2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
45 struct xfs_perag
*pag
,
46 uint32_t *first_index
,
53 * use a gang lookup to find the next inode in the tree
54 * as the tree is sparse and a gang lookup walks to find
55 * the number of objects requested.
57 if (tag
== XFS_ICI_NO_TAG
) {
58 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
59 (void **)&ip
, *first_index
, 1);
61 nr_found
= radix_tree_gang_lookup_tag(&pag
->pag_ici_root
,
62 (void **)&ip
, *first_index
, 1, tag
);
68 * Update the index for the next lookup. Catch overflows
69 * into the next AG range which can occur if we have inodes
70 * in the last block of the AG and we are currently
71 * pointing to the last inode.
73 *first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
74 if (*first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
82 struct xfs_perag
*pag
,
83 int (*execute
)(struct xfs_inode
*ip
,
84 struct xfs_perag
*pag
, int flags
),
102 write_lock(&pag
->pag_ici_lock
);
104 read_lock(&pag
->pag_ici_lock
);
105 ip
= xfs_inode_ag_lookup(mp
, pag
, &first_index
, tag
);
108 write_unlock(&pag
->pag_ici_lock
);
110 read_unlock(&pag
->pag_ici_lock
);
114 /* execute releases pag->pag_ici_lock */
115 error
= execute(ip
, pag
, flags
);
116 if (error
== EAGAIN
) {
123 /* bail out if the filesystem is corrupted. */
124 if (error
== EFSCORRUPTED
)
127 } while ((*nr_to_scan
)--);
137 * Select the next per-ag structure to iterate during the walk. The reclaim
138 * walk is optimised only to walk AGs with reclaimable inodes in them.
140 static struct xfs_perag
*
141 xfs_inode_ag_iter_next_pag(
142 struct xfs_mount
*mp
,
143 xfs_agnumber_t
*first
,
146 struct xfs_perag
*pag
= NULL
;
148 if (tag
== XFS_ICI_RECLAIM_TAG
) {
152 spin_lock(&mp
->m_perag_lock
);
153 found
= radix_tree_gang_lookup_tag(&mp
->m_perag_tree
,
154 (void **)&pag
, *first
, 1, tag
);
156 spin_unlock(&mp
->m_perag_lock
);
159 *first
= pag
->pag_agno
+ 1;
160 /* open coded pag reference increment */
161 ref
= atomic_inc_return(&pag
->pag_ref
);
162 spin_unlock(&mp
->m_perag_lock
);
163 trace_xfs_perag_get_reclaim(mp
, pag
->pag_agno
, ref
, _RET_IP_
);
165 pag
= xfs_perag_get(mp
, *first
);
172 xfs_inode_ag_iterator(
173 struct xfs_mount
*mp
,
174 int (*execute
)(struct xfs_inode
*ip
,
175 struct xfs_perag
*pag
, int flags
),
181 struct xfs_perag
*pag
;
187 nr
= nr_to_scan
? *nr_to_scan
: INT_MAX
;
189 while ((pag
= xfs_inode_ag_iter_next_pag(mp
, &ag
, tag
))) {
190 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, tag
,
195 if (error
== EFSCORRUPTED
)
203 return XFS_ERROR(last_error
);
206 /* must be called with pag_ici_lock held and releases it */
208 xfs_sync_inode_valid(
209 struct xfs_inode
*ip
,
210 struct xfs_perag
*pag
)
212 struct inode
*inode
= VFS_I(ip
);
213 int error
= EFSCORRUPTED
;
215 /* nothing to sync during shutdown */
216 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
219 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
221 if (xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
224 /* If we can't grab the inode, it must on it's way to reclaim. */
228 if (is_bad_inode(inode
)) {
236 read_unlock(&pag
->pag_ici_lock
);
242 struct xfs_inode
*ip
,
243 struct xfs_perag
*pag
,
246 struct inode
*inode
= VFS_I(ip
);
247 struct address_space
*mapping
= inode
->i_mapping
;
250 error
= xfs_sync_inode_valid(ip
, pag
);
254 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
257 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_SHARED
)) {
258 if (flags
& SYNC_TRYLOCK
)
260 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
263 error
= xfs_flush_pages(ip
, 0, -1, (flags
& SYNC_WAIT
) ?
264 0 : XBF_ASYNC
, FI_NONE
);
265 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
268 if (flags
& SYNC_WAIT
)
276 struct xfs_inode
*ip
,
277 struct xfs_perag
*pag
,
282 error
= xfs_sync_inode_valid(ip
, pag
);
286 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
287 if (xfs_inode_clean(ip
))
289 if (!xfs_iflock_nowait(ip
)) {
290 if (!(flags
& SYNC_WAIT
))
295 if (xfs_inode_clean(ip
)) {
300 error
= xfs_iflush(ip
, flags
);
303 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
309 * Write out pagecache data for the whole filesystem.
313 struct xfs_mount
*mp
,
318 ASSERT((flags
& ~(SYNC_TRYLOCK
|SYNC_WAIT
)) == 0);
320 error
= xfs_inode_ag_iterator(mp
, xfs_sync_inode_data
, flags
,
321 XFS_ICI_NO_TAG
, 0, NULL
);
323 return XFS_ERROR(error
);
325 xfs_log_force(mp
, (flags
& SYNC_WAIT
) ? XFS_LOG_SYNC
: 0);
330 * Write out inode metadata (attributes) for the whole filesystem.
334 struct xfs_mount
*mp
,
337 ASSERT((flags
& ~SYNC_WAIT
) == 0);
339 return xfs_inode_ag_iterator(mp
, xfs_sync_inode_attr
, flags
,
340 XFS_ICI_NO_TAG
, 0, NULL
);
344 xfs_commit_dummy_trans(
345 struct xfs_mount
*mp
,
348 struct xfs_inode
*ip
= mp
->m_rootip
;
349 struct xfs_trans
*tp
;
353 * Put a dummy transaction in the log to tell recovery
354 * that all others are OK.
356 tp
= xfs_trans_alloc(mp
, XFS_TRANS_DUMMY1
);
357 error
= xfs_trans_reserve(tp
, 0, XFS_ICHANGE_LOG_RES(mp
), 0, 0, 0);
359 xfs_trans_cancel(tp
, 0);
363 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
365 xfs_trans_ijoin(tp
, ip
);
366 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
367 error
= xfs_trans_commit(tp
, 0);
368 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
370 /* the log force ensures this transaction is pushed to disk */
371 xfs_log_force(mp
, (flags
& SYNC_WAIT
) ? XFS_LOG_SYNC
: 0);
377 struct xfs_mount
*mp
)
382 * If the buffer is pinned then push on the log so we won't get stuck
383 * waiting in the write for someone, maybe ourselves, to flush the log.
385 * Even though we just pushed the log above, we did not have the
386 * superblock buffer locked at that point so it can become pinned in
387 * between there and here.
389 bp
= xfs_getsb(mp
, 0);
390 if (XFS_BUF_ISPINNED(bp
))
391 xfs_log_force(mp
, 0);
393 return xfs_bwrite(mp
, bp
);
397 * When remounting a filesystem read-only or freezing the filesystem, we have
398 * two phases to execute. This first phase is syncing the data before we
399 * quiesce the filesystem, and the second is flushing all the inodes out after
400 * we've waited for all the transactions created by the first phase to
401 * complete. The second phase ensures that the inodes are written to their
402 * location on disk rather than just existing in transactions in the log. This
403 * means after a quiesce there is no log replay required to write the inodes to
404 * disk (this is the main difference between a sync and a quiesce).
407 * First stage of freeze - no writers will make progress now we are here,
408 * so we flush delwri and delalloc buffers here, then wait for all I/O to
409 * complete. Data is frozen at that point. Metadata is not frozen,
410 * transactions can still occur here so don't bother flushing the buftarg
411 * because it'll just get dirty again.
415 struct xfs_mount
*mp
)
417 int error
, error2
= 0;
419 /* push non-blocking */
420 xfs_sync_data(mp
, 0);
421 xfs_qm_sync(mp
, SYNC_TRYLOCK
);
423 /* push and block till complete */
424 xfs_sync_data(mp
, SYNC_WAIT
);
425 xfs_qm_sync(mp
, SYNC_WAIT
);
427 /* write superblock and hoover up shutdown errors */
428 error
= xfs_sync_fsdata(mp
);
430 /* make sure all delwri buffers are written out */
431 xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
433 /* mark the log as covered if needed */
434 if (xfs_log_need_covered(mp
))
435 error2
= xfs_commit_dummy_trans(mp
, SYNC_WAIT
);
437 /* flush data-only devices */
438 if (mp
->m_rtdev_targp
)
439 XFS_bflush(mp
->m_rtdev_targp
);
441 return error
? error
: error2
;
446 struct xfs_mount
*mp
)
448 int count
= 0, pincount
;
450 xfs_reclaim_inodes(mp
, 0);
451 xfs_flush_buftarg(mp
->m_ddev_targp
, 0);
454 * This loop must run at least twice. The first instance of the loop
455 * will flush most meta data but that will generate more meta data
456 * (typically directory updates). Which then must be flushed and
457 * logged before we can write the unmount record. We also so sync
458 * reclaim of inodes to catch any that the above delwri flush skipped.
461 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
462 xfs_sync_attr(mp
, SYNC_WAIT
);
463 pincount
= xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
472 * Second stage of a quiesce. The data is already synced, now we have to take
473 * care of the metadata. New transactions are already blocked, so we need to
474 * wait for any remaining transactions to drain out before proceding.
478 struct xfs_mount
*mp
)
482 /* wait for all modifications to complete */
483 while (atomic_read(&mp
->m_active_trans
) > 0)
486 /* flush inodes and push all remaining buffers out to disk */
490 * Just warn here till VFS can correctly support
491 * read-only remount without racing.
493 WARN_ON(atomic_read(&mp
->m_active_trans
) != 0);
495 /* Push the superblock and write an unmount record */
496 error
= xfs_log_sbcount(mp
, 1);
498 xfs_fs_cmn_err(CE_WARN
, mp
,
499 "xfs_attr_quiesce: failed to log sb changes. "
500 "Frozen image may not be consistent.");
501 xfs_log_unmount_write(mp
);
502 xfs_unmountfs_writesb(mp
);
506 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
507 * Doing this has two advantages:
508 * - It saves on stack space, which is tight in certain situations
509 * - It can be used (with care) as a mechanism to avoid deadlocks.
510 * Flushing while allocating in a full filesystem requires both.
513 xfs_syncd_queue_work(
514 struct xfs_mount
*mp
,
516 void (*syncer
)(struct xfs_mount
*, void *),
517 struct completion
*completion
)
519 struct xfs_sync_work
*work
;
521 work
= kmem_alloc(sizeof(struct xfs_sync_work
), KM_SLEEP
);
522 INIT_LIST_HEAD(&work
->w_list
);
523 work
->w_syncer
= syncer
;
526 work
->w_completion
= completion
;
527 spin_lock(&mp
->m_sync_lock
);
528 list_add_tail(&work
->w_list
, &mp
->m_sync_list
);
529 spin_unlock(&mp
->m_sync_lock
);
530 wake_up_process(mp
->m_sync_task
);
534 * Flush delayed allocate data, attempting to free up reserved space
535 * from existing allocations. At this point a new allocation attempt
536 * has failed with ENOSPC and we are in the process of scratching our
537 * heads, looking about for more room...
540 xfs_flush_inodes_work(
541 struct xfs_mount
*mp
,
544 struct inode
*inode
= arg
;
545 xfs_sync_data(mp
, SYNC_TRYLOCK
);
546 xfs_sync_data(mp
, SYNC_TRYLOCK
| SYNC_WAIT
);
554 struct inode
*inode
= VFS_I(ip
);
555 DECLARE_COMPLETION_ONSTACK(completion
);
558 xfs_syncd_queue_work(ip
->i_mount
, inode
, xfs_flush_inodes_work
, &completion
);
559 wait_for_completion(&completion
);
560 xfs_log_force(ip
->i_mount
, XFS_LOG_SYNC
);
564 * Every sync period we need to unpin all items, reclaim inodes and sync
565 * disk quotas. We might need to cover the log to indicate that the
566 * filesystem is idle.
570 struct xfs_mount
*mp
,
575 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
576 xfs_log_force(mp
, 0);
577 xfs_reclaim_inodes(mp
, 0);
578 /* dgc: errors ignored here */
579 error
= xfs_qm_sync(mp
, SYNC_TRYLOCK
);
580 if (xfs_log_need_covered(mp
))
581 error
= xfs_commit_dummy_trans(mp
, 0);
584 wake_up(&mp
->m_wait_single_sync_task
);
591 struct xfs_mount
*mp
= arg
;
593 xfs_sync_work_t
*work
, *n
;
597 timeleft
= xfs_syncd_centisecs
* msecs_to_jiffies(10);
599 if (list_empty(&mp
->m_sync_list
))
600 timeleft
= schedule_timeout_interruptible(timeleft
);
603 if (kthread_should_stop() && list_empty(&mp
->m_sync_list
))
606 spin_lock(&mp
->m_sync_lock
);
608 * We can get woken by laptop mode, to do a sync -
609 * that's the (only!) case where the list would be
610 * empty with time remaining.
612 if (!timeleft
|| list_empty(&mp
->m_sync_list
)) {
614 timeleft
= xfs_syncd_centisecs
*
615 msecs_to_jiffies(10);
616 INIT_LIST_HEAD(&mp
->m_sync_work
.w_list
);
617 list_add_tail(&mp
->m_sync_work
.w_list
,
620 list_splice_init(&mp
->m_sync_list
, &tmp
);
621 spin_unlock(&mp
->m_sync_lock
);
623 list_for_each_entry_safe(work
, n
, &tmp
, w_list
) {
624 (*work
->w_syncer
)(mp
, work
->w_data
);
625 list_del(&work
->w_list
);
626 if (work
== &mp
->m_sync_work
)
628 if (work
->w_completion
)
629 complete(work
->w_completion
);
639 struct xfs_mount
*mp
)
641 mp
->m_sync_work
.w_syncer
= xfs_sync_worker
;
642 mp
->m_sync_work
.w_mount
= mp
;
643 mp
->m_sync_work
.w_completion
= NULL
;
644 mp
->m_sync_task
= kthread_run(xfssyncd
, mp
, "xfssyncd/%s", mp
->m_fsname
);
645 if (IS_ERR(mp
->m_sync_task
))
646 return -PTR_ERR(mp
->m_sync_task
);
652 struct xfs_mount
*mp
)
654 kthread_stop(mp
->m_sync_task
);
658 __xfs_inode_set_reclaim_tag(
659 struct xfs_perag
*pag
,
660 struct xfs_inode
*ip
)
662 radix_tree_tag_set(&pag
->pag_ici_root
,
663 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
664 XFS_ICI_RECLAIM_TAG
);
666 if (!pag
->pag_ici_reclaimable
) {
667 /* propagate the reclaim tag up into the perag radix tree */
668 spin_lock(&ip
->i_mount
->m_perag_lock
);
669 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
670 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
671 XFS_ICI_RECLAIM_TAG
);
672 spin_unlock(&ip
->i_mount
->m_perag_lock
);
673 trace_xfs_perag_set_reclaim(ip
->i_mount
, pag
->pag_agno
,
676 pag
->pag_ici_reclaimable
++;
680 * We set the inode flag atomically with the radix tree tag.
681 * Once we get tag lookups on the radix tree, this inode flag
685 xfs_inode_set_reclaim_tag(
688 struct xfs_mount
*mp
= ip
->i_mount
;
689 struct xfs_perag
*pag
;
691 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
692 write_lock(&pag
->pag_ici_lock
);
693 spin_lock(&ip
->i_flags_lock
);
694 __xfs_inode_set_reclaim_tag(pag
, ip
);
695 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
696 spin_unlock(&ip
->i_flags_lock
);
697 write_unlock(&pag
->pag_ici_lock
);
702 __xfs_inode_clear_reclaim_tag(
707 radix_tree_tag_clear(&pag
->pag_ici_root
,
708 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
709 pag
->pag_ici_reclaimable
--;
710 if (!pag
->pag_ici_reclaimable
) {
711 /* clear the reclaim tag from the perag radix tree */
712 spin_lock(&ip
->i_mount
->m_perag_lock
);
713 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
714 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
715 XFS_ICI_RECLAIM_TAG
);
716 spin_unlock(&ip
->i_mount
->m_perag_lock
);
717 trace_xfs_perag_clear_reclaim(ip
->i_mount
, pag
->pag_agno
,
723 * Inodes in different states need to be treated differently, and the return
724 * value of xfs_iflush is not sufficient to get this right. The following table
725 * lists the inode states and the reclaim actions necessary for non-blocking
729 * inode state iflush ret required action
730 * --------------- ---------- ---------------
732 * shutdown EIO unpin and reclaim
733 * clean, unpinned 0 reclaim
734 * stale, unpinned 0 reclaim
735 * clean, pinned(*) 0 requeue
736 * stale, pinned EAGAIN requeue
737 * dirty, delwri ok 0 requeue
738 * dirty, delwri blocked EAGAIN requeue
739 * dirty, sync flush 0 reclaim
741 * (*) dgc: I don't think the clean, pinned state is possible but it gets
742 * handled anyway given the order of checks implemented.
744 * As can be seen from the table, the return value of xfs_iflush() is not
745 * sufficient to correctly decide the reclaim action here. The checks in
746 * xfs_iflush() might look like duplicates, but they are not.
748 * Also, because we get the flush lock first, we know that any inode that has
749 * been flushed delwri has had the flush completed by the time we check that
750 * the inode is clean. The clean inode check needs to be done before flushing
751 * the inode delwri otherwise we would loop forever requeuing clean inodes as
752 * we cannot tell apart a successful delwri flush and a clean inode from the
753 * return value of xfs_iflush().
755 * Note that because the inode is flushed delayed write by background
756 * writeback, the flush lock may already be held here and waiting on it can
757 * result in very long latencies. Hence for sync reclaims, where we wait on the
758 * flush lock, the caller should push out delayed write inodes first before
759 * trying to reclaim them to minimise the amount of time spent waiting. For
760 * background relaim, we just requeue the inode for the next pass.
762 * Hence the order of actions after gaining the locks should be:
764 * shutdown => unpin and reclaim
765 * pinned, delwri => requeue
766 * pinned, sync => unpin
769 * dirty, delwri => flush and requeue
770 * dirty, sync => flush, wait and reclaim
774 struct xfs_inode
*ip
,
775 struct xfs_perag
*pag
,
781 * The radix tree lock here protects a thread in xfs_iget from racing
782 * with us starting reclaim on the inode. Once we have the
783 * XFS_IRECLAIM flag set it will not touch us.
785 spin_lock(&ip
->i_flags_lock
);
786 ASSERT_ALWAYS(__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
));
787 if (__xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
788 /* ignore as it is already under reclaim */
789 spin_unlock(&ip
->i_flags_lock
);
790 write_unlock(&pag
->pag_ici_lock
);
793 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
794 spin_unlock(&ip
->i_flags_lock
);
795 write_unlock(&pag
->pag_ici_lock
);
797 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
798 if (!xfs_iflock_nowait(ip
)) {
799 if (!(sync_mode
& SYNC_WAIT
))
804 if (is_bad_inode(VFS_I(ip
)))
806 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
810 if (xfs_ipincount(ip
)) {
811 if (!(sync_mode
& SYNC_WAIT
)) {
817 if (xfs_iflags_test(ip
, XFS_ISTALE
))
819 if (xfs_inode_clean(ip
))
822 /* Now we have an inode that needs flushing */
823 error
= xfs_iflush(ip
, sync_mode
);
824 if (sync_mode
& SYNC_WAIT
) {
830 * When we have to flush an inode but don't have SYNC_WAIT set, we
831 * flush the inode out using a delwri buffer and wait for the next
832 * call into reclaim to find it in a clean state instead of waiting for
833 * it now. We also don't return errors here - if the error is transient
834 * then the next reclaim pass will flush the inode, and if the error
835 * is permanent then the next sync reclaim will reclaim the inode and
838 if (error
&& error
!= EAGAIN
&& !XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
839 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
840 "inode 0x%llx background reclaim flush failed with %d",
841 (long long)ip
->i_ino
, error
);
844 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
845 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
847 * We could return EAGAIN here to make reclaim rescan the inode tree in
848 * a short while. However, this just burns CPU time scanning the tree
849 * waiting for IO to complete and xfssyncd never goes back to the idle
850 * state. Instead, return 0 to let the next scheduled background reclaim
851 * attempt to reclaim the inode again.
857 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
859 XFS_STATS_INC(xs_ig_reclaims
);
861 * Remove the inode from the per-AG radix tree.
863 * Because radix_tree_delete won't complain even if the item was never
864 * added to the tree assert that it's been there before to catch
865 * problems with the inode life time early on.
867 write_lock(&pag
->pag_ici_lock
);
868 if (!radix_tree_delete(&pag
->pag_ici_root
,
869 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
)))
871 write_unlock(&pag
->pag_ici_lock
);
874 * Here we do an (almost) spurious inode lock in order to coordinate
875 * with inode cache radix tree lookups. This is because the lookup
876 * can reference the inodes in the cache without taking references.
878 * We make that OK here by ensuring that we wait until the inode is
879 * unlocked after the lookup before we go ahead and free it. We get
880 * both the ilock and the iolock because the code may need to drop the
881 * ilock one but will still hold the iolock.
883 xfs_ilock(ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
885 xfs_iunlock(ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
897 return xfs_inode_ag_iterator(mp
, xfs_reclaim_inode
, mode
,
898 XFS_ICI_RECLAIM_TAG
, 1, NULL
);
902 * Shrinker infrastructure.
905 xfs_reclaim_inode_shrink(
906 struct shrinker
*shrink
,
910 struct xfs_mount
*mp
;
911 struct xfs_perag
*pag
;
915 mp
= container_of(shrink
, struct xfs_mount
, m_inode_shrink
);
917 if (!(gfp_mask
& __GFP_FS
))
920 xfs_inode_ag_iterator(mp
, xfs_reclaim_inode
, 0,
921 XFS_ICI_RECLAIM_TAG
, 1, &nr_to_scan
);
922 /* if we don't exhaust the scan, don't bother coming back */
929 while ((pag
= xfs_inode_ag_iter_next_pag(mp
, &ag
,
930 XFS_ICI_RECLAIM_TAG
))) {
931 reclaimable
+= pag
->pag_ici_reclaimable
;
938 xfs_inode_shrinker_register(
939 struct xfs_mount
*mp
)
941 mp
->m_inode_shrink
.shrink
= xfs_reclaim_inode_shrink
;
942 mp
->m_inode_shrink
.seeks
= DEFAULT_SEEKS
;
943 register_shrinker(&mp
->m_inode_shrink
);
947 xfs_inode_shrinker_unregister(
948 struct xfs_mount
*mp
)
950 unregister_shrinker(&mp
->m_inode_shrink
);