2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache
*ubifs_inode_slab
;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info
= {
52 .shrink
= ubifs_shrinker
,
53 .seeks
= DEFAULT_SEEKS
,
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
66 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
69 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
71 if (inode
->i_size
> c
->max_inode_sz
) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode
->i_size
);
77 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
78 ubifs_err("unknown compression type %d", ui
->compr_type
);
82 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
85 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
88 if (ui
->xattr
&& !S_ISREG(inode
->i_mode
))
91 if (!ubifs_compr_present(ui
->compr_type
)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
93 inode
->i_ino
, ubifs_compr_name(ui
->compr_type
));
96 err
= dbg_check_dir(c
, inode
);
100 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
104 struct ubifs_ino_node
*ino
;
105 struct ubifs_info
*c
= sb
->s_fs_info
;
107 struct ubifs_inode
*ui
;
109 dbg_gen("inode %lu", inum
);
111 inode
= iget_locked(sb
, inum
);
113 return ERR_PTR(-ENOMEM
);
114 if (!(inode
->i_state
& I_NEW
))
116 ui
= ubifs_inode(inode
);
118 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
124 ino_key_init(c
, &key
, inode
->i_ino
);
126 err
= ubifs_tnc_lookup(c
, &key
, ino
);
130 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
131 set_nlink(inode
, le32_to_cpu(ino
->nlink
));
132 i_uid_write(inode
, le32_to_cpu(ino
->uid
));
133 i_gid_write(inode
, le32_to_cpu(ino
->gid
));
134 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
135 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
136 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
137 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
138 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
139 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
140 inode
->i_mode
= le32_to_cpu(ino
->mode
);
141 inode
->i_size
= le64_to_cpu(ino
->size
);
143 ui
->data_len
= le32_to_cpu(ino
->data_len
);
144 ui
->flags
= le32_to_cpu(ino
->flags
);
145 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
146 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
147 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
148 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
149 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
150 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
152 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
154 err
= validate_inode(c
, inode
);
158 /* Disable read-ahead */
159 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
161 switch (inode
->i_mode
& S_IFMT
) {
163 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
164 inode
->i_op
= &ubifs_file_inode_operations
;
165 inode
->i_fop
= &ubifs_file_operations
;
167 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
172 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
173 ((char *)ui
->data
)[ui
->data_len
] = '\0';
174 } else if (ui
->data_len
!= 0) {
180 inode
->i_op
= &ubifs_dir_inode_operations
;
181 inode
->i_fop
= &ubifs_dir_operations
;
182 if (ui
->data_len
!= 0) {
188 inode
->i_op
= &ubifs_symlink_inode_operations
;
189 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
193 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
198 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
199 ((char *)ui
->data
)[ui
->data_len
] = '\0';
205 union ubifs_dev_desc
*dev
;
207 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
213 dev
= (union ubifs_dev_desc
*)ino
->data
;
214 if (ui
->data_len
== sizeof(dev
->new))
215 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
216 else if (ui
->data_len
== sizeof(dev
->huge
))
217 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
222 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
223 inode
->i_op
= &ubifs_file_inode_operations
;
224 init_special_inode(inode
, inode
->i_mode
, rdev
);
229 inode
->i_op
= &ubifs_file_inode_operations
;
230 init_special_inode(inode
, inode
->i_mode
, 0);
231 if (ui
->data_len
!= 0) {
242 ubifs_set_inode_flags(inode
);
243 unlock_new_inode(inode
);
247 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
248 ubifs_dump_node(c
, ino
);
249 ubifs_dump_inode(c
, inode
);
254 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
259 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
261 struct ubifs_inode
*ui
;
263 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
267 memset((void *)ui
+ sizeof(struct inode
), 0,
268 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
269 mutex_init(&ui
->ui_mutex
);
270 spin_lock_init(&ui
->ui_lock
);
271 return &ui
->vfs_inode
;
274 static void ubifs_i_callback(struct rcu_head
*head
)
276 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
277 struct ubifs_inode
*ui
= ubifs_inode(inode
);
278 kmem_cache_free(ubifs_inode_slab
, ui
);
281 static void ubifs_destroy_inode(struct inode
*inode
)
283 struct ubifs_inode
*ui
= ubifs_inode(inode
);
286 call_rcu(&inode
->i_rcu
, ubifs_i_callback
);
290 * Note, Linux write-back code calls this without 'i_mutex'.
292 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
295 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
296 struct ubifs_inode
*ui
= ubifs_inode(inode
);
298 ubifs_assert(!ui
->xattr
);
299 if (is_bad_inode(inode
))
302 mutex_lock(&ui
->ui_mutex
);
304 * Due to races between write-back forced by budgeting
305 * (see 'sync_some_inodes()') and background write-back, the inode may
306 * have already been synchronized, do not do this again. This might
307 * also happen if it was synchronized in an VFS operation, e.g.
311 mutex_unlock(&ui
->ui_mutex
);
316 * As an optimization, do not write orphan inodes to the media just
317 * because this is not needed.
319 dbg_gen("inode %lu, mode %#x, nlink %u",
320 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
321 if (inode
->i_nlink
) {
322 err
= ubifs_jnl_write_inode(c
, inode
);
324 ubifs_err("can't write inode %lu, error %d",
327 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
331 mutex_unlock(&ui
->ui_mutex
);
332 ubifs_release_dirty_inode_budget(c
, ui
);
336 static void ubifs_evict_inode(struct inode
*inode
)
339 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
340 struct ubifs_inode
*ui
= ubifs_inode(inode
);
344 * Extended attribute inode deletions are fully handled in
345 * 'ubifs_removexattr()'. These inodes are special and have
346 * limited usage, so there is nothing to do here.
350 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
351 ubifs_assert(!atomic_read(&inode
->i_count
));
353 truncate_inode_pages(&inode
->i_data
, 0);
358 if (is_bad_inode(inode
))
361 ui
->ui_size
= inode
->i_size
= 0;
362 err
= ubifs_jnl_delete_inode(c
, inode
);
365 * Worst case we have a lost orphan inode wasting space, so a
366 * simple error message is OK here.
368 ubifs_err("can't delete inode %lu, error %d",
373 ubifs_release_dirty_inode_budget(c
, ui
);
375 /* We've deleted something - clean the "no space" flags */
376 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
383 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
385 struct ubifs_inode
*ui
= ubifs_inode(inode
);
387 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
390 dbg_gen("inode %lu", inode
->i_ino
);
394 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
396 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
397 unsigned long long free
;
398 __le32
*uuid
= (__le32
*)c
->uuid
;
400 free
= ubifs_get_free_space(c
);
401 dbg_gen("free space %lld bytes (%lld blocks)",
402 free
, free
>> UBIFS_BLOCK_SHIFT
);
404 buf
->f_type
= UBIFS_SUPER_MAGIC
;
405 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
406 buf
->f_blocks
= c
->block_cnt
;
407 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
408 if (free
> c
->report_rp_size
)
409 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
414 buf
->f_namelen
= UBIFS_MAX_NLEN
;
415 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
416 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
417 ubifs_assert(buf
->f_bfree
<= c
->block_cnt
);
421 static int ubifs_show_options(struct seq_file
*s
, struct dentry
*root
)
423 struct ubifs_info
*c
= root
->d_sb
->s_fs_info
;
425 if (c
->mount_opts
.unmount_mode
== 2)
426 seq_printf(s
, ",fast_unmount");
427 else if (c
->mount_opts
.unmount_mode
== 1)
428 seq_printf(s
, ",norm_unmount");
430 if (c
->mount_opts
.bulk_read
== 2)
431 seq_printf(s
, ",bulk_read");
432 else if (c
->mount_opts
.bulk_read
== 1)
433 seq_printf(s
, ",no_bulk_read");
435 if (c
->mount_opts
.chk_data_crc
== 2)
436 seq_printf(s
, ",chk_data_crc");
437 else if (c
->mount_opts
.chk_data_crc
== 1)
438 seq_printf(s
, ",no_chk_data_crc");
440 if (c
->mount_opts
.override_compr
) {
441 seq_printf(s
, ",compr=%s",
442 ubifs_compr_name(c
->mount_opts
.compr_type
));
448 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
451 struct ubifs_info
*c
= sb
->s_fs_info
;
454 * Zero @wait is just an advisory thing to help the file system shove
455 * lots of data into the queues, and there will be the second
456 * '->sync_fs()' call, with non-zero @wait.
462 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 * do this if it waits for an already running commit.
465 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
466 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
472 * Strictly speaking, it is not necessary to commit the journal here,
473 * synchronizing write-buffers would be enough. But committing makes
474 * UBIFS free space predictions much more accurate, so we want to let
475 * the user be able to get more accurate results of 'statfs()' after
476 * they synchronize the file system.
478 err
= ubifs_run_commit(c
);
482 return ubi_sync(c
->vi
.ubi_num
);
486 * init_constants_early - initialize UBIFS constants.
487 * @c: UBIFS file-system description object
489 * This function initialize UBIFS constants which do not need the superblock to
490 * be read. It also checks that the UBI volume satisfies basic UBIFS
491 * requirements. Returns zero in case of success and a negative error code in
494 static int init_constants_early(struct ubifs_info
*c
)
496 if (c
->vi
.corrupted
) {
497 ubifs_warn("UBI volume is corrupted - read-only mode");
502 ubifs_msg("read-only UBI device");
506 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
507 ubifs_msg("static UBI volume - read-only mode");
511 c
->leb_cnt
= c
->vi
.size
;
512 c
->leb_size
= c
->vi
.usable_leb_size
;
513 c
->leb_start
= c
->di
.leb_start
;
514 c
->half_leb_size
= c
->leb_size
/ 2;
515 c
->min_io_size
= c
->di
.min_io_size
;
516 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
517 c
->max_write_size
= c
->di
.max_write_size
;
518 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
520 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
521 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
522 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
526 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
527 ubifs_err("too few LEBs (%d), min. is %d",
528 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
532 if (!is_power_of_2(c
->min_io_size
)) {
533 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
538 * Maximum write size has to be greater or equivalent to min. I/O
539 * size, and be multiple of min. I/O size.
541 if (c
->max_write_size
< c
->min_io_size
||
542 c
->max_write_size
% c
->min_io_size
||
543 !is_power_of_2(c
->max_write_size
)) {
544 ubifs_err("bad write buffer size %d for %d min. I/O unit",
545 c
->max_write_size
, c
->min_io_size
);
550 * UBIFS aligns all node to 8-byte boundary, so to make function in
551 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
554 if (c
->min_io_size
< 8) {
557 if (c
->max_write_size
< c
->min_io_size
) {
558 c
->max_write_size
= c
->min_io_size
;
559 c
->max_write_shift
= c
->min_io_shift
;
563 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
564 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
567 * Initialize node length ranges which are mostly needed for node
570 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
571 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
572 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
573 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
574 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
575 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
577 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
578 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
579 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
580 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
581 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
582 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
583 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
584 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
585 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
586 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
587 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
589 * Minimum indexing node size is amended later when superblock is
590 * read and the key length is known.
592 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
594 * Maximum indexing node size is amended later when superblock is
595 * read and the fanout is known.
597 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
600 * Initialize dead and dark LEB space watermarks. See gc.c for comments
601 * about these values.
603 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
604 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
607 * Calculate how many bytes would be wasted at the end of LEB if it was
608 * fully filled with data nodes of maximum size. This is used in
609 * calculations when reporting free space.
611 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
613 /* Buffer size for bulk-reads */
614 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
615 if (c
->max_bu_buf_len
> c
->leb_size
)
616 c
->max_bu_buf_len
= c
->leb_size
;
621 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
622 * @c: UBIFS file-system description object
623 * @lnum: LEB the write-buffer was synchronized to
624 * @free: how many free bytes left in this LEB
625 * @pad: how many bytes were padded
627 * This is a callback function which is called by the I/O unit when the
628 * write-buffer is synchronized. We need this to correctly maintain space
629 * accounting in bud logical eraseblocks. This function returns zero in case of
630 * success and a negative error code in case of failure.
632 * This function actually belongs to the journal, but we keep it here because
633 * we want to keep it static.
635 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
637 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
641 * init_constants_sb - initialize UBIFS constants.
642 * @c: UBIFS file-system description object
644 * This is a helper function which initializes various UBIFS constants after
645 * the superblock has been read. It also checks various UBIFS parameters and
646 * makes sure they are all right. Returns zero in case of success and a
647 * negative error code in case of failure.
649 static int init_constants_sb(struct ubifs_info
*c
)
654 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
655 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
656 c
->fanout
* sizeof(struct ubifs_zbranch
);
658 tmp
= ubifs_idx_node_sz(c
, 1);
659 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
660 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
662 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
663 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
664 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
666 /* Make sure LEB size is large enough to fit full commit */
667 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
668 tmp
= ALIGN(tmp
, c
->min_io_size
);
669 if (tmp
> c
->leb_size
) {
670 ubifs_err("too small LEB size %d, at least %d needed",
676 * Make sure that the log is large enough to fit reference nodes for
677 * all buds plus one reserved LEB.
679 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
680 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
681 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
684 if (c
->log_lebs
< tmp
) {
685 ubifs_err("too small log %d LEBs, required min. %d LEBs",
691 * When budgeting we assume worst-case scenarios when the pages are not
692 * be compressed and direntries are of the maximum size.
694 * Note, data, which may be stored in inodes is budgeted separately, so
695 * it is not included into 'c->bi.inode_budget'.
697 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
698 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
699 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
702 * When the amount of flash space used by buds becomes
703 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
704 * The writers are unblocked when the commit is finished. To avoid
705 * writers to be blocked UBIFS initiates background commit in advance,
706 * when number of bud bytes becomes above the limit defined below.
708 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
711 * Ensure minimum journal size. All the bytes in the journal heads are
712 * considered to be used, when calculating the current journal usage.
713 * Consequently, if the journal is too small, UBIFS will treat it as
716 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
717 if (c
->bg_bud_bytes
< tmp64
)
718 c
->bg_bud_bytes
= tmp64
;
719 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
720 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
722 err
= ubifs_calc_lpt_geom(c
);
726 /* Initialize effective LEB size used in budgeting calculations */
727 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
732 * init_constants_master - initialize UBIFS constants.
733 * @c: UBIFS file-system description object
735 * This is a helper function which initializes various UBIFS constants after
736 * the master node has been read. It also checks various UBIFS parameters and
737 * makes sure they are all right.
739 static void init_constants_master(struct ubifs_info
*c
)
743 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
744 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
747 * Calculate total amount of FS blocks. This number is not used
748 * internally because it does not make much sense for UBIFS, but it is
749 * necessary to report something for the 'statfs()' call.
751 * Subtract the LEB reserved for GC, the LEB which is reserved for
752 * deletions, minimum LEBs for the index, and assume only one journal
755 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
756 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
757 tmp64
= ubifs_reported_space(c
, tmp64
);
758 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
762 * take_gc_lnum - reserve GC LEB.
763 * @c: UBIFS file-system description object
765 * This function ensures that the LEB reserved for garbage collection is marked
766 * as "taken" in lprops. We also have to set free space to LEB size and dirty
767 * space to zero, because lprops may contain out-of-date information if the
768 * file-system was un-mounted before it has been committed. This function
769 * returns zero in case of success and a negative error code in case of
772 static int take_gc_lnum(struct ubifs_info
*c
)
776 if (c
->gc_lnum
== -1) {
777 ubifs_err("no LEB for GC");
781 /* And we have to tell lprops that this LEB is taken */
782 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
788 * alloc_wbufs - allocate write-buffers.
789 * @c: UBIFS file-system description object
791 * This helper function allocates and initializes UBIFS write-buffers. Returns
792 * zero in case of success and %-ENOMEM in case of failure.
794 static int alloc_wbufs(struct ubifs_info
*c
)
798 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
803 /* Initialize journal heads */
804 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
805 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
806 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
810 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
811 c
->jheads
[i
].wbuf
.jhead
= i
;
812 c
->jheads
[i
].grouped
= 1;
816 * Garbage Collector head does not need to be synchronized by timer.
817 * Also GC head nodes are not grouped.
819 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
820 c
->jheads
[GCHD
].grouped
= 0;
826 * free_wbufs - free write-buffers.
827 * @c: UBIFS file-system description object
829 static void free_wbufs(struct ubifs_info
*c
)
834 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
835 kfree(c
->jheads
[i
].wbuf
.buf
);
836 kfree(c
->jheads
[i
].wbuf
.inodes
);
844 * free_orphans - free orphans.
845 * @c: UBIFS file-system description object
847 static void free_orphans(struct ubifs_info
*c
)
849 struct ubifs_orphan
*orph
;
851 while (c
->orph_dnext
) {
852 orph
= c
->orph_dnext
;
853 c
->orph_dnext
= orph
->dnext
;
854 list_del(&orph
->list
);
858 while (!list_empty(&c
->orph_list
)) {
859 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
860 list_del(&orph
->list
);
862 ubifs_err("orphan list not empty at unmount");
870 * free_buds - free per-bud objects.
871 * @c: UBIFS file-system description object
873 static void free_buds(struct ubifs_info
*c
)
875 struct rb_node
*this = c
->buds
.rb_node
;
876 struct ubifs_bud
*bud
;
880 this = this->rb_left
;
881 else if (this->rb_right
)
882 this = this->rb_right
;
884 bud
= rb_entry(this, struct ubifs_bud
, rb
);
885 this = rb_parent(this);
887 if (this->rb_left
== &bud
->rb
)
888 this->rb_left
= NULL
;
890 this->rb_right
= NULL
;
898 * check_volume_empty - check if the UBI volume is empty.
899 * @c: UBIFS file-system description object
901 * This function checks if the UBIFS volume is empty by looking if its LEBs are
902 * mapped or not. The result of checking is stored in the @c->empty variable.
903 * Returns zero in case of success and a negative error code in case of
906 static int check_volume_empty(struct ubifs_info
*c
)
911 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
912 err
= ubifs_is_mapped(c
, lnum
);
913 if (unlikely(err
< 0))
927 * UBIFS mount options.
929 * Opt_fast_unmount: do not run a journal commit before un-mounting
930 * Opt_norm_unmount: run a journal commit before un-mounting
931 * Opt_bulk_read: enable bulk-reads
932 * Opt_no_bulk_read: disable bulk-reads
933 * Opt_chk_data_crc: check CRCs when reading data nodes
934 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
935 * Opt_override_compr: override default compressor
936 * Opt_err: just end of array marker
949 static const match_table_t tokens
= {
950 {Opt_fast_unmount
, "fast_unmount"},
951 {Opt_norm_unmount
, "norm_unmount"},
952 {Opt_bulk_read
, "bulk_read"},
953 {Opt_no_bulk_read
, "no_bulk_read"},
954 {Opt_chk_data_crc
, "chk_data_crc"},
955 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
956 {Opt_override_compr
, "compr=%s"},
961 * parse_standard_option - parse a standard mount option.
962 * @option: the option to parse
964 * Normally, standard mount options like "sync" are passed to file-systems as
965 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
966 * be present in the options string. This function tries to deal with this
967 * situation and parse standard options. Returns 0 if the option was not
968 * recognized, and the corresponding integer flag if it was.
970 * UBIFS is only interested in the "sync" option, so do not check for anything
973 static int parse_standard_option(const char *option
)
975 ubifs_msg("parse %s", option
);
976 if (!strcmp(option
, "sync"))
977 return MS_SYNCHRONOUS
;
982 * ubifs_parse_options - parse mount parameters.
983 * @c: UBIFS file-system description object
984 * @options: parameters to parse
985 * @is_remount: non-zero if this is FS re-mount
987 * This function parses UBIFS mount options and returns zero in case success
988 * and a negative error code in case of failure.
990 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
994 substring_t args
[MAX_OPT_ARGS
];
999 while ((p
= strsep(&options
, ","))) {
1005 token
= match_token(p
, tokens
, args
);
1008 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1009 * We accept them in order to be backward-compatible. But this
1010 * should be removed at some point.
1012 case Opt_fast_unmount
:
1013 c
->mount_opts
.unmount_mode
= 2;
1015 case Opt_norm_unmount
:
1016 c
->mount_opts
.unmount_mode
= 1;
1019 c
->mount_opts
.bulk_read
= 2;
1022 case Opt_no_bulk_read
:
1023 c
->mount_opts
.bulk_read
= 1;
1026 case Opt_chk_data_crc
:
1027 c
->mount_opts
.chk_data_crc
= 2;
1028 c
->no_chk_data_crc
= 0;
1030 case Opt_no_chk_data_crc
:
1031 c
->mount_opts
.chk_data_crc
= 1;
1032 c
->no_chk_data_crc
= 1;
1034 case Opt_override_compr
:
1036 char *name
= match_strdup(&args
[0]);
1040 if (!strcmp(name
, "none"))
1041 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1042 else if (!strcmp(name
, "lzo"))
1043 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1044 else if (!strcmp(name
, "zlib"))
1045 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1047 ubifs_err("unknown compressor \"%s\"", name
);
1052 c
->mount_opts
.override_compr
= 1;
1053 c
->default_compr
= c
->mount_opts
.compr_type
;
1059 struct super_block
*sb
= c
->vfs_sb
;
1061 flag
= parse_standard_option(p
);
1063 ubifs_err("unrecognized mount option \"%s\" or missing value",
1067 sb
->s_flags
|= flag
;
1077 * destroy_journal - destroy journal data structures.
1078 * @c: UBIFS file-system description object
1080 * This function destroys journal data structures including those that may have
1081 * been created by recovery functions.
1083 static void destroy_journal(struct ubifs_info
*c
)
1085 while (!list_empty(&c
->unclean_leb_list
)) {
1086 struct ubifs_unclean_leb
*ucleb
;
1088 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1089 struct ubifs_unclean_leb
, list
);
1090 list_del(&ucleb
->list
);
1093 while (!list_empty(&c
->old_buds
)) {
1094 struct ubifs_bud
*bud
;
1096 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1097 list_del(&bud
->list
);
1100 ubifs_destroy_idx_gc(c
);
1101 ubifs_destroy_size_tree(c
);
1107 * bu_init - initialize bulk-read information.
1108 * @c: UBIFS file-system description object
1110 static void bu_init(struct ubifs_info
*c
)
1112 ubifs_assert(c
->bulk_read
== 1);
1115 return; /* Already initialized */
1118 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1120 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1121 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1125 /* Just disable bulk-read */
1126 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1128 c
->mount_opts
.bulk_read
= 1;
1135 * check_free_space - check if there is enough free space to mount.
1136 * @c: UBIFS file-system description object
1138 * This function makes sure UBIFS has enough free space to be mounted in
1139 * read/write mode. UBIFS must always have some free space to allow deletions.
1141 static int check_free_space(struct ubifs_info
*c
)
1143 ubifs_assert(c
->dark_wm
> 0);
1144 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1145 ubifs_err("insufficient free space to mount in R/W mode");
1146 ubifs_dump_budg(c
, &c
->bi
);
1147 ubifs_dump_lprops(c
);
1154 * mount_ubifs - mount UBIFS file-system.
1155 * @c: UBIFS file-system description object
1157 * This function mounts UBIFS file system. Returns zero in case of success and
1158 * a negative error code in case of failure.
1160 static int mount_ubifs(struct ubifs_info
*c
)
1166 c
->ro_mount
= !!(c
->vfs_sb
->s_flags
& MS_RDONLY
);
1167 err
= init_constants_early(c
);
1171 err
= ubifs_debugging_init(c
);
1175 err
= check_volume_empty(c
);
1179 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1181 * This UBI volume is empty, and read-only, or the file system
1182 * is mounted read-only - we cannot format it.
1184 ubifs_err("can't format empty UBI volume: read-only %s",
1185 c
->ro_media
? "UBI volume" : "mount");
1190 if (c
->ro_media
&& !c
->ro_mount
) {
1191 ubifs_err("cannot mount read-write - read-only media");
1197 * The requirement for the buffer is that it should fit indexing B-tree
1198 * height amount of integers. We assume the height if the TNC tree will
1202 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1203 if (!c
->bottom_up_buf
)
1206 c
->sbuf
= vmalloc(c
->leb_size
);
1211 c
->ileb_buf
= vmalloc(c
->leb_size
);
1216 if (c
->bulk_read
== 1)
1220 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
,
1222 if (!c
->write_reserve_buf
)
1228 err
= ubifs_read_superblock(c
);
1233 * Make sure the compressor which is set as default in the superblock
1234 * or overridden by mount options is actually compiled in.
1236 if (!ubifs_compr_present(c
->default_compr
)) {
1237 ubifs_err("'compressor \"%s\" is not compiled in",
1238 ubifs_compr_name(c
->default_compr
));
1243 err
= init_constants_sb(c
);
1247 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1248 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1249 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1255 err
= alloc_wbufs(c
);
1259 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1261 /* Create background thread */
1262 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1263 if (IS_ERR(c
->bgt
)) {
1264 err
= PTR_ERR(c
->bgt
);
1266 ubifs_err("cannot spawn \"%s\", error %d",
1270 wake_up_process(c
->bgt
);
1273 err
= ubifs_read_master(c
);
1277 init_constants_master(c
);
1279 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1280 ubifs_msg("recovery needed");
1281 c
->need_recovery
= 1;
1284 if (c
->need_recovery
&& !c
->ro_mount
) {
1285 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1290 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1294 if (!c
->ro_mount
&& c
->space_fixup
) {
1295 err
= ubifs_fixup_free_space(c
);
1302 * Set the "dirty" flag so that if we reboot uncleanly we
1303 * will notice this immediately on the next mount.
1305 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1306 err
= ubifs_write_master(c
);
1311 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1315 err
= ubifs_replay_journal(c
);
1319 /* Calculate 'min_idx_lebs' after journal replay */
1320 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1322 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1329 err
= check_free_space(c
);
1333 /* Check for enough log space */
1334 lnum
= c
->lhead_lnum
+ 1;
1335 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1336 lnum
= UBIFS_LOG_LNUM
;
1337 if (lnum
== c
->ltail_lnum
) {
1338 err
= ubifs_consolidate_log(c
);
1343 if (c
->need_recovery
) {
1344 err
= ubifs_recover_size(c
);
1347 err
= ubifs_rcvry_gc_commit(c
);
1351 err
= take_gc_lnum(c
);
1356 * GC LEB may contain garbage if there was an unclean
1357 * reboot, and it should be un-mapped.
1359 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1364 err
= dbg_check_lprops(c
);
1367 } else if (c
->need_recovery
) {
1368 err
= ubifs_recover_size(c
);
1373 * Even if we mount read-only, we have to set space in GC LEB
1374 * to proper value because this affects UBIFS free space
1375 * reporting. We do not want to have a situation when
1376 * re-mounting from R/O to R/W changes amount of free space.
1378 err
= take_gc_lnum(c
);
1383 spin_lock(&ubifs_infos_lock
);
1384 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1385 spin_unlock(&ubifs_infos_lock
);
1387 if (c
->need_recovery
) {
1389 ubifs_msg("recovery deferred");
1391 c
->need_recovery
= 0;
1392 ubifs_msg("recovery completed");
1394 * GC LEB has to be empty and taken at this point. But
1395 * the journal head LEBs may also be accounted as
1396 * "empty taken" if they are empty.
1398 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1401 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1403 err
= dbg_check_filesystem(c
);
1407 err
= dbg_debugfs_init_fs(c
);
1413 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1414 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
,
1415 c
->ro_mount
? ", R/O mode" : NULL
);
1416 x
= (long long)c
->main_lebs
* c
->leb_size
;
1417 y
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1418 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1419 c
->leb_size
, c
->leb_size
>> 10, c
->min_io_size
,
1421 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1422 x
, x
>> 20, c
->main_lebs
,
1423 y
, y
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1424 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1425 c
->report_rp_size
, c
->report_rp_size
>> 10);
1426 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1427 c
->fmt_version
, c
->ro_compat_version
,
1428 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
, c
->uuid
,
1429 c
->big_lpt
? ", big LPT model" : ", small LPT model");
1431 dbg_gen("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1432 dbg_gen("data journal heads: %d",
1433 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1434 dbg_gen("log LEBs: %d (%d - %d)",
1435 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1436 dbg_gen("LPT area LEBs: %d (%d - %d)",
1437 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1438 dbg_gen("orphan area LEBs: %d (%d - %d)",
1439 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1440 dbg_gen("main area LEBs: %d (%d - %d)",
1441 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1442 dbg_gen("index LEBs: %d", c
->lst
.idx_lebs
);
1443 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1444 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1445 c
->bi
.old_idx_sz
>> 20);
1446 dbg_gen("key hash type: %d", c
->key_hash_type
);
1447 dbg_gen("tree fanout: %d", c
->fanout
);
1448 dbg_gen("reserved GC LEB: %d", c
->gc_lnum
);
1449 dbg_gen("max. znode size %d", c
->max_znode_sz
);
1450 dbg_gen("max. index node size %d", c
->max_idx_node_sz
);
1451 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1452 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1453 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1454 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1455 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1456 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1457 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1458 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1459 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1460 dbg_gen("dead watermark: %d", c
->dead_wm
);
1461 dbg_gen("dark watermark: %d", c
->dark_wm
);
1462 dbg_gen("LEB overhead: %d", c
->leb_overhead
);
1463 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1464 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1465 x
, x
>> 10, x
>> 20);
1466 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1467 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1468 c
->max_bud_bytes
>> 20);
1469 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1470 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1471 c
->bg_bud_bytes
>> 20);
1472 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1473 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1474 dbg_gen("max. seq. number: %llu", c
->max_sqnum
);
1475 dbg_gen("commit number: %llu", c
->cmt_no
);
1480 spin_lock(&ubifs_infos_lock
);
1481 list_del(&c
->infos_list
);
1482 spin_unlock(&ubifs_infos_lock
);
1488 ubifs_lpt_free(c
, 0);
1491 kfree(c
->rcvrd_mst_node
);
1493 kthread_stop(c
->bgt
);
1499 kfree(c
->write_reserve_buf
);
1503 kfree(c
->bottom_up_buf
);
1504 ubifs_debugging_exit(c
);
1509 * ubifs_umount - un-mount UBIFS file-system.
1510 * @c: UBIFS file-system description object
1512 * Note, this function is called to free allocated resourced when un-mounting,
1513 * as well as free resources when an error occurred while we were half way
1514 * through mounting (error path cleanup function). So it has to make sure the
1515 * resource was actually allocated before freeing it.
1517 static void ubifs_umount(struct ubifs_info
*c
)
1519 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1522 dbg_debugfs_exit_fs(c
);
1523 spin_lock(&ubifs_infos_lock
);
1524 list_del(&c
->infos_list
);
1525 spin_unlock(&ubifs_infos_lock
);
1528 kthread_stop(c
->bgt
);
1533 ubifs_lpt_free(c
, 0);
1536 kfree(c
->rcvrd_mst_node
);
1538 kfree(c
->write_reserve_buf
);
1542 kfree(c
->bottom_up_buf
);
1543 ubifs_debugging_exit(c
);
1547 * ubifs_remount_rw - re-mount in read-write mode.
1548 * @c: UBIFS file-system description object
1550 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1551 * mode. This function allocates the needed resources and re-mounts UBIFS in
1554 static int ubifs_remount_rw(struct ubifs_info
*c
)
1558 if (c
->rw_incompat
) {
1559 ubifs_err("the file-system is not R/W-compatible");
1560 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1561 c
->fmt_version
, c
->ro_compat_version
,
1562 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1566 mutex_lock(&c
->umount_mutex
);
1567 dbg_save_space_info(c
);
1568 c
->remounting_rw
= 1;
1571 if (c
->space_fixup
) {
1572 err
= ubifs_fixup_free_space(c
);
1577 err
= check_free_space(c
);
1581 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1582 struct ubifs_sb_node
*sup
;
1584 sup
= ubifs_read_sb_node(c
);
1589 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1590 err
= ubifs_write_sb_node(c
, sup
);
1596 if (c
->need_recovery
) {
1597 ubifs_msg("completing deferred recovery");
1598 err
= ubifs_write_rcvrd_mst_node(c
);
1601 err
= ubifs_recover_size(c
);
1604 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1607 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1611 /* A readonly mount is not allowed to have orphans */
1612 ubifs_assert(c
->tot_orphans
== 0);
1613 err
= ubifs_clear_orphans(c
);
1618 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1619 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1620 err
= ubifs_write_master(c
);
1625 c
->ileb_buf
= vmalloc(c
->leb_size
);
1631 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
, GFP_KERNEL
);
1632 if (!c
->write_reserve_buf
)
1635 err
= ubifs_lpt_init(c
, 0, 1);
1639 /* Create background thread */
1640 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1641 if (IS_ERR(c
->bgt
)) {
1642 err
= PTR_ERR(c
->bgt
);
1644 ubifs_err("cannot spawn \"%s\", error %d",
1648 wake_up_process(c
->bgt
);
1650 c
->orph_buf
= vmalloc(c
->leb_size
);
1656 /* Check for enough log space */
1657 lnum
= c
->lhead_lnum
+ 1;
1658 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1659 lnum
= UBIFS_LOG_LNUM
;
1660 if (lnum
== c
->ltail_lnum
) {
1661 err
= ubifs_consolidate_log(c
);
1666 if (c
->need_recovery
)
1667 err
= ubifs_rcvry_gc_commit(c
);
1669 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1673 dbg_gen("re-mounted read-write");
1674 c
->remounting_rw
= 0;
1676 if (c
->need_recovery
) {
1677 c
->need_recovery
= 0;
1678 ubifs_msg("deferred recovery completed");
1681 * Do not run the debugging space check if the were doing
1682 * recovery, because when we saved the information we had the
1683 * file-system in a state where the TNC and lprops has been
1684 * modified in memory, but all the I/O operations (including a
1685 * commit) were deferred. So the file-system was in
1686 * "non-committed" state. Now the file-system is in committed
1687 * state, and of course the amount of free space will change
1688 * because, for example, the old index size was imprecise.
1690 err
= dbg_check_space_info(c
);
1693 mutex_unlock(&c
->umount_mutex
);
1701 kthread_stop(c
->bgt
);
1705 kfree(c
->write_reserve_buf
);
1706 c
->write_reserve_buf
= NULL
;
1709 ubifs_lpt_free(c
, 1);
1710 c
->remounting_rw
= 0;
1711 mutex_unlock(&c
->umount_mutex
);
1716 * ubifs_remount_ro - re-mount in read-only mode.
1717 * @c: UBIFS file-system description object
1719 * We assume VFS has stopped writing. Possibly the background thread could be
1720 * running a commit, however kthread_stop will wait in that case.
1722 static void ubifs_remount_ro(struct ubifs_info
*c
)
1726 ubifs_assert(!c
->need_recovery
);
1727 ubifs_assert(!c
->ro_mount
);
1729 mutex_lock(&c
->umount_mutex
);
1731 kthread_stop(c
->bgt
);
1735 dbg_save_space_info(c
);
1737 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1738 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1740 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1741 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1742 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1743 err
= ubifs_write_master(c
);
1745 ubifs_ro_mode(c
, err
);
1749 kfree(c
->write_reserve_buf
);
1750 c
->write_reserve_buf
= NULL
;
1753 ubifs_lpt_free(c
, 1);
1755 err
= dbg_check_space_info(c
);
1757 ubifs_ro_mode(c
, err
);
1758 mutex_unlock(&c
->umount_mutex
);
1761 static void ubifs_put_super(struct super_block
*sb
)
1764 struct ubifs_info
*c
= sb
->s_fs_info
;
1766 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1770 * The following asserts are only valid if there has not been a failure
1771 * of the media. For example, there will be dirty inodes if we failed
1772 * to write them back because of I/O errors.
1775 ubifs_assert(c
->bi
.idx_growth
== 0);
1776 ubifs_assert(c
->bi
.dd_growth
== 0);
1777 ubifs_assert(c
->bi
.data_growth
== 0);
1781 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1782 * and file system un-mount. Namely, it prevents the shrinker from
1783 * picking this superblock for shrinking - it will be just skipped if
1784 * the mutex is locked.
1786 mutex_lock(&c
->umount_mutex
);
1789 * First of all kill the background thread to make sure it does
1790 * not interfere with un-mounting and freeing resources.
1793 kthread_stop(c
->bgt
);
1798 * On fatal errors c->ro_error is set to 1, in which case we do
1799 * not write the master node.
1804 /* Synchronize write-buffers */
1805 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1806 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1809 * We are being cleanly unmounted which means the
1810 * orphans were killed - indicate this in the master
1811 * node. Also save the reserved GC LEB number.
1813 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1814 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1815 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1816 err
= ubifs_write_master(c
);
1819 * Recovery will attempt to fix the master area
1820 * next mount, so we just print a message and
1821 * continue to unmount normally.
1823 ubifs_err("failed to write master node, error %d",
1826 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1827 /* Make sure write-buffer timers are canceled */
1828 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1833 bdi_destroy(&c
->bdi
);
1834 ubi_close_volume(c
->ubi
);
1835 mutex_unlock(&c
->umount_mutex
);
1838 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1841 struct ubifs_info
*c
= sb
->s_fs_info
;
1843 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1845 err
= ubifs_parse_options(c
, data
, 1);
1847 ubifs_err("invalid or unknown remount parameter");
1851 if (c
->ro_mount
&& !(*flags
& MS_RDONLY
)) {
1853 ubifs_msg("cannot re-mount R/W due to prior errors");
1857 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1860 err
= ubifs_remount_rw(c
);
1863 } else if (!c
->ro_mount
&& (*flags
& MS_RDONLY
)) {
1865 ubifs_msg("cannot re-mount R/O due to prior errors");
1868 ubifs_remount_ro(c
);
1871 if (c
->bulk_read
== 1)
1874 dbg_gen("disable bulk-read");
1879 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1883 const struct super_operations ubifs_super_operations
= {
1884 .alloc_inode
= ubifs_alloc_inode
,
1885 .destroy_inode
= ubifs_destroy_inode
,
1886 .put_super
= ubifs_put_super
,
1887 .write_inode
= ubifs_write_inode
,
1888 .evict_inode
= ubifs_evict_inode
,
1889 .statfs
= ubifs_statfs
,
1890 .dirty_inode
= ubifs_dirty_inode
,
1891 .remount_fs
= ubifs_remount_fs
,
1892 .show_options
= ubifs_show_options
,
1893 .sync_fs
= ubifs_sync_fs
,
1897 * open_ubi - parse UBI device name string and open the UBI device.
1898 * @name: UBI volume name
1899 * @mode: UBI volume open mode
1901 * The primary method of mounting UBIFS is by specifying the UBI volume
1902 * character device node path. However, UBIFS may also be mounted withoug any
1903 * character device node using one of the following methods:
1905 * o ubiX_Y - mount UBI device number X, volume Y;
1906 * o ubiY - mount UBI device number 0, volume Y;
1907 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1908 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1910 * Alternative '!' separator may be used instead of ':' (because some shells
1911 * like busybox may interpret ':' as an NFS host name separator). This function
1912 * returns UBI volume description object in case of success and a negative
1913 * error code in case of failure.
1915 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1917 struct ubi_volume_desc
*ubi
;
1921 /* First, try to open using the device node path method */
1922 ubi
= ubi_open_volume_path(name
, mode
);
1926 /* Try the "nodev" method */
1927 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1928 return ERR_PTR(-EINVAL
);
1930 /* ubi:NAME method */
1931 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1932 return ubi_open_volume_nm(0, name
+ 4, mode
);
1934 if (!isdigit(name
[3]))
1935 return ERR_PTR(-EINVAL
);
1937 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1940 if (*endptr
== '\0')
1941 return ubi_open_volume(0, dev
, mode
);
1944 if (*endptr
== '_' && isdigit(endptr
[1])) {
1945 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1946 if (*endptr
!= '\0')
1947 return ERR_PTR(-EINVAL
);
1948 return ubi_open_volume(dev
, vol
, mode
);
1951 /* ubiX:NAME method */
1952 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1953 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1955 return ERR_PTR(-EINVAL
);
1958 static struct ubifs_info
*alloc_ubifs_info(struct ubi_volume_desc
*ubi
)
1960 struct ubifs_info
*c
;
1962 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1964 spin_lock_init(&c
->cnt_lock
);
1965 spin_lock_init(&c
->cs_lock
);
1966 spin_lock_init(&c
->buds_lock
);
1967 spin_lock_init(&c
->space_lock
);
1968 spin_lock_init(&c
->orphan_lock
);
1969 init_rwsem(&c
->commit_sem
);
1970 mutex_init(&c
->lp_mutex
);
1971 mutex_init(&c
->tnc_mutex
);
1972 mutex_init(&c
->log_mutex
);
1973 mutex_init(&c
->mst_mutex
);
1974 mutex_init(&c
->umount_mutex
);
1975 mutex_init(&c
->bu_mutex
);
1976 mutex_init(&c
->write_reserve_mutex
);
1977 init_waitqueue_head(&c
->cmt_wq
);
1979 c
->old_idx
= RB_ROOT
;
1980 c
->size_tree
= RB_ROOT
;
1981 c
->orph_tree
= RB_ROOT
;
1982 INIT_LIST_HEAD(&c
->infos_list
);
1983 INIT_LIST_HEAD(&c
->idx_gc
);
1984 INIT_LIST_HEAD(&c
->replay_list
);
1985 INIT_LIST_HEAD(&c
->replay_buds
);
1986 INIT_LIST_HEAD(&c
->uncat_list
);
1987 INIT_LIST_HEAD(&c
->empty_list
);
1988 INIT_LIST_HEAD(&c
->freeable_list
);
1989 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1990 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1991 INIT_LIST_HEAD(&c
->old_buds
);
1992 INIT_LIST_HEAD(&c
->orph_list
);
1993 INIT_LIST_HEAD(&c
->orph_new
);
1994 c
->no_chk_data_crc
= 1;
1996 c
->highest_inum
= UBIFS_FIRST_INO
;
1997 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1999 ubi_get_volume_info(ubi
, &c
->vi
);
2000 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
2005 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2007 struct ubifs_info
*c
= sb
->s_fs_info
;
2012 /* Re-open the UBI device in read-write mode */
2013 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2014 if (IS_ERR(c
->ubi
)) {
2015 err
= PTR_ERR(c
->ubi
);
2020 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2021 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2022 * which means the user would have to wait not just for their own I/O
2023 * but the read-ahead I/O as well i.e. completely pointless.
2025 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2027 c
->bdi
.name
= "ubifs",
2028 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
2029 err
= bdi_init(&c
->bdi
);
2032 err
= bdi_register(&c
->bdi
, NULL
, "ubifs_%d_%d",
2033 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2037 err
= ubifs_parse_options(c
, data
, 0);
2041 sb
->s_bdi
= &c
->bdi
;
2043 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2044 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2045 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2046 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2047 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2048 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2049 sb
->s_op
= &ubifs_super_operations
;
2051 mutex_lock(&c
->umount_mutex
);
2052 err
= mount_ubifs(c
);
2054 ubifs_assert(err
< 0);
2058 /* Read the root inode */
2059 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2061 err
= PTR_ERR(root
);
2065 sb
->s_root
= d_make_root(root
);
2069 mutex_unlock(&c
->umount_mutex
);
2075 mutex_unlock(&c
->umount_mutex
);
2077 bdi_destroy(&c
->bdi
);
2079 ubi_close_volume(c
->ubi
);
2084 static int sb_test(struct super_block
*sb
, void *data
)
2086 struct ubifs_info
*c1
= data
;
2087 struct ubifs_info
*c
= sb
->s_fs_info
;
2089 return c
->vi
.cdev
== c1
->vi
.cdev
;
2092 static int sb_set(struct super_block
*sb
, void *data
)
2094 sb
->s_fs_info
= data
;
2095 return set_anon_super(sb
, NULL
);
2098 static struct dentry
*ubifs_mount(struct file_system_type
*fs_type
, int flags
,
2099 const char *name
, void *data
)
2101 struct ubi_volume_desc
*ubi
;
2102 struct ubifs_info
*c
;
2103 struct super_block
*sb
;
2106 dbg_gen("name %s, flags %#x", name
, flags
);
2109 * Get UBI device number and volume ID. Mount it read-only so far
2110 * because this might be a new mount point, and UBI allows only one
2111 * read-write user at a time.
2113 ubi
= open_ubi(name
, UBI_READONLY
);
2115 ubifs_err("cannot open \"%s\", error %d",
2116 name
, (int)PTR_ERR(ubi
));
2117 return ERR_CAST(ubi
);
2120 c
= alloc_ubifs_info(ubi
);
2126 dbg_gen("opened ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2128 sb
= sget(fs_type
, sb_test
, sb_set
, flags
, c
);
2136 struct ubifs_info
*c1
= sb
->s_fs_info
;
2138 /* A new mount point for already mounted UBIFS */
2139 dbg_gen("this ubi volume is already mounted");
2140 if (!!(flags
& MS_RDONLY
) != c1
->ro_mount
) {
2145 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
2148 /* We do not support atime */
2149 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
2152 /* 'fill_super()' opens ubi again so we must close it here */
2153 ubi_close_volume(ubi
);
2155 return dget(sb
->s_root
);
2158 deactivate_locked_super(sb
);
2160 ubi_close_volume(ubi
);
2161 return ERR_PTR(err
);
2164 static void kill_ubifs_super(struct super_block
*s
)
2166 struct ubifs_info
*c
= s
->s_fs_info
;
2171 static struct file_system_type ubifs_fs_type
= {
2173 .owner
= THIS_MODULE
,
2174 .mount
= ubifs_mount
,
2175 .kill_sb
= kill_ubifs_super
,
2177 MODULE_ALIAS_FS("ubifs");
2180 * Inode slab cache constructor.
2182 static void inode_slab_ctor(void *obj
)
2184 struct ubifs_inode
*ui
= obj
;
2185 inode_init_once(&ui
->vfs_inode
);
2188 static int __init
ubifs_init(void)
2192 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2194 /* Make sure node sizes are 8-byte aligned */
2195 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2196 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2197 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2198 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2199 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2200 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2201 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2202 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2203 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2204 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2205 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2207 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2208 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2209 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2210 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2211 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2212 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2214 /* Check min. node size */
2215 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2216 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2217 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2218 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2220 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2221 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2222 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2223 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2225 /* Defined node sizes */
2226 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2227 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2228 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2229 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2232 * We use 2 bit wide bit-fields to store compression type, which should
2233 * be amended if more compressors are added. The bit-fields are:
2234 * @compr_type in 'struct ubifs_inode', @default_compr in
2235 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2237 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2240 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2241 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2243 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
2244 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2245 (unsigned int)PAGE_CACHE_SIZE
);
2249 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2250 sizeof(struct ubifs_inode
), 0,
2251 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
2253 if (!ubifs_inode_slab
)
2256 register_shrinker(&ubifs_shrinker_info
);
2258 err
= ubifs_compressors_init();
2262 err
= dbg_debugfs_init();
2266 err
= register_filesystem(&ubifs_fs_type
);
2268 ubifs_err("cannot register file system, error %d", err
);
2276 ubifs_compressors_exit();
2278 unregister_shrinker(&ubifs_shrinker_info
);
2279 kmem_cache_destroy(ubifs_inode_slab
);
2282 /* late_initcall to let compressors initialize first */
2283 late_initcall(ubifs_init
);
2285 static void __exit
ubifs_exit(void)
2287 ubifs_assert(list_empty(&ubifs_infos
));
2288 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2291 ubifs_compressors_exit();
2292 unregister_shrinker(&ubifs_shrinker_info
);
2295 * Make sure all delayed rcu free inodes are flushed before we
2299 kmem_cache_destroy(ubifs_inode_slab
);
2300 unregister_filesystem(&ubifs_fs_type
);
2302 module_exit(ubifs_exit
);
2304 MODULE_LICENSE("GPL");
2305 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2306 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2307 MODULE_DESCRIPTION("UBIFS - UBI File System");