xfs: create internal eofblocks structure with kuid_t types
[linux-2.6.git] / drivers / dma / dmaengine.c
blob9e56745f87bf164aa3b4728b52a113c9a5b68cc6
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
32 * LOCKING:
34 * The subsystem keeps a global list of dma_device structs it is protected by a
35 * mutex, dma_list_mutex.
37 * A subsystem can get access to a channel by calling dmaengine_get() followed
38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
39 * dma_request_channel(). Once a channel is allocated a reference is taken
40 * against its corresponding driver to disable removal.
42 * Each device has a channels list, which runs unlocked but is never modified
43 * once the device is registered, it's just setup by the driver.
45 * See Documentation/dmaengine.txt for more details
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/dma-mapping.h>
51 #include <linux/init.h>
52 #include <linux/module.h>
53 #include <linux/mm.h>
54 #include <linux/device.h>
55 #include <linux/dmaengine.h>
56 #include <linux/hardirq.h>
57 #include <linux/spinlock.h>
58 #include <linux/percpu.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/jiffies.h>
62 #include <linux/rculist.h>
63 #include <linux/idr.h>
64 #include <linux/slab.h>
65 #include <linux/acpi.h>
66 #include <linux/acpi_dma.h>
67 #include <linux/of_dma.h>
69 static DEFINE_MUTEX(dma_list_mutex);
70 static DEFINE_IDR(dma_idr);
71 static LIST_HEAD(dma_device_list);
72 static long dmaengine_ref_count;
74 /* --- sysfs implementation --- */
76 /**
77 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
78 * @dev - device node
80 * Must be called under dma_list_mutex
82 static struct dma_chan *dev_to_dma_chan(struct device *dev)
84 struct dma_chan_dev *chan_dev;
86 chan_dev = container_of(dev, typeof(*chan_dev), device);
87 return chan_dev->chan;
90 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
92 struct dma_chan *chan;
93 unsigned long count = 0;
94 int i;
95 int err;
97 mutex_lock(&dma_list_mutex);
98 chan = dev_to_dma_chan(dev);
99 if (chan) {
100 for_each_possible_cpu(i)
101 count += per_cpu_ptr(chan->local, i)->memcpy_count;
102 err = sprintf(buf, "%lu\n", count);
103 } else
104 err = -ENODEV;
105 mutex_unlock(&dma_list_mutex);
107 return err;
110 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
111 char *buf)
113 struct dma_chan *chan;
114 unsigned long count = 0;
115 int i;
116 int err;
118 mutex_lock(&dma_list_mutex);
119 chan = dev_to_dma_chan(dev);
120 if (chan) {
121 for_each_possible_cpu(i)
122 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 err = sprintf(buf, "%lu\n", count);
124 } else
125 err = -ENODEV;
126 mutex_unlock(&dma_list_mutex);
128 return err;
131 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
133 struct dma_chan *chan;
134 int err;
136 mutex_lock(&dma_list_mutex);
137 chan = dev_to_dma_chan(dev);
138 if (chan)
139 err = sprintf(buf, "%d\n", chan->client_count);
140 else
141 err = -ENODEV;
142 mutex_unlock(&dma_list_mutex);
144 return err;
147 static struct device_attribute dma_attrs[] = {
148 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
149 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
150 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
151 __ATTR_NULL
154 static void chan_dev_release(struct device *dev)
156 struct dma_chan_dev *chan_dev;
158 chan_dev = container_of(dev, typeof(*chan_dev), device);
159 if (atomic_dec_and_test(chan_dev->idr_ref)) {
160 mutex_lock(&dma_list_mutex);
161 idr_remove(&dma_idr, chan_dev->dev_id);
162 mutex_unlock(&dma_list_mutex);
163 kfree(chan_dev->idr_ref);
165 kfree(chan_dev);
168 static struct class dma_devclass = {
169 .name = "dma",
170 .dev_attrs = dma_attrs,
171 .dev_release = chan_dev_release,
174 /* --- client and device registration --- */
176 #define dma_device_satisfies_mask(device, mask) \
177 __dma_device_satisfies_mask((device), &(mask))
178 static int
179 __dma_device_satisfies_mask(struct dma_device *device,
180 const dma_cap_mask_t *want)
182 dma_cap_mask_t has;
184 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
185 DMA_TX_TYPE_END);
186 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
189 static struct module *dma_chan_to_owner(struct dma_chan *chan)
191 return chan->device->dev->driver->owner;
195 * balance_ref_count - catch up the channel reference count
196 * @chan - channel to balance ->client_count versus dmaengine_ref_count
198 * balance_ref_count must be called under dma_list_mutex
200 static void balance_ref_count(struct dma_chan *chan)
202 struct module *owner = dma_chan_to_owner(chan);
204 while (chan->client_count < dmaengine_ref_count) {
205 __module_get(owner);
206 chan->client_count++;
211 * dma_chan_get - try to grab a dma channel's parent driver module
212 * @chan - channel to grab
214 * Must be called under dma_list_mutex
216 static int dma_chan_get(struct dma_chan *chan)
218 int err = -ENODEV;
219 struct module *owner = dma_chan_to_owner(chan);
221 if (chan->client_count) {
222 __module_get(owner);
223 err = 0;
224 } else if (try_module_get(owner))
225 err = 0;
227 if (err == 0)
228 chan->client_count++;
230 /* allocate upon first client reference */
231 if (chan->client_count == 1 && err == 0) {
232 int desc_cnt = chan->device->device_alloc_chan_resources(chan);
234 if (desc_cnt < 0) {
235 err = desc_cnt;
236 chan->client_count = 0;
237 module_put(owner);
238 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
239 balance_ref_count(chan);
242 return err;
246 * dma_chan_put - drop a reference to a dma channel's parent driver module
247 * @chan - channel to release
249 * Must be called under dma_list_mutex
251 static void dma_chan_put(struct dma_chan *chan)
253 if (!chan->client_count)
254 return; /* this channel failed alloc_chan_resources */
255 chan->client_count--;
256 module_put(dma_chan_to_owner(chan));
257 if (chan->client_count == 0)
258 chan->device->device_free_chan_resources(chan);
261 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
263 enum dma_status status;
264 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
266 dma_async_issue_pending(chan);
267 do {
268 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
269 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
270 pr_err("%s: timeout!\n", __func__);
271 return DMA_ERROR;
273 if (status != DMA_IN_PROGRESS)
274 break;
275 cpu_relax();
276 } while (1);
278 return status;
280 EXPORT_SYMBOL(dma_sync_wait);
283 * dma_cap_mask_all - enable iteration over all operation types
285 static dma_cap_mask_t dma_cap_mask_all;
288 * dma_chan_tbl_ent - tracks channel allocations per core/operation
289 * @chan - associated channel for this entry
291 struct dma_chan_tbl_ent {
292 struct dma_chan *chan;
296 * channel_table - percpu lookup table for memory-to-memory offload providers
298 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
300 static int __init dma_channel_table_init(void)
302 enum dma_transaction_type cap;
303 int err = 0;
305 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
307 /* 'interrupt', 'private', and 'slave' are channel capabilities,
308 * but are not associated with an operation so they do not need
309 * an entry in the channel_table
311 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
312 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
313 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
315 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
316 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
317 if (!channel_table[cap]) {
318 err = -ENOMEM;
319 break;
323 if (err) {
324 pr_err("initialization failure\n");
325 for_each_dma_cap_mask(cap, dma_cap_mask_all)
326 if (channel_table[cap])
327 free_percpu(channel_table[cap]);
330 return err;
332 arch_initcall(dma_channel_table_init);
335 * dma_find_channel - find a channel to carry out the operation
336 * @tx_type: transaction type
338 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
340 return this_cpu_read(channel_table[tx_type]->chan);
342 EXPORT_SYMBOL(dma_find_channel);
345 * net_dma_find_channel - find a channel for net_dma
346 * net_dma has alignment requirements
348 struct dma_chan *net_dma_find_channel(void)
350 struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
351 if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
352 return NULL;
354 return chan;
356 EXPORT_SYMBOL(net_dma_find_channel);
359 * dma_issue_pending_all - flush all pending operations across all channels
361 void dma_issue_pending_all(void)
363 struct dma_device *device;
364 struct dma_chan *chan;
366 rcu_read_lock();
367 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
368 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
369 continue;
370 list_for_each_entry(chan, &device->channels, device_node)
371 if (chan->client_count)
372 device->device_issue_pending(chan);
374 rcu_read_unlock();
376 EXPORT_SYMBOL(dma_issue_pending_all);
379 * nth_chan - returns the nth channel of the given capability
380 * @cap: capability to match
381 * @n: nth channel desired
383 * Defaults to returning the channel with the desired capability and the
384 * lowest reference count when 'n' cannot be satisfied. Must be called
385 * under dma_list_mutex.
387 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
389 struct dma_device *device;
390 struct dma_chan *chan;
391 struct dma_chan *ret = NULL;
392 struct dma_chan *min = NULL;
394 list_for_each_entry(device, &dma_device_list, global_node) {
395 if (!dma_has_cap(cap, device->cap_mask) ||
396 dma_has_cap(DMA_PRIVATE, device->cap_mask))
397 continue;
398 list_for_each_entry(chan, &device->channels, device_node) {
399 if (!chan->client_count)
400 continue;
401 if (!min)
402 min = chan;
403 else if (chan->table_count < min->table_count)
404 min = chan;
406 if (n-- == 0) {
407 ret = chan;
408 break; /* done */
411 if (ret)
412 break; /* done */
415 if (!ret)
416 ret = min;
418 if (ret)
419 ret->table_count++;
421 return ret;
425 * dma_channel_rebalance - redistribute the available channels
427 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
428 * operation type) in the SMP case, and operation isolation (avoid
429 * multi-tasking channels) in the non-SMP case. Must be called under
430 * dma_list_mutex.
432 static void dma_channel_rebalance(void)
434 struct dma_chan *chan;
435 struct dma_device *device;
436 int cpu;
437 int cap;
438 int n;
440 /* undo the last distribution */
441 for_each_dma_cap_mask(cap, dma_cap_mask_all)
442 for_each_possible_cpu(cpu)
443 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
445 list_for_each_entry(device, &dma_device_list, global_node) {
446 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
447 continue;
448 list_for_each_entry(chan, &device->channels, device_node)
449 chan->table_count = 0;
452 /* don't populate the channel_table if no clients are available */
453 if (!dmaengine_ref_count)
454 return;
456 /* redistribute available channels */
457 n = 0;
458 for_each_dma_cap_mask(cap, dma_cap_mask_all)
459 for_each_online_cpu(cpu) {
460 if (num_possible_cpus() > 1)
461 chan = nth_chan(cap, n++);
462 else
463 chan = nth_chan(cap, -1);
465 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
469 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
470 struct dma_device *dev,
471 dma_filter_fn fn, void *fn_param)
473 struct dma_chan *chan;
475 if (!__dma_device_satisfies_mask(dev, mask)) {
476 pr_debug("%s: wrong capabilities\n", __func__);
477 return NULL;
479 /* devices with multiple channels need special handling as we need to
480 * ensure that all channels are either private or public.
482 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
483 list_for_each_entry(chan, &dev->channels, device_node) {
484 /* some channels are already publicly allocated */
485 if (chan->client_count)
486 return NULL;
489 list_for_each_entry(chan, &dev->channels, device_node) {
490 if (chan->client_count) {
491 pr_debug("%s: %s busy\n",
492 __func__, dma_chan_name(chan));
493 continue;
495 if (fn && !fn(chan, fn_param)) {
496 pr_debug("%s: %s filter said false\n",
497 __func__, dma_chan_name(chan));
498 continue;
500 return chan;
503 return NULL;
507 * dma_request_channel - try to allocate an exclusive channel
508 * @mask: capabilities that the channel must satisfy
509 * @fn: optional callback to disposition available channels
510 * @fn_param: opaque parameter to pass to dma_filter_fn
512 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
513 dma_filter_fn fn, void *fn_param)
515 struct dma_device *device, *_d;
516 struct dma_chan *chan = NULL;
517 int err;
519 /* Find a channel */
520 mutex_lock(&dma_list_mutex);
521 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
522 chan = private_candidate(mask, device, fn, fn_param);
523 if (chan) {
524 /* Found a suitable channel, try to grab, prep, and
525 * return it. We first set DMA_PRIVATE to disable
526 * balance_ref_count as this channel will not be
527 * published in the general-purpose allocator
529 dma_cap_set(DMA_PRIVATE, device->cap_mask);
530 device->privatecnt++;
531 err = dma_chan_get(chan);
533 if (err == -ENODEV) {
534 pr_debug("%s: %s module removed\n",
535 __func__, dma_chan_name(chan));
536 list_del_rcu(&device->global_node);
537 } else if (err)
538 pr_debug("%s: failed to get %s: (%d)\n",
539 __func__, dma_chan_name(chan), err);
540 else
541 break;
542 if (--device->privatecnt == 0)
543 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
544 chan = NULL;
547 mutex_unlock(&dma_list_mutex);
549 pr_debug("%s: %s (%s)\n",
550 __func__,
551 chan ? "success" : "fail",
552 chan ? dma_chan_name(chan) : NULL);
554 return chan;
556 EXPORT_SYMBOL_GPL(__dma_request_channel);
559 * dma_request_slave_channel - try to allocate an exclusive slave channel
560 * @dev: pointer to client device structure
561 * @name: slave channel name
563 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name)
565 /* If device-tree is present get slave info from here */
566 if (dev->of_node)
567 return of_dma_request_slave_channel(dev->of_node, name);
569 /* If device was enumerated by ACPI get slave info from here */
570 if (ACPI_HANDLE(dev))
571 return acpi_dma_request_slave_chan_by_name(dev, name);
573 return NULL;
575 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
577 void dma_release_channel(struct dma_chan *chan)
579 mutex_lock(&dma_list_mutex);
580 WARN_ONCE(chan->client_count != 1,
581 "chan reference count %d != 1\n", chan->client_count);
582 dma_chan_put(chan);
583 /* drop PRIVATE cap enabled by __dma_request_channel() */
584 if (--chan->device->privatecnt == 0)
585 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
586 mutex_unlock(&dma_list_mutex);
588 EXPORT_SYMBOL_GPL(dma_release_channel);
591 * dmaengine_get - register interest in dma_channels
593 void dmaengine_get(void)
595 struct dma_device *device, *_d;
596 struct dma_chan *chan;
597 int err;
599 mutex_lock(&dma_list_mutex);
600 dmaengine_ref_count++;
602 /* try to grab channels */
603 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
604 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
605 continue;
606 list_for_each_entry(chan, &device->channels, device_node) {
607 err = dma_chan_get(chan);
608 if (err == -ENODEV) {
609 /* module removed before we could use it */
610 list_del_rcu(&device->global_node);
611 break;
612 } else if (err)
613 pr_debug("%s: failed to get %s: (%d)\n",
614 __func__, dma_chan_name(chan), err);
618 /* if this is the first reference and there were channels
619 * waiting we need to rebalance to get those channels
620 * incorporated into the channel table
622 if (dmaengine_ref_count == 1)
623 dma_channel_rebalance();
624 mutex_unlock(&dma_list_mutex);
626 EXPORT_SYMBOL(dmaengine_get);
629 * dmaengine_put - let dma drivers be removed when ref_count == 0
631 void dmaengine_put(void)
633 struct dma_device *device;
634 struct dma_chan *chan;
636 mutex_lock(&dma_list_mutex);
637 dmaengine_ref_count--;
638 BUG_ON(dmaengine_ref_count < 0);
639 /* drop channel references */
640 list_for_each_entry(device, &dma_device_list, global_node) {
641 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
642 continue;
643 list_for_each_entry(chan, &device->channels, device_node)
644 dma_chan_put(chan);
646 mutex_unlock(&dma_list_mutex);
648 EXPORT_SYMBOL(dmaengine_put);
650 static bool device_has_all_tx_types(struct dma_device *device)
652 /* A device that satisfies this test has channels that will never cause
653 * an async_tx channel switch event as all possible operation types can
654 * be handled.
656 #ifdef CONFIG_ASYNC_TX_DMA
657 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
658 return false;
659 #endif
661 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
662 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
663 return false;
664 #endif
666 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
667 if (!dma_has_cap(DMA_XOR, device->cap_mask))
668 return false;
670 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
671 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
672 return false;
673 #endif
674 #endif
676 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
677 if (!dma_has_cap(DMA_PQ, device->cap_mask))
678 return false;
680 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
681 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
682 return false;
683 #endif
684 #endif
686 return true;
689 static int get_dma_id(struct dma_device *device)
691 int rc;
693 mutex_lock(&dma_list_mutex);
695 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
696 if (rc >= 0)
697 device->dev_id = rc;
699 mutex_unlock(&dma_list_mutex);
700 return rc < 0 ? rc : 0;
704 * dma_async_device_register - registers DMA devices found
705 * @device: &dma_device
707 int dma_async_device_register(struct dma_device *device)
709 int chancnt = 0, rc;
710 struct dma_chan* chan;
711 atomic_t *idr_ref;
713 if (!device)
714 return -ENODEV;
716 /* validate device routines */
717 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
718 !device->device_prep_dma_memcpy);
719 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
720 !device->device_prep_dma_xor);
721 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
722 !device->device_prep_dma_xor_val);
723 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
724 !device->device_prep_dma_pq);
725 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
726 !device->device_prep_dma_pq_val);
727 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
728 !device->device_prep_dma_interrupt);
729 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
730 !device->device_prep_dma_sg);
731 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
732 !device->device_prep_dma_cyclic);
733 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
734 !device->device_control);
735 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
736 !device->device_prep_interleaved_dma);
738 BUG_ON(!device->device_alloc_chan_resources);
739 BUG_ON(!device->device_free_chan_resources);
740 BUG_ON(!device->device_tx_status);
741 BUG_ON(!device->device_issue_pending);
742 BUG_ON(!device->dev);
744 /* note: this only matters in the
745 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
747 if (device_has_all_tx_types(device))
748 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
750 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
751 if (!idr_ref)
752 return -ENOMEM;
753 rc = get_dma_id(device);
754 if (rc != 0) {
755 kfree(idr_ref);
756 return rc;
759 atomic_set(idr_ref, 0);
761 /* represent channels in sysfs. Probably want devs too */
762 list_for_each_entry(chan, &device->channels, device_node) {
763 rc = -ENOMEM;
764 chan->local = alloc_percpu(typeof(*chan->local));
765 if (chan->local == NULL)
766 goto err_out;
767 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
768 if (chan->dev == NULL) {
769 free_percpu(chan->local);
770 chan->local = NULL;
771 goto err_out;
774 chan->chan_id = chancnt++;
775 chan->dev->device.class = &dma_devclass;
776 chan->dev->device.parent = device->dev;
777 chan->dev->chan = chan;
778 chan->dev->idr_ref = idr_ref;
779 chan->dev->dev_id = device->dev_id;
780 atomic_inc(idr_ref);
781 dev_set_name(&chan->dev->device, "dma%dchan%d",
782 device->dev_id, chan->chan_id);
784 rc = device_register(&chan->dev->device);
785 if (rc) {
786 free_percpu(chan->local);
787 chan->local = NULL;
788 kfree(chan->dev);
789 atomic_dec(idr_ref);
790 goto err_out;
792 chan->client_count = 0;
794 device->chancnt = chancnt;
796 mutex_lock(&dma_list_mutex);
797 /* take references on public channels */
798 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
799 list_for_each_entry(chan, &device->channels, device_node) {
800 /* if clients are already waiting for channels we need
801 * to take references on their behalf
803 if (dma_chan_get(chan) == -ENODEV) {
804 /* note we can only get here for the first
805 * channel as the remaining channels are
806 * guaranteed to get a reference
808 rc = -ENODEV;
809 mutex_unlock(&dma_list_mutex);
810 goto err_out;
813 list_add_tail_rcu(&device->global_node, &dma_device_list);
814 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
815 device->privatecnt++; /* Always private */
816 dma_channel_rebalance();
817 mutex_unlock(&dma_list_mutex);
819 return 0;
821 err_out:
822 /* if we never registered a channel just release the idr */
823 if (atomic_read(idr_ref) == 0) {
824 mutex_lock(&dma_list_mutex);
825 idr_remove(&dma_idr, device->dev_id);
826 mutex_unlock(&dma_list_mutex);
827 kfree(idr_ref);
828 return rc;
831 list_for_each_entry(chan, &device->channels, device_node) {
832 if (chan->local == NULL)
833 continue;
834 mutex_lock(&dma_list_mutex);
835 chan->dev->chan = NULL;
836 mutex_unlock(&dma_list_mutex);
837 device_unregister(&chan->dev->device);
838 free_percpu(chan->local);
840 return rc;
842 EXPORT_SYMBOL(dma_async_device_register);
845 * dma_async_device_unregister - unregister a DMA device
846 * @device: &dma_device
848 * This routine is called by dma driver exit routines, dmaengine holds module
849 * references to prevent it being called while channels are in use.
851 void dma_async_device_unregister(struct dma_device *device)
853 struct dma_chan *chan;
855 mutex_lock(&dma_list_mutex);
856 list_del_rcu(&device->global_node);
857 dma_channel_rebalance();
858 mutex_unlock(&dma_list_mutex);
860 list_for_each_entry(chan, &device->channels, device_node) {
861 WARN_ONCE(chan->client_count,
862 "%s called while %d clients hold a reference\n",
863 __func__, chan->client_count);
864 mutex_lock(&dma_list_mutex);
865 chan->dev->chan = NULL;
866 mutex_unlock(&dma_list_mutex);
867 device_unregister(&chan->dev->device);
868 free_percpu(chan->local);
871 EXPORT_SYMBOL(dma_async_device_unregister);
874 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
875 * @chan: DMA channel to offload copy to
876 * @dest: destination address (virtual)
877 * @src: source address (virtual)
878 * @len: length
880 * Both @dest and @src must be mappable to a bus address according to the
881 * DMA mapping API rules for streaming mappings.
882 * Both @dest and @src must stay memory resident (kernel memory or locked
883 * user space pages).
885 dma_cookie_t
886 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
887 void *src, size_t len)
889 struct dma_device *dev = chan->device;
890 struct dma_async_tx_descriptor *tx;
891 dma_addr_t dma_dest, dma_src;
892 dma_cookie_t cookie;
893 unsigned long flags;
895 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
896 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
897 flags = DMA_CTRL_ACK |
898 DMA_COMPL_SRC_UNMAP_SINGLE |
899 DMA_COMPL_DEST_UNMAP_SINGLE;
900 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
902 if (!tx) {
903 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
904 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
905 return -ENOMEM;
908 tx->callback = NULL;
909 cookie = tx->tx_submit(tx);
911 preempt_disable();
912 __this_cpu_add(chan->local->bytes_transferred, len);
913 __this_cpu_inc(chan->local->memcpy_count);
914 preempt_enable();
916 return cookie;
918 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
921 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
922 * @chan: DMA channel to offload copy to
923 * @page: destination page
924 * @offset: offset in page to copy to
925 * @kdata: source address (virtual)
926 * @len: length
928 * Both @page/@offset and @kdata must be mappable to a bus address according
929 * to the DMA mapping API rules for streaming mappings.
930 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
931 * locked user space pages)
933 dma_cookie_t
934 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
935 unsigned int offset, void *kdata, size_t len)
937 struct dma_device *dev = chan->device;
938 struct dma_async_tx_descriptor *tx;
939 dma_addr_t dma_dest, dma_src;
940 dma_cookie_t cookie;
941 unsigned long flags;
943 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
944 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
945 flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
946 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
948 if (!tx) {
949 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
950 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
951 return -ENOMEM;
954 tx->callback = NULL;
955 cookie = tx->tx_submit(tx);
957 preempt_disable();
958 __this_cpu_add(chan->local->bytes_transferred, len);
959 __this_cpu_inc(chan->local->memcpy_count);
960 preempt_enable();
962 return cookie;
964 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
967 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
968 * @chan: DMA channel to offload copy to
969 * @dest_pg: destination page
970 * @dest_off: offset in page to copy to
971 * @src_pg: source page
972 * @src_off: offset in page to copy from
973 * @len: length
975 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
976 * address according to the DMA mapping API rules for streaming mappings.
977 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
978 * (kernel memory or locked user space pages).
980 dma_cookie_t
981 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
982 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
983 size_t len)
985 struct dma_device *dev = chan->device;
986 struct dma_async_tx_descriptor *tx;
987 dma_addr_t dma_dest, dma_src;
988 dma_cookie_t cookie;
989 unsigned long flags;
991 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
992 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
993 DMA_FROM_DEVICE);
994 flags = DMA_CTRL_ACK;
995 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
997 if (!tx) {
998 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
999 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
1000 return -ENOMEM;
1003 tx->callback = NULL;
1004 cookie = tx->tx_submit(tx);
1006 preempt_disable();
1007 __this_cpu_add(chan->local->bytes_transferred, len);
1008 __this_cpu_inc(chan->local->memcpy_count);
1009 preempt_enable();
1011 return cookie;
1013 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
1015 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1016 struct dma_chan *chan)
1018 tx->chan = chan;
1019 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1020 spin_lock_init(&tx->lock);
1021 #endif
1023 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1025 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1026 * @tx: in-flight transaction to wait on
1028 enum dma_status
1029 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1031 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1033 if (!tx)
1034 return DMA_SUCCESS;
1036 while (tx->cookie == -EBUSY) {
1037 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1038 pr_err("%s timeout waiting for descriptor submission\n",
1039 __func__);
1040 return DMA_ERROR;
1042 cpu_relax();
1044 return dma_sync_wait(tx->chan, tx->cookie);
1046 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1048 /* dma_run_dependencies - helper routine for dma drivers to process
1049 * (start) dependent operations on their target channel
1050 * @tx: transaction with dependencies
1052 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1054 struct dma_async_tx_descriptor *dep = txd_next(tx);
1055 struct dma_async_tx_descriptor *dep_next;
1056 struct dma_chan *chan;
1058 if (!dep)
1059 return;
1061 /* we'll submit tx->next now, so clear the link */
1062 txd_clear_next(tx);
1063 chan = dep->chan;
1065 /* keep submitting up until a channel switch is detected
1066 * in that case we will be called again as a result of
1067 * processing the interrupt from async_tx_channel_switch
1069 for (; dep; dep = dep_next) {
1070 txd_lock(dep);
1071 txd_clear_parent(dep);
1072 dep_next = txd_next(dep);
1073 if (dep_next && dep_next->chan == chan)
1074 txd_clear_next(dep); /* ->next will be submitted */
1075 else
1076 dep_next = NULL; /* submit current dep and terminate */
1077 txd_unlock(dep);
1079 dep->tx_submit(dep);
1082 chan->device->device_issue_pending(chan);
1084 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1086 static int __init dma_bus_init(void)
1088 return class_register(&dma_devclass);
1090 arch_initcall(dma_bus_init);