 unsigned num_itds;
1170 struct ehci_iso_sched *sched;
1171 unsigned long flags;
1173 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1174 if (unlikely (sched == NULL))
1175 return -ENOMEM;
1177 itd_sched_init(ehci, sched, stream, urb);
1179 if (urb->interval < 8)
1180 num_itds = 1 + (sched->span + 7) / 8;
1181 else
1182 num_itds = urb->number_of_packets;
1184 /* allocate/init ITDs */
1185 spin_lock_irqsave (&ehci->lock, flags);
1186 for (i = 0; i < num_itds; i++) {
1189 * Use iTDs from the free list, but not iTDs that may
1190 * still be in use by the hardware.
1192 if (likely(!list_empty(&stream->free_list))) {
1193 itd = list_first_entry(&stream->free_list,
1194 struct ehci_itd, itd_list);
1195 if (itd->frame == ehci->now_frame)
1196 goto alloc_itd;
1197 list_del (&itd->itd_list);
1198 itd_dma = itd->itd_dma;
1199 } else {
1200 alloc_itd:
1201 spin_unlock_irqrestore (&ehci->lock, flags);
1202 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1203 &itd_dma);
1204 spin_lock_irqsave (&ehci->lock, flags);
1205 if (!itd) {
1206 iso_sched_free(stream, sched);
1207 spin_unlock_irqrestore(&ehci->lock, flags);
1208 return -ENOMEM;
1212 memset (itd, 0, sizeof *itd);
1213 itd->itd_dma = itd_dma;
1214 itd->frame = 9999; /* an invalid value */
1215 list_add (&itd->itd_list, &sched->td_list);
1217 spin_unlock_irqrestore (&ehci->lock, flags);
1219 /* temporarily store schedule info in hcpriv */
1220 urb->hcpriv = sched;
1221 urb->error_count = 0;
1222 return 0;
1225 /*-------------------------------------------------------------------------*/
1227 static inline int
1228 itd_slot_ok (
1229 struct ehci_hcd *ehci,
1230 u32 mod,
1231 u32 uframe,
1232 u8 usecs,
1233 u32 period
1236 uframe %= period;
1237 do {
1238 /* can't commit more than uframe_periodic_max usec */
1239 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1240 > (ehci->uframe_periodic_max - usecs))
1241 return 0;
1243 /* we know urb->interval is 2^N uframes */
1244 uframe += period;
1245 } while (uframe < mod);
1246 return 1;
1249 static inline int
1250 sitd_slot_ok (
1251 struct ehci_hcd *ehci,
1252 u32 mod,
1253 struct ehci_iso_stream *stream,
1254 u32 uframe,
1255 struct ehci_iso_sched *sched,
1256 u32 period_uframes
1259 u32 mask, tmp;
1260 u32 frame, uf;
1262 mask = stream->raw_mask << (uframe & 7);
1264 /* for IN, don't wrap CSPLIT into the next frame */
1265 if (mask & ~0xffff)
1266 return 0;
1268 /* check bandwidth */
1269 uframe %= period_uframes;
1270 frame = uframe >> 3;
1272 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1273 /* The tt's fullspeed bus bandwidth must be available.
1274 * tt_available scheduling guarantees 10+% for control/bulk.
1276 uf = uframe & 7;
1277 if (!tt_available(ehci, period_uframes >> 3,
1278 stream->udev, frame, uf, stream->tt_usecs))
1279 return 0;
1280 #else
1281 /* tt must be idle for start(s), any gap, and csplit.
1282 * assume scheduling slop leaves 10+% for control/bulk.
1284 if (!tt_no_collision(ehci, period_uframes >> 3,
1285 stream->udev, frame, mask))
1286 return 0;
1287 #endif
1289 /* this multi-pass logic is simple, but performance may
1290 * suffer when the schedule data isn't cached.
1292 do {
1293 u32 max_used;
1295 frame = uframe >> 3;
1296 uf = uframe & 7;
1298 /* check starts (OUT uses more than one) */
1299 max_used = ehci->uframe_periodic_max - stream->usecs;
1300 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1301 if (periodic_usecs (ehci, frame, uf) > max_used)
1302 return 0;
1305 /* for IN, check CSPLIT */
1306 if (stream->c_usecs) {
1307 uf = uframe & 7;
1308 max_used = ehci->uframe_periodic_max - stream->c_usecs;
1309 do {
1310 tmp = 1 << uf;
1311 tmp <<= 8;
1312 if ((stream->raw_mask & tmp) == 0)
1313 continue;
1314 if (periodic_usecs (ehci, frame, uf)
1315 > max_used)
1316 return 0;
1317 } while (++uf < 8);
1320 /* we know urb->interval is 2^N uframes */
1321 uframe += period_uframes;
1322 } while (uframe < mod);
1324 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1325 return 1;
1329 * This scheduler plans almost as far into the future as it has actual
1330 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1331 * "as small as possible" to be cache-friendlier.) That limits the size
1332 * transfers you can stream reliably; avoid more than 64 msec per urb.
1333 * Also avoid queue depths of less than ehci's worst irq latency (affected
1334 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1335 * and other factors); or more than about 230 msec total (for portability,
1336 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1339 #define SCHEDULING_DELAY 40 /* microframes */
1341 static int
1342 iso_stream_schedule (
1343 struct ehci_hcd *ehci,
1344 struct urb *urb,
1345 struct ehci_iso_stream *stream
1348 u32 now, base, next, start, period, span;
1349 int status;
1350 unsigned mod = ehci->periodic_size << 3;
1351 struct ehci_iso_sched *sched = urb->hcpriv;
1353 period = urb->interval;
1354 span = sched->span;
1355 if (!stream->highspeed) {
1356 period <<= 3;
1357 span <<= 3;
1360 now = ehci_read_frame_index(ehci) & (mod - 1);
1362 /* Typical case: reuse current schedule, stream is still active.
1363 * Hopefully there are no gaps from the host falling behind
1364 * (irq delays etc). If there are, the behavior depends on
1365 * whether URB_ISO_ASAP is set.
1367 if (likely (!list_empty (&stream->td_list))) {
1369 /* Take the isochronous scheduling threshold into account */
1370 if (ehci->i_thresh)
1371 next = now + ehci->i_thresh; /* uframe cache */
1372 else
1373 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1376 * Use ehci->last_iso_frame as the base. There can't be any
1377 * TDs scheduled for earlier than that.
1379 base = ehci->last_iso_frame << 3;
1380 next = (next - base) & (mod - 1);
1381 start = (stream->next_uframe - base) & (mod - 1);
1383 /* Is the schedule already full? */
1384 if (unlikely(start < period)) {
1385 ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n",
1386 urb, stream->next_uframe, base,
1387 period, mod);
1388 status = -ENOSPC;
1389 goto fail;
1392 /* Behind the scheduling threshold? */
1393 if (unlikely(start < next)) {
1395 /* USB_ISO_ASAP: Round up to the first available slot */
1396 if (urb->transfer_flags & URB_ISO_ASAP)
1397 start += (next - start + period - 1) & -period;
1400 * Not ASAP: Use the next slot in the stream. If
1401 * the entire URB falls before the threshold, fail.
1403 else if (start + span - period < next) {
1404 ehci_dbg(ehci, "iso urb late %p (%u+%u < %u)\n",
1405 urb, start + base,
1406 span - period, next + base);
1407 status = -EXDEV;
1408 goto fail;
1412 start += base;
1415 /* need to schedule; when's the next (u)frame we could start?
1416 * this is bigger than ehci->i_thresh allows; scheduling itself
1417 * isn't free, the delay should handle reasonably slow cpus. it
1418 * can also help high bandwidth if the dma and irq loads don't
1419 * jump until after the queue is primed.
1421 else {
1422 int done = 0;
1424 base = now & ~0x07;
1425 start = base + SCHEDULING_DELAY;
1427 /* find a uframe slot with enough bandwidth.
1428 * Early uframes are more precious because full-speed
1429 * iso IN transfers can't use late uframes,
1430 * and therefore they should be allocated last.
1432 next = start;
1433 start += period;
1434 do {
1435 start--;
1436 /* check schedule: enough space? */
1437 if (stream->highspeed) {
1438 if (itd_slot_ok(ehci, mod, start,
1439 stream->usecs, period))
1440 done = 1;
1441 } else {
1442 if ((start % 8) >= 6)
1443 continue;
1444 if (sitd_slot_ok(ehci, mod, stream,
1445 start, sched, period))
1446 done = 1;
1448 } while (start > next && !done);
1450 /* no room in the schedule */
1451 if (!done) {
1452 ehci_dbg(ehci, "iso sched full %p", urb);
1453 status = -ENOSPC;
1454 goto fail;
1458 /* Tried to schedule too far into the future? */
1459 if (unlikely(start - base + span - period >= mod)) {
1460 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1461 urb, start - base, span - period, mod);
1462 status = -EFBIG;
1463 goto fail;
1466 stream->next_uframe = start & (mod - 1);
1468 /* report high speed start in uframes; full speed, in frames */
1469 urb->start_frame = stream->next_uframe;
1470 if (!stream->highspeed)
1471 urb->start_frame >>= 3;
1473 /* Make sure scan_isoc() sees these */
1474 if (ehci->isoc_count == 0)
1475 ehci->last_iso_frame = now >> 3;
1476 return 0;
1478 fail:
1479 iso_sched_free(stream, sched);
1480 urb->hcpriv = NULL;
1481 return status;
1484 /*-------------------------------------------------------------------------*/
1486 static inline void
1487 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1488 struct ehci_itd *itd)
1490 int i;
1492 /* it's been recently zeroed */
1493 itd->hw_next = EHCI_LIST_END(ehci);
1494 itd->hw_bufp [0] = stream->buf0;
1495 itd->hw_bufp [1] = stream->buf1;
1496 itd->hw_bufp [2] = stream->buf2;
1498 for (i = 0; i < 8; i++)
1499 itd->index[i] = -1;
1501 /* All other fields are filled when scheduling */
1504 static inline void
1505 itd_patch(
1506 struct ehci_hcd *ehci,
1507 struct ehci_itd *itd,
1508 struct ehci_iso_sched *iso_sched,
1509 unsigned index,
1510 u16 uframe
1513 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1514 unsigned pg = itd->pg;
1516 // BUG_ON (pg == 6 && uf->cross);
1518 uframe &= 0x07;
1519 itd->index [uframe] = index;
1521 itd->hw_transaction[uframe] = uf->transaction;
1522 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1523 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1524 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1526 /* iso_frame_desc[].offset must be strictly increasing */
1527 if (unlikely (uf->cross)) {
1528 u64 bufp = uf->bufp + 4096;
1530 itd->pg = ++pg;
1531 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1532 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1536 static inline void
1537 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1539 union ehci_shadow *prev = &ehci->pshadow[frame];
1540 __hc32 *hw_p = &ehci->periodic[frame];
1541 union ehci_shadow here = *prev;
1542 __hc32 type = 0;
1544 /* skip any iso nodes which might belong to previous microframes */
1545 while (here.ptr) {
1546 type = Q_NEXT_TYPE(ehci, *hw_p);
1547 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1548 break;
1549 prev = periodic_next_shadow(ehci, prev, type);
1550 hw_p = shadow_next_periodic(ehci, &here, type);
1551 here = *prev;
1554 itd->itd_next = here;
1555 itd->hw_next = *hw_p;
1556 prev->itd = itd;
1557 itd->frame = frame;
1558 wmb ();
1559 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1562 /* fit urb's itds into the selected schedule slot; activate as needed */
1563 static void itd_link_urb(
1564 struct ehci_hcd *ehci,
1565 struct urb *urb,
1566 unsigned mod,
1567 struct ehci_iso_stream *stream
1570 int packet;
1571 unsigned next_uframe, uframe, frame;
1572 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1573 struct ehci_itd *itd;
1575 next_uframe = stream->next_uframe & (mod - 1);
1577 if (unlikely (list_empty(&stream->td_list))) {
1578 ehci_to_hcd(ehci)->self.bandwidth_allocated
1579 += stream->bandwidth;
1580 ehci_vdbg (ehci,
1581 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1582 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1583 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1584 urb->interval,
1585 next_uframe >> 3, next_uframe & 0x7);
1588 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1589 if (ehci->amd_pll_fix == 1)
1590 usb_amd_quirk_pll_disable();
1593 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1595 /* fill iTDs uframe by uframe */
1596 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1597 if (itd == NULL) {
1598 /* ASSERT: we have all necessary itds */
1599 // BUG_ON (list_empty (&iso_sched->td_list));
1601 /* ASSERT: no itds for this endpoint in this uframe */
1603 itd = list_entry (iso_sched->td_list.next,
1604 struct ehci_itd, itd_list);
1605 list_move_tail (&itd->itd_list, &stream->td_list);
1606 itd->stream = stream;
1607 itd->urb = urb;
1608 itd_init (ehci, stream, itd);
1611 uframe = next_uframe & 0x07;
1612 frame = next_uframe >> 3;
1614 itd_patch(ehci, itd, iso_sched, packet, uframe);
1616 next_uframe += stream->interval;
1617 next_uframe &= mod - 1;
1618 packet++;
1620 /* link completed itds into the schedule */
1621 if (((next_uframe >> 3) != frame)
1622 || packet == urb->number_of_packets) {
1623 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1624 itd = NULL;
1627 stream->next_uframe = next_uframe;
1629 /* don't need that schedule data any more */
1630 iso_sched_free (stream, iso_sched);
1631 urb->hcpriv = stream;
1633 ++ehci->isoc_count;
1634 enable_periodic(ehci);
1637 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1639 /* Process and recycle a completed ITD. Return true iff its urb completed,
1640 * and hence its completion callback probably added things to the hardware
1641 * schedule.
1643 * Note that we carefully avoid recycling this descriptor until after any
1644 * completion callback runs, so that it won't be reused quickly. That is,
1645 * assuming (a) no more than two urbs per frame on this endpoint, and also
1646 * (b) only this endpoint's completions submit URBs. It seems some silicon
1647 * corrupts things if you reuse completed descriptors very quickly...
1649 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1651 struct urb *urb = itd->urb;
1652 struct usb_iso_packet_descriptor *desc;
1653 u32 t;
1654 unsigned uframe;
1655 int urb_index = -1;
1656 struct ehci_iso_stream *stream = itd->stream;
1657 struct usb_device *dev;
1658 bool retval = false;
1660 /* for each uframe with a packet */
1661 for (uframe = 0; uframe < 8; uframe++) {
1662 if (likely (itd->index[uframe] == -1))
1663 continue;
1664 urb_index = itd->index[uframe];
1665 desc = &urb->iso_frame_desc [urb_index];
1667 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1668 itd->hw_transaction [uframe] = 0;
1670 /* report transfer status */
1671 if (unlikely (t & ISO_ERRS)) {
1672 urb->error_count++;
1673 if (t & EHCI_ISOC_BUF_ERR)
1674 desc->status = usb_pipein (urb->pipe)
1675 ? -ENOSR /* hc couldn't read */
1676 : -ECOMM; /* hc couldn't write */
1677 else if (t & EHCI_ISOC_BABBLE)
1678 desc->status = -EOVERFLOW;
1679 else /* (t & EHCI_ISOC_XACTERR) */
1680 desc->status = -EPROTO;
1682 /* HC need not update length with this error */
1683 if (!(t & EHCI_ISOC_BABBLE)) {
1684 desc->actual_length = EHCI_ITD_LENGTH(t);
1685 urb->actual_length += desc->actual_length;
1687 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1688 desc->status = 0;
1689 desc->actual_length = EHCI_ITD_LENGTH(t);
1690 urb->actual_length += desc->actual_length;
1691 } else {
1692 /* URB was too late */
1693 urb->error_count++;
1697 /* handle completion now? */
1698 if (likely ((urb_index + 1) != urb->number_of_packets))
1699 goto done;
1701 /* ASSERT: it's really the last itd for this urb
1702 list_for_each_entry (itd, &stream->td_list, itd_list)
1703 BUG_ON (itd->urb == urb);
1706 /* give urb back to the driver; completion often (re)submits */
1707 dev = urb->dev;
1708 ehci_urb_done(ehci, urb, 0);
1709 retval = true;
1710 urb = NULL;
1712 --ehci->isoc_count;
1713 disable_periodic(ehci);
1715 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1716 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1717 if (ehci->amd_pll_fix == 1)
1718 usb_amd_quirk_pll_enable();
1721 if (unlikely(list_is_singular(&stream->td_list))) {
1722 ehci_to_hcd(ehci)->self.bandwidth_allocated
1723 -= stream->bandwidth;
1724 ehci_vdbg (ehci,
1725 "deschedule devp %s ep%d%s-iso\n",
1726 dev->devpath, stream->bEndpointAddress & 0x0f,
1727 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1730 done:
1731 itd->urb = NULL;
1733 /* Add to the end of the free list for later reuse */
1734 list_move_tail(&itd->itd_list, &stream->free_list);
1736 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1737 if (list_empty(&stream->td_list)) {
1738 list_splice_tail_init(&stream->free_list,
1739 &ehci->cached_itd_list);
1740 start_free_itds(ehci);
1743 return retval;
1746 /*-------------------------------------------------------------------------*/
1748 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1749 gfp_t mem_flags)
1751 int status = -EINVAL;
1752 unsigned long flags;
1753 struct ehci_iso_stream *stream;
1755 /* Get iso_stream head */
1756 stream = iso_stream_find (ehci, urb);
1757 if (unlikely (stream == NULL)) {
1758 ehci_dbg (ehci, "can't get iso stream\n");
1759 return -ENOMEM;
1761 if (unlikely (urb->interval != stream->interval)) {
1762 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1763 stream->interval, urb->interval);
1764 goto done;
1767 #ifdef EHCI_URB_TRACE
1768 ehci_dbg (ehci,
1769 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1770 __func__, urb->dev->devpath, urb,
1771 usb_pipeendpoint (urb->pipe),
1772 usb_pipein (urb->pipe) ? "in" : "out",
1773 urb->transfer_buffer_length,
1774 urb->number_of_packets, urb->interval,
1775 stream);
1776 #endif
1778 /* allocate ITDs w/o locking anything */
1779 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1780 if (unlikely (status < 0)) {
1781 ehci_dbg (ehci, "can't init itds\n");
1782 goto done;
1785 /* schedule ... need to lock */
1786 spin_lock_irqsave (&ehci->lock, flags);
1787 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1788 status = -ESHUTDOWN;
1789 goto done_not_linked;
1791 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1792 if (unlikely(status))
1793 goto done_not_linked;
1794 status = iso_stream_schedule(ehci, urb, stream);
1795 if (likely (status == 0))
1796 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1797 else
1798 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1799 done_not_linked:
1800 spin_unlock_irqrestore (&ehci->lock, flags);
1801 done:
1802 return status;
1805 /*-------------------------------------------------------------------------*/
1808 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1809 * TTs in USB 2.0 hubs. These need microframe scheduling.
1812 static inline void
1813 sitd_sched_init(
1814 struct ehci_hcd *ehci,
1815 struct ehci_iso_sched *iso_sched,
1816 struct ehci_iso_stream *stream,
1817 struct urb *urb
1820 unsigned i;
1821 dma_addr_t dma = urb->transfer_dma;
1823 /* how many frames are needed for these transfers */
1824 iso_sched->span = urb->number_of_packets * stream->interval;
1826 /* figure out per-frame sitd fields that we'll need later
1827 * when we fit new sitds into the schedule.
1829 for (i = 0; i < urb->number_of_packets; i++) {
1830 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1831 unsigned length;
1832 dma_addr_t buf;
1833 u32 trans;
1835 length = urb->iso_frame_desc [i].length & 0x03ff;
1836 buf = dma + urb->iso_frame_desc [i].offset;
1838 trans = SITD_STS_ACTIVE;
1839 if (((i + 1) == urb->number_of_packets)
1840 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1841 trans |= SITD_IOC;
1842 trans |= length << 16;
1843 packet->transaction = cpu_to_hc32(ehci, trans);
1845 /* might need to cross a buffer page within a td */
1846 packet->bufp = buf;
1847 packet->buf1 = (buf + length) & ~0x0fff;
1848 if (packet->buf1 != (buf & ~(u64)0x0fff))
1849 packet->cross = 1;
1851 /* OUT uses multiple start-splits */
1852 if (stream->bEndpointAddress & USB_DIR_IN)
1853 continue;
1854 length = (length + 187) / 188;
1855 if (length > 1) /* BEGIN vs ALL */
1856 length |= 1 << 3;
1857 packet->buf1 |= length;
1861 static int
1862 sitd_urb_transaction (
1863 struct ehci_iso_stream *stream,
1864 struct ehci_hcd *ehci,
1865 struct urb *urb,
1866 gfp_t mem_flags
1869 struct ehci_sitd *sitd;
1870 dma_addr_t sitd_dma;
1871 int i;
1872 struct ehci_iso_sched *iso_sched;
1873 unsigned long flags;
1875 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1876 if (iso_sched == NULL)
1877 return -ENOMEM;
1879 sitd_sched_init(ehci, iso_sched, stream, urb);
1881 /* allocate/init sITDs */
1882 spin_lock_irqsave (&ehci->lock, flags);
1883 for (i = 0; i < urb->number_of_packets; i++) {
1885 /* NOTE: for now, we don't try to handle wraparound cases
1886 * for IN (using sitd->hw_backpointer, like a FSTN), which
1887 * means we never need two sitds for full speed packets.
1891 * Use siTDs from the free list, but not siTDs that may
1892 * still be in use by the hardware.
1894 if (likely(!list_empty(&stream->free_list))) {
1895 sitd = list_first_entry(&stream->free_list,
1896 struct ehci_sitd, sitd_list);
1897 if (sitd->frame == ehci->now_frame)
1898 goto alloc_sitd;
1899 list_del (&sitd->sitd_list);
1900 sitd_dma = sitd->sitd_dma;
1901 } else {
1902 alloc_sitd:
1903 spin_unlock_irqrestore (&ehci->lock, flags);
1904 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1905 &sitd_dma);
1906 spin_lock_irqsave (&ehci->lock, flags);
1907 if (!sitd) {
1908 iso_sched_free(stream, iso_sched);
1909 spin_unlock_irqrestore(&ehci->lock, flags);
1910 return -ENOMEM;
1914 memset (sitd, 0, sizeof *sitd);
1915 sitd->sitd_dma = sitd_dma;
1916 sitd->frame = 9999; /* an invalid value */
1917 list_add (&sitd->sitd_list, &iso_sched->td_list);
1920 /* temporarily store schedule info in hcpriv */
1921 urb->hcpriv = iso_sched;
1922 urb->error_count = 0;
1924 spin_unlock_irqrestore (&ehci->lock, flags);
1925 return 0;
1928 /*-------------------------------------------------------------------------*/
1930 static inline void
1931 sitd_patch(
1932 struct ehci_hcd *ehci,
1933 struct ehci_iso_stream *stream,
1934 struct ehci_sitd *sitd,
1935 struct ehci_iso_sched *iso_sched,
1936 unsigned index
1939 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1940 u64 bufp = uf->bufp;
1942 sitd->hw_next = EHCI_LIST_END(ehci);
1943 sitd->hw_fullspeed_ep = stream->address;
1944 sitd->hw_uframe = stream->splits;
1945 sitd->hw_results = uf->transaction;
1946 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1948 bufp = uf->bufp;
1949 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1950 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1952 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1953 if (uf->cross)
1954 bufp += 4096;
1955 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1956 sitd->index = index;
1959 static inline void
1960 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1962 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1963 sitd->sitd_next = ehci->pshadow [frame];
1964 sitd->hw_next = ehci->periodic [frame];
1965 ehci->pshadow [frame].sitd = sitd;
1966 sitd->frame = frame;
1967 wmb ();
1968 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1971 /* fit urb's sitds into the selected schedule slot; activate as needed */
1972 static void sitd_link_urb(
1973 struct ehci_hcd *ehci,
1974 struct urb *urb,
1975 unsigned mod,
1976 struct ehci_iso_stream *stream
1979 int packet;
1980 unsigned next_uframe;
1981 struct ehci_iso_sched *sched = urb->hcpriv;
1982 struct ehci_sitd *sitd;
1984 next_uframe = stream->next_uframe;
1986 if (list_empty(&stream->td_list)) {
1987 /* usbfs ignores TT bandwidth */
1988 ehci_to_hcd(ehci)->self.bandwidth_allocated
1989 += stream->bandwidth;
1990 ehci_vdbg (ehci,
1991 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1992 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1993 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1994 (next_uframe >> 3) & (ehci->periodic_size - 1),
1995 stream->interval, hc32_to_cpu(ehci, stream->splits));
1998 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1999 if (ehci->amd_pll_fix == 1)
2000 usb_amd_quirk_pll_disable();
2003 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2005 /* fill sITDs frame by frame */
2006 for (packet = 0, sitd = NULL;
2007 packet < urb->number_of_packets;
2008 packet++) {
2010 /* ASSERT: we have all necessary sitds */
2011 BUG_ON (list_empty (&sched->td_list));
2013 /* ASSERT: no itds for this endpoint in this frame */
2015 sitd = list_entry (sched->td_list.next,
2016 struct ehci_sitd, sitd_list);
2017 list_move_tail (&sitd->sitd_list, &stream->td_list);
2018 sitd->stream = stream;
2019 sitd->urb = urb;
2021 sitd_patch(ehci, stream, sitd, sched, packet);
2022 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2023 sitd);
2025 next_uframe += stream->interval << 3;
2027 stream->next_uframe = next_uframe & (mod - 1);
2029 /* don't need that schedule data any more */
2030 iso_sched_free (stream, sched);
2031 urb->hcpriv = stream;
2033 ++ehci->isoc_count;
2034 enable_periodic(ehci);
2037 /*-------------------------------------------------------------------------*/
2039 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2040 | SITD_STS_XACT | SITD_STS_MMF)
2042 /* Process and recycle a completed SITD. Return true iff its urb completed,
2043 * and hence its completion callback probably added things to the hardware
2044 * schedule.
2046 * Note that we carefully avoid recycling this descriptor until after any
2047 * completion callback runs, so that it won't be reused quickly. That is,
2048 * assuming (a) no more than two urbs per frame on this endpoint, and also
2049 * (b) only this endpoint's completions submit URBs. It seems some silicon
2050 * corrupts things if you reuse completed descriptors very quickly...
2052 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2054 struct urb *urb = sitd->urb;
2055 struct usb_iso_packet_descriptor *desc;
2056 u32 t;
2057 int urb_index = -1;
2058 struct ehci_iso_stream *stream = sitd->stream;
2059 struct usb_device *dev;
2060 bool retval = false;
2062 urb_index = sitd->index;
2063 desc = &urb->iso_frame_desc [urb_index];
2064 t = hc32_to_cpup(ehci, &sitd->hw_results);
2066 /* report transfer status */
2067 if (unlikely(t & SITD_ERRS)) {
2068 urb->error_count++;
2069 if (t & SITD_STS_DBE)
2070 desc->status = usb_pipein (urb->pipe)
2071 ? -ENOSR /* hc couldn't read */
2072 : -ECOMM; /* hc couldn't write */
2073 else if (t & SITD_STS_BABBLE)
2074 desc->status = -EOVERFLOW;
2075 else /* XACT, MMF, etc */
2076 desc->status = -EPROTO;
2077 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2078 /* URB was too late */
2079 urb->error_count++;
2080 } else {
2081 desc->status = 0;
2082 desc->actual_length = desc->length - SITD_LENGTH(t);
2083 urb->actual_length += desc->actual_length;
2086 /* handle completion now? */
2087 if ((urb_index + 1) != urb->number_of_packets)
2088 goto done;
2090 /* ASSERT: it's really the last sitd for this urb
2091 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2092 BUG_ON (sitd->urb == urb);
2095 /* give urb back to the driver; completion often (re)submits */
2096 dev = urb->dev;
2097 ehci_urb_done(ehci, urb, 0);
2098 retval = true;
2099 urb = NULL;
2101 --ehci->isoc_count;
2102 disable_periodic(ehci);
2104 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2105 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2106 if (ehci->amd_pll_fix == 1)
2107 usb_amd_quirk_pll_enable();
2110 if (list_is_singular(&stream->td_list)) {
2111 ehci_to_hcd(ehci)->self.bandwidth_allocated
2112 -= stream->bandwidth;
2113 ehci_vdbg (ehci,
2114 "deschedule devp %s ep%d%s-iso\n",
2115 dev->devpath, stream->bEndpointAddress & 0x0f,
2116 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2119 done:
2120 sitd->urb = NULL;
2122 /* Add to the end of the free list for later reuse */
2123 list_move_tail(&sitd->sitd_list, &stream->free_list);
2125 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2126 if (list_empty(&stream->td_list)) {
2127 list_splice_tail_init(&stream->free_list,
2128 &ehci->cached_sitd_list);
2129 start_free_itds(ehci);
2132 return retval;
2136 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2137 gfp_t mem_flags)
2139 int status = -EINVAL;
2140 unsigned long flags;
2141 struct ehci_iso_stream *stream;
2143 /* Get iso_stream head */
2144 stream = iso_stream_find (ehci, urb);
2145 if (stream == NULL) {
2146 ehci_dbg (ehci, "can't get iso stream\n");
2147 return -ENOMEM;
2149 if (urb->interval != stream->interval) {
2150 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2151 stream->interval, urb->interval);
2152 goto done;
2155 #ifdef EHCI_URB_TRACE
2156 ehci_dbg (ehci,
2157 "submit %p dev%s ep%d%s-iso len %d\n",
2158 urb, urb->dev->devpath,
2159 usb_pipeendpoint (urb->pipe),
2160 usb_pipein (urb->pipe) ? "in" : "out",
2161 urb->transfer_buffer_length);
2162 #endif
2164 /* allocate SITDs */
2165 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2166 if (status < 0) {
2167 ehci_dbg (ehci, "can't init sitds\n");
2168 goto done;
2171 /* schedule ... need to lock */
2172 spin_lock_irqsave (&ehci->lock, flags);
2173 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2174 status = -ESHUTDOWN;
2175 goto done_not_linked;
2177 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2178 if (unlikely(status))
2179 goto done_not_linked;
2180 status = iso_stream_schedule(ehci, urb, stream);
2181 if (status == 0)
2182 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2183 else
2184 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2185 done_not_linked:
2186 spin_unlock_irqrestore (&ehci->lock, flags);
2187 done:
2188 return status;
2191 /*-------------------------------------------------------------------------*/
2193 static void scan_isoc(struct ehci_hcd *ehci)
2195 unsigned uf, now_frame, frame;
2196 unsigned fmask = ehci->periodic_size - 1;
2197 bool modified, live;
2200 * When running, scan from last scan point up to "now"
2201 * else clean up by scanning everything that's left.
2202 * Touches as few pages as possible: cache-friendly.
2204 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2205 uf = ehci_read_frame_index(ehci);
2206 now_frame = (uf >> 3) & fmask;
2207 live = true;
2208 } else {
2209 now_frame = (ehci->last_iso_frame - 1) & fmask;
2210 live = false;
2212 ehci->now_frame = now_frame;
2214 frame = ehci->last_iso_frame;
2215 for (;;) {
2216 union ehci_shadow q, *q_p;
2217 __hc32 type, *hw_p;
2219 restart:
2220 /* scan each element in frame's queue for completions */
2221 q_p = &ehci->pshadow [frame];
2222 hw_p = &ehci->periodic [frame];
2223 q.ptr = q_p->ptr;
2224 type = Q_NEXT_TYPE(ehci, *hw_p);
2225 modified = false;
2227 while (q.ptr != NULL) {
2228 switch (hc32_to_cpu(ehci, type)) {
2229 case Q_TYPE_ITD:
2230 /* If this ITD is still active, leave it for
2231 * later processing ... check the next entry.
2232 * No need to check for activity unless the
2233 * frame is current.
2235 if (frame == now_frame && live) {
2236 rmb();
2237 for (uf = 0; uf < 8; uf++) {
2238 if (q.itd->hw_transaction[uf] &
2239 ITD_ACTIVE(ehci))
2240 break;
2242 if (uf < 8) {
2243 q_p = &q.itd->itd_next;
2244 hw_p = &q.itd->hw_next;
2245 type = Q_NEXT_TYPE(ehci,
2246 q.itd->hw_next);
2247 q = *q_p;
2248 break;
2252 /* Take finished ITDs out of the schedule
2253 * and process them: recycle, maybe report
2254 * URB completion. HC won't cache the
2255 * pointer for much longer, if at all.
2257 *q_p = q.itd->itd_next;
2258 if (!ehci->use_dummy_qh ||
2259 q.itd->hw_next != EHCI_LIST_END(ehci))
2260 *hw_p = q.itd->hw_next;
2261 else
2262 *hw_p = ehci->dummy->qh_dma;
2263 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2264 wmb();
2265 modified = itd_complete (ehci, q.itd);
2266 q = *q_p;
2267 break;
2268 case Q_TYPE_SITD:
2269 /* If this SITD is still active, leave it for
2270 * later processing ... check the next entry.
2271 * No need to check for activity unless the
2272 * frame is current.
2274 if (((frame == now_frame) ||
2275 (((frame + 1) & fmask) == now_frame))
2276 && live
2277 && (q.sitd->hw_results &
2278 SITD_ACTIVE(ehci))) {
2280 q_p = &q.sitd->sitd_next;
2281 hw_p = &q.sitd->hw_next;
2282 type = Q_NEXT_TYPE(ehci,
2283 q.sitd->hw_next);
2284 q = *q_p;
2285 break;
2288 /* Take finished SITDs out of the schedule
2289 * and process them: recycle, maybe report
2290 * URB completion.
2292 *q_p = q.sitd->sitd_next;
2293 if (!ehci->use_dummy_qh ||
2294 q.sitd->hw_next != EHCI_LIST_END(ehci))
2295 *hw_p = q.sitd->hw_next;
2296 else
2297 *hw_p = ehci->dummy->qh_dma;
2298 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2299 wmb();
2300 modified = sitd_complete (ehci, q.sitd);
2301 q = *q_p;
2302 break;
2303 default:
2304 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2305 type, frame, q.ptr);
2306 // BUG ();
2307 /* FALL THROUGH */
2308 case Q_TYPE_QH:
2309 case Q_TYPE_FSTN:
2310 /* End of the iTDs and siTDs */
2311 q.ptr = NULL;
2312 break;
2315 /* assume completion callbacks modify the queue */
2316 if (unlikely(modified && ehci->isoc_count > 0))
2317 goto restart;
2320 /* Stop when we have reached the current frame */
2321 if (frame == now_frame)
2322 break;
2324 /* The last frame may still have active siTDs */
2325 ehci->last_iso_frame = frame;
2326 frame = (frame + 1) & fmask;