2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
51 kmem_zone_t
*xfs_ifork_zone
;
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
61 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
62 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
63 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
67 * Make sure that the extents in the given memory buffer
77 xfs_bmbt_rec_host_t rec
;
80 for (i
= 0; i
< nrecs
; i
++) {
81 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
82 rec
.l0
= get_unaligned(&ep
->l0
);
83 rec
.l1
= get_unaligned(&ep
->l1
);
84 xfs_bmbt_get_all(&rec
, &irec
);
85 if (fmt
== XFS_EXTFMT_NOSTATE
)
86 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
90 #define xfs_validate_extents(ifp, nrecs, fmt)
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
107 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
109 for (i
= 0; i
< j
; i
++) {
110 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
111 i
* mp
->m_sb
.sb_inodesize
);
112 if (!dip
->di_next_unlinked
) {
113 xfs_fs_cmn_err(CE_ALERT
, mp
,
114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
116 ASSERT(dip
->di_next_unlinked
);
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
131 struct xfs_imap
*imap
,
141 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
142 (int)imap
->im_len
, buf_flags
, &bp
);
144 if (error
!= EAGAIN
) {
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 "an error %d on %s. Returning error.",
148 error
, mp
->m_fsname
);
150 ASSERT(buf_flags
& XBF_TRYLOCK
);
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
160 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
161 #else /* usual case */
165 for (i
= 0; i
< ni
; i
++) {
169 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
170 (i
<< mp
->m_sb
.sb_inodelog
));
171 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
172 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
173 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
174 XFS_ERRTAG_ITOBP_INOTOBP
,
175 XFS_RANDOM_ITOBP_INOTOBP
))) {
176 if (iget_flags
& XFS_IGET_UNTRUSTED
) {
177 xfs_trans_brelse(tp
, bp
);
178 return XFS_ERROR(EINVAL
);
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH
, mp
, dip
);
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
187 (unsigned long long)imap
->im_blkno
, i
,
188 be16_to_cpu(dip
->di_magic
));
190 xfs_trans_brelse(tp
, bp
);
191 return XFS_ERROR(EFSCORRUPTED
);
195 xfs_inobp_check(mp
, bp
);
198 * Mark the buffer as an inode buffer now that it looks good
200 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
229 struct xfs_imap imap
;
234 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
238 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XBF_LOCK
, imap_flags
);
242 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
244 *offset
= imap
.im_boffset
;
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
277 ASSERT(ip
->i_imap
.im_blkno
!= 0);
279 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
284 ASSERT(buf_flags
& XBF_TRYLOCK
);
290 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
309 xfs_attr_shortform_t
*atp
;
313 ip
->i_df
.if_ext_max
=
314 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
317 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
318 be16_to_cpu(dip
->di_anextents
) >
319 be64_to_cpu(dip
->di_nblocks
))) {
320 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 (unsigned long long)ip
->i_ino
,
323 (int)(be32_to_cpu(dip
->di_nextents
) +
324 be16_to_cpu(dip
->di_anextents
)),
326 be64_to_cpu(dip
->di_nblocks
));
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
329 return XFS_ERROR(EFSCORRUPTED
);
332 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
333 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
334 "corrupt dinode %Lu, forkoff = 0x%x.",
335 (unsigned long long)ip
->i_ino
,
337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
339 return XFS_ERROR(EFSCORRUPTED
);
342 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
343 !ip
->i_mount
->m_rtdev_targp
)) {
344 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
345 "corrupt dinode %Lu, has realtime flag set.",
347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
349 return XFS_ERROR(EFSCORRUPTED
);
352 switch (ip
->i_d
.di_mode
& S_IFMT
) {
357 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
360 return XFS_ERROR(EFSCORRUPTED
);
364 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
370 switch (dip
->di_format
) {
371 case XFS_DINODE_FMT_LOCAL
:
373 * no local regular files yet
375 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
376 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
378 "(local format for regular file).",
379 (unsigned long long) ip
->i_ino
);
380 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
383 return XFS_ERROR(EFSCORRUPTED
);
386 di_size
= be64_to_cpu(dip
->di_size
);
387 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
388 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
390 "(bad size %Ld for local inode).",
391 (unsigned long long) ip
->i_ino
,
392 (long long) di_size
);
393 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
396 return XFS_ERROR(EFSCORRUPTED
);
400 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
402 case XFS_DINODE_FMT_EXTENTS
:
403 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
405 case XFS_DINODE_FMT_BTREE
:
406 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
411 return XFS_ERROR(EFSCORRUPTED
);
416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
417 return XFS_ERROR(EFSCORRUPTED
);
422 if (!XFS_DFORK_Q(dip
))
424 ASSERT(ip
->i_afp
== NULL
);
425 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
426 ip
->i_afp
->if_ext_max
=
427 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
428 switch (dip
->di_aformat
) {
429 case XFS_DINODE_FMT_LOCAL
:
430 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
431 size
= be16_to_cpu(atp
->hdr
.totsize
);
433 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
434 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
436 "(bad attr fork size %Ld).",
437 (unsigned long long) ip
->i_ino
,
439 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
442 return XFS_ERROR(EFSCORRUPTED
);
445 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
447 case XFS_DINODE_FMT_EXTENTS
:
448 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
450 case XFS_DINODE_FMT_BTREE
:
451 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
454 error
= XFS_ERROR(EFSCORRUPTED
);
458 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
460 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
466 * The file is in-lined in the on-disk inode.
467 * If it fits into if_inline_data, then copy
468 * it there, otherwise allocate a buffer for it
469 * and copy the data there. Either way, set
470 * if_data to point at the data.
471 * If we allocate a buffer for the data, make
472 * sure that its size is a multiple of 4 and
473 * record the real size in i_real_bytes.
486 * If the size is unreasonable, then something
487 * is wrong and we just bail out rather than crash in
488 * kmem_alloc() or memcpy() below.
490 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
491 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
493 "(bad size %d for local fork, size = %d).",
494 (unsigned long long) ip
->i_ino
, size
,
495 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
498 return XFS_ERROR(EFSCORRUPTED
);
500 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
503 ifp
->if_u1
.if_data
= NULL
;
504 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
505 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
507 real_size
= roundup(size
, 4);
508 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
510 ifp
->if_bytes
= size
;
511 ifp
->if_real_bytes
= real_size
;
513 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
514 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
515 ifp
->if_flags
|= XFS_IFINLINE
;
520 * The file consists of a set of extents all
521 * of which fit into the on-disk inode.
522 * If there are few enough extents to fit into
523 * the if_inline_ext, then copy them there.
524 * Otherwise allocate a buffer for them and copy
525 * them into it. Either way, set if_extents
526 * to point at the extents.
540 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
541 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
542 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
545 * If the number of extents is unreasonable, then something
546 * is wrong and we just bail out rather than crash in
547 * kmem_alloc() or memcpy() below.
549 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
550 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
551 "corrupt inode %Lu ((a)extents = %d).",
552 (unsigned long long) ip
->i_ino
, nex
);
553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
555 return XFS_ERROR(EFSCORRUPTED
);
558 ifp
->if_real_bytes
= 0;
560 ifp
->if_u1
.if_extents
= NULL
;
561 else if (nex
<= XFS_INLINE_EXTS
)
562 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
564 xfs_iext_add(ifp
, 0, nex
);
566 ifp
->if_bytes
= size
;
568 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
569 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
570 for (i
= 0; i
< nex
; i
++, dp
++) {
571 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
572 ep
->l0
= get_unaligned_be64(&dp
->l0
);
573 ep
->l1
= get_unaligned_be64(&dp
->l1
);
575 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
576 if (whichfork
!= XFS_DATA_FORK
||
577 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
578 if (unlikely(xfs_check_nostate_extents(
580 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
583 return XFS_ERROR(EFSCORRUPTED
);
586 ifp
->if_flags
|= XFS_IFEXTENTS
;
591 * The file has too many extents to fit into
592 * the inode, so they are in B-tree format.
593 * Allocate a buffer for the root of the B-tree
594 * and copy the root into it. The i_extents
595 * field will remain NULL until all of the
596 * extents are read in (when they are needed).
604 xfs_bmdr_block_t
*dfp
;
610 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
611 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
612 size
= XFS_BMAP_BROOT_SPACE(dfp
);
613 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
616 * blow out if -- fork has less extents than can fit in
617 * fork (fork shouldn't be a btree format), root btree
618 * block has more records than can fit into the fork,
619 * or the number of extents is greater than the number of
622 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
623 || XFS_BMDR_SPACE_CALC(nrecs
) >
624 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
625 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
626 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
627 "corrupt inode %Lu (btree).",
628 (unsigned long long) ip
->i_ino
);
629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
631 return XFS_ERROR(EFSCORRUPTED
);
634 ifp
->if_broot_bytes
= size
;
635 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
636 ASSERT(ifp
->if_broot
!= NULL
);
638 * Copy and convert from the on-disk structure
639 * to the in-memory structure.
641 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
642 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
643 ifp
->if_broot
, size
);
644 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
645 ifp
->if_flags
|= XFS_IFBROOT
;
651 xfs_dinode_from_disk(
655 to
->di_magic
= be16_to_cpu(from
->di_magic
);
656 to
->di_mode
= be16_to_cpu(from
->di_mode
);
657 to
->di_version
= from
->di_version
;
658 to
->di_format
= from
->di_format
;
659 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
660 to
->di_uid
= be32_to_cpu(from
->di_uid
);
661 to
->di_gid
= be32_to_cpu(from
->di_gid
);
662 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
663 to
->di_projid
= be16_to_cpu(from
->di_projid
);
664 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
665 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
666 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
667 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
668 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
669 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
670 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
671 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
672 to
->di_size
= be64_to_cpu(from
->di_size
);
673 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
674 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
675 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
676 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
677 to
->di_forkoff
= from
->di_forkoff
;
678 to
->di_aformat
= from
->di_aformat
;
679 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
680 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
681 to
->di_flags
= be16_to_cpu(from
->di_flags
);
682 to
->di_gen
= be32_to_cpu(from
->di_gen
);
688 xfs_icdinode_t
*from
)
690 to
->di_magic
= cpu_to_be16(from
->di_magic
);
691 to
->di_mode
= cpu_to_be16(from
->di_mode
);
692 to
->di_version
= from
->di_version
;
693 to
->di_format
= from
->di_format
;
694 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
695 to
->di_uid
= cpu_to_be32(from
->di_uid
);
696 to
->di_gid
= cpu_to_be32(from
->di_gid
);
697 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
698 to
->di_projid
= cpu_to_be16(from
->di_projid
);
699 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
700 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
701 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
702 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
703 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
704 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
705 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
706 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
707 to
->di_size
= cpu_to_be64(from
->di_size
);
708 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
709 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
710 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
711 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
712 to
->di_forkoff
= from
->di_forkoff
;
713 to
->di_aformat
= from
->di_aformat
;
714 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
715 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
716 to
->di_flags
= cpu_to_be16(from
->di_flags
);
717 to
->di_gen
= cpu_to_be32(from
->di_gen
);
726 if (di_flags
& XFS_DIFLAG_ANY
) {
727 if (di_flags
& XFS_DIFLAG_REALTIME
)
728 flags
|= XFS_XFLAG_REALTIME
;
729 if (di_flags
& XFS_DIFLAG_PREALLOC
)
730 flags
|= XFS_XFLAG_PREALLOC
;
731 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
732 flags
|= XFS_XFLAG_IMMUTABLE
;
733 if (di_flags
& XFS_DIFLAG_APPEND
)
734 flags
|= XFS_XFLAG_APPEND
;
735 if (di_flags
& XFS_DIFLAG_SYNC
)
736 flags
|= XFS_XFLAG_SYNC
;
737 if (di_flags
& XFS_DIFLAG_NOATIME
)
738 flags
|= XFS_XFLAG_NOATIME
;
739 if (di_flags
& XFS_DIFLAG_NODUMP
)
740 flags
|= XFS_XFLAG_NODUMP
;
741 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
742 flags
|= XFS_XFLAG_RTINHERIT
;
743 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
744 flags
|= XFS_XFLAG_PROJINHERIT
;
745 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
746 flags
|= XFS_XFLAG_NOSYMLINKS
;
747 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
748 flags
|= XFS_XFLAG_EXTSIZE
;
749 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
750 flags
|= XFS_XFLAG_EXTSZINHERIT
;
751 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
752 flags
|= XFS_XFLAG_NODEFRAG
;
753 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
754 flags
|= XFS_XFLAG_FILESTREAM
;
764 xfs_icdinode_t
*dic
= &ip
->i_d
;
766 return _xfs_dic2xflags(dic
->di_flags
) |
767 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
774 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
775 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
779 * Read the disk inode attributes into the in-core inode structure.
793 * Fill in the location information in the in-core inode.
795 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
800 * Get pointers to the on-disk inode and the buffer containing it.
802 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
803 XBF_LOCK
, iget_flags
);
806 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
809 * If we got something that isn't an inode it means someone
810 * (nfs or dmi) has a stale handle.
812 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
814 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
815 "dip->di_magic (0x%x) != "
816 "XFS_DINODE_MAGIC (0x%x)",
817 be16_to_cpu(dip
->di_magic
),
820 error
= XFS_ERROR(EINVAL
);
825 * If the on-disk inode is already linked to a directory
826 * entry, copy all of the inode into the in-core inode.
827 * xfs_iformat() handles copying in the inode format
828 * specific information.
829 * Otherwise, just get the truly permanent information.
832 xfs_dinode_from_disk(&ip
->i_d
, dip
);
833 error
= xfs_iformat(ip
, dip
);
836 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
837 "xfs_iformat() returned error %d",
843 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
844 ip
->i_d
.di_version
= dip
->di_version
;
845 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
846 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
848 * Make sure to pull in the mode here as well in
849 * case the inode is released without being used.
850 * This ensures that xfs_inactive() will see that
851 * the inode is already free and not try to mess
852 * with the uninitialized part of it.
856 * Initialize the per-fork minima and maxima for a new
857 * inode here. xfs_iformat will do it for old inodes.
859 ip
->i_df
.if_ext_max
=
860 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
864 * The inode format changed when we moved the link count and
865 * made it 32 bits long. If this is an old format inode,
866 * convert it in memory to look like a new one. If it gets
867 * flushed to disk we will convert back before flushing or
868 * logging it. We zero out the new projid field and the old link
869 * count field. We'll handle clearing the pad field (the remains
870 * of the old uuid field) when we actually convert the inode to
871 * the new format. We don't change the version number so that we
872 * can distinguish this from a real new format inode.
874 if (ip
->i_d
.di_version
== 1) {
875 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
876 ip
->i_d
.di_onlink
= 0;
877 ip
->i_d
.di_projid
= 0;
880 ip
->i_delayed_blks
= 0;
881 ip
->i_size
= ip
->i_d
.di_size
;
884 * Mark the buffer containing the inode as something to keep
885 * around for a while. This helps to keep recently accessed
886 * meta-data in-core longer.
888 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
891 * Use xfs_trans_brelse() to release the buffer containing the
892 * on-disk inode, because it was acquired with xfs_trans_read_buf()
893 * in xfs_itobp() above. If tp is NULL, this is just a normal
894 * brelse(). If we're within a transaction, then xfs_trans_brelse()
895 * will only release the buffer if it is not dirty within the
896 * transaction. It will be OK to release the buffer in this case,
897 * because inodes on disk are never destroyed and we will be
898 * locking the new in-core inode before putting it in the hash
899 * table where other processes can find it. Thus we don't have
900 * to worry about the inode being changed just because we released
904 xfs_trans_brelse(tp
, bp
);
909 * Read in extents from a btree-format inode.
910 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
920 xfs_extnum_t nextents
;
922 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
923 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
925 return XFS_ERROR(EFSCORRUPTED
);
927 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
928 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
931 * We know that the size is valid (it's checked in iformat_btree)
933 ifp
->if_lastex
= NULLEXTNUM
;
934 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
935 ifp
->if_flags
|= XFS_IFEXTENTS
;
936 xfs_iext_add(ifp
, 0, nextents
);
937 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
939 xfs_iext_destroy(ifp
);
940 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
943 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
948 * Allocate an inode on disk and return a copy of its in-core version.
949 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
950 * appropriately within the inode. The uid and gid for the inode are
951 * set according to the contents of the given cred structure.
953 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954 * has a free inode available, call xfs_iget()
955 * to obtain the in-core version of the allocated inode. Finally,
956 * fill in the inode and log its initial contents. In this case,
957 * ialloc_context would be set to NULL and call_again set to false.
959 * If xfs_dialloc() does not have an available inode,
960 * it will replenish its supply by doing an allocation. Since we can
961 * only do one allocation within a transaction without deadlocks, we
962 * must commit the current transaction before returning the inode itself.
963 * In this case, therefore, we will set call_again to true and return.
964 * The caller should then commit the current transaction, start a new
965 * transaction, and call xfs_ialloc() again to actually get the inode.
967 * To ensure that some other process does not grab the inode that
968 * was allocated during the first call to xfs_ialloc(), this routine
969 * also returns the [locked] bp pointing to the head of the freelist
970 * as ialloc_context. The caller should hold this buffer across
971 * the commit and pass it back into this routine on the second call.
973 * If we are allocating quota inodes, we do not have a parent inode
974 * to attach to or associate with (i.e. pip == NULL) because they
975 * are not linked into the directory structure - they are attached
976 * directly to the superblock - and so have no parent.
988 xfs_buf_t
**ialloc_context
,
989 boolean_t
*call_again
,
1000 * Call the space management code to pick
1001 * the on-disk inode to be allocated.
1003 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1004 ialloc_context
, call_again
, &ino
);
1007 if (*call_again
|| ino
== NULLFSINO
) {
1011 ASSERT(*ialloc_context
== NULL
);
1014 * Get the in-core inode with the lock held exclusively.
1015 * This is because we're setting fields here we need
1016 * to prevent others from looking at until we're done.
1018 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1019 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1024 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1025 ip
->i_d
.di_onlink
= 0;
1026 ip
->i_d
.di_nlink
= nlink
;
1027 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1028 ip
->i_d
.di_uid
= current_fsuid();
1029 ip
->i_d
.di_gid
= current_fsgid();
1030 ip
->i_d
.di_projid
= prid
;
1031 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1034 * If the superblock version is up to where we support new format
1035 * inodes and this is currently an old format inode, then change
1036 * the inode version number now. This way we only do the conversion
1037 * here rather than here and in the flush/logging code.
1039 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1040 ip
->i_d
.di_version
== 1) {
1041 ip
->i_d
.di_version
= 2;
1043 * We've already zeroed the old link count, the projid field,
1044 * and the pad field.
1049 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1052 xfs_bump_ino_vers2(tp
, ip
);
1054 if (pip
&& XFS_INHERIT_GID(pip
)) {
1055 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1056 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1057 ip
->i_d
.di_mode
|= S_ISGID
;
1062 * If the group ID of the new file does not match the effective group
1063 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 if ((irix_sgid_inherit
) &&
1067 (ip
->i_d
.di_mode
& S_ISGID
) &&
1068 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1069 ip
->i_d
.di_mode
&= ~S_ISGID
;
1072 ip
->i_d
.di_size
= 0;
1074 ip
->i_d
.di_nextents
= 0;
1075 ASSERT(ip
->i_d
.di_nblocks
== 0);
1078 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1079 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1080 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1081 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1084 * di_gen will have been taken care of in xfs_iread.
1086 ip
->i_d
.di_extsize
= 0;
1087 ip
->i_d
.di_dmevmask
= 0;
1088 ip
->i_d
.di_dmstate
= 0;
1089 ip
->i_d
.di_flags
= 0;
1090 flags
= XFS_ILOG_CORE
;
1091 switch (mode
& S_IFMT
) {
1096 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1097 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1098 ip
->i_df
.if_flags
= 0;
1099 flags
|= XFS_ILOG_DEV
;
1103 * we can't set up filestreams until after the VFS inode
1104 * is set up properly.
1106 if (pip
&& xfs_inode_is_filestream(pip
))
1110 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1113 if ((mode
& S_IFMT
) == S_IFDIR
) {
1114 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1115 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1116 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1117 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1118 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1120 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1121 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1122 di_flags
|= XFS_DIFLAG_REALTIME
;
1123 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1124 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1125 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1128 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1129 xfs_inherit_noatime
)
1130 di_flags
|= XFS_DIFLAG_NOATIME
;
1131 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1133 di_flags
|= XFS_DIFLAG_NODUMP
;
1134 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1136 di_flags
|= XFS_DIFLAG_SYNC
;
1137 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1138 xfs_inherit_nosymlinks
)
1139 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1140 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1141 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1142 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1143 xfs_inherit_nodefrag
)
1144 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1145 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1146 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1147 ip
->i_d
.di_flags
|= di_flags
;
1151 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1152 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1153 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1154 ip
->i_df
.if_u1
.if_extents
= NULL
;
1160 * Attribute fork settings for new inode.
1162 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1163 ip
->i_d
.di_anextents
= 0;
1166 * Log the new values stuffed into the inode.
1168 xfs_trans_log_inode(tp
, ip
, flags
);
1170 /* now that we have an i_mode we can setup inode ops and unlock */
1171 xfs_setup_inode(ip
);
1173 /* now we have set up the vfs inode we can associate the filestream */
1175 error
= xfs_filestream_associate(pip
, ip
);
1179 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1187 * Check to make sure that there are no blocks allocated to the
1188 * file beyond the size of the file. We don't check this for
1189 * files with fixed size extents or real time extents, but we
1190 * at least do it for regular files.
1199 xfs_fileoff_t map_first
;
1201 xfs_bmbt_irec_t imaps
[2];
1203 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1206 if (XFS_IS_REALTIME_INODE(ip
))
1209 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1213 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1215 * The filesystem could be shutting down, so bmapi may return
1218 if (xfs_bmapi(NULL
, ip
, map_first
,
1220 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1222 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1225 ASSERT(nimaps
== 1);
1226 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1231 * Calculate the last possible buffered byte in a file. This must
1232 * include data that was buffered beyond the EOF by the write code.
1233 * This also needs to deal with overflowing the xfs_fsize_t type
1234 * which can happen for sizes near the limit.
1236 * We also need to take into account any blocks beyond the EOF. It
1237 * may be the case that they were buffered by a write which failed.
1238 * In that case the pages will still be in memory, but the inode size
1239 * will never have been updated.
1246 xfs_fsize_t last_byte
;
1247 xfs_fileoff_t last_block
;
1248 xfs_fileoff_t size_last_block
;
1251 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1255 * Only check for blocks beyond the EOF if the extents have
1256 * been read in. This eliminates the need for the inode lock,
1257 * and it also saves us from looking when it really isn't
1260 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1261 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1262 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1264 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1271 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1272 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1274 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1275 if (last_byte
< 0) {
1276 return XFS_MAXIOFFSET(mp
);
1278 last_byte
+= (1 << mp
->m_writeio_log
);
1279 if (last_byte
< 0) {
1280 return XFS_MAXIOFFSET(mp
);
1286 * Start the truncation of the file to new_size. The new size
1287 * must be smaller than the current size. This routine will
1288 * clear the buffer and page caches of file data in the removed
1289 * range, and xfs_itruncate_finish() will remove the underlying
1292 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1293 * must NOT have the inode lock held at all. This is because we're
1294 * calling into the buffer/page cache code and we can't hold the
1295 * inode lock when we do so.
1297 * We need to wait for any direct I/Os in flight to complete before we
1298 * proceed with the truncate. This is needed to prevent the extents
1299 * being read or written by the direct I/Os from being removed while the
1300 * I/O is in flight as there is no other method of synchronising
1301 * direct I/O with the truncate operation. Also, because we hold
1302 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1303 * started until the truncate completes and drops the lock. Essentially,
1304 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1305 * ordering between direct I/Os and the truncate operation.
1307 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1308 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1309 * in the case that the caller is locking things out of order and
1310 * may not be able to call xfs_itruncate_finish() with the inode lock
1311 * held without dropping the I/O lock. If the caller must drop the
1312 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1313 * must be called again with all the same restrictions as the initial
1317 xfs_itruncate_start(
1320 xfs_fsize_t new_size
)
1322 xfs_fsize_t last_byte
;
1323 xfs_off_t toss_start
;
1327 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1328 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1329 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1330 (flags
== XFS_ITRUNC_MAYBE
));
1334 /* wait for the completion of any pending DIOs */
1335 if (new_size
== 0 || new_size
< ip
->i_size
)
1339 * Call toss_pages or flushinval_pages to get rid of pages
1340 * overlapping the region being removed. We have to use
1341 * the less efficient flushinval_pages in the case that the
1342 * caller may not be able to finish the truncate without
1343 * dropping the inode's I/O lock. Make sure
1344 * to catch any pages brought in by buffers overlapping
1345 * the EOF by searching out beyond the isize by our
1346 * block size. We round new_size up to a block boundary
1347 * so that we don't toss things on the same block as
1348 * new_size but before it.
1350 * Before calling toss_page or flushinval_pages, make sure to
1351 * call remapf() over the same region if the file is mapped.
1352 * This frees up mapped file references to the pages in the
1353 * given range and for the flushinval_pages case it ensures
1354 * that we get the latest mapped changes flushed out.
1356 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1357 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1358 if (toss_start
< 0) {
1360 * The place to start tossing is beyond our maximum
1361 * file size, so there is no way that the data extended
1366 last_byte
= xfs_file_last_byte(ip
);
1367 trace_xfs_itruncate_start(ip
, flags
, new_size
, toss_start
, last_byte
);
1368 if (last_byte
> toss_start
) {
1369 if (flags
& XFS_ITRUNC_DEFINITE
) {
1370 xfs_tosspages(ip
, toss_start
,
1371 -1, FI_REMAPF_LOCKED
);
1373 error
= xfs_flushinval_pages(ip
, toss_start
,
1374 -1, FI_REMAPF_LOCKED
);
1379 if (new_size
== 0) {
1380 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1387 * Shrink the file to the given new_size. The new size must be smaller than
1388 * the current size. This will free up the underlying blocks in the removed
1389 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1391 * The transaction passed to this routine must have made a permanent log
1392 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1393 * given transaction and start new ones, so make sure everything involved in
1394 * the transaction is tidy before calling here. Some transaction will be
1395 * returned to the caller to be committed. The incoming transaction must
1396 * already include the inode, and both inode locks must be held exclusively.
1397 * The inode must also be "held" within the transaction. On return the inode
1398 * will be "held" within the returned transaction. This routine does NOT
1399 * require any disk space to be reserved for it within the transaction.
1401 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1402 * indicates the fork which is to be truncated. For the attribute fork we only
1403 * support truncation to size 0.
1405 * We use the sync parameter to indicate whether or not the first transaction
1406 * we perform might have to be synchronous. For the attr fork, it needs to be
1407 * so if the unlink of the inode is not yet known to be permanent in the log.
1408 * This keeps us from freeing and reusing the blocks of the attribute fork
1409 * before the unlink of the inode becomes permanent.
1411 * For the data fork, we normally have to run synchronously if we're being
1412 * called out of the inactive path or we're being called out of the create path
1413 * where we're truncating an existing file. Either way, the truncate needs to
1414 * be sync so blocks don't reappear in the file with altered data in case of a
1415 * crash. wsync filesystems can run the first case async because anything that
1416 * shrinks the inode has to run sync so by the time we're called here from
1417 * inactive, the inode size is permanently set to 0.
1419 * Calls from the truncate path always need to be sync unless we're in a wsync
1420 * filesystem and the file has already been unlinked.
1422 * The caller is responsible for correctly setting the sync parameter. It gets
1423 * too hard for us to guess here which path we're being called out of just
1424 * based on inode state.
1426 * If we get an error, we must return with the inode locked and linked into the
1427 * current transaction. This keeps things simple for the higher level code,
1428 * because it always knows that the inode is locked and held in the transaction
1429 * that returns to it whether errors occur or not. We don't mark the inode
1430 * dirty on error so that transactions can be easily aborted if possible.
1433 xfs_itruncate_finish(
1436 xfs_fsize_t new_size
,
1440 xfs_fsblock_t first_block
;
1441 xfs_fileoff_t first_unmap_block
;
1442 xfs_fileoff_t last_block
;
1443 xfs_filblks_t unmap_len
=0;
1448 xfs_bmap_free_t free_list
;
1451 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1452 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1453 ASSERT(*tp
!= NULL
);
1454 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1455 ASSERT(ip
->i_transp
== *tp
);
1456 ASSERT(ip
->i_itemp
!= NULL
);
1457 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1461 mp
= (ntp
)->t_mountp
;
1462 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1465 * We only support truncating the entire attribute fork.
1467 if (fork
== XFS_ATTR_FORK
) {
1470 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1471 trace_xfs_itruncate_finish_start(ip
, new_size
);
1474 * The first thing we do is set the size to new_size permanently
1475 * on disk. This way we don't have to worry about anyone ever
1476 * being able to look at the data being freed even in the face
1477 * of a crash. What we're getting around here is the case where
1478 * we free a block, it is allocated to another file, it is written
1479 * to, and then we crash. If the new data gets written to the
1480 * file but the log buffers containing the free and reallocation
1481 * don't, then we'd end up with garbage in the blocks being freed.
1482 * As long as we make the new_size permanent before actually
1483 * freeing any blocks it doesn't matter if they get writtten to.
1485 * The callers must signal into us whether or not the size
1486 * setting here must be synchronous. There are a few cases
1487 * where it doesn't have to be synchronous. Those cases
1488 * occur if the file is unlinked and we know the unlink is
1489 * permanent or if the blocks being truncated are guaranteed
1490 * to be beyond the inode eof (regardless of the link count)
1491 * and the eof value is permanent. Both of these cases occur
1492 * only on wsync-mounted filesystems. In those cases, we're
1493 * guaranteed that no user will ever see the data in the blocks
1494 * that are being truncated so the truncate can run async.
1495 * In the free beyond eof case, the file may wind up with
1496 * more blocks allocated to it than it needs if we crash
1497 * and that won't get fixed until the next time the file
1498 * is re-opened and closed but that's ok as that shouldn't
1499 * be too many blocks.
1501 * However, we can't just make all wsync xactions run async
1502 * because there's one call out of the create path that needs
1503 * to run sync where it's truncating an existing file to size
1504 * 0 whose size is > 0.
1506 * It's probably possible to come up with a test in this
1507 * routine that would correctly distinguish all the above
1508 * cases from the values of the function parameters and the
1509 * inode state but for sanity's sake, I've decided to let the
1510 * layers above just tell us. It's simpler to correctly figure
1511 * out in the layer above exactly under what conditions we
1512 * can run async and I think it's easier for others read and
1513 * follow the logic in case something has to be changed.
1514 * cscope is your friend -- rcc.
1516 * The attribute fork is much simpler.
1518 * For the attribute fork we allow the caller to tell us whether
1519 * the unlink of the inode that led to this call is yet permanent
1520 * in the on disk log. If it is not and we will be freeing extents
1521 * in this inode then we make the first transaction synchronous
1522 * to make sure that the unlink is permanent by the time we free
1525 if (fork
== XFS_DATA_FORK
) {
1526 if (ip
->i_d
.di_nextents
> 0) {
1528 * If we are not changing the file size then do
1529 * not update the on-disk file size - we may be
1530 * called from xfs_inactive_free_eofblocks(). If we
1531 * update the on-disk file size and then the system
1532 * crashes before the contents of the file are
1533 * flushed to disk then the files may be full of
1534 * holes (ie NULL files bug).
1536 if (ip
->i_size
!= new_size
) {
1537 ip
->i_d
.di_size
= new_size
;
1538 ip
->i_size
= new_size
;
1539 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1543 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1544 if (ip
->i_d
.di_anextents
> 0)
1545 xfs_trans_set_sync(ntp
);
1547 ASSERT(fork
== XFS_DATA_FORK
||
1548 (fork
== XFS_ATTR_FORK
&&
1549 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1550 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1553 * Since it is possible for space to become allocated beyond
1554 * the end of the file (in a crash where the space is allocated
1555 * but the inode size is not yet updated), simply remove any
1556 * blocks which show up between the new EOF and the maximum
1557 * possible file size. If the first block to be removed is
1558 * beyond the maximum file size (ie it is the same as last_block),
1559 * then there is nothing to do.
1561 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1562 ASSERT(first_unmap_block
<= last_block
);
1564 if (last_block
== first_unmap_block
) {
1567 unmap_len
= last_block
- first_unmap_block
+ 1;
1571 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1572 * will tell us whether it freed the entire range or
1573 * not. If this is a synchronous mount (wsync),
1574 * then we can tell bunmapi to keep all the
1575 * transactions asynchronous since the unlink
1576 * transaction that made this inode inactive has
1577 * already hit the disk. There's no danger of
1578 * the freed blocks being reused, there being a
1579 * crash, and the reused blocks suddenly reappearing
1580 * in this file with garbage in them once recovery
1583 xfs_bmap_init(&free_list
, &first_block
);
1584 error
= xfs_bunmapi(ntp
, ip
,
1585 first_unmap_block
, unmap_len
,
1586 xfs_bmapi_aflag(fork
),
1587 XFS_ITRUNC_MAX_EXTENTS
,
1588 &first_block
, &free_list
,
1592 * If the bunmapi call encounters an error,
1593 * return to the caller where the transaction
1594 * can be properly aborted. We just need to
1595 * make sure we're not holding any resources
1596 * that we were not when we came in.
1598 xfs_bmap_cancel(&free_list
);
1603 * Duplicate the transaction that has the permanent
1604 * reservation and commit the old transaction.
1606 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1609 xfs_trans_ijoin(ntp
, ip
);
1613 * If the bmap finish call encounters an error, return
1614 * to the caller where the transaction can be properly
1615 * aborted. We just need to make sure we're not
1616 * holding any resources that we were not when we came
1619 * Aborting from this point might lose some blocks in
1620 * the file system, but oh well.
1622 xfs_bmap_cancel(&free_list
);
1628 * Mark the inode dirty so it will be logged and
1629 * moved forward in the log as part of every commit.
1631 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1634 ntp
= xfs_trans_dup(ntp
);
1635 error
= xfs_trans_commit(*tp
, 0);
1638 xfs_trans_ijoin(ntp
, ip
);
1643 * transaction commit worked ok so we can drop the extra ticket
1644 * reference that we gained in xfs_trans_dup()
1646 xfs_log_ticket_put(ntp
->t_ticket
);
1647 error
= xfs_trans_reserve(ntp
, 0,
1648 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1649 XFS_TRANS_PERM_LOG_RES
,
1650 XFS_ITRUNCATE_LOG_COUNT
);
1655 * Only update the size in the case of the data fork, but
1656 * always re-log the inode so that our permanent transaction
1657 * can keep on rolling it forward in the log.
1659 if (fork
== XFS_DATA_FORK
) {
1660 xfs_isize_check(mp
, ip
, new_size
);
1662 * If we are not changing the file size then do
1663 * not update the on-disk file size - we may be
1664 * called from xfs_inactive_free_eofblocks(). If we
1665 * update the on-disk file size and then the system
1666 * crashes before the contents of the file are
1667 * flushed to disk then the files may be full of
1668 * holes (ie NULL files bug).
1670 if (ip
->i_size
!= new_size
) {
1671 ip
->i_d
.di_size
= new_size
;
1672 ip
->i_size
= new_size
;
1675 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1676 ASSERT((new_size
!= 0) ||
1677 (fork
== XFS_ATTR_FORK
) ||
1678 (ip
->i_delayed_blks
== 0));
1679 ASSERT((new_size
!= 0) ||
1680 (fork
== XFS_ATTR_FORK
) ||
1681 (ip
->i_d
.di_nextents
== 0));
1682 trace_xfs_itruncate_finish_end(ip
, new_size
);
1687 * This is called when the inode's link count goes to 0.
1688 * We place the on-disk inode on a list in the AGI. It
1689 * will be pulled from this list when the inode is freed.
1706 ASSERT(ip
->i_d
.di_nlink
== 0);
1707 ASSERT(ip
->i_d
.di_mode
!= 0);
1708 ASSERT(ip
->i_transp
== tp
);
1713 * Get the agi buffer first. It ensures lock ordering
1716 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1719 agi
= XFS_BUF_TO_AGI(agibp
);
1722 * Get the index into the agi hash table for the
1723 * list this inode will go on.
1725 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1727 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1728 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1729 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1731 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1733 * There is already another inode in the bucket we need
1734 * to add ourselves to. Add us at the front of the list.
1735 * Here we put the head pointer into our next pointer,
1736 * and then we fall through to point the head at us.
1738 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1742 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1743 /* both on-disk, don't endian flip twice */
1744 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1745 offset
= ip
->i_imap
.im_boffset
+
1746 offsetof(xfs_dinode_t
, di_next_unlinked
);
1747 xfs_trans_inode_buf(tp
, ibp
);
1748 xfs_trans_log_buf(tp
, ibp
, offset
,
1749 (offset
+ sizeof(xfs_agino_t
) - 1));
1750 xfs_inobp_check(mp
, ibp
);
1754 * Point the bucket head pointer at the inode being inserted.
1757 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1758 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1759 (sizeof(xfs_agino_t
) * bucket_index
);
1760 xfs_trans_log_buf(tp
, agibp
, offset
,
1761 (offset
+ sizeof(xfs_agino_t
) - 1));
1766 * Pull the on-disk inode from the AGI unlinked list.
1779 xfs_agnumber_t agno
;
1781 xfs_agino_t next_agino
;
1782 xfs_buf_t
*last_ibp
;
1783 xfs_dinode_t
*last_dip
= NULL
;
1785 int offset
, last_offset
= 0;
1789 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1792 * Get the agi buffer first. It ensures lock ordering
1795 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1799 agi
= XFS_BUF_TO_AGI(agibp
);
1802 * Get the index into the agi hash table for the
1803 * list this inode will go on.
1805 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1807 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1808 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1809 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1811 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1813 * We're at the head of the list. Get the inode's
1814 * on-disk buffer to see if there is anyone after us
1815 * on the list. Only modify our next pointer if it
1816 * is not already NULLAGINO. This saves us the overhead
1817 * of dealing with the buffer when there is no need to
1820 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1823 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1824 error
, mp
->m_fsname
);
1827 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1828 ASSERT(next_agino
!= 0);
1829 if (next_agino
!= NULLAGINO
) {
1830 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1831 offset
= ip
->i_imap
.im_boffset
+
1832 offsetof(xfs_dinode_t
, di_next_unlinked
);
1833 xfs_trans_inode_buf(tp
, ibp
);
1834 xfs_trans_log_buf(tp
, ibp
, offset
,
1835 (offset
+ sizeof(xfs_agino_t
) - 1));
1836 xfs_inobp_check(mp
, ibp
);
1838 xfs_trans_brelse(tp
, ibp
);
1841 * Point the bucket head pointer at the next inode.
1843 ASSERT(next_agino
!= 0);
1844 ASSERT(next_agino
!= agino
);
1845 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1846 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1847 (sizeof(xfs_agino_t
) * bucket_index
);
1848 xfs_trans_log_buf(tp
, agibp
, offset
,
1849 (offset
+ sizeof(xfs_agino_t
) - 1));
1852 * We need to search the list for the inode being freed.
1854 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1856 while (next_agino
!= agino
) {
1858 * If the last inode wasn't the one pointing to
1859 * us, then release its buffer since we're not
1860 * going to do anything with it.
1862 if (last_ibp
!= NULL
) {
1863 xfs_trans_brelse(tp
, last_ibp
);
1865 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1866 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1867 &last_ibp
, &last_offset
, 0);
1870 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1871 error
, mp
->m_fsname
);
1874 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1875 ASSERT(next_agino
!= NULLAGINO
);
1876 ASSERT(next_agino
!= 0);
1879 * Now last_ibp points to the buffer previous to us on
1880 * the unlinked list. Pull us from the list.
1882 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1885 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1886 error
, mp
->m_fsname
);
1889 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1890 ASSERT(next_agino
!= 0);
1891 ASSERT(next_agino
!= agino
);
1892 if (next_agino
!= NULLAGINO
) {
1893 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1894 offset
= ip
->i_imap
.im_boffset
+
1895 offsetof(xfs_dinode_t
, di_next_unlinked
);
1896 xfs_trans_inode_buf(tp
, ibp
);
1897 xfs_trans_log_buf(tp
, ibp
, offset
,
1898 (offset
+ sizeof(xfs_agino_t
) - 1));
1899 xfs_inobp_check(mp
, ibp
);
1901 xfs_trans_brelse(tp
, ibp
);
1904 * Point the previous inode on the list to the next inode.
1906 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1907 ASSERT(next_agino
!= 0);
1908 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1909 xfs_trans_inode_buf(tp
, last_ibp
);
1910 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1911 (offset
+ sizeof(xfs_agino_t
) - 1));
1912 xfs_inobp_check(mp
, last_ibp
);
1919 xfs_inode_t
*free_ip
,
1923 xfs_mount_t
*mp
= free_ip
->i_mount
;
1924 int blks_per_cluster
;
1931 xfs_inode_log_item_t
*iip
;
1932 xfs_log_item_t
*lip
;
1933 struct xfs_perag
*pag
;
1935 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1936 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1937 blks_per_cluster
= 1;
1938 ninodes
= mp
->m_sb
.sb_inopblock
;
1939 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1941 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1942 mp
->m_sb
.sb_blocksize
;
1943 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1944 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1947 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1950 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1951 XFS_INO_TO_AGBNO(mp
, inum
));
1954 * We obtain and lock the backing buffer first in the process
1955 * here, as we have to ensure that any dirty inode that we
1956 * can't get the flush lock on is attached to the buffer.
1957 * If we scan the in-memory inodes first, then buffer IO can
1958 * complete before we get a lock on it, and hence we may fail
1959 * to mark all the active inodes on the buffer stale.
1961 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1962 mp
->m_bsize
* blks_per_cluster
,
1966 * Walk the inodes already attached to the buffer and mark them
1967 * stale. These will all have the flush locks held, so an
1968 * in-memory inode walk can't lock them.
1970 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
1972 if (lip
->li_type
== XFS_LI_INODE
) {
1973 iip
= (xfs_inode_log_item_t
*)lip
;
1974 ASSERT(iip
->ili_logged
== 1);
1975 lip
->li_cb
= xfs_istale_done
;
1976 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1977 &iip
->ili_flush_lsn
,
1978 &iip
->ili_item
.li_lsn
);
1979 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1982 lip
= lip
->li_bio_list
;
1986 * For each inode in memory attempt to add it to the inode
1987 * buffer and set it up for being staled on buffer IO
1988 * completion. This is safe as we've locked out tail pushing
1989 * and flushing by locking the buffer.
1991 * We have already marked every inode that was part of a
1992 * transaction stale above, which means there is no point in
1993 * even trying to lock them.
1995 for (i
= 0; i
< ninodes
; i
++) {
1996 read_lock(&pag
->pag_ici_lock
);
1997 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1998 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2000 /* Inode not in memory or stale, nothing to do */
2001 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2002 read_unlock(&pag
->pag_ici_lock
);
2006 /* don't try to lock/unlock the current inode */
2007 if (ip
!= free_ip
&&
2008 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2009 read_unlock(&pag
->pag_ici_lock
);
2012 read_unlock(&pag
->pag_ici_lock
);
2014 if (!xfs_iflock_nowait(ip
)) {
2016 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2020 xfs_iflags_set(ip
, XFS_ISTALE
);
2021 if (xfs_inode_clean(ip
)) {
2022 ASSERT(ip
!= free_ip
);
2024 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2030 /* inode with unlogged changes only */
2031 ASSERT(ip
!= free_ip
);
2032 ip
->i_update_core
= 0;
2034 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2039 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2040 iip
->ili_format
.ilf_fields
= 0;
2041 iip
->ili_logged
= 1;
2042 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2043 &iip
->ili_item
.li_lsn
);
2045 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2049 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2053 xfs_trans_stale_inode_buf(tp
, bp
);
2054 xfs_trans_binval(tp
, bp
);
2061 * This is called to return an inode to the inode free list.
2062 * The inode should already be truncated to 0 length and have
2063 * no pages associated with it. This routine also assumes that
2064 * the inode is already a part of the transaction.
2066 * The on-disk copy of the inode will have been added to the list
2067 * of unlinked inodes in the AGI. We need to remove the inode from
2068 * that list atomically with respect to freeing it here.
2074 xfs_bmap_free_t
*flist
)
2078 xfs_ino_t first_ino
;
2082 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2083 ASSERT(ip
->i_transp
== tp
);
2084 ASSERT(ip
->i_d
.di_nlink
== 0);
2085 ASSERT(ip
->i_d
.di_nextents
== 0);
2086 ASSERT(ip
->i_d
.di_anextents
== 0);
2087 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2088 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2089 ASSERT(ip
->i_d
.di_nblocks
== 0);
2092 * Pull the on-disk inode from the AGI unlinked list.
2094 error
= xfs_iunlink_remove(tp
, ip
);
2099 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2103 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2104 ip
->i_d
.di_flags
= 0;
2105 ip
->i_d
.di_dmevmask
= 0;
2106 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2107 ip
->i_df
.if_ext_max
=
2108 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2109 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2110 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2112 * Bump the generation count so no one will be confused
2113 * by reincarnations of this inode.
2117 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2119 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
2124 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2125 * from picking up this inode when it is reclaimed (its incore state
2126 * initialzed but not flushed to disk yet). The in-core di_mode is
2127 * already cleared and a corresponding transaction logged.
2128 * The hack here just synchronizes the in-core to on-disk
2129 * di_mode value in advance before the actual inode sync to disk.
2130 * This is OK because the inode is already unlinked and would never
2131 * change its di_mode again for this inode generation.
2132 * This is a temporary hack that would require a proper fix
2138 xfs_ifree_cluster(ip
, tp
, first_ino
);
2145 * Reallocate the space for if_broot based on the number of records
2146 * being added or deleted as indicated in rec_diff. Move the records
2147 * and pointers in if_broot to fit the new size. When shrinking this
2148 * will eliminate holes between the records and pointers created by
2149 * the caller. When growing this will create holes to be filled in
2152 * The caller must not request to add more records than would fit in
2153 * the on-disk inode root. If the if_broot is currently NULL, then
2154 * if we adding records one will be allocated. The caller must also
2155 * not request that the number of records go below zero, although
2156 * it can go to zero.
2158 * ip -- the inode whose if_broot area is changing
2159 * ext_diff -- the change in the number of records, positive or negative,
2160 * requested for the if_broot array.
2168 struct xfs_mount
*mp
= ip
->i_mount
;
2171 struct xfs_btree_block
*new_broot
;
2178 * Handle the degenerate case quietly.
2180 if (rec_diff
== 0) {
2184 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2187 * If there wasn't any memory allocated before, just
2188 * allocate it now and get out.
2190 if (ifp
->if_broot_bytes
== 0) {
2191 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2192 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2193 ifp
->if_broot_bytes
= (int)new_size
;
2198 * If there is already an existing if_broot, then we need
2199 * to realloc() it and shift the pointers to their new
2200 * location. The records don't change location because
2201 * they are kept butted up against the btree block header.
2203 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2204 new_max
= cur_max
+ rec_diff
;
2205 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2206 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2207 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2208 KM_SLEEP
| KM_NOFS
);
2209 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2210 ifp
->if_broot_bytes
);
2211 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2213 ifp
->if_broot_bytes
= (int)new_size
;
2214 ASSERT(ifp
->if_broot_bytes
<=
2215 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2216 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2221 * rec_diff is less than 0. In this case, we are shrinking the
2222 * if_broot buffer. It must already exist. If we go to zero
2223 * records, just get rid of the root and clear the status bit.
2225 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2226 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2227 new_max
= cur_max
+ rec_diff
;
2228 ASSERT(new_max
>= 0);
2230 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2234 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2236 * First copy over the btree block header.
2238 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2241 ifp
->if_flags
&= ~XFS_IFBROOT
;
2245 * Only copy the records and pointers if there are any.
2249 * First copy the records.
2251 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2252 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2253 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2256 * Then copy the pointers.
2258 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2259 ifp
->if_broot_bytes
);
2260 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2262 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2264 kmem_free(ifp
->if_broot
);
2265 ifp
->if_broot
= new_broot
;
2266 ifp
->if_broot_bytes
= (int)new_size
;
2267 ASSERT(ifp
->if_broot_bytes
<=
2268 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2274 * This is called when the amount of space needed for if_data
2275 * is increased or decreased. The change in size is indicated by
2276 * the number of bytes that need to be added or deleted in the
2277 * byte_diff parameter.
2279 * If the amount of space needed has decreased below the size of the
2280 * inline buffer, then switch to using the inline buffer. Otherwise,
2281 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2282 * to what is needed.
2284 * ip -- the inode whose if_data area is changing
2285 * byte_diff -- the change in the number of bytes, positive or negative,
2286 * requested for the if_data array.
2298 if (byte_diff
== 0) {
2302 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2303 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2304 ASSERT(new_size
>= 0);
2306 if (new_size
== 0) {
2307 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2308 kmem_free(ifp
->if_u1
.if_data
);
2310 ifp
->if_u1
.if_data
= NULL
;
2312 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2314 * If the valid extents/data can fit in if_inline_ext/data,
2315 * copy them from the malloc'd vector and free it.
2317 if (ifp
->if_u1
.if_data
== NULL
) {
2318 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2319 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2320 ASSERT(ifp
->if_real_bytes
!= 0);
2321 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2323 kmem_free(ifp
->if_u1
.if_data
);
2324 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2329 * Stuck with malloc/realloc.
2330 * For inline data, the underlying buffer must be
2331 * a multiple of 4 bytes in size so that it can be
2332 * logged and stay on word boundaries. We enforce
2335 real_size
= roundup(new_size
, 4);
2336 if (ifp
->if_u1
.if_data
== NULL
) {
2337 ASSERT(ifp
->if_real_bytes
== 0);
2338 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2339 KM_SLEEP
| KM_NOFS
);
2340 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2342 * Only do the realloc if the underlying size
2343 * is really changing.
2345 if (ifp
->if_real_bytes
!= real_size
) {
2346 ifp
->if_u1
.if_data
=
2347 kmem_realloc(ifp
->if_u1
.if_data
,
2350 KM_SLEEP
| KM_NOFS
);
2353 ASSERT(ifp
->if_real_bytes
== 0);
2354 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2355 KM_SLEEP
| KM_NOFS
);
2356 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2360 ifp
->if_real_bytes
= real_size
;
2361 ifp
->if_bytes
= new_size
;
2362 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2372 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2373 if (ifp
->if_broot
!= NULL
) {
2374 kmem_free(ifp
->if_broot
);
2375 ifp
->if_broot
= NULL
;
2379 * If the format is local, then we can't have an extents
2380 * array so just look for an inline data array. If we're
2381 * not local then we may or may not have an extents list,
2382 * so check and free it up if we do.
2384 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2385 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2386 (ifp
->if_u1
.if_data
!= NULL
)) {
2387 ASSERT(ifp
->if_real_bytes
!= 0);
2388 kmem_free(ifp
->if_u1
.if_data
);
2389 ifp
->if_u1
.if_data
= NULL
;
2390 ifp
->if_real_bytes
= 0;
2392 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2393 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2394 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2395 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2396 ASSERT(ifp
->if_real_bytes
!= 0);
2397 xfs_iext_destroy(ifp
);
2399 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2400 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2401 ASSERT(ifp
->if_real_bytes
== 0);
2402 if (whichfork
== XFS_ATTR_FORK
) {
2403 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2409 * This is called to unpin an inode. The caller must have the inode locked
2410 * in at least shared mode so that the buffer cannot be subsequently pinned
2411 * once someone is waiting for it to be unpinned.
2415 struct xfs_inode
*ip
)
2417 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2419 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2421 /* Give the log a push to start the unpinning I/O */
2422 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2428 struct xfs_inode
*ip
)
2430 if (xfs_ipincount(ip
)) {
2431 xfs_iunpin_nowait(ip
);
2432 wait_event(ip
->i_ipin_wait
, (xfs_ipincount(ip
) == 0));
2437 * xfs_iextents_copy()
2439 * This is called to copy the REAL extents (as opposed to the delayed
2440 * allocation extents) from the inode into the given buffer. It
2441 * returns the number of bytes copied into the buffer.
2443 * If there are no delayed allocation extents, then we can just
2444 * memcpy() the extents into the buffer. Otherwise, we need to
2445 * examine each extent in turn and skip those which are delayed.
2457 xfs_fsblock_t start_block
;
2459 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2460 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2461 ASSERT(ifp
->if_bytes
> 0);
2463 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2464 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2468 * There are some delayed allocation extents in the
2469 * inode, so copy the extents one at a time and skip
2470 * the delayed ones. There must be at least one
2471 * non-delayed extent.
2474 for (i
= 0; i
< nrecs
; i
++) {
2475 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2476 start_block
= xfs_bmbt_get_startblock(ep
);
2477 if (isnullstartblock(start_block
)) {
2479 * It's a delayed allocation extent, so skip it.
2484 /* Translate to on disk format */
2485 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2486 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2490 ASSERT(copied
!= 0);
2491 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2493 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2497 * Each of the following cases stores data into the same region
2498 * of the on-disk inode, so only one of them can be valid at
2499 * any given time. While it is possible to have conflicting formats
2500 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2501 * in EXTENTS format, this can only happen when the fork has
2502 * changed formats after being modified but before being flushed.
2503 * In these cases, the format always takes precedence, because the
2504 * format indicates the current state of the fork.
2511 xfs_inode_log_item_t
*iip
,
2518 #ifdef XFS_TRANS_DEBUG
2521 static const short brootflag
[2] =
2522 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2523 static const short dataflag
[2] =
2524 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2525 static const short extflag
[2] =
2526 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2530 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2532 * This can happen if we gave up in iformat in an error path,
2533 * for the attribute fork.
2536 ASSERT(whichfork
== XFS_ATTR_FORK
);
2539 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2541 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2542 case XFS_DINODE_FMT_LOCAL
:
2543 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2544 (ifp
->if_bytes
> 0)) {
2545 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2546 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2547 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2551 case XFS_DINODE_FMT_EXTENTS
:
2552 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2553 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2554 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2555 (ifp
->if_bytes
== 0));
2556 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2557 (ifp
->if_bytes
> 0));
2558 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2559 (ifp
->if_bytes
> 0)) {
2560 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2561 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2566 case XFS_DINODE_FMT_BTREE
:
2567 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2568 (ifp
->if_broot_bytes
> 0)) {
2569 ASSERT(ifp
->if_broot
!= NULL
);
2570 ASSERT(ifp
->if_broot_bytes
<=
2571 (XFS_IFORK_SIZE(ip
, whichfork
) +
2572 XFS_BROOT_SIZE_ADJ
));
2573 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2574 (xfs_bmdr_block_t
*)cp
,
2575 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2579 case XFS_DINODE_FMT_DEV
:
2580 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2581 ASSERT(whichfork
== XFS_DATA_FORK
);
2582 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2586 case XFS_DINODE_FMT_UUID
:
2587 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2588 ASSERT(whichfork
== XFS_DATA_FORK
);
2589 memcpy(XFS_DFORK_DPTR(dip
),
2590 &ip
->i_df
.if_u2
.if_uuid
,
2606 xfs_mount_t
*mp
= ip
->i_mount
;
2607 struct xfs_perag
*pag
;
2608 unsigned long first_index
, mask
;
2609 unsigned long inodes_per_cluster
;
2611 xfs_inode_t
**ilist
;
2618 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2620 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2621 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2622 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2626 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2627 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2628 read_lock(&pag
->pag_ici_lock
);
2629 /* really need a gang lookup range call here */
2630 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2631 first_index
, inodes_per_cluster
);
2635 for (i
= 0; i
< nr_found
; i
++) {
2639 /* if the inode lies outside this cluster, we're done. */
2640 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
2643 * Do an un-protected check to see if the inode is dirty and
2644 * is a candidate for flushing. These checks will be repeated
2645 * later after the appropriate locks are acquired.
2647 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2651 * Try to get locks. If any are unavailable or it is pinned,
2652 * then this inode cannot be flushed and is skipped.
2655 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2657 if (!xfs_iflock_nowait(iq
)) {
2658 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2661 if (xfs_ipincount(iq
)) {
2663 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2668 * arriving here means that this inode can be flushed. First
2669 * re-check that it's dirty before flushing.
2671 if (!xfs_inode_clean(iq
)) {
2673 error
= xfs_iflush_int(iq
, bp
);
2675 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2676 goto cluster_corrupt_out
;
2682 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2686 XFS_STATS_INC(xs_icluster_flushcnt
);
2687 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2691 read_unlock(&pag
->pag_ici_lock
);
2698 cluster_corrupt_out
:
2700 * Corruption detected in the clustering loop. Invalidate the
2701 * inode buffer and shut down the filesystem.
2703 read_unlock(&pag
->pag_ici_lock
);
2705 * Clean up the buffer. If it was B_DELWRI, just release it --
2706 * brelse can handle it with no problems. If not, shut down the
2707 * filesystem before releasing the buffer.
2709 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2713 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2715 if (!bufwasdelwri
) {
2717 * Just like incore_relse: if we have b_iodone functions,
2718 * mark the buffer as an error and call them. Otherwise
2719 * mark it as stale and brelse.
2721 if (XFS_BUF_IODONE_FUNC(bp
)) {
2724 XFS_BUF_ERROR(bp
,EIO
);
2733 * Unlocks the flush lock
2735 xfs_iflush_abort(iq
);
2738 return XFS_ERROR(EFSCORRUPTED
);
2742 * xfs_iflush() will write a modified inode's changes out to the
2743 * inode's on disk home. The caller must have the inode lock held
2744 * in at least shared mode and the inode flush completion must be
2745 * active as well. The inode lock will still be held upon return from
2746 * the call and the caller is free to unlock it.
2747 * The inode flush will be completed when the inode reaches the disk.
2748 * The flags indicate how the inode's buffer should be written out.
2755 xfs_inode_log_item_t
*iip
;
2761 XFS_STATS_INC(xs_iflush_count
);
2763 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2764 ASSERT(!completion_done(&ip
->i_flush
));
2765 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2766 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2772 * We can't flush the inode until it is unpinned, so wait for it if we
2773 * are allowed to block. We know noone new can pin it, because we are
2774 * holding the inode lock shared and you need to hold it exclusively to
2777 * If we are not allowed to block, force the log out asynchronously so
2778 * that when we come back the inode will be unpinned. If other inodes
2779 * in the same cluster are dirty, they will probably write the inode
2780 * out for us if they occur after the log force completes.
2782 if (!(flags
& SYNC_WAIT
) && xfs_ipincount(ip
)) {
2783 xfs_iunpin_nowait(ip
);
2787 xfs_iunpin_wait(ip
);
2790 * For stale inodes we cannot rely on the backing buffer remaining
2791 * stale in cache for the remaining life of the stale inode and so
2792 * xfs_itobp() below may give us a buffer that no longer contains
2793 * inodes below. We have to check this after ensuring the inode is
2794 * unpinned so that it is safe to reclaim the stale inode after the
2797 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2803 * This may have been unpinned because the filesystem is shutting
2804 * down forcibly. If that's the case we must not write this inode
2805 * to disk, because the log record didn't make it to disk!
2807 if (XFS_FORCED_SHUTDOWN(mp
)) {
2808 ip
->i_update_core
= 0;
2810 iip
->ili_format
.ilf_fields
= 0;
2812 return XFS_ERROR(EIO
);
2816 * Get the buffer containing the on-disk inode.
2818 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2819 (flags
& SYNC_WAIT
) ? XBF_LOCK
: XBF_TRYLOCK
);
2826 * First flush out the inode that xfs_iflush was called with.
2828 error
= xfs_iflush_int(ip
, bp
);
2833 * If the buffer is pinned then push on the log now so we won't
2834 * get stuck waiting in the write for too long.
2836 if (XFS_BUF_ISPINNED(bp
))
2837 xfs_log_force(mp
, 0);
2841 * see if other inodes can be gathered into this write
2843 error
= xfs_iflush_cluster(ip
, bp
);
2845 goto cluster_corrupt_out
;
2847 if (flags
& SYNC_WAIT
)
2848 error
= xfs_bwrite(mp
, bp
);
2850 xfs_bdwrite(mp
, bp
);
2855 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2856 cluster_corrupt_out
:
2858 * Unlocks the flush lock
2860 xfs_iflush_abort(ip
);
2861 return XFS_ERROR(EFSCORRUPTED
);
2870 xfs_inode_log_item_t
*iip
;
2873 #ifdef XFS_TRANS_DEBUG
2877 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2878 ASSERT(!completion_done(&ip
->i_flush
));
2879 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2880 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2885 /* set *dip = inode's place in the buffer */
2886 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2889 * Clear i_update_core before copying out the data.
2890 * This is for coordination with our timestamp updates
2891 * that don't hold the inode lock. They will always
2892 * update the timestamps BEFORE setting i_update_core,
2893 * so if we clear i_update_core after they set it we
2894 * are guaranteed to see their updates to the timestamps.
2895 * I believe that this depends on strongly ordered memory
2896 * semantics, but we have that. We use the SYNCHRONIZE
2897 * macro to make sure that the compiler does not reorder
2898 * the i_update_core access below the data copy below.
2900 ip
->i_update_core
= 0;
2904 * Make sure to get the latest timestamps from the Linux inode.
2906 xfs_synchronize_times(ip
);
2908 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
2909 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2910 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2911 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2912 ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2915 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2916 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2917 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2918 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2919 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2922 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
2924 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2925 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2926 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2927 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2928 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2932 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
2934 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2935 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2936 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2937 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2938 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2939 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2944 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2945 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2946 XFS_RANDOM_IFLUSH_5
)) {
2947 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2948 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2950 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2955 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2956 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2957 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2958 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2959 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2963 * bump the flush iteration count, used to detect flushes which
2964 * postdate a log record during recovery.
2967 ip
->i_d
.di_flushiter
++;
2970 * Copy the dirty parts of the inode into the on-disk
2971 * inode. We always copy out the core of the inode,
2972 * because if the inode is dirty at all the core must
2975 xfs_dinode_to_disk(dip
, &ip
->i_d
);
2977 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2978 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
2979 ip
->i_d
.di_flushiter
= 0;
2982 * If this is really an old format inode and the superblock version
2983 * has not been updated to support only new format inodes, then
2984 * convert back to the old inode format. If the superblock version
2985 * has been updated, then make the conversion permanent.
2987 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
2988 if (ip
->i_d
.di_version
== 1) {
2989 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
2993 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
2994 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
2997 * The superblock version has already been bumped,
2998 * so just make the conversion to the new inode
3001 ip
->i_d
.di_version
= 2;
3002 dip
->di_version
= 2;
3003 ip
->i_d
.di_onlink
= 0;
3005 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3006 memset(&(dip
->di_pad
[0]), 0,
3007 sizeof(dip
->di_pad
));
3008 ASSERT(ip
->i_d
.di_projid
== 0);
3012 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3013 if (XFS_IFORK_Q(ip
))
3014 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3015 xfs_inobp_check(mp
, bp
);
3018 * We've recorded everything logged in the inode, so we'd
3019 * like to clear the ilf_fields bits so we don't log and
3020 * flush things unnecessarily. However, we can't stop
3021 * logging all this information until the data we've copied
3022 * into the disk buffer is written to disk. If we did we might
3023 * overwrite the copy of the inode in the log with all the
3024 * data after re-logging only part of it, and in the face of
3025 * a crash we wouldn't have all the data we need to recover.
3027 * What we do is move the bits to the ili_last_fields field.
3028 * When logging the inode, these bits are moved back to the
3029 * ilf_fields field. In the xfs_iflush_done() routine we
3030 * clear ili_last_fields, since we know that the information
3031 * those bits represent is permanently on disk. As long as
3032 * the flush completes before the inode is logged again, then
3033 * both ilf_fields and ili_last_fields will be cleared.
3035 * We can play with the ilf_fields bits here, because the inode
3036 * lock must be held exclusively in order to set bits there
3037 * and the flush lock protects the ili_last_fields bits.
3038 * Set ili_logged so the flush done
3039 * routine can tell whether or not to look in the AIL.
3040 * Also, store the current LSN of the inode so that we can tell
3041 * whether the item has moved in the AIL from xfs_iflush_done().
3042 * In order to read the lsn we need the AIL lock, because
3043 * it is a 64 bit value that cannot be read atomically.
3045 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3046 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3047 iip
->ili_format
.ilf_fields
= 0;
3048 iip
->ili_logged
= 1;
3050 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3051 &iip
->ili_item
.li_lsn
);
3054 * Attach the function xfs_iflush_done to the inode's
3055 * buffer. This will remove the inode from the AIL
3056 * and unlock the inode's flush lock when the inode is
3057 * completely written to disk.
3059 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3061 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3062 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3065 * We're flushing an inode which is not in the AIL and has
3066 * not been logged but has i_update_core set. For this
3067 * case we can use a B_DELWRI flush and immediately drop
3068 * the inode flush lock because we can avoid the whole
3069 * AIL state thing. It's OK to drop the flush lock now,
3070 * because we've already locked the buffer and to do anything
3071 * you really need both.
3074 ASSERT(iip
->ili_logged
== 0);
3075 ASSERT(iip
->ili_last_fields
== 0);
3076 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3084 return XFS_ERROR(EFSCORRUPTED
);
3088 * Return a pointer to the extent record at file index idx.
3090 xfs_bmbt_rec_host_t
*
3092 xfs_ifork_t
*ifp
, /* inode fork pointer */
3093 xfs_extnum_t idx
) /* index of target extent */
3096 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3097 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3098 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3099 xfs_ext_irec_t
*erp
; /* irec pointer */
3100 int erp_idx
= 0; /* irec index */
3101 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3103 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3104 return &erp
->er_extbuf
[page_idx
];
3105 } else if (ifp
->if_bytes
) {
3106 return &ifp
->if_u1
.if_extents
[idx
];
3113 * Insert new item(s) into the extent records for incore inode
3114 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3118 xfs_inode_t
*ip
, /* incore inode pointer */
3119 xfs_extnum_t idx
, /* starting index of new items */
3120 xfs_extnum_t count
, /* number of inserted items */
3121 xfs_bmbt_irec_t
*new, /* items to insert */
3122 int state
) /* type of extent conversion */
3124 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3125 xfs_extnum_t i
; /* extent record index */
3127 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
3129 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3130 xfs_iext_add(ifp
, idx
, count
);
3131 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3132 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3136 * This is called when the amount of space required for incore file
3137 * extents needs to be increased. The ext_diff parameter stores the
3138 * number of new extents being added and the idx parameter contains
3139 * the extent index where the new extents will be added. If the new
3140 * extents are being appended, then we just need to (re)allocate and
3141 * initialize the space. Otherwise, if the new extents are being
3142 * inserted into the middle of the existing entries, a bit more work
3143 * is required to make room for the new extents to be inserted. The
3144 * caller is responsible for filling in the new extent entries upon
3149 xfs_ifork_t
*ifp
, /* inode fork pointer */
3150 xfs_extnum_t idx
, /* index to begin adding exts */
3151 int ext_diff
) /* number of extents to add */
3153 int byte_diff
; /* new bytes being added */
3154 int new_size
; /* size of extents after adding */
3155 xfs_extnum_t nextents
; /* number of extents in file */
3157 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3158 ASSERT((idx
>= 0) && (idx
<= nextents
));
3159 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3160 new_size
= ifp
->if_bytes
+ byte_diff
;
3162 * If the new number of extents (nextents + ext_diff)
3163 * fits inside the inode, then continue to use the inline
3166 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3167 if (idx
< nextents
) {
3168 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3169 &ifp
->if_u2
.if_inline_ext
[idx
],
3170 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3171 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3173 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3174 ifp
->if_real_bytes
= 0;
3175 ifp
->if_lastex
= nextents
+ ext_diff
;
3178 * Otherwise use a linear (direct) extent list.
3179 * If the extents are currently inside the inode,
3180 * xfs_iext_realloc_direct will switch us from
3181 * inline to direct extent allocation mode.
3183 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3184 xfs_iext_realloc_direct(ifp
, new_size
);
3185 if (idx
< nextents
) {
3186 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3187 &ifp
->if_u1
.if_extents
[idx
],
3188 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3189 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3192 /* Indirection array */
3194 xfs_ext_irec_t
*erp
;
3198 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3199 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3200 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3202 xfs_iext_irec_init(ifp
);
3203 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3204 erp
= ifp
->if_u1
.if_ext_irec
;
3206 /* Extents fit in target extent page */
3207 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3208 if (page_idx
< erp
->er_extcount
) {
3209 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3210 &erp
->er_extbuf
[page_idx
],
3211 (erp
->er_extcount
- page_idx
) *
3212 sizeof(xfs_bmbt_rec_t
));
3213 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3215 erp
->er_extcount
+= ext_diff
;
3216 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3218 /* Insert a new extent page */
3220 xfs_iext_add_indirect_multi(ifp
,
3221 erp_idx
, page_idx
, ext_diff
);
3224 * If extent(s) are being appended to the last page in
3225 * the indirection array and the new extent(s) don't fit
3226 * in the page, then erp is NULL and erp_idx is set to
3227 * the next index needed in the indirection array.
3230 int count
= ext_diff
;
3233 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3234 erp
->er_extcount
= count
;
3235 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3242 ifp
->if_bytes
= new_size
;
3246 * This is called when incore extents are being added to the indirection
3247 * array and the new extents do not fit in the target extent list. The
3248 * erp_idx parameter contains the irec index for the target extent list
3249 * in the indirection array, and the idx parameter contains the extent
3250 * index within the list. The number of extents being added is stored
3251 * in the count parameter.
3253 * |-------| |-------|
3254 * | | | | idx - number of extents before idx
3256 * | | | | count - number of extents being inserted at idx
3257 * |-------| |-------|
3258 * | count | | nex2 | nex2 - number of extents after idx + count
3259 * |-------| |-------|
3262 xfs_iext_add_indirect_multi(
3263 xfs_ifork_t
*ifp
, /* inode fork pointer */
3264 int erp_idx
, /* target extent irec index */
3265 xfs_extnum_t idx
, /* index within target list */
3266 int count
) /* new extents being added */
3268 int byte_diff
; /* new bytes being added */
3269 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3270 xfs_extnum_t ext_diff
; /* number of extents to add */
3271 xfs_extnum_t ext_cnt
; /* new extents still needed */
3272 xfs_extnum_t nex2
; /* extents after idx + count */
3273 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3274 int nlists
; /* number of irec's (lists) */
3276 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3277 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3278 nex2
= erp
->er_extcount
- idx
;
3279 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3282 * Save second part of target extent list
3283 * (all extents past */
3285 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3286 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3287 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3288 erp
->er_extcount
-= nex2
;
3289 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3290 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3294 * Add the new extents to the end of the target
3295 * list, then allocate new irec record(s) and
3296 * extent buffer(s) as needed to store the rest
3297 * of the new extents.
3300 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3302 erp
->er_extcount
+= ext_diff
;
3303 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3304 ext_cnt
-= ext_diff
;
3308 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3309 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3310 erp
->er_extcount
= ext_diff
;
3311 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3312 ext_cnt
-= ext_diff
;
3315 /* Add nex2 extents back to indirection array */
3317 xfs_extnum_t ext_avail
;
3320 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3321 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3324 * If nex2 extents fit in the current page, append
3325 * nex2_ep after the new extents.
3327 if (nex2
<= ext_avail
) {
3328 i
= erp
->er_extcount
;
3331 * Otherwise, check if space is available in the
3334 else if ((erp_idx
< nlists
- 1) &&
3335 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3336 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3339 /* Create a hole for nex2 extents */
3340 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3341 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3344 * Final choice, create a new extent page for
3349 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3351 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3353 erp
->er_extcount
+= nex2
;
3354 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3359 * This is called when the amount of space required for incore file
3360 * extents needs to be decreased. The ext_diff parameter stores the
3361 * number of extents to be removed and the idx parameter contains
3362 * the extent index where the extents will be removed from.
3364 * If the amount of space needed has decreased below the linear
3365 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3366 * extent array. Otherwise, use kmem_realloc() to adjust the
3367 * size to what is needed.
3371 xfs_inode_t
*ip
, /* incore inode pointer */
3372 xfs_extnum_t idx
, /* index to begin removing exts */
3373 int ext_diff
, /* number of extents to remove */
3374 int state
) /* type of extent conversion */
3376 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3377 xfs_extnum_t nextents
; /* number of extents in file */
3378 int new_size
; /* size of extents after removal */
3380 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3382 ASSERT(ext_diff
> 0);
3383 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3384 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3386 if (new_size
== 0) {
3387 xfs_iext_destroy(ifp
);
3388 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3389 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3390 } else if (ifp
->if_real_bytes
) {
3391 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3393 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3395 ifp
->if_bytes
= new_size
;
3399 * This removes ext_diff extents from the inline buffer, beginning
3400 * at extent index idx.
3403 xfs_iext_remove_inline(
3404 xfs_ifork_t
*ifp
, /* inode fork pointer */
3405 xfs_extnum_t idx
, /* index to begin removing exts */
3406 int ext_diff
) /* number of extents to remove */
3408 int nextents
; /* number of extents in file */
3410 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3411 ASSERT(idx
< XFS_INLINE_EXTS
);
3412 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3413 ASSERT(((nextents
- ext_diff
) > 0) &&
3414 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3416 if (idx
+ ext_diff
< nextents
) {
3417 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3418 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3419 (nextents
- (idx
+ ext_diff
)) *
3420 sizeof(xfs_bmbt_rec_t
));
3421 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3422 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3424 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3425 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3430 * This removes ext_diff extents from a linear (direct) extent list,
3431 * beginning at extent index idx. If the extents are being removed
3432 * from the end of the list (ie. truncate) then we just need to re-
3433 * allocate the list to remove the extra space. Otherwise, if the
3434 * extents are being removed from the middle of the existing extent
3435 * entries, then we first need to move the extent records beginning
3436 * at idx + ext_diff up in the list to overwrite the records being
3437 * removed, then remove the extra space via kmem_realloc.
3440 xfs_iext_remove_direct(
3441 xfs_ifork_t
*ifp
, /* inode fork pointer */
3442 xfs_extnum_t idx
, /* index to begin removing exts */
3443 int ext_diff
) /* number of extents to remove */
3445 xfs_extnum_t nextents
; /* number of extents in file */
3446 int new_size
; /* size of extents after removal */
3448 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3449 new_size
= ifp
->if_bytes
-
3450 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3451 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3453 if (new_size
== 0) {
3454 xfs_iext_destroy(ifp
);
3457 /* Move extents up in the list (if needed) */
3458 if (idx
+ ext_diff
< nextents
) {
3459 memmove(&ifp
->if_u1
.if_extents
[idx
],
3460 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3461 (nextents
- (idx
+ ext_diff
)) *
3462 sizeof(xfs_bmbt_rec_t
));
3464 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3465 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3467 * Reallocate the direct extent list. If the extents
3468 * will fit inside the inode then xfs_iext_realloc_direct
3469 * will switch from direct to inline extent allocation
3472 xfs_iext_realloc_direct(ifp
, new_size
);
3473 ifp
->if_bytes
= new_size
;
3477 * This is called when incore extents are being removed from the
3478 * indirection array and the extents being removed span multiple extent
3479 * buffers. The idx parameter contains the file extent index where we
3480 * want to begin removing extents, and the count parameter contains
3481 * how many extents need to be removed.
3483 * |-------| |-------|
3484 * | nex1 | | | nex1 - number of extents before idx
3485 * |-------| | count |
3486 * | | | | count - number of extents being removed at idx
3487 * | count | |-------|
3488 * | | | nex2 | nex2 - number of extents after idx + count
3489 * |-------| |-------|
3492 xfs_iext_remove_indirect(
3493 xfs_ifork_t
*ifp
, /* inode fork pointer */
3494 xfs_extnum_t idx
, /* index to begin removing extents */
3495 int count
) /* number of extents to remove */
3497 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3498 int erp_idx
= 0; /* indirection array index */
3499 xfs_extnum_t ext_cnt
; /* extents left to remove */
3500 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3501 xfs_extnum_t nex1
; /* number of extents before idx */
3502 xfs_extnum_t nex2
; /* extents after idx + count */
3503 int page_idx
= idx
; /* index in target extent list */
3505 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3506 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3507 ASSERT(erp
!= NULL
);
3511 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3512 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3514 * Check for deletion of entire list;
3515 * xfs_iext_irec_remove() updates extent offsets.
3517 if (ext_diff
== erp
->er_extcount
) {
3518 xfs_iext_irec_remove(ifp
, erp_idx
);
3519 ext_cnt
-= ext_diff
;
3522 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3524 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3531 /* Move extents up (if needed) */
3533 memmove(&erp
->er_extbuf
[nex1
],
3534 &erp
->er_extbuf
[nex1
+ ext_diff
],
3535 nex2
* sizeof(xfs_bmbt_rec_t
));
3537 /* Zero out rest of page */
3538 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3539 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3540 /* Update remaining counters */
3541 erp
->er_extcount
-= ext_diff
;
3542 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3543 ext_cnt
-= ext_diff
;
3548 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3549 xfs_iext_irec_compact(ifp
);
3553 * Create, destroy, or resize a linear (direct) block of extents.
3556 xfs_iext_realloc_direct(
3557 xfs_ifork_t
*ifp
, /* inode fork pointer */
3558 int new_size
) /* new size of extents */
3560 int rnew_size
; /* real new size of extents */
3562 rnew_size
= new_size
;
3564 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3565 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3566 (new_size
!= ifp
->if_real_bytes
)));
3568 /* Free extent records */
3569 if (new_size
== 0) {
3570 xfs_iext_destroy(ifp
);
3572 /* Resize direct extent list and zero any new bytes */
3573 else if (ifp
->if_real_bytes
) {
3574 /* Check if extents will fit inside the inode */
3575 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3576 xfs_iext_direct_to_inline(ifp
, new_size
/
3577 (uint
)sizeof(xfs_bmbt_rec_t
));
3578 ifp
->if_bytes
= new_size
;
3581 if (!is_power_of_2(new_size
)){
3582 rnew_size
= roundup_pow_of_two(new_size
);
3584 if (rnew_size
!= ifp
->if_real_bytes
) {
3585 ifp
->if_u1
.if_extents
=
3586 kmem_realloc(ifp
->if_u1
.if_extents
,
3588 ifp
->if_real_bytes
, KM_NOFS
);
3590 if (rnew_size
> ifp
->if_real_bytes
) {
3591 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3592 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3593 rnew_size
- ifp
->if_real_bytes
);
3597 * Switch from the inline extent buffer to a direct
3598 * extent list. Be sure to include the inline extent
3599 * bytes in new_size.
3602 new_size
+= ifp
->if_bytes
;
3603 if (!is_power_of_2(new_size
)) {
3604 rnew_size
= roundup_pow_of_two(new_size
);
3606 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3608 ifp
->if_real_bytes
= rnew_size
;
3609 ifp
->if_bytes
= new_size
;
3613 * Switch from linear (direct) extent records to inline buffer.
3616 xfs_iext_direct_to_inline(
3617 xfs_ifork_t
*ifp
, /* inode fork pointer */
3618 xfs_extnum_t nextents
) /* number of extents in file */
3620 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3621 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3623 * The inline buffer was zeroed when we switched
3624 * from inline to direct extent allocation mode,
3625 * so we don't need to clear it here.
3627 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3628 nextents
* sizeof(xfs_bmbt_rec_t
));
3629 kmem_free(ifp
->if_u1
.if_extents
);
3630 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3631 ifp
->if_real_bytes
= 0;
3635 * Switch from inline buffer to linear (direct) extent records.
3636 * new_size should already be rounded up to the next power of 2
3637 * by the caller (when appropriate), so use new_size as it is.
3638 * However, since new_size may be rounded up, we can't update
3639 * if_bytes here. It is the caller's responsibility to update
3640 * if_bytes upon return.
3643 xfs_iext_inline_to_direct(
3644 xfs_ifork_t
*ifp
, /* inode fork pointer */
3645 int new_size
) /* number of extents in file */
3647 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3648 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3649 if (ifp
->if_bytes
) {
3650 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3652 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3653 sizeof(xfs_bmbt_rec_t
));
3655 ifp
->if_real_bytes
= new_size
;
3659 * Resize an extent indirection array to new_size bytes.
3662 xfs_iext_realloc_indirect(
3663 xfs_ifork_t
*ifp
, /* inode fork pointer */
3664 int new_size
) /* new indirection array size */
3666 int nlists
; /* number of irec's (ex lists) */
3667 int size
; /* current indirection array size */
3669 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3670 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3671 size
= nlists
* sizeof(xfs_ext_irec_t
);
3672 ASSERT(ifp
->if_real_bytes
);
3673 ASSERT((new_size
>= 0) && (new_size
!= size
));
3674 if (new_size
== 0) {
3675 xfs_iext_destroy(ifp
);
3677 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3678 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3679 new_size
, size
, KM_NOFS
);
3684 * Switch from indirection array to linear (direct) extent allocations.
3687 xfs_iext_indirect_to_direct(
3688 xfs_ifork_t
*ifp
) /* inode fork pointer */
3690 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3691 xfs_extnum_t nextents
; /* number of extents in file */
3692 int size
; /* size of file extents */
3694 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3695 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3696 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3697 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3699 xfs_iext_irec_compact_pages(ifp
);
3700 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3702 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3703 kmem_free(ifp
->if_u1
.if_ext_irec
);
3704 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3705 ifp
->if_u1
.if_extents
= ep
;
3706 ifp
->if_bytes
= size
;
3707 if (nextents
< XFS_LINEAR_EXTS
) {
3708 xfs_iext_realloc_direct(ifp
, size
);
3713 * Free incore file extents.
3717 xfs_ifork_t
*ifp
) /* inode fork pointer */
3719 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3723 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3724 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3725 xfs_iext_irec_remove(ifp
, erp_idx
);
3727 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3728 } else if (ifp
->if_real_bytes
) {
3729 kmem_free(ifp
->if_u1
.if_extents
);
3730 } else if (ifp
->if_bytes
) {
3731 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3732 sizeof(xfs_bmbt_rec_t
));
3734 ifp
->if_u1
.if_extents
= NULL
;
3735 ifp
->if_real_bytes
= 0;
3740 * Return a pointer to the extent record for file system block bno.
3742 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3743 xfs_iext_bno_to_ext(
3744 xfs_ifork_t
*ifp
, /* inode fork pointer */
3745 xfs_fileoff_t bno
, /* block number to search for */
3746 xfs_extnum_t
*idxp
) /* index of target extent */
3748 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3749 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3750 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3751 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3752 int high
; /* upper boundary in search */
3753 xfs_extnum_t idx
= 0; /* index of target extent */
3754 int low
; /* lower boundary in search */
3755 xfs_extnum_t nextents
; /* number of file extents */
3756 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3758 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3759 if (nextents
== 0) {
3764 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3765 /* Find target extent list */
3767 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3768 base
= erp
->er_extbuf
;
3769 high
= erp
->er_extcount
- 1;
3771 base
= ifp
->if_u1
.if_extents
;
3772 high
= nextents
- 1;
3774 /* Binary search extent records */
3775 while (low
<= high
) {
3776 idx
= (low
+ high
) >> 1;
3778 startoff
= xfs_bmbt_get_startoff(ep
);
3779 blockcount
= xfs_bmbt_get_blockcount(ep
);
3780 if (bno
< startoff
) {
3782 } else if (bno
>= startoff
+ blockcount
) {
3785 /* Convert back to file-based extent index */
3786 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3787 idx
+= erp
->er_extoff
;
3793 /* Convert back to file-based extent index */
3794 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3795 idx
+= erp
->er_extoff
;
3797 if (bno
>= startoff
+ blockcount
) {
3798 if (++idx
== nextents
) {
3801 ep
= xfs_iext_get_ext(ifp
, idx
);
3809 * Return a pointer to the indirection array entry containing the
3810 * extent record for filesystem block bno. Store the index of the
3811 * target irec in *erp_idxp.
3813 xfs_ext_irec_t
* /* pointer to found extent record */
3814 xfs_iext_bno_to_irec(
3815 xfs_ifork_t
*ifp
, /* inode fork pointer */
3816 xfs_fileoff_t bno
, /* block number to search for */
3817 int *erp_idxp
) /* irec index of target ext list */
3819 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3820 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3821 int erp_idx
; /* indirection array index */
3822 int nlists
; /* number of extent irec's (lists) */
3823 int high
; /* binary search upper limit */
3824 int low
; /* binary search lower limit */
3826 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3827 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3831 while (low
<= high
) {
3832 erp_idx
= (low
+ high
) >> 1;
3833 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3834 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3835 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3837 } else if (erp_next
&& bno
>=
3838 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3844 *erp_idxp
= erp_idx
;
3849 * Return a pointer to the indirection array entry containing the
3850 * extent record at file extent index *idxp. Store the index of the
3851 * target irec in *erp_idxp and store the page index of the target
3852 * extent record in *idxp.
3855 xfs_iext_idx_to_irec(
3856 xfs_ifork_t
*ifp
, /* inode fork pointer */
3857 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3858 int *erp_idxp
, /* pointer to target irec */
3859 int realloc
) /* new bytes were just added */
3861 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3862 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3863 int erp_idx
; /* indirection array index */
3864 int nlists
; /* number of irec's (ex lists) */
3865 int high
; /* binary search upper limit */
3866 int low
; /* binary search lower limit */
3867 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3869 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3870 ASSERT(page_idx
>= 0 && page_idx
<=
3871 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
3872 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3877 /* Binary search extent irec's */
3878 while (low
<= high
) {
3879 erp_idx
= (low
+ high
) >> 1;
3880 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3881 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3882 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3883 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3885 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3886 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3889 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3890 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3894 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3897 page_idx
-= erp
->er_extoff
;
3902 *erp_idxp
= erp_idx
;
3907 * Allocate and initialize an indirection array once the space needed
3908 * for incore extents increases above XFS_IEXT_BUFSZ.
3912 xfs_ifork_t
*ifp
) /* inode fork pointer */
3914 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3915 xfs_extnum_t nextents
; /* number of extents in file */
3917 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3918 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3919 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3921 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3923 if (nextents
== 0) {
3924 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3925 } else if (!ifp
->if_real_bytes
) {
3926 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3927 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3928 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3930 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3931 erp
->er_extcount
= nextents
;
3934 ifp
->if_flags
|= XFS_IFEXTIREC
;
3935 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3936 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3937 ifp
->if_u1
.if_ext_irec
= erp
;
3943 * Allocate and initialize a new entry in the indirection array.
3947 xfs_ifork_t
*ifp
, /* inode fork pointer */
3948 int erp_idx
) /* index for new irec */
3950 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3951 int i
; /* loop counter */
3952 int nlists
; /* number of irec's (ex lists) */
3954 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3955 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3957 /* Resize indirection array */
3958 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3959 sizeof(xfs_ext_irec_t
));
3961 * Move records down in the array so the
3962 * new page can use erp_idx.
3964 erp
= ifp
->if_u1
.if_ext_irec
;
3965 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3966 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
3968 ASSERT(i
== erp_idx
);
3970 /* Initialize new extent record */
3971 erp
= ifp
->if_u1
.if_ext_irec
;
3972 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3973 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3974 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
3975 erp
[erp_idx
].er_extcount
= 0;
3976 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
3977 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
3978 return (&erp
[erp_idx
]);
3982 * Remove a record from the indirection array.
3985 xfs_iext_irec_remove(
3986 xfs_ifork_t
*ifp
, /* inode fork pointer */
3987 int erp_idx
) /* irec index to remove */
3989 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3990 int i
; /* loop counter */
3991 int nlists
; /* number of irec's (ex lists) */
3993 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3994 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3995 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3996 if (erp
->er_extbuf
) {
3997 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
3999 kmem_free(erp
->er_extbuf
);
4001 /* Compact extent records */
4002 erp
= ifp
->if_u1
.if_ext_irec
;
4003 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4004 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4007 * Manually free the last extent record from the indirection
4008 * array. A call to xfs_iext_realloc_indirect() with a size
4009 * of zero would result in a call to xfs_iext_destroy() which
4010 * would in turn call this function again, creating a nasty
4014 xfs_iext_realloc_indirect(ifp
,
4015 nlists
* sizeof(xfs_ext_irec_t
));
4017 kmem_free(ifp
->if_u1
.if_ext_irec
);
4019 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4023 * This is called to clean up large amounts of unused memory allocated
4024 * by the indirection array. Before compacting anything though, verify
4025 * that the indirection array is still needed and switch back to the
4026 * linear extent list (or even the inline buffer) if possible. The
4027 * compaction policy is as follows:
4029 * Full Compaction: Extents fit into a single page (or inline buffer)
4030 * Partial Compaction: Extents occupy less than 50% of allocated space
4031 * No Compaction: Extents occupy at least 50% of allocated space
4034 xfs_iext_irec_compact(
4035 xfs_ifork_t
*ifp
) /* inode fork pointer */
4037 xfs_extnum_t nextents
; /* number of extents in file */
4038 int nlists
; /* number of irec's (ex lists) */
4040 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4041 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4042 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4044 if (nextents
== 0) {
4045 xfs_iext_destroy(ifp
);
4046 } else if (nextents
<= XFS_INLINE_EXTS
) {
4047 xfs_iext_indirect_to_direct(ifp
);
4048 xfs_iext_direct_to_inline(ifp
, nextents
);
4049 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4050 xfs_iext_indirect_to_direct(ifp
);
4051 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4052 xfs_iext_irec_compact_pages(ifp
);
4057 * Combine extents from neighboring extent pages.
4060 xfs_iext_irec_compact_pages(
4061 xfs_ifork_t
*ifp
) /* inode fork pointer */
4063 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4064 int erp_idx
= 0; /* indirection array index */
4065 int nlists
; /* number of irec's (ex lists) */
4067 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4068 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4069 while (erp_idx
< nlists
- 1) {
4070 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4072 if (erp_next
->er_extcount
<=
4073 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4074 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4075 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4076 sizeof(xfs_bmbt_rec_t
));
4077 erp
->er_extcount
+= erp_next
->er_extcount
;
4079 * Free page before removing extent record
4080 * so er_extoffs don't get modified in
4081 * xfs_iext_irec_remove.
4083 kmem_free(erp_next
->er_extbuf
);
4084 erp_next
->er_extbuf
= NULL
;
4085 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4086 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4094 * This is called to update the er_extoff field in the indirection
4095 * array when extents have been added or removed from one of the
4096 * extent lists. erp_idx contains the irec index to begin updating
4097 * at and ext_diff contains the number of extents that were added
4101 xfs_iext_irec_update_extoffs(
4102 xfs_ifork_t
*ifp
, /* inode fork pointer */
4103 int erp_idx
, /* irec index to update */
4104 int ext_diff
) /* number of new extents */
4106 int i
; /* loop counter */
4107 int nlists
; /* number of irec's (ex lists */
4109 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4110 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4111 for (i
= erp_idx
; i
< nlists
; i
++) {
4112 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;