[IA64] cpu hotplug: return offlined cpus to SAL
[linux-2.6.git] / arch / ia64 / kernel / process.c
blob7c43aea5f7f7d9b96b7d9837fa029e16b62ef5df
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 */
8 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
9 #include <linux/config.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/thread_info.h>
26 #include <linux/unistd.h>
27 #include <linux/efi.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
31 #include <asm/cpu.h>
32 #include <asm/delay.h>
33 #include <asm/elf.h>
34 #include <asm/ia32.h>
35 #include <asm/irq.h>
36 #include <asm/pgalloc.h>
37 #include <asm/processor.h>
38 #include <asm/sal.h>
39 #include <asm/tlbflush.h>
40 #include <asm/uaccess.h>
41 #include <asm/unwind.h>
42 #include <asm/user.h>
44 #include "entry.h"
46 #ifdef CONFIG_PERFMON
47 # include <asm/perfmon.h>
48 #endif
50 #include "sigframe.h"
52 void (*ia64_mark_idle)(int);
53 static cpumask_t cpu_idle_map;
55 unsigned long boot_option_idle_override = 0;
56 EXPORT_SYMBOL(boot_option_idle_override);
58 void
59 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
61 unsigned long ip, sp, bsp;
62 char buf[128]; /* don't make it so big that it overflows the stack! */
64 printk("\nCall Trace:\n");
65 do {
66 unw_get_ip(info, &ip);
67 if (ip == 0)
68 break;
70 unw_get_sp(info, &sp);
71 unw_get_bsp(info, &bsp);
72 snprintf(buf, sizeof(buf),
73 " [<%016lx>] %%s\n"
74 " sp=%016lx bsp=%016lx\n",
75 ip, sp, bsp);
76 print_symbol(buf, ip);
77 } while (unw_unwind(info) >= 0);
80 void
81 show_stack (struct task_struct *task, unsigned long *sp)
83 if (!task)
84 unw_init_running(ia64_do_show_stack, NULL);
85 else {
86 struct unw_frame_info info;
88 unw_init_from_blocked_task(&info, task);
89 ia64_do_show_stack(&info, NULL);
93 void
94 dump_stack (void)
96 show_stack(NULL, NULL);
99 EXPORT_SYMBOL(dump_stack);
101 void
102 show_regs (struct pt_regs *regs)
104 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
106 print_modules();
107 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
108 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
109 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
110 print_symbol("ip is at %s\n", ip);
111 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
112 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
113 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
114 regs->ar_rnat, regs->ar_bspstore, regs->pr);
115 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
116 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
117 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
118 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
119 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
120 regs->f6.u.bits[1], regs->f6.u.bits[0],
121 regs->f7.u.bits[1], regs->f7.u.bits[0]);
122 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
123 regs->f8.u.bits[1], regs->f8.u.bits[0],
124 regs->f9.u.bits[1], regs->f9.u.bits[0]);
125 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
126 regs->f10.u.bits[1], regs->f10.u.bits[0],
127 regs->f11.u.bits[1], regs->f11.u.bits[0]);
129 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
130 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
131 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
132 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
133 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
134 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
135 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
136 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
137 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
139 if (user_mode(regs)) {
140 /* print the stacked registers */
141 unsigned long val, *bsp, ndirty;
142 int i, sof, is_nat = 0;
144 sof = regs->cr_ifs & 0x7f; /* size of frame */
145 ndirty = (regs->loadrs >> 19);
146 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
147 for (i = 0; i < sof; ++i) {
148 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
149 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
150 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
152 } else
153 show_stack(NULL, NULL);
156 void
157 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
159 if (fsys_mode(current, &scr->pt)) {
160 /* defer signal-handling etc. until we return to privilege-level 0. */
161 if (!ia64_psr(&scr->pt)->lp)
162 ia64_psr(&scr->pt)->lp = 1;
163 return;
166 #ifdef CONFIG_PERFMON
167 if (current->thread.pfm_needs_checking)
168 pfm_handle_work();
169 #endif
171 /* deal with pending signal delivery */
172 if (test_thread_flag(TIF_SIGPENDING))
173 ia64_do_signal(oldset, scr, in_syscall);
176 static int pal_halt = 1;
177 static int __init nohalt_setup(char * str)
179 pal_halt = 0;
180 return 1;
182 __setup("nohalt", nohalt_setup);
185 * We use this if we don't have any better idle routine..
187 void
188 default_idle (void)
190 unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP);
192 while (!need_resched())
193 if (pal_halt && !pmu_active)
194 safe_halt();
195 else
196 cpu_relax();
199 #ifdef CONFIG_HOTPLUG_CPU
200 /* We don't actually take CPU down, just spin without interrupts. */
201 static inline void play_dead(void)
203 extern void ia64_cpu_local_tick (void);
204 unsigned int this_cpu = smp_processor_id();
206 /* Ack it */
207 __get_cpu_var(cpu_state) = CPU_DEAD;
209 max_xtp();
210 local_irq_disable();
211 idle_task_exit();
212 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
214 * The above is a point of no-return, the processor is
215 * expected to be in SAL loop now.
217 BUG();
219 #else
220 static inline void play_dead(void)
222 BUG();
224 #endif /* CONFIG_HOTPLUG_CPU */
227 void cpu_idle_wait(void)
229 int cpu;
230 cpumask_t map;
232 for_each_online_cpu(cpu)
233 cpu_set(cpu, cpu_idle_map);
235 wmb();
236 do {
237 ssleep(1);
238 cpus_and(map, cpu_idle_map, cpu_online_map);
239 } while (!cpus_empty(map));
241 EXPORT_SYMBOL_GPL(cpu_idle_wait);
243 void __attribute__((noreturn))
244 cpu_idle (void)
246 void (*mark_idle)(int) = ia64_mark_idle;
247 int cpu = smp_processor_id();
249 /* endless idle loop with no priority at all */
250 while (1) {
251 #ifdef CONFIG_SMP
252 if (!need_resched())
253 min_xtp();
254 #endif
255 while (!need_resched()) {
256 void (*idle)(void);
258 if (mark_idle)
259 (*mark_idle)(1);
261 if (cpu_isset(cpu, cpu_idle_map))
262 cpu_clear(cpu, cpu_idle_map);
263 rmb();
264 idle = pm_idle;
265 if (!idle)
266 idle = default_idle;
267 (*idle)();
270 if (mark_idle)
271 (*mark_idle)(0);
273 #ifdef CONFIG_SMP
274 normal_xtp();
275 #endif
276 schedule();
277 check_pgt_cache();
278 if (cpu_is_offline(smp_processor_id()))
279 play_dead();
283 void
284 ia64_save_extra (struct task_struct *task)
286 #ifdef CONFIG_PERFMON
287 unsigned long info;
288 #endif
290 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
291 ia64_save_debug_regs(&task->thread.dbr[0]);
293 #ifdef CONFIG_PERFMON
294 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
295 pfm_save_regs(task);
297 info = __get_cpu_var(pfm_syst_info);
298 if (info & PFM_CPUINFO_SYST_WIDE)
299 pfm_syst_wide_update_task(task, info, 0);
300 #endif
302 #ifdef CONFIG_IA32_SUPPORT
303 if (IS_IA32_PROCESS(ia64_task_regs(task)))
304 ia32_save_state(task);
305 #endif
308 void
309 ia64_load_extra (struct task_struct *task)
311 #ifdef CONFIG_PERFMON
312 unsigned long info;
313 #endif
315 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
316 ia64_load_debug_regs(&task->thread.dbr[0]);
318 #ifdef CONFIG_PERFMON
319 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
320 pfm_load_regs(task);
322 info = __get_cpu_var(pfm_syst_info);
323 if (info & PFM_CPUINFO_SYST_WIDE)
324 pfm_syst_wide_update_task(task, info, 1);
325 #endif
327 #ifdef CONFIG_IA32_SUPPORT
328 if (IS_IA32_PROCESS(ia64_task_regs(task)))
329 ia32_load_state(task);
330 #endif
334 * Copy the state of an ia-64 thread.
336 * We get here through the following call chain:
338 * from user-level: from kernel:
340 * <clone syscall> <some kernel call frames>
341 * sys_clone :
342 * do_fork do_fork
343 * copy_thread copy_thread
345 * This means that the stack layout is as follows:
347 * +---------------------+ (highest addr)
348 * | struct pt_regs |
349 * +---------------------+
350 * | struct switch_stack |
351 * +---------------------+
352 * | |
353 * | memory stack |
354 * | | <-- sp (lowest addr)
355 * +---------------------+
357 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
358 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
359 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
360 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
361 * the stack is page aligned and the page size is at least 4KB, this is always the case,
362 * so there is nothing to worry about.
365 copy_thread (int nr, unsigned long clone_flags,
366 unsigned long user_stack_base, unsigned long user_stack_size,
367 struct task_struct *p, struct pt_regs *regs)
369 extern char ia64_ret_from_clone, ia32_ret_from_clone;
370 struct switch_stack *child_stack, *stack;
371 unsigned long rbs, child_rbs, rbs_size;
372 struct pt_regs *child_ptregs;
373 int retval = 0;
375 #ifdef CONFIG_SMP
377 * For SMP idle threads, fork_by_hand() calls do_fork with
378 * NULL regs.
380 if (!regs)
381 return 0;
382 #endif
384 stack = ((struct switch_stack *) regs) - 1;
386 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
387 child_stack = (struct switch_stack *) child_ptregs - 1;
389 /* copy parent's switch_stack & pt_regs to child: */
390 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
392 rbs = (unsigned long) current + IA64_RBS_OFFSET;
393 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
394 rbs_size = stack->ar_bspstore - rbs;
396 /* copy the parent's register backing store to the child: */
397 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
399 if (likely(user_mode(child_ptregs))) {
400 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
401 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
402 if (user_stack_base) {
403 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
404 child_ptregs->ar_bspstore = user_stack_base;
405 child_ptregs->ar_rnat = 0;
406 child_ptregs->loadrs = 0;
408 } else {
410 * Note: we simply preserve the relative position of
411 * the stack pointer here. There is no need to
412 * allocate a scratch area here, since that will have
413 * been taken care of by the caller of sys_clone()
414 * already.
416 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
417 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
419 child_stack->ar_bspstore = child_rbs + rbs_size;
420 if (IS_IA32_PROCESS(regs))
421 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
422 else
423 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
425 /* copy parts of thread_struct: */
426 p->thread.ksp = (unsigned long) child_stack - 16;
428 /* stop some PSR bits from being inherited.
429 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
430 * therefore we must specify them explicitly here and not include them in
431 * IA64_PSR_BITS_TO_CLEAR.
433 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
434 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
437 * NOTE: The calling convention considers all floating point
438 * registers in the high partition (fph) to be scratch. Since
439 * the only way to get to this point is through a system call,
440 * we know that the values in fph are all dead. Hence, there
441 * is no need to inherit the fph state from the parent to the
442 * child and all we have to do is to make sure that
443 * IA64_THREAD_FPH_VALID is cleared in the child.
445 * XXX We could push this optimization a bit further by
446 * clearing IA64_THREAD_FPH_VALID on ANY system call.
447 * However, it's not clear this is worth doing. Also, it
448 * would be a slight deviation from the normal Linux system
449 * call behavior where scratch registers are preserved across
450 * system calls (unless used by the system call itself).
452 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
453 | IA64_THREAD_PM_VALID)
454 # define THREAD_FLAGS_TO_SET 0
455 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
456 | THREAD_FLAGS_TO_SET);
457 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
458 #ifdef CONFIG_IA32_SUPPORT
460 * If we're cloning an IA32 task then save the IA32 extra
461 * state from the current task to the new task
463 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
464 ia32_save_state(p);
465 if (clone_flags & CLONE_SETTLS)
466 retval = ia32_clone_tls(p, child_ptregs);
468 /* Copy partially mapped page list */
469 if (!retval)
470 retval = ia32_copy_partial_page_list(p, clone_flags);
472 #endif
474 #ifdef CONFIG_PERFMON
475 if (current->thread.pfm_context)
476 pfm_inherit(p, child_ptregs);
477 #endif
478 return retval;
481 static void
482 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
484 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
485 elf_greg_t *dst = arg;
486 struct pt_regs *pt;
487 char nat;
488 int i;
490 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
492 if (unw_unwind_to_user(info) < 0)
493 return;
495 unw_get_sp(info, &sp);
496 pt = (struct pt_regs *) (sp + 16);
498 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
500 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
501 return;
503 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
504 &ar_rnat);
507 * coredump format:
508 * r0-r31
509 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
510 * predicate registers (p0-p63)
511 * b0-b7
512 * ip cfm user-mask
513 * ar.rsc ar.bsp ar.bspstore ar.rnat
514 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
517 /* r0 is zero */
518 for (i = 1, mask = (1UL << i); i < 32; ++i) {
519 unw_get_gr(info, i, &dst[i], &nat);
520 if (nat)
521 nat_bits |= mask;
522 mask <<= 1;
524 dst[32] = nat_bits;
525 unw_get_pr(info, &dst[33]);
527 for (i = 0; i < 8; ++i)
528 unw_get_br(info, i, &dst[34 + i]);
530 unw_get_rp(info, &ip);
531 dst[42] = ip + ia64_psr(pt)->ri;
532 dst[43] = cfm;
533 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
535 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
537 * For bsp and bspstore, unw_get_ar() would return the kernel
538 * addresses, but we need the user-level addresses instead:
540 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
541 dst[47] = pt->ar_bspstore;
542 dst[48] = ar_rnat;
543 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
544 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
545 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
546 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
547 unw_get_ar(info, UNW_AR_LC, &dst[53]);
548 unw_get_ar(info, UNW_AR_EC, &dst[54]);
549 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
550 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
553 void
554 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
556 elf_fpreg_t *dst = arg;
557 int i;
559 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
561 if (unw_unwind_to_user(info) < 0)
562 return;
564 /* f0 is 0.0, f1 is 1.0 */
566 for (i = 2; i < 32; ++i)
567 unw_get_fr(info, i, dst + i);
569 ia64_flush_fph(task);
570 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
571 memcpy(dst + 32, task->thread.fph, 96*16);
574 void
575 do_copy_regs (struct unw_frame_info *info, void *arg)
577 do_copy_task_regs(current, info, arg);
580 void
581 do_dump_fpu (struct unw_frame_info *info, void *arg)
583 do_dump_task_fpu(current, info, arg);
587 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
589 struct unw_frame_info tcore_info;
591 if (current == task) {
592 unw_init_running(do_copy_regs, regs);
593 } else {
594 memset(&tcore_info, 0, sizeof(tcore_info));
595 unw_init_from_blocked_task(&tcore_info, task);
596 do_copy_task_regs(task, &tcore_info, regs);
598 return 1;
601 void
602 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
604 unw_init_running(do_copy_regs, dst);
608 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
610 struct unw_frame_info tcore_info;
612 if (current == task) {
613 unw_init_running(do_dump_fpu, dst);
614 } else {
615 memset(&tcore_info, 0, sizeof(tcore_info));
616 unw_init_from_blocked_task(&tcore_info, task);
617 do_dump_task_fpu(task, &tcore_info, dst);
619 return 1;
623 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
625 unw_init_running(do_dump_fpu, dst);
626 return 1; /* f0-f31 are always valid so we always return 1 */
629 long
630 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
631 struct pt_regs *regs)
633 char *fname;
634 int error;
636 fname = getname(filename);
637 error = PTR_ERR(fname);
638 if (IS_ERR(fname))
639 goto out;
640 error = do_execve(fname, argv, envp, regs);
641 putname(fname);
642 out:
643 return error;
646 pid_t
647 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
649 extern void start_kernel_thread (void);
650 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
651 struct {
652 struct switch_stack sw;
653 struct pt_regs pt;
654 } regs;
656 memset(&regs, 0, sizeof(regs));
657 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
658 regs.pt.r1 = helper_fptr[1]; /* set GP */
659 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
660 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
661 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
662 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
663 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
664 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
665 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
666 regs.sw.pr = (1 << PRED_KERNEL_STACK);
667 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
669 EXPORT_SYMBOL(kernel_thread);
671 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
673 kernel_thread_helper (int (*fn)(void *), void *arg)
675 #ifdef CONFIG_IA32_SUPPORT
676 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
677 /* A kernel thread is always a 64-bit process. */
678 current->thread.map_base = DEFAULT_MAP_BASE;
679 current->thread.task_size = DEFAULT_TASK_SIZE;
680 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
681 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
683 #endif
684 return (*fn)(arg);
688 * Flush thread state. This is called when a thread does an execve().
690 void
691 flush_thread (void)
693 /* drop floating-point and debug-register state if it exists: */
694 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
695 ia64_drop_fpu(current);
696 if (IS_IA32_PROCESS(ia64_task_regs(current)))
697 ia32_drop_partial_page_list(current);
701 * Clean up state associated with current thread. This is called when
702 * the thread calls exit().
704 void
705 exit_thread (void)
707 ia64_drop_fpu(current);
708 #ifdef CONFIG_PERFMON
709 /* if needed, stop monitoring and flush state to perfmon context */
710 if (current->thread.pfm_context)
711 pfm_exit_thread(current);
713 /* free debug register resources */
714 if (current->thread.flags & IA64_THREAD_DBG_VALID)
715 pfm_release_debug_registers(current);
716 #endif
717 if (IS_IA32_PROCESS(ia64_task_regs(current)))
718 ia32_drop_partial_page_list(current);
721 unsigned long
722 get_wchan (struct task_struct *p)
724 struct unw_frame_info info;
725 unsigned long ip;
726 int count = 0;
729 * Note: p may not be a blocked task (it could be current or
730 * another process running on some other CPU. Rather than
731 * trying to determine if p is really blocked, we just assume
732 * it's blocked and rely on the unwind routines to fail
733 * gracefully if the process wasn't really blocked after all.
734 * --davidm 99/12/15
736 unw_init_from_blocked_task(&info, p);
737 do {
738 if (unw_unwind(&info) < 0)
739 return 0;
740 unw_get_ip(&info, &ip);
741 if (!in_sched_functions(ip))
742 return ip;
743 } while (count++ < 16);
744 return 0;
747 void
748 cpu_halt (void)
750 pal_power_mgmt_info_u_t power_info[8];
751 unsigned long min_power;
752 int i, min_power_state;
754 if (ia64_pal_halt_info(power_info) != 0)
755 return;
757 min_power_state = 0;
758 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
759 for (i = 1; i < 8; ++i)
760 if (power_info[i].pal_power_mgmt_info_s.im
761 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
762 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
763 min_power_state = i;
766 while (1)
767 ia64_pal_halt(min_power_state);
770 void
771 machine_restart (char *restart_cmd)
773 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
776 EXPORT_SYMBOL(machine_restart);
778 void
779 machine_halt (void)
781 cpu_halt();
784 EXPORT_SYMBOL(machine_halt);
786 void
787 machine_power_off (void)
789 if (pm_power_off)
790 pm_power_off();
791 machine_halt();
794 EXPORT_SYMBOL(machine_power_off);