2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
14 struct audit_chunk
*root
;
15 struct list_head chunks
;
16 struct list_head rules
;
17 struct list_head list
;
18 struct list_head same_root
;
24 struct list_head hash
;
25 struct fsnotify_mark mark
;
26 struct list_head trees
; /* with root here */
32 struct list_head list
;
33 struct audit_tree
*owner
;
34 unsigned index
; /* index; upper bit indicates 'will prune' */
38 static LIST_HEAD(tree_list
);
39 static LIST_HEAD(prune_list
);
42 * One struct chunk is attached to each inode of interest.
43 * We replace struct chunk on tagging/untagging.
44 * Rules have pointer to struct audit_tree.
45 * Rules have struct list_head rlist forming a list of rules over
47 * References to struct chunk are collected at audit_inode{,_child}()
48 * time and used in AUDIT_TREE rule matching.
49 * These references are dropped at the same time we are calling
50 * audit_free_names(), etc.
52 * Cyclic lists galore:
53 * tree.chunks anchors chunk.owners[].list hash_lock
54 * tree.rules anchors rule.rlist audit_filter_mutex
55 * chunk.trees anchors tree.same_root hash_lock
56 * chunk.hash is a hash with middle bits of watch.inode as
57 * a hash function. RCU, hash_lock
59 * tree is refcounted; one reference for "some rules on rules_list refer to
60 * it", one for each chunk with pointer to it.
62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63 * of watch contributes 1 to .refs).
65 * node.index allows to get from node.list to containing chunk.
66 * MSB of that sucker is stolen to mark taggings that we might have to
67 * revert - several operations have very unpleasant cleanup logics and
68 * that makes a difference. Some.
71 static struct fsnotify_group
*audit_tree_group
;
73 static struct audit_tree
*alloc_tree(const char *s
)
75 struct audit_tree
*tree
;
77 tree
= kmalloc(sizeof(struct audit_tree
) + strlen(s
) + 1, GFP_KERNEL
);
79 atomic_set(&tree
->count
, 1);
81 INIT_LIST_HEAD(&tree
->chunks
);
82 INIT_LIST_HEAD(&tree
->rules
);
83 INIT_LIST_HEAD(&tree
->list
);
84 INIT_LIST_HEAD(&tree
->same_root
);
86 strcpy(tree
->pathname
, s
);
91 static inline void get_tree(struct audit_tree
*tree
)
93 atomic_inc(&tree
->count
);
96 static inline void put_tree(struct audit_tree
*tree
)
98 if (atomic_dec_and_test(&tree
->count
))
99 kfree_rcu(tree
, head
);
102 /* to avoid bringing the entire thing in audit.h */
103 const char *audit_tree_path(struct audit_tree
*tree
)
105 return tree
->pathname
;
108 static void free_chunk(struct audit_chunk
*chunk
)
112 for (i
= 0; i
< chunk
->count
; i
++) {
113 if (chunk
->owners
[i
].owner
)
114 put_tree(chunk
->owners
[i
].owner
);
119 void audit_put_chunk(struct audit_chunk
*chunk
)
121 if (atomic_long_dec_and_test(&chunk
->refs
))
125 static void __put_chunk(struct rcu_head
*rcu
)
127 struct audit_chunk
*chunk
= container_of(rcu
, struct audit_chunk
, head
);
128 audit_put_chunk(chunk
);
131 static void audit_tree_destroy_watch(struct fsnotify_mark
*entry
)
133 struct audit_chunk
*chunk
= container_of(entry
, struct audit_chunk
, mark
);
134 call_rcu(&chunk
->head
, __put_chunk
);
137 static struct audit_chunk
*alloc_chunk(int count
)
139 struct audit_chunk
*chunk
;
143 size
= offsetof(struct audit_chunk
, owners
) + count
* sizeof(struct node
);
144 chunk
= kzalloc(size
, GFP_KERNEL
);
148 INIT_LIST_HEAD(&chunk
->hash
);
149 INIT_LIST_HEAD(&chunk
->trees
);
150 chunk
->count
= count
;
151 atomic_long_set(&chunk
->refs
, 1);
152 for (i
= 0; i
< count
; i
++) {
153 INIT_LIST_HEAD(&chunk
->owners
[i
].list
);
154 chunk
->owners
[i
].index
= i
;
156 fsnotify_init_mark(&chunk
->mark
, audit_tree_destroy_watch
);
160 enum {HASH_SIZE
= 128};
161 static struct list_head chunk_hash_heads
[HASH_SIZE
];
162 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(hash_lock
);
164 static inline struct list_head
*chunk_hash(const struct inode
*inode
)
166 unsigned long n
= (unsigned long)inode
/ L1_CACHE_BYTES
;
167 return chunk_hash_heads
+ n
% HASH_SIZE
;
170 /* hash_lock & entry->lock is held by caller */
171 static void insert_hash(struct audit_chunk
*chunk
)
173 struct fsnotify_mark
*entry
= &chunk
->mark
;
174 struct list_head
*list
;
178 list
= chunk_hash(entry
->i
.inode
);
179 list_add_rcu(&chunk
->hash
, list
);
182 /* called under rcu_read_lock */
183 struct audit_chunk
*audit_tree_lookup(const struct inode
*inode
)
185 struct list_head
*list
= chunk_hash(inode
);
186 struct audit_chunk
*p
;
188 list_for_each_entry_rcu(p
, list
, hash
) {
189 /* mark.inode may have gone NULL, but who cares? */
190 if (p
->mark
.i
.inode
== inode
) {
191 atomic_long_inc(&p
->refs
);
198 int audit_tree_match(struct audit_chunk
*chunk
, struct audit_tree
*tree
)
201 for (n
= 0; n
< chunk
->count
; n
++)
202 if (chunk
->owners
[n
].owner
== tree
)
207 /* tagging and untagging inodes with trees */
209 static struct audit_chunk
*find_chunk(struct node
*p
)
211 int index
= p
->index
& ~(1U<<31);
213 return container_of(p
, struct audit_chunk
, owners
[0]);
216 static void untag_chunk(struct node
*p
)
218 struct audit_chunk
*chunk
= find_chunk(p
);
219 struct fsnotify_mark
*entry
= &chunk
->mark
;
220 struct audit_chunk
*new = NULL
;
221 struct audit_tree
*owner
;
222 int size
= chunk
->count
- 1;
225 fsnotify_get_mark(entry
);
227 spin_unlock(&hash_lock
);
230 new = alloc_chunk(size
);
232 spin_lock(&entry
->lock
);
233 if (chunk
->dead
|| !entry
->i
.inode
) {
234 spin_unlock(&entry
->lock
);
244 spin_lock(&hash_lock
);
245 list_del_init(&chunk
->trees
);
246 if (owner
->root
== chunk
)
248 list_del_init(&p
->list
);
249 list_del_rcu(&chunk
->hash
);
250 spin_unlock(&hash_lock
);
251 spin_unlock(&entry
->lock
);
252 fsnotify_destroy_mark(entry
, audit_tree_group
);
259 fsnotify_duplicate_mark(&new->mark
, entry
);
260 if (fsnotify_add_mark(&new->mark
, new->mark
.group
, new->mark
.i
.inode
, NULL
, 1)) {
261 fsnotify_put_mark(&new->mark
);
266 spin_lock(&hash_lock
);
267 list_replace_init(&chunk
->trees
, &new->trees
);
268 if (owner
->root
== chunk
) {
269 list_del_init(&owner
->same_root
);
273 for (i
= j
= 0; j
<= size
; i
++, j
++) {
274 struct audit_tree
*s
;
275 if (&chunk
->owners
[j
] == p
) {
276 list_del_init(&p
->list
);
280 s
= chunk
->owners
[j
].owner
;
281 new->owners
[i
].owner
= s
;
282 new->owners
[i
].index
= chunk
->owners
[j
].index
- j
+ i
;
283 if (!s
) /* result of earlier fallback */
286 list_replace_init(&chunk
->owners
[j
].list
, &new->owners
[i
].list
);
289 list_replace_rcu(&chunk
->hash
, &new->hash
);
290 list_for_each_entry(owner
, &new->trees
, same_root
)
292 spin_unlock(&hash_lock
);
293 spin_unlock(&entry
->lock
);
294 fsnotify_destroy_mark(entry
, audit_tree_group
);
295 fsnotify_put_mark(&new->mark
); /* drop initial reference */
299 // do the best we can
300 spin_lock(&hash_lock
);
301 if (owner
->root
== chunk
) {
302 list_del_init(&owner
->same_root
);
305 list_del_init(&p
->list
);
308 spin_unlock(&hash_lock
);
309 spin_unlock(&entry
->lock
);
311 fsnotify_put_mark(entry
);
312 spin_lock(&hash_lock
);
315 static int create_chunk(struct inode
*inode
, struct audit_tree
*tree
)
317 struct fsnotify_mark
*entry
;
318 struct audit_chunk
*chunk
= alloc_chunk(1);
322 entry
= &chunk
->mark
;
323 if (fsnotify_add_mark(entry
, audit_tree_group
, inode
, NULL
, 0)) {
324 fsnotify_put_mark(entry
);
328 spin_lock(&entry
->lock
);
329 spin_lock(&hash_lock
);
331 spin_unlock(&hash_lock
);
333 spin_unlock(&entry
->lock
);
334 fsnotify_destroy_mark(entry
, audit_tree_group
);
335 fsnotify_put_mark(entry
);
338 chunk
->owners
[0].index
= (1U << 31);
339 chunk
->owners
[0].owner
= tree
;
341 list_add(&chunk
->owners
[0].list
, &tree
->chunks
);
344 list_add(&tree
->same_root
, &chunk
->trees
);
347 spin_unlock(&hash_lock
);
348 spin_unlock(&entry
->lock
);
349 fsnotify_put_mark(entry
); /* drop initial reference */
353 /* the first tagged inode becomes root of tree */
354 static int tag_chunk(struct inode
*inode
, struct audit_tree
*tree
)
356 struct fsnotify_mark
*old_entry
, *chunk_entry
;
357 struct audit_tree
*owner
;
358 struct audit_chunk
*chunk
, *old
;
362 old_entry
= fsnotify_find_inode_mark(audit_tree_group
, inode
);
364 return create_chunk(inode
, tree
);
366 old
= container_of(old_entry
, struct audit_chunk
, mark
);
368 /* are we already there? */
369 spin_lock(&hash_lock
);
370 for (n
= 0; n
< old
->count
; n
++) {
371 if (old
->owners
[n
].owner
== tree
) {
372 spin_unlock(&hash_lock
);
373 fsnotify_put_mark(old_entry
);
377 spin_unlock(&hash_lock
);
379 chunk
= alloc_chunk(old
->count
+ 1);
381 fsnotify_put_mark(old_entry
);
385 chunk_entry
= &chunk
->mark
;
387 spin_lock(&old_entry
->lock
);
388 if (!old_entry
->i
.inode
) {
389 /* old_entry is being shot, lets just lie */
390 spin_unlock(&old_entry
->lock
);
391 fsnotify_put_mark(old_entry
);
396 fsnotify_duplicate_mark(chunk_entry
, old_entry
);
397 if (fsnotify_add_mark(chunk_entry
, chunk_entry
->group
, chunk_entry
->i
.inode
, NULL
, 1)) {
398 spin_unlock(&old_entry
->lock
);
399 fsnotify_put_mark(chunk_entry
);
400 fsnotify_put_mark(old_entry
);
404 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405 spin_lock(&chunk_entry
->lock
);
406 spin_lock(&hash_lock
);
408 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
410 spin_unlock(&hash_lock
);
412 spin_unlock(&chunk_entry
->lock
);
413 spin_unlock(&old_entry
->lock
);
415 fsnotify_destroy_mark(chunk_entry
, audit_tree_group
);
417 fsnotify_put_mark(chunk_entry
);
418 fsnotify_put_mark(old_entry
);
421 list_replace_init(&old
->trees
, &chunk
->trees
);
422 for (n
= 0, p
= chunk
->owners
; n
< old
->count
; n
++, p
++) {
423 struct audit_tree
*s
= old
->owners
[n
].owner
;
425 p
->index
= old
->owners
[n
].index
;
426 if (!s
) /* result of fallback in untag */
429 list_replace_init(&old
->owners
[n
].list
, &p
->list
);
431 p
->index
= (chunk
->count
- 1) | (1U<<31);
434 list_add(&p
->list
, &tree
->chunks
);
435 list_replace_rcu(&old
->hash
, &chunk
->hash
);
436 list_for_each_entry(owner
, &chunk
->trees
, same_root
)
441 list_add(&tree
->same_root
, &chunk
->trees
);
443 spin_unlock(&hash_lock
);
444 spin_unlock(&chunk_entry
->lock
);
445 spin_unlock(&old_entry
->lock
);
446 fsnotify_destroy_mark(old_entry
, audit_tree_group
);
447 fsnotify_put_mark(chunk_entry
); /* drop initial reference */
448 fsnotify_put_mark(old_entry
); /* pair to fsnotify_find mark_entry */
452 static void audit_log_remove_rule(struct audit_krule
*rule
)
454 struct audit_buffer
*ab
;
456 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_CONFIG_CHANGE
);
459 audit_log_format(ab
, "op=");
460 audit_log_string(ab
, "remove rule");
461 audit_log_format(ab
, " dir=");
462 audit_log_untrustedstring(ab
, rule
->tree
->pathname
);
463 audit_log_key(ab
, rule
->filterkey
);
464 audit_log_format(ab
, " list=%d res=1", rule
->listnr
);
468 static void kill_rules(struct audit_tree
*tree
)
470 struct audit_krule
*rule
, *next
;
471 struct audit_entry
*entry
;
473 list_for_each_entry_safe(rule
, next
, &tree
->rules
, rlist
) {
474 entry
= container_of(rule
, struct audit_entry
, rule
);
476 list_del_init(&rule
->rlist
);
478 /* not a half-baked one */
479 audit_log_remove_rule(rule
);
481 list_del_rcu(&entry
->list
);
482 list_del(&entry
->rule
.list
);
483 call_rcu(&entry
->rcu
, audit_free_rule_rcu
);
489 * finish killing struct audit_tree
491 static void prune_one(struct audit_tree
*victim
)
493 spin_lock(&hash_lock
);
494 while (!list_empty(&victim
->chunks
)) {
497 p
= list_entry(victim
->chunks
.next
, struct node
, list
);
501 spin_unlock(&hash_lock
);
505 /* trim the uncommitted chunks from tree */
507 static void trim_marked(struct audit_tree
*tree
)
509 struct list_head
*p
, *q
;
510 spin_lock(&hash_lock
);
512 spin_unlock(&hash_lock
);
516 for (p
= tree
->chunks
.next
; p
!= &tree
->chunks
; p
= q
) {
517 struct node
*node
= list_entry(p
, struct node
, list
);
519 if (node
->index
& (1U<<31)) {
521 list_add(p
, &tree
->chunks
);
525 while (!list_empty(&tree
->chunks
)) {
528 node
= list_entry(tree
->chunks
.next
, struct node
, list
);
530 /* have we run out of marked? */
531 if (!(node
->index
& (1U<<31)))
536 if (!tree
->root
&& !tree
->goner
) {
538 spin_unlock(&hash_lock
);
539 mutex_lock(&audit_filter_mutex
);
541 list_del_init(&tree
->list
);
542 mutex_unlock(&audit_filter_mutex
);
545 spin_unlock(&hash_lock
);
549 static void audit_schedule_prune(void);
551 /* called with audit_filter_mutex */
552 int audit_remove_tree_rule(struct audit_krule
*rule
)
554 struct audit_tree
*tree
;
557 spin_lock(&hash_lock
);
558 list_del_init(&rule
->rlist
);
559 if (list_empty(&tree
->rules
) && !tree
->goner
) {
561 list_del_init(&tree
->same_root
);
563 list_move(&tree
->list
, &prune_list
);
565 spin_unlock(&hash_lock
);
566 audit_schedule_prune();
570 spin_unlock(&hash_lock
);
576 static int compare_root(struct vfsmount
*mnt
, void *arg
)
578 return mnt
->mnt_root
->d_inode
== arg
;
581 void audit_trim_trees(void)
583 struct list_head cursor
;
585 mutex_lock(&audit_filter_mutex
);
586 list_add(&cursor
, &tree_list
);
587 while (cursor
.next
!= &tree_list
) {
588 struct audit_tree
*tree
;
590 struct vfsmount
*root_mnt
;
594 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
597 list_add(&cursor
, &tree
->list
);
598 mutex_unlock(&audit_filter_mutex
);
600 err
= kern_path(tree
->pathname
, 0, &path
);
604 root_mnt
= collect_mounts(&path
);
606 if (IS_ERR(root_mnt
))
609 spin_lock(&hash_lock
);
610 list_for_each_entry(node
, &tree
->chunks
, list
) {
611 struct audit_chunk
*chunk
= find_chunk(node
);
612 /* this could be NULL if the watch is dying else where... */
613 struct inode
*inode
= chunk
->mark
.i
.inode
;
614 node
->index
|= 1U<<31;
615 if (iterate_mounts(compare_root
, inode
, root_mnt
))
616 node
->index
&= ~(1U<<31);
618 spin_unlock(&hash_lock
);
620 drop_collected_mounts(root_mnt
);
623 mutex_lock(&audit_filter_mutex
);
626 mutex_unlock(&audit_filter_mutex
);
629 int audit_make_tree(struct audit_krule
*rule
, char *pathname
, u32 op
)
632 if (pathname
[0] != '/' ||
633 rule
->listnr
!= AUDIT_FILTER_EXIT
||
635 rule
->inode_f
|| rule
->watch
|| rule
->tree
)
637 rule
->tree
= alloc_tree(pathname
);
643 void audit_put_tree(struct audit_tree
*tree
)
648 static int tag_mount(struct vfsmount
*mnt
, void *arg
)
650 return tag_chunk(mnt
->mnt_root
->d_inode
, arg
);
653 /* called with audit_filter_mutex */
654 int audit_add_tree_rule(struct audit_krule
*rule
)
656 struct audit_tree
*seed
= rule
->tree
, *tree
;
658 struct vfsmount
*mnt
;
661 list_for_each_entry(tree
, &tree_list
, list
) {
662 if (!strcmp(seed
->pathname
, tree
->pathname
)) {
665 list_add(&rule
->rlist
, &tree
->rules
);
670 list_add(&tree
->list
, &tree_list
);
671 list_add(&rule
->rlist
, &tree
->rules
);
672 /* do not set rule->tree yet */
673 mutex_unlock(&audit_filter_mutex
);
675 err
= kern_path(tree
->pathname
, 0, &path
);
678 mnt
= collect_mounts(&path
);
686 err
= iterate_mounts(tag_mount
, tree
, mnt
);
687 drop_collected_mounts(mnt
);
691 spin_lock(&hash_lock
);
692 list_for_each_entry(node
, &tree
->chunks
, list
)
693 node
->index
&= ~(1U<<31);
694 spin_unlock(&hash_lock
);
700 mutex_lock(&audit_filter_mutex
);
701 if (list_empty(&rule
->rlist
)) {
710 mutex_lock(&audit_filter_mutex
);
711 list_del_init(&tree
->list
);
712 list_del_init(&tree
->rules
);
717 int audit_tag_tree(char *old
, char *new)
719 struct list_head cursor
, barrier
;
721 struct path path1
, path2
;
722 struct vfsmount
*tagged
;
725 err
= kern_path(new, 0, &path2
);
728 tagged
= collect_mounts(&path2
);
731 return PTR_ERR(tagged
);
733 err
= kern_path(old
, 0, &path1
);
735 drop_collected_mounts(tagged
);
739 mutex_lock(&audit_filter_mutex
);
740 list_add(&barrier
, &tree_list
);
741 list_add(&cursor
, &barrier
);
743 while (cursor
.next
!= &tree_list
) {
744 struct audit_tree
*tree
;
747 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
750 list_add(&cursor
, &tree
->list
);
751 mutex_unlock(&audit_filter_mutex
);
753 err
= kern_path(tree
->pathname
, 0, &path2
);
755 good_one
= path_is_under(&path1
, &path2
);
761 mutex_lock(&audit_filter_mutex
);
765 failed
= iterate_mounts(tag_mount
, tree
, tagged
);
768 mutex_lock(&audit_filter_mutex
);
772 mutex_lock(&audit_filter_mutex
);
773 spin_lock(&hash_lock
);
775 list_del(&tree
->list
);
776 list_add(&tree
->list
, &tree_list
);
778 spin_unlock(&hash_lock
);
782 while (barrier
.prev
!= &tree_list
) {
783 struct audit_tree
*tree
;
785 tree
= container_of(barrier
.prev
, struct audit_tree
, list
);
787 list_del(&tree
->list
);
788 list_add(&tree
->list
, &barrier
);
789 mutex_unlock(&audit_filter_mutex
);
793 spin_lock(&hash_lock
);
794 list_for_each_entry(node
, &tree
->chunks
, list
)
795 node
->index
&= ~(1U<<31);
796 spin_unlock(&hash_lock
);
802 mutex_lock(&audit_filter_mutex
);
806 mutex_unlock(&audit_filter_mutex
);
808 drop_collected_mounts(tagged
);
813 * That gets run when evict_chunk() ends up needing to kill audit_tree.
814 * Runs from a separate thread.
816 static int prune_tree_thread(void *unused
)
818 mutex_lock(&audit_cmd_mutex
);
819 mutex_lock(&audit_filter_mutex
);
821 while (!list_empty(&prune_list
)) {
822 struct audit_tree
*victim
;
824 victim
= list_entry(prune_list
.next
, struct audit_tree
, list
);
825 list_del_init(&victim
->list
);
827 mutex_unlock(&audit_filter_mutex
);
831 mutex_lock(&audit_filter_mutex
);
834 mutex_unlock(&audit_filter_mutex
);
835 mutex_unlock(&audit_cmd_mutex
);
839 static void audit_schedule_prune(void)
841 kthread_run(prune_tree_thread
, NULL
, "audit_prune_tree");
845 * ... and that one is done if evict_chunk() decides to delay until the end
846 * of syscall. Runs synchronously.
848 void audit_kill_trees(struct list_head
*list
)
850 mutex_lock(&audit_cmd_mutex
);
851 mutex_lock(&audit_filter_mutex
);
853 while (!list_empty(list
)) {
854 struct audit_tree
*victim
;
856 victim
= list_entry(list
->next
, struct audit_tree
, list
);
858 list_del_init(&victim
->list
);
860 mutex_unlock(&audit_filter_mutex
);
864 mutex_lock(&audit_filter_mutex
);
867 mutex_unlock(&audit_filter_mutex
);
868 mutex_unlock(&audit_cmd_mutex
);
872 * Here comes the stuff asynchronous to auditctl operations
875 static void evict_chunk(struct audit_chunk
*chunk
)
877 struct audit_tree
*owner
;
878 struct list_head
*postponed
= audit_killed_trees();
886 mutex_lock(&audit_filter_mutex
);
887 spin_lock(&hash_lock
);
888 while (!list_empty(&chunk
->trees
)) {
889 owner
= list_entry(chunk
->trees
.next
,
890 struct audit_tree
, same_root
);
893 list_del_init(&owner
->same_root
);
894 spin_unlock(&hash_lock
);
897 list_move(&owner
->list
, &prune_list
);
900 list_move(&owner
->list
, postponed
);
902 spin_lock(&hash_lock
);
904 list_del_rcu(&chunk
->hash
);
905 for (n
= 0; n
< chunk
->count
; n
++)
906 list_del_init(&chunk
->owners
[n
].list
);
907 spin_unlock(&hash_lock
);
909 audit_schedule_prune();
910 mutex_unlock(&audit_filter_mutex
);
913 static int audit_tree_handle_event(struct fsnotify_group
*group
,
914 struct fsnotify_mark
*inode_mark
,
915 struct fsnotify_mark
*vfsmonut_mark
,
916 struct fsnotify_event
*event
)
922 static void audit_tree_freeing_mark(struct fsnotify_mark
*entry
, struct fsnotify_group
*group
)
924 struct audit_chunk
*chunk
= container_of(entry
, struct audit_chunk
, mark
);
929 * We are guaranteed to have at least one reference to the mark from
930 * either the inode or the caller of fsnotify_destroy_mark().
932 BUG_ON(atomic_read(&entry
->refcnt
) < 1);
935 static bool audit_tree_send_event(struct fsnotify_group
*group
, struct inode
*inode
,
936 struct fsnotify_mark
*inode_mark
,
937 struct fsnotify_mark
*vfsmount_mark
,
938 __u32 mask
, void *data
, int data_type
)
943 static const struct fsnotify_ops audit_tree_ops
= {
944 .handle_event
= audit_tree_handle_event
,
945 .should_send_event
= audit_tree_send_event
,
946 .free_group_priv
= NULL
,
947 .free_event_priv
= NULL
,
948 .freeing_mark
= audit_tree_freeing_mark
,
951 static int __init
audit_tree_init(void)
955 audit_tree_group
= fsnotify_alloc_group(&audit_tree_ops
);
956 if (IS_ERR(audit_tree_group
))
957 audit_panic("cannot initialize fsnotify group for rectree watches");
959 for (i
= 0; i
< HASH_SIZE
; i
++)
960 INIT_LIST_HEAD(&chunk_hash_heads
[i
]);
964 __initcall(audit_tree_init
);