2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
29 const char *pci_power_names
[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 EXPORT_SYMBOL_GPL(pci_power_names
);
34 int isa_dma_bridge_buggy
;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
38 EXPORT_SYMBOL(pci_pci_problems
);
40 unsigned int pci_pm_d3_delay
;
42 static void pci_pme_list_scan(struct work_struct
*work
);
44 static LIST_HEAD(pci_pme_list
);
45 static DEFINE_MUTEX(pci_pme_list_mutex
);
46 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
48 struct pci_pme_device
{
49 struct list_head list
;
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
55 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
57 unsigned int delay
= dev
->d3_delay
;
59 if (delay
< pci_pm_d3_delay
)
60 delay
= pci_pm_d3_delay
;
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported
= 1;
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
73 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
79 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
81 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
89 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
90 u8 pci_cache_line_size
;
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
96 unsigned int pcibios_max_latency
= 255;
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled
;
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
108 unsigned char pci_bus_max_busnr(struct pci_bus
* bus
)
110 struct list_head
*tmp
;
111 unsigned char max
, n
;
113 max
= bus
->busn_res
.end
;
114 list_for_each(tmp
, &bus
->children
) {
115 n
= pci_bus_max_busnr(pci_bus_b(tmp
));
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
127 * Make sure the BAR is actually a memory resource, not an IO resource
129 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
133 return ioremap_nocache(pci_resource_start(pdev
, bar
),
134 pci_resource_len(pdev
, bar
));
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
139 #define PCI_FIND_CAP_TTL 48
141 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
142 u8 pos
, int cap
, int *ttl
)
147 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
151 pci_bus_read_config_byte(bus
, devfn
, pos
+ PCI_CAP_LIST_ID
,
157 pos
+= PCI_CAP_LIST_NEXT
;
162 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
165 int ttl
= PCI_FIND_CAP_TTL
;
167 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
170 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
172 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
173 pos
+ PCI_CAP_LIST_NEXT
, cap
);
175 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
177 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
178 unsigned int devfn
, u8 hdr_type
)
182 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
183 if (!(status
& PCI_STATUS_CAP_LIST
))
187 case PCI_HEADER_TYPE_NORMAL
:
188 case PCI_HEADER_TYPE_BRIDGE
:
189 return PCI_CAPABILITY_LIST
;
190 case PCI_HEADER_TYPE_CARDBUS
:
191 return PCI_CB_CAPABILITY_LIST
;
200 * pci_find_capability - query for devices' capabilities
201 * @dev: PCI device to query
202 * @cap: capability code
204 * Tell if a device supports a given PCI capability.
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it. Possible values for @cap:
209 * %PCI_CAP_ID_PM Power Management
210 * %PCI_CAP_ID_AGP Accelerated Graphics Port
211 * %PCI_CAP_ID_VPD Vital Product Data
212 * %PCI_CAP_ID_SLOTID Slot Identification
213 * %PCI_CAP_ID_MSI Message Signalled Interrupts
214 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
215 * %PCI_CAP_ID_PCIX PCI-X
216 * %PCI_CAP_ID_EXP PCI Express
218 int pci_find_capability(struct pci_dev
*dev
, int cap
)
222 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
224 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
230 * pci_bus_find_capability - query for devices' capabilities
231 * @bus: the PCI bus to query
232 * @devfn: PCI device to query
233 * @cap: capability code
235 * Like pci_find_capability() but works for pci devices that do not have a
236 * pci_dev structure set up yet.
238 * Returns the address of the requested capability structure within the
239 * device's PCI configuration space or 0 in case the device does not
242 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
247 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
249 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
251 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
257 * pci_find_next_ext_capability - Find an extended capability
258 * @dev: PCI device to query
259 * @start: address at which to start looking (0 to start at beginning of list)
260 * @cap: capability code
262 * Returns the address of the next matching extended capability structure
263 * within the device's PCI configuration space or 0 if the device does
264 * not support it. Some capabilities can occur several times, e.g., the
265 * vendor-specific capability, and this provides a way to find them all.
267 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
271 int pos
= PCI_CFG_SPACE_SIZE
;
273 /* minimum 8 bytes per capability */
274 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
276 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
282 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
286 * If we have no capabilities, this is indicated by cap ID,
287 * cap version and next pointer all being 0.
293 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
296 pos
= PCI_EXT_CAP_NEXT(header
);
297 if (pos
< PCI_CFG_SPACE_SIZE
)
300 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
309 * pci_find_ext_capability - Find an extended capability
310 * @dev: PCI device to query
311 * @cap: capability code
313 * Returns the address of the requested extended capability structure
314 * within the device's PCI configuration space or 0 if the device does
315 * not support it. Possible values for @cap:
317 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
318 * %PCI_EXT_CAP_ID_VC Virtual Channel
319 * %PCI_EXT_CAP_ID_DSN Device Serial Number
320 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
324 return pci_find_next_ext_capability(dev
, 0, cap
);
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
328 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
330 int rc
, ttl
= PCI_FIND_CAP_TTL
;
333 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
334 mask
= HT_3BIT_CAP_MASK
;
336 mask
= HT_5BIT_CAP_MASK
;
338 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
339 PCI_CAP_ID_HT
, &ttl
);
341 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
342 if (rc
!= PCIBIOS_SUCCESSFUL
)
345 if ((cap
& mask
) == ht_cap
)
348 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
349 pos
+ PCI_CAP_LIST_NEXT
,
350 PCI_CAP_ID_HT
, &ttl
);
356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357 * @dev: PCI device to query
358 * @pos: Position from which to continue searching
359 * @ht_cap: Hypertransport capability code
361 * To be used in conjunction with pci_find_ht_capability() to search for
362 * all capabilities matching @ht_cap. @pos should always be a value returned
363 * from pci_find_ht_capability().
365 * NB. To be 100% safe against broken PCI devices, the caller should take
366 * steps to avoid an infinite loop.
368 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
370 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
375 * pci_find_ht_capability - query a device's Hypertransport capabilities
376 * @dev: PCI device to query
377 * @ht_cap: Hypertransport capability code
379 * Tell if a device supports a given Hypertransport capability.
380 * Returns an address within the device's PCI configuration space
381 * or 0 in case the device does not support the request capability.
382 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383 * which has a Hypertransport capability matching @ht_cap.
385 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
389 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
391 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
398 * pci_find_parent_resource - return resource region of parent bus of given region
399 * @dev: PCI device structure contains resources to be searched
400 * @res: child resource record for which parent is sought
402 * For given resource region of given device, return the resource
403 * region of parent bus the given region is contained in or where
404 * it should be allocated from.
407 pci_find_parent_resource(const struct pci_dev
*dev
, struct resource
*res
)
409 const struct pci_bus
*bus
= dev
->bus
;
411 struct resource
*best
= NULL
, *r
;
413 pci_bus_for_each_resource(bus
, r
, i
) {
416 if (res
->start
&& !(res
->start
>= r
->start
&& res
->end
<= r
->end
))
417 continue; /* Not contained */
418 if ((res
->flags
^ r
->flags
) & (IORESOURCE_IO
| IORESOURCE_MEM
))
419 continue; /* Wrong type */
420 if (!((res
->flags
^ r
->flags
) & IORESOURCE_PREFETCH
))
421 return r
; /* Exact match */
422 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 if (r
->flags
& IORESOURCE_PREFETCH
)
425 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434 * @dev: PCI device to have its BARs restored
436 * Restore the BAR values for a given device, so as to make it
437 * accessible by its driver.
440 pci_restore_bars(struct pci_dev
*dev
)
444 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
445 pci_update_resource(dev
, i
);
448 static struct pci_platform_pm_ops
*pci_platform_pm
;
450 int pci_set_platform_pm(struct pci_platform_pm_ops
*ops
)
452 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->choose_state
455 pci_platform_pm
= ops
;
459 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
461 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
464 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
467 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
470 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
472 return pci_platform_pm
?
473 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
476 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
478 return pci_platform_pm
?
479 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
482 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
484 return pci_platform_pm
?
485 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
489 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
491 * @dev: PCI device to handle.
492 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
495 * -EINVAL if the requested state is invalid.
496 * -EIO if device does not support PCI PM or its PM capabilities register has a
497 * wrong version, or device doesn't support the requested state.
498 * 0 if device already is in the requested state.
499 * 0 if device's power state has been successfully changed.
501 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
504 bool need_restore
= false;
506 /* Check if we're already there */
507 if (dev
->current_state
== state
)
513 if (state
< PCI_D0
|| state
> PCI_D3hot
)
516 /* Validate current state:
517 * Can enter D0 from any state, but if we can only go deeper
518 * to sleep if we're already in a low power state
520 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
521 && dev
->current_state
> state
) {
522 dev_err(&dev
->dev
, "invalid power transition "
523 "(from state %d to %d)\n", dev
->current_state
, state
);
527 /* check if this device supports the desired state */
528 if ((state
== PCI_D1
&& !dev
->d1_support
)
529 || (state
== PCI_D2
&& !dev
->d2_support
))
532 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
534 /* If we're (effectively) in D3, force entire word to 0.
535 * This doesn't affect PME_Status, disables PME_En, and
536 * sets PowerState to 0.
538 switch (dev
->current_state
) {
542 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
547 case PCI_UNKNOWN
: /* Boot-up */
548 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
549 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
551 /* Fall-through: force to D0 */
557 /* enter specified state */
558 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
560 /* Mandatory power management transition delays */
561 /* see PCI PM 1.1 5.6.1 table 18 */
562 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
563 pci_dev_d3_sleep(dev
);
564 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
565 udelay(PCI_PM_D2_DELAY
);
567 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
568 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
569 if (dev
->current_state
!= state
&& printk_ratelimit())
570 dev_info(&dev
->dev
, "Refused to change power state, "
571 "currently in D%d\n", dev
->current_state
);
574 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
575 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
576 * from D3hot to D0 _may_ perform an internal reset, thereby
577 * going to "D0 Uninitialized" rather than "D0 Initialized".
578 * For example, at least some versions of the 3c905B and the
579 * 3c556B exhibit this behaviour.
581 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
582 * devices in a D3hot state at boot. Consequently, we need to
583 * restore at least the BARs so that the device will be
584 * accessible to its driver.
587 pci_restore_bars(dev
);
590 pcie_aspm_pm_state_change(dev
->bus
->self
);
596 * pci_update_current_state - Read PCI power state of given device from its
597 * PCI PM registers and cache it
598 * @dev: PCI device to handle.
599 * @state: State to cache in case the device doesn't have the PM capability
601 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
607 * Configuration space is not accessible for device in
608 * D3cold, so just keep or set D3cold for safety
610 if (dev
->current_state
== PCI_D3cold
)
612 if (state
== PCI_D3cold
) {
613 dev
->current_state
= PCI_D3cold
;
616 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
617 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
619 dev
->current_state
= state
;
624 * pci_power_up - Put the given device into D0 forcibly
625 * @dev: PCI device to power up
627 void pci_power_up(struct pci_dev
*dev
)
629 if (platform_pci_power_manageable(dev
))
630 platform_pci_set_power_state(dev
, PCI_D0
);
632 pci_raw_set_power_state(dev
, PCI_D0
);
633 pci_update_current_state(dev
, PCI_D0
);
637 * pci_platform_power_transition - Use platform to change device power state
638 * @dev: PCI device to handle.
639 * @state: State to put the device into.
641 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
645 if (platform_pci_power_manageable(dev
)) {
646 error
= platform_pci_set_power_state(dev
, state
);
648 pci_update_current_state(dev
, state
);
652 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
653 dev
->current_state
= PCI_D0
;
659 * __pci_start_power_transition - Start power transition of a PCI device
660 * @dev: PCI device to handle.
661 * @state: State to put the device into.
663 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
665 if (state
== PCI_D0
) {
666 pci_platform_power_transition(dev
, PCI_D0
);
668 * Mandatory power management transition delays, see
669 * PCI Express Base Specification Revision 2.0 Section
670 * 6.6.1: Conventional Reset. Do not delay for
671 * devices powered on/off by corresponding bridge,
672 * because have already delayed for the bridge.
674 if (dev
->runtime_d3cold
) {
675 msleep(dev
->d3cold_delay
);
677 * When powering on a bridge from D3cold, the
678 * whole hierarchy may be powered on into
679 * D0uninitialized state, resume them to give
680 * them a chance to suspend again
682 pci_wakeup_bus(dev
->subordinate
);
688 * __pci_dev_set_current_state - Set current state of a PCI device
689 * @dev: Device to handle
690 * @data: pointer to state to be set
692 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
694 pci_power_t state
= *(pci_power_t
*)data
;
696 dev
->current_state
= state
;
701 * __pci_bus_set_current_state - Walk given bus and set current state of devices
702 * @bus: Top bus of the subtree to walk.
703 * @state: state to be set
705 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
708 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
712 * __pci_complete_power_transition - Complete power transition of a PCI device
713 * @dev: PCI device to handle.
714 * @state: State to put the device into.
716 * This function should not be called directly by device drivers.
718 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
724 ret
= pci_platform_power_transition(dev
, state
);
725 /* Power off the bridge may power off the whole hierarchy */
726 if (!ret
&& state
== PCI_D3cold
)
727 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
730 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
733 * pci_set_power_state - Set the power state of a PCI device
734 * @dev: PCI device to handle.
735 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
737 * Transition a device to a new power state, using the platform firmware and/or
738 * the device's PCI PM registers.
741 * -EINVAL if the requested state is invalid.
742 * -EIO if device does not support PCI PM or its PM capabilities register has a
743 * wrong version, or device doesn't support the requested state.
744 * 0 if device already is in the requested state.
745 * 0 if device's power state has been successfully changed.
747 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
751 /* bound the state we're entering */
752 if (state
> PCI_D3cold
)
754 else if (state
< PCI_D0
)
756 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
758 * If the device or the parent bridge do not support PCI PM,
759 * ignore the request if we're doing anything other than putting
760 * it into D0 (which would only happen on boot).
764 /* Check if we're already there */
765 if (dev
->current_state
== state
)
768 __pci_start_power_transition(dev
, state
);
770 /* This device is quirked not to be put into D3, so
771 don't put it in D3 */
772 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
776 * To put device in D3cold, we put device into D3hot in native
777 * way, then put device into D3cold with platform ops
779 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
782 if (!__pci_complete_power_transition(dev
, state
))
785 * When aspm_policy is "powersave" this call ensures
786 * that ASPM is configured.
788 if (!error
&& dev
->bus
->self
)
789 pcie_aspm_powersave_config_link(dev
->bus
->self
);
795 * pci_choose_state - Choose the power state of a PCI device
796 * @dev: PCI device to be suspended
797 * @state: target sleep state for the whole system. This is the value
798 * that is passed to suspend() function.
800 * Returns PCI power state suitable for given device and given system
804 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
808 if (!pci_find_capability(dev
, PCI_CAP_ID_PM
))
811 ret
= platform_pci_choose_state(dev
);
812 if (ret
!= PCI_POWER_ERROR
)
815 switch (state
.event
) {
818 case PM_EVENT_FREEZE
:
819 case PM_EVENT_PRETHAW
:
820 /* REVISIT both freeze and pre-thaw "should" use D0 */
821 case PM_EVENT_SUSPEND
:
822 case PM_EVENT_HIBERNATE
:
825 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
832 EXPORT_SYMBOL(pci_choose_state
);
834 #define PCI_EXP_SAVE_REGS 7
837 static struct pci_cap_saved_state
*pci_find_saved_cap(
838 struct pci_dev
*pci_dev
, char cap
)
840 struct pci_cap_saved_state
*tmp
;
842 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
843 if (tmp
->cap
.cap_nr
== cap
)
849 static int pci_save_pcie_state(struct pci_dev
*dev
)
852 struct pci_cap_saved_state
*save_state
;
855 if (!pci_is_pcie(dev
))
858 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
860 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
864 cap
= (u16
*)&save_state
->cap
.data
[0];
865 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
866 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
867 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
868 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
869 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
870 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
871 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
876 static void pci_restore_pcie_state(struct pci_dev
*dev
)
879 struct pci_cap_saved_state
*save_state
;
882 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
886 cap
= (u16
*)&save_state
->cap
.data
[0];
887 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
888 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
889 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
890 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
891 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
892 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
893 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
897 static int pci_save_pcix_state(struct pci_dev
*dev
)
900 struct pci_cap_saved_state
*save_state
;
902 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
906 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
908 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
912 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
913 (u16
*)save_state
->cap
.data
);
918 static void pci_restore_pcix_state(struct pci_dev
*dev
)
921 struct pci_cap_saved_state
*save_state
;
924 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
925 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
926 if (!save_state
|| pos
<= 0)
928 cap
= (u16
*)&save_state
->cap
.data
[0];
930 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
935 * pci_save_state - save the PCI configuration space of a device before suspending
936 * @dev: - PCI device that we're dealing with
939 pci_save_state(struct pci_dev
*dev
)
942 /* XXX: 100% dword access ok here? */
943 for (i
= 0; i
< 16; i
++)
944 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
945 dev
->state_saved
= true;
946 if ((i
= pci_save_pcie_state(dev
)) != 0)
948 if ((i
= pci_save_pcix_state(dev
)) != 0)
953 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
954 u32 saved_val
, int retry
)
958 pci_read_config_dword(pdev
, offset
, &val
);
959 if (val
== saved_val
)
963 dev_dbg(&pdev
->dev
, "restoring config space at offset "
964 "%#x (was %#x, writing %#x)\n", offset
, val
, saved_val
);
965 pci_write_config_dword(pdev
, offset
, saved_val
);
969 pci_read_config_dword(pdev
, offset
, &val
);
970 if (val
== saved_val
)
977 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
978 int start
, int end
, int retry
)
982 for (index
= end
; index
>= start
; index
--)
983 pci_restore_config_dword(pdev
, 4 * index
,
984 pdev
->saved_config_space
[index
],
988 static void pci_restore_config_space(struct pci_dev
*pdev
)
990 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
991 pci_restore_config_space_range(pdev
, 10, 15, 0);
992 /* Restore BARs before the command register. */
993 pci_restore_config_space_range(pdev
, 4, 9, 10);
994 pci_restore_config_space_range(pdev
, 0, 3, 0);
996 pci_restore_config_space_range(pdev
, 0, 15, 0);
1001 * pci_restore_state - Restore the saved state of a PCI device
1002 * @dev: - PCI device that we're dealing with
1004 void pci_restore_state(struct pci_dev
*dev
)
1006 if (!dev
->state_saved
)
1009 /* PCI Express register must be restored first */
1010 pci_restore_pcie_state(dev
);
1011 pci_restore_ats_state(dev
);
1013 pci_restore_config_space(dev
);
1015 pci_restore_pcix_state(dev
);
1016 pci_restore_msi_state(dev
);
1017 pci_restore_iov_state(dev
);
1019 dev
->state_saved
= false;
1022 struct pci_saved_state
{
1023 u32 config_space
[16];
1024 struct pci_cap_saved_data cap
[0];
1028 * pci_store_saved_state - Allocate and return an opaque struct containing
1029 * the device saved state.
1030 * @dev: PCI device that we're dealing with
1032 * Rerturn NULL if no state or error.
1034 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1036 struct pci_saved_state
*state
;
1037 struct pci_cap_saved_state
*tmp
;
1038 struct pci_cap_saved_data
*cap
;
1041 if (!dev
->state_saved
)
1044 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1046 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1047 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1049 state
= kzalloc(size
, GFP_KERNEL
);
1053 memcpy(state
->config_space
, dev
->saved_config_space
,
1054 sizeof(state
->config_space
));
1057 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1058 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1059 memcpy(cap
, &tmp
->cap
, len
);
1060 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1062 /* Empty cap_save terminates list */
1066 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1069 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1070 * @dev: PCI device that we're dealing with
1071 * @state: Saved state returned from pci_store_saved_state()
1073 int pci_load_saved_state(struct pci_dev
*dev
, struct pci_saved_state
*state
)
1075 struct pci_cap_saved_data
*cap
;
1077 dev
->state_saved
= false;
1082 memcpy(dev
->saved_config_space
, state
->config_space
,
1083 sizeof(state
->config_space
));
1087 struct pci_cap_saved_state
*tmp
;
1089 tmp
= pci_find_saved_cap(dev
, cap
->cap_nr
);
1090 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1093 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1094 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1095 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1098 dev
->state_saved
= true;
1101 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1104 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1105 * and free the memory allocated for it.
1106 * @dev: PCI device that we're dealing with
1107 * @state: Pointer to saved state returned from pci_store_saved_state()
1109 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1110 struct pci_saved_state
**state
)
1112 int ret
= pci_load_saved_state(dev
, *state
);
1117 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1119 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1123 err
= pci_set_power_state(dev
, PCI_D0
);
1124 if (err
< 0 && err
!= -EIO
)
1126 err
= pcibios_enable_device(dev
, bars
);
1129 pci_fixup_device(pci_fixup_enable
, dev
);
1135 * pci_reenable_device - Resume abandoned device
1136 * @dev: PCI device to be resumed
1138 * Note this function is a backend of pci_default_resume and is not supposed
1139 * to be called by normal code, write proper resume handler and use it instead.
1141 int pci_reenable_device(struct pci_dev
*dev
)
1143 if (pci_is_enabled(dev
))
1144 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1148 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1154 * Power state could be unknown at this point, either due to a fresh
1155 * boot or a device removal call. So get the current power state
1156 * so that things like MSI message writing will behave as expected
1157 * (e.g. if the device really is in D0 at enable time).
1161 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1162 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1165 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1166 return 0; /* already enabled */
1168 /* only skip sriov related */
1169 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1170 if (dev
->resource
[i
].flags
& flags
)
1172 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1173 if (dev
->resource
[i
].flags
& flags
)
1176 err
= do_pci_enable_device(dev
, bars
);
1178 atomic_dec(&dev
->enable_cnt
);
1183 * pci_enable_device_io - Initialize a device for use with IO space
1184 * @dev: PCI device to be initialized
1186 * Initialize device before it's used by a driver. Ask low-level code
1187 * to enable I/O resources. Wake up the device if it was suspended.
1188 * Beware, this function can fail.
1190 int pci_enable_device_io(struct pci_dev
*dev
)
1192 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1196 * pci_enable_device_mem - Initialize a device for use with Memory space
1197 * @dev: PCI device to be initialized
1199 * Initialize device before it's used by a driver. Ask low-level code
1200 * to enable Memory resources. Wake up the device if it was suspended.
1201 * Beware, this function can fail.
1203 int pci_enable_device_mem(struct pci_dev
*dev
)
1205 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1209 * pci_enable_device - Initialize device before it's used by a driver.
1210 * @dev: PCI device to be initialized
1212 * Initialize device before it's used by a driver. Ask low-level code
1213 * to enable I/O and memory. Wake up the device if it was suspended.
1214 * Beware, this function can fail.
1216 * Note we don't actually enable the device many times if we call
1217 * this function repeatedly (we just increment the count).
1219 int pci_enable_device(struct pci_dev
*dev
)
1221 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1225 * Managed PCI resources. This manages device on/off, intx/msi/msix
1226 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1227 * there's no need to track it separately. pci_devres is initialized
1228 * when a device is enabled using managed PCI device enable interface.
1231 unsigned int enabled
:1;
1232 unsigned int pinned
:1;
1233 unsigned int orig_intx
:1;
1234 unsigned int restore_intx
:1;
1238 static void pcim_release(struct device
*gendev
, void *res
)
1240 struct pci_dev
*dev
= container_of(gendev
, struct pci_dev
, dev
);
1241 struct pci_devres
*this = res
;
1244 if (dev
->msi_enabled
)
1245 pci_disable_msi(dev
);
1246 if (dev
->msix_enabled
)
1247 pci_disable_msix(dev
);
1249 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1250 if (this->region_mask
& (1 << i
))
1251 pci_release_region(dev
, i
);
1253 if (this->restore_intx
)
1254 pci_intx(dev
, this->orig_intx
);
1256 if (this->enabled
&& !this->pinned
)
1257 pci_disable_device(dev
);
1260 static struct pci_devres
* get_pci_dr(struct pci_dev
*pdev
)
1262 struct pci_devres
*dr
, *new_dr
;
1264 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1268 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1271 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1274 static struct pci_devres
* find_pci_dr(struct pci_dev
*pdev
)
1276 if (pci_is_managed(pdev
))
1277 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1282 * pcim_enable_device - Managed pci_enable_device()
1283 * @pdev: PCI device to be initialized
1285 * Managed pci_enable_device().
1287 int pcim_enable_device(struct pci_dev
*pdev
)
1289 struct pci_devres
*dr
;
1292 dr
= get_pci_dr(pdev
);
1298 rc
= pci_enable_device(pdev
);
1300 pdev
->is_managed
= 1;
1307 * pcim_pin_device - Pin managed PCI device
1308 * @pdev: PCI device to pin
1310 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1311 * driver detach. @pdev must have been enabled with
1312 * pcim_enable_device().
1314 void pcim_pin_device(struct pci_dev
*pdev
)
1316 struct pci_devres
*dr
;
1318 dr
= find_pci_dr(pdev
);
1319 WARN_ON(!dr
|| !dr
->enabled
);
1325 * pcibios_add_device - provide arch specific hooks when adding device dev
1326 * @dev: the PCI device being added
1328 * Permits the platform to provide architecture specific functionality when
1329 * devices are added. This is the default implementation. Architecture
1330 * implementations can override this.
1332 int __weak
pcibios_add_device (struct pci_dev
*dev
)
1338 * pcibios_disable_device - disable arch specific PCI resources for device dev
1339 * @dev: the PCI device to disable
1341 * Disables architecture specific PCI resources for the device. This
1342 * is the default implementation. Architecture implementations can
1345 void __weak
pcibios_disable_device (struct pci_dev
*dev
) {}
1347 static void do_pci_disable_device(struct pci_dev
*dev
)
1351 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1352 if (pci_command
& PCI_COMMAND_MASTER
) {
1353 pci_command
&= ~PCI_COMMAND_MASTER
;
1354 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1357 pcibios_disable_device(dev
);
1361 * pci_disable_enabled_device - Disable device without updating enable_cnt
1362 * @dev: PCI device to disable
1364 * NOTE: This function is a backend of PCI power management routines and is
1365 * not supposed to be called drivers.
1367 void pci_disable_enabled_device(struct pci_dev
*dev
)
1369 if (pci_is_enabled(dev
))
1370 do_pci_disable_device(dev
);
1374 * pci_disable_device - Disable PCI device after use
1375 * @dev: PCI device to be disabled
1377 * Signal to the system that the PCI device is not in use by the system
1378 * anymore. This only involves disabling PCI bus-mastering, if active.
1380 * Note we don't actually disable the device until all callers of
1381 * pci_enable_device() have called pci_disable_device().
1384 pci_disable_device(struct pci_dev
*dev
)
1386 struct pci_devres
*dr
;
1388 dr
= find_pci_dr(dev
);
1392 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1393 "disabling already-disabled device");
1395 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1398 do_pci_disable_device(dev
);
1400 dev
->is_busmaster
= 0;
1404 * pcibios_set_pcie_reset_state - set reset state for device dev
1405 * @dev: the PCIe device reset
1406 * @state: Reset state to enter into
1409 * Sets the PCIe reset state for the device. This is the default
1410 * implementation. Architecture implementations can override this.
1412 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1413 enum pcie_reset_state state
)
1419 * pci_set_pcie_reset_state - set reset state for device dev
1420 * @dev: the PCIe device reset
1421 * @state: Reset state to enter into
1424 * Sets the PCI reset state for the device.
1426 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1428 return pcibios_set_pcie_reset_state(dev
, state
);
1432 * pci_check_pme_status - Check if given device has generated PME.
1433 * @dev: Device to check.
1435 * Check the PME status of the device and if set, clear it and clear PME enable
1436 * (if set). Return 'true' if PME status and PME enable were both set or
1437 * 'false' otherwise.
1439 bool pci_check_pme_status(struct pci_dev
*dev
)
1448 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1449 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1450 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1453 /* Clear PME status. */
1454 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1455 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1456 /* Disable PME to avoid interrupt flood. */
1457 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1461 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1467 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1468 * @dev: Device to handle.
1469 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1471 * Check if @dev has generated PME and queue a resume request for it in that
1474 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1476 if (pme_poll_reset
&& dev
->pme_poll
)
1477 dev
->pme_poll
= false;
1479 if (pci_check_pme_status(dev
)) {
1480 pci_wakeup_event(dev
);
1481 pm_request_resume(&dev
->dev
);
1487 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1488 * @bus: Top bus of the subtree to walk.
1490 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1493 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1497 * pci_wakeup - Wake up a PCI device
1498 * @pci_dev: Device to handle.
1499 * @ign: ignored parameter
1501 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
1503 pci_wakeup_event(pci_dev
);
1504 pm_request_resume(&pci_dev
->dev
);
1509 * pci_wakeup_bus - Walk given bus and wake up devices on it
1510 * @bus: Top bus of the subtree to walk.
1512 void pci_wakeup_bus(struct pci_bus
*bus
)
1515 pci_walk_bus(bus
, pci_wakeup
, NULL
);
1519 * pci_pme_capable - check the capability of PCI device to generate PME#
1520 * @dev: PCI device to handle.
1521 * @state: PCI state from which device will issue PME#.
1523 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1528 return !!(dev
->pme_support
& (1 << state
));
1531 static void pci_pme_list_scan(struct work_struct
*work
)
1533 struct pci_pme_device
*pme_dev
, *n
;
1535 mutex_lock(&pci_pme_list_mutex
);
1536 if (!list_empty(&pci_pme_list
)) {
1537 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1538 if (pme_dev
->dev
->pme_poll
) {
1539 struct pci_dev
*bridge
;
1541 bridge
= pme_dev
->dev
->bus
->self
;
1543 * If bridge is in low power state, the
1544 * configuration space of subordinate devices
1545 * may be not accessible
1547 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1549 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1551 list_del(&pme_dev
->list
);
1555 if (!list_empty(&pci_pme_list
))
1556 schedule_delayed_work(&pci_pme_work
,
1557 msecs_to_jiffies(PME_TIMEOUT
));
1559 mutex_unlock(&pci_pme_list_mutex
);
1563 * pci_pme_active - enable or disable PCI device's PME# function
1564 * @dev: PCI device to handle.
1565 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1567 * The caller must verify that the device is capable of generating PME# before
1568 * calling this function with @enable equal to 'true'.
1570 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1574 if (!dev
->pme_support
)
1577 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1578 /* Clear PME_Status by writing 1 to it and enable PME# */
1579 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1581 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1583 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1586 * PCI (as opposed to PCIe) PME requires that the device have
1587 * its PME# line hooked up correctly. Not all hardware vendors
1588 * do this, so the PME never gets delivered and the device
1589 * remains asleep. The easiest way around this is to
1590 * periodically walk the list of suspended devices and check
1591 * whether any have their PME flag set. The assumption is that
1592 * we'll wake up often enough anyway that this won't be a huge
1593 * hit, and the power savings from the devices will still be a
1596 * Although PCIe uses in-band PME message instead of PME# line
1597 * to report PME, PME does not work for some PCIe devices in
1598 * reality. For example, there are devices that set their PME
1599 * status bits, but don't really bother to send a PME message;
1600 * there are PCI Express Root Ports that don't bother to
1601 * trigger interrupts when they receive PME messages from the
1602 * devices below. So PME poll is used for PCIe devices too.
1605 if (dev
->pme_poll
) {
1606 struct pci_pme_device
*pme_dev
;
1608 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1613 mutex_lock(&pci_pme_list_mutex
);
1614 list_add(&pme_dev
->list
, &pci_pme_list
);
1615 if (list_is_singular(&pci_pme_list
))
1616 schedule_delayed_work(&pci_pme_work
,
1617 msecs_to_jiffies(PME_TIMEOUT
));
1618 mutex_unlock(&pci_pme_list_mutex
);
1620 mutex_lock(&pci_pme_list_mutex
);
1621 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1622 if (pme_dev
->dev
== dev
) {
1623 list_del(&pme_dev
->list
);
1628 mutex_unlock(&pci_pme_list_mutex
);
1633 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1637 * __pci_enable_wake - enable PCI device as wakeup event source
1638 * @dev: PCI device affected
1639 * @state: PCI state from which device will issue wakeup events
1640 * @runtime: True if the events are to be generated at run time
1641 * @enable: True to enable event generation; false to disable
1643 * This enables the device as a wakeup event source, or disables it.
1644 * When such events involves platform-specific hooks, those hooks are
1645 * called automatically by this routine.
1647 * Devices with legacy power management (no standard PCI PM capabilities)
1648 * always require such platform hooks.
1651 * 0 is returned on success
1652 * -EINVAL is returned if device is not supposed to wake up the system
1653 * Error code depending on the platform is returned if both the platform and
1654 * the native mechanism fail to enable the generation of wake-up events
1656 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1657 bool runtime
, bool enable
)
1661 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1664 /* Don't do the same thing twice in a row for one device. */
1665 if (!!enable
== !!dev
->wakeup_prepared
)
1669 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1670 * Anderson we should be doing PME# wake enable followed by ACPI wake
1671 * enable. To disable wake-up we call the platform first, for symmetry.
1677 if (pci_pme_capable(dev
, state
))
1678 pci_pme_active(dev
, true);
1681 error
= runtime
? platform_pci_run_wake(dev
, true) :
1682 platform_pci_sleep_wake(dev
, true);
1686 dev
->wakeup_prepared
= true;
1689 platform_pci_run_wake(dev
, false);
1691 platform_pci_sleep_wake(dev
, false);
1692 pci_pme_active(dev
, false);
1693 dev
->wakeup_prepared
= false;
1698 EXPORT_SYMBOL(__pci_enable_wake
);
1701 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1702 * @dev: PCI device to prepare
1703 * @enable: True to enable wake-up event generation; false to disable
1705 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1706 * and this function allows them to set that up cleanly - pci_enable_wake()
1707 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1708 * ordering constraints.
1710 * This function only returns error code if the device is not capable of
1711 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1712 * enable wake-up power for it.
1714 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1716 return pci_pme_capable(dev
, PCI_D3cold
) ?
1717 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1718 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1722 * pci_target_state - find an appropriate low power state for a given PCI dev
1725 * Use underlying platform code to find a supported low power state for @dev.
1726 * If the platform can't manage @dev, return the deepest state from which it
1727 * can generate wake events, based on any available PME info.
1729 pci_power_t
pci_target_state(struct pci_dev
*dev
)
1731 pci_power_t target_state
= PCI_D3hot
;
1733 if (platform_pci_power_manageable(dev
)) {
1735 * Call the platform to choose the target state of the device
1736 * and enable wake-up from this state if supported.
1738 pci_power_t state
= platform_pci_choose_state(dev
);
1741 case PCI_POWER_ERROR
:
1746 if (pci_no_d1d2(dev
))
1749 target_state
= state
;
1751 } else if (!dev
->pm_cap
) {
1752 target_state
= PCI_D0
;
1753 } else if (device_may_wakeup(&dev
->dev
)) {
1755 * Find the deepest state from which the device can generate
1756 * wake-up events, make it the target state and enable device
1759 if (dev
->pme_support
) {
1761 && !(dev
->pme_support
& (1 << target_state
)))
1766 return target_state
;
1770 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1771 * @dev: Device to handle.
1773 * Choose the power state appropriate for the device depending on whether
1774 * it can wake up the system and/or is power manageable by the platform
1775 * (PCI_D3hot is the default) and put the device into that state.
1777 int pci_prepare_to_sleep(struct pci_dev
*dev
)
1779 pci_power_t target_state
= pci_target_state(dev
);
1782 if (target_state
== PCI_POWER_ERROR
)
1785 /* D3cold during system suspend/hibernate is not supported */
1786 if (target_state
> PCI_D3hot
)
1787 target_state
= PCI_D3hot
;
1789 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
1791 error
= pci_set_power_state(dev
, target_state
);
1794 pci_enable_wake(dev
, target_state
, false);
1800 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1801 * @dev: Device to handle.
1803 * Disable device's system wake-up capability and put it into D0.
1805 int pci_back_from_sleep(struct pci_dev
*dev
)
1807 pci_enable_wake(dev
, PCI_D0
, false);
1808 return pci_set_power_state(dev
, PCI_D0
);
1812 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1813 * @dev: PCI device being suspended.
1815 * Prepare @dev to generate wake-up events at run time and put it into a low
1818 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
1820 pci_power_t target_state
= pci_target_state(dev
);
1823 if (target_state
== PCI_POWER_ERROR
)
1826 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
1828 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
1830 error
= pci_set_power_state(dev
, target_state
);
1833 __pci_enable_wake(dev
, target_state
, true, false);
1834 dev
->runtime_d3cold
= false;
1841 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1842 * @dev: Device to check.
1844 * Return true if the device itself is cabable of generating wake-up events
1845 * (through the platform or using the native PCIe PME) or if the device supports
1846 * PME and one of its upstream bridges can generate wake-up events.
1848 bool pci_dev_run_wake(struct pci_dev
*dev
)
1850 struct pci_bus
*bus
= dev
->bus
;
1852 if (device_run_wake(&dev
->dev
))
1855 if (!dev
->pme_support
)
1858 while (bus
->parent
) {
1859 struct pci_dev
*bridge
= bus
->self
;
1861 if (device_run_wake(&bridge
->dev
))
1867 /* We have reached the root bus. */
1869 return device_run_wake(bus
->bridge
);
1873 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
1875 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
1877 struct device
*dev
= &pdev
->dev
;
1878 struct device
*parent
= dev
->parent
;
1881 pm_runtime_get_sync(parent
);
1882 pm_runtime_get_noresume(dev
);
1884 * pdev->current_state is set to PCI_D3cold during suspending,
1885 * so wait until suspending completes
1887 pm_runtime_barrier(dev
);
1889 * Only need to resume devices in D3cold, because config
1890 * registers are still accessible for devices suspended but
1893 if (pdev
->current_state
== PCI_D3cold
)
1894 pm_runtime_resume(dev
);
1897 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
1899 struct device
*dev
= &pdev
->dev
;
1900 struct device
*parent
= dev
->parent
;
1902 pm_runtime_put(dev
);
1904 pm_runtime_put_sync(parent
);
1908 * pci_pm_init - Initialize PM functions of given PCI device
1909 * @dev: PCI device to handle.
1911 void pci_pm_init(struct pci_dev
*dev
)
1916 pm_runtime_forbid(&dev
->dev
);
1917 pm_runtime_set_active(&dev
->dev
);
1918 pm_runtime_enable(&dev
->dev
);
1919 device_enable_async_suspend(&dev
->dev
);
1920 dev
->wakeup_prepared
= false;
1923 dev
->pme_support
= 0;
1925 /* find PCI PM capability in list */
1926 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
1929 /* Check device's ability to generate PME# */
1930 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
1932 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
1933 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
1934 pmc
& PCI_PM_CAP_VER_MASK
);
1939 dev
->d3_delay
= PCI_PM_D3_WAIT
;
1940 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
1941 dev
->d3cold_allowed
= true;
1943 dev
->d1_support
= false;
1944 dev
->d2_support
= false;
1945 if (!pci_no_d1d2(dev
)) {
1946 if (pmc
& PCI_PM_CAP_D1
)
1947 dev
->d1_support
= true;
1948 if (pmc
& PCI_PM_CAP_D2
)
1949 dev
->d2_support
= true;
1951 if (dev
->d1_support
|| dev
->d2_support
)
1952 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
1953 dev
->d1_support
? " D1" : "",
1954 dev
->d2_support
? " D2" : "");
1957 pmc
&= PCI_PM_CAP_PME_MASK
;
1959 dev_printk(KERN_DEBUG
, &dev
->dev
,
1960 "PME# supported from%s%s%s%s%s\n",
1961 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
1962 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
1963 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
1964 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
1965 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
1966 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
1967 dev
->pme_poll
= true;
1969 * Make device's PM flags reflect the wake-up capability, but
1970 * let the user space enable it to wake up the system as needed.
1972 device_set_wakeup_capable(&dev
->dev
, true);
1973 /* Disable the PME# generation functionality */
1974 pci_pme_active(dev
, false);
1978 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
1979 struct pci_cap_saved_state
*new_cap
)
1981 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
1985 * pci_add_save_buffer - allocate buffer for saving given capability registers
1986 * @dev: the PCI device
1987 * @cap: the capability to allocate the buffer for
1988 * @size: requested size of the buffer
1990 static int pci_add_cap_save_buffer(
1991 struct pci_dev
*dev
, char cap
, unsigned int size
)
1994 struct pci_cap_saved_state
*save_state
;
1996 pos
= pci_find_capability(dev
, cap
);
2000 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2004 save_state
->cap
.cap_nr
= cap
;
2005 save_state
->cap
.size
= size
;
2006 pci_add_saved_cap(dev
, save_state
);
2012 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2013 * @dev: the PCI device
2015 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2019 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2020 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2023 "unable to preallocate PCI Express save buffer\n");
2025 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2028 "unable to preallocate PCI-X save buffer\n");
2031 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2033 struct pci_cap_saved_state
*tmp
;
2034 struct hlist_node
*n
;
2036 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2041 * pci_configure_ari - enable or disable ARI forwarding
2042 * @dev: the PCI device
2044 * If @dev and its upstream bridge both support ARI, enable ARI in the
2045 * bridge. Otherwise, disable ARI in the bridge.
2047 void pci_configure_ari(struct pci_dev
*dev
)
2050 struct pci_dev
*bridge
;
2052 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2055 bridge
= dev
->bus
->self
;
2059 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2060 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2063 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2064 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2065 PCI_EXP_DEVCTL2_ARI
);
2066 bridge
->ari_enabled
= 1;
2068 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2069 PCI_EXP_DEVCTL2_ARI
);
2070 bridge
->ari_enabled
= 0;
2075 * pci_enable_ido - enable ID-based Ordering on a device
2076 * @dev: the PCI device
2077 * @type: which types of IDO to enable
2079 * Enable ID-based ordering on @dev. @type can contain the bits
2080 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2081 * which types of transactions are allowed to be re-ordered.
2083 void pci_enable_ido(struct pci_dev
*dev
, unsigned long type
)
2087 if (type
& PCI_EXP_IDO_REQUEST
)
2088 ctrl
|= PCI_EXP_IDO_REQ_EN
;
2089 if (type
& PCI_EXP_IDO_COMPLETION
)
2090 ctrl
|= PCI_EXP_IDO_CMP_EN
;
2092 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
, ctrl
);
2094 EXPORT_SYMBOL(pci_enable_ido
);
2097 * pci_disable_ido - disable ID-based ordering on a device
2098 * @dev: the PCI device
2099 * @type: which types of IDO to disable
2101 void pci_disable_ido(struct pci_dev
*dev
, unsigned long type
)
2105 if (type
& PCI_EXP_IDO_REQUEST
)
2106 ctrl
|= PCI_EXP_IDO_REQ_EN
;
2107 if (type
& PCI_EXP_IDO_COMPLETION
)
2108 ctrl
|= PCI_EXP_IDO_CMP_EN
;
2110 pcie_capability_clear_word(dev
, PCI_EXP_DEVCTL2
, ctrl
);
2112 EXPORT_SYMBOL(pci_disable_ido
);
2115 * pci_enable_obff - enable optimized buffer flush/fill
2117 * @type: type of signaling to use
2119 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2120 * signaling if possible, falling back to message signaling only if
2121 * WAKE# isn't supported. @type should indicate whether the PCIe link
2122 * be brought out of L0s or L1 to send the message. It should be either
2123 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2125 * If your device can benefit from receiving all messages, even at the
2126 * power cost of bringing the link back up from a low power state, use
2127 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2131 * Zero on success, appropriate error number on failure.
2133 int pci_enable_obff(struct pci_dev
*dev
, enum pci_obff_signal_type type
)
2139 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP2
, &cap
);
2140 if (!(cap
& PCI_EXP_OBFF_MASK
))
2141 return -ENOTSUPP
; /* no OBFF support at all */
2143 /* Make sure the topology supports OBFF as well */
2144 if (dev
->bus
->self
) {
2145 ret
= pci_enable_obff(dev
->bus
->self
, type
);
2150 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &ctrl
);
2151 if (cap
& PCI_EXP_OBFF_WAKE
)
2152 ctrl
|= PCI_EXP_OBFF_WAKE_EN
;
2155 case PCI_EXP_OBFF_SIGNAL_L0
:
2156 if (!(ctrl
& PCI_EXP_OBFF_WAKE_EN
))
2157 ctrl
|= PCI_EXP_OBFF_MSGA_EN
;
2159 case PCI_EXP_OBFF_SIGNAL_ALWAYS
:
2160 ctrl
&= ~PCI_EXP_OBFF_WAKE_EN
;
2161 ctrl
|= PCI_EXP_OBFF_MSGB_EN
;
2164 WARN(1, "bad OBFF signal type\n");
2168 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, ctrl
);
2172 EXPORT_SYMBOL(pci_enable_obff
);
2175 * pci_disable_obff - disable optimized buffer flush/fill
2178 * Disable OBFF on @dev.
2180 void pci_disable_obff(struct pci_dev
*dev
)
2182 pcie_capability_clear_word(dev
, PCI_EXP_DEVCTL2
, PCI_EXP_OBFF_WAKE_EN
);
2184 EXPORT_SYMBOL(pci_disable_obff
);
2187 * pci_ltr_supported - check whether a device supports LTR
2191 * True if @dev supports latency tolerance reporting, false otherwise.
2193 static bool pci_ltr_supported(struct pci_dev
*dev
)
2197 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP2
, &cap
);
2199 return cap
& PCI_EXP_DEVCAP2_LTR
;
2203 * pci_enable_ltr - enable latency tolerance reporting
2206 * Enable LTR on @dev if possible, which means enabling it first on
2210 * Zero on success, errno on failure.
2212 int pci_enable_ltr(struct pci_dev
*dev
)
2216 /* Only primary function can enable/disable LTR */
2217 if (PCI_FUNC(dev
->devfn
) != 0)
2220 if (!pci_ltr_supported(dev
))
2223 /* Enable upstream ports first */
2224 if (dev
->bus
->self
) {
2225 ret
= pci_enable_ltr(dev
->bus
->self
);
2230 return pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
, PCI_EXP_LTR_EN
);
2232 EXPORT_SYMBOL(pci_enable_ltr
);
2235 * pci_disable_ltr - disable latency tolerance reporting
2238 void pci_disable_ltr(struct pci_dev
*dev
)
2240 /* Only primary function can enable/disable LTR */
2241 if (PCI_FUNC(dev
->devfn
) != 0)
2244 if (!pci_ltr_supported(dev
))
2247 pcie_capability_clear_word(dev
, PCI_EXP_DEVCTL2
, PCI_EXP_LTR_EN
);
2249 EXPORT_SYMBOL(pci_disable_ltr
);
2251 static int __pci_ltr_scale(int *val
)
2255 while (*val
> 1023) {
2256 *val
= (*val
+ 31) / 32;
2263 * pci_set_ltr - set LTR latency values
2265 * @snoop_lat_ns: snoop latency in nanoseconds
2266 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2268 * Figure out the scale and set the LTR values accordingly.
2270 int pci_set_ltr(struct pci_dev
*dev
, int snoop_lat_ns
, int nosnoop_lat_ns
)
2272 int pos
, ret
, snoop_scale
, nosnoop_scale
;
2275 if (!pci_ltr_supported(dev
))
2278 snoop_scale
= __pci_ltr_scale(&snoop_lat_ns
);
2279 nosnoop_scale
= __pci_ltr_scale(&nosnoop_lat_ns
);
2281 if (snoop_lat_ns
> PCI_LTR_VALUE_MASK
||
2282 nosnoop_lat_ns
> PCI_LTR_VALUE_MASK
)
2285 if ((snoop_scale
> (PCI_LTR_SCALE_MASK
>> PCI_LTR_SCALE_SHIFT
)) ||
2286 (nosnoop_scale
> (PCI_LTR_SCALE_MASK
>> PCI_LTR_SCALE_SHIFT
)))
2289 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
2293 val
= (snoop_scale
<< PCI_LTR_SCALE_SHIFT
) | snoop_lat_ns
;
2294 ret
= pci_write_config_word(dev
, pos
+ PCI_LTR_MAX_SNOOP_LAT
, val
);
2298 val
= (nosnoop_scale
<< PCI_LTR_SCALE_SHIFT
) | nosnoop_lat_ns
;
2299 ret
= pci_write_config_word(dev
, pos
+ PCI_LTR_MAX_NOSNOOP_LAT
, val
);
2305 EXPORT_SYMBOL(pci_set_ltr
);
2307 static int pci_acs_enable
;
2310 * pci_request_acs - ask for ACS to be enabled if supported
2312 void pci_request_acs(void)
2318 * pci_enable_acs - enable ACS if hardware support it
2319 * @dev: the PCI device
2321 void pci_enable_acs(struct pci_dev
*dev
)
2327 if (!pci_acs_enable
)
2330 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2334 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2335 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2337 /* Source Validation */
2338 ctrl
|= (cap
& PCI_ACS_SV
);
2340 /* P2P Request Redirect */
2341 ctrl
|= (cap
& PCI_ACS_RR
);
2343 /* P2P Completion Redirect */
2344 ctrl
|= (cap
& PCI_ACS_CR
);
2346 /* Upstream Forwarding */
2347 ctrl
|= (cap
& PCI_ACS_UF
);
2349 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2353 * pci_acs_enabled - test ACS against required flags for a given device
2354 * @pdev: device to test
2355 * @acs_flags: required PCI ACS flags
2357 * Return true if the device supports the provided flags. Automatically
2358 * filters out flags that are not implemented on multifunction devices.
2360 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2365 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2369 if (!pci_is_pcie(pdev
))
2372 /* Filter out flags not applicable to multifunction */
2373 if (pdev
->multifunction
)
2374 acs_flags
&= (PCI_ACS_RR
| PCI_ACS_CR
|
2375 PCI_ACS_EC
| PCI_ACS_DT
);
2377 if (pci_pcie_type(pdev
) == PCI_EXP_TYPE_DOWNSTREAM
||
2378 pci_pcie_type(pdev
) == PCI_EXP_TYPE_ROOT_PORT
||
2379 pdev
->multifunction
) {
2380 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2384 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2385 if ((ctrl
& acs_flags
) != acs_flags
)
2393 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2394 * @start: starting downstream device
2395 * @end: ending upstream device or NULL to search to the root bus
2396 * @acs_flags: required flags
2398 * Walk up a device tree from start to end testing PCI ACS support. If
2399 * any step along the way does not support the required flags, return false.
2401 bool pci_acs_path_enabled(struct pci_dev
*start
,
2402 struct pci_dev
*end
, u16 acs_flags
)
2404 struct pci_dev
*pdev
, *parent
= start
;
2409 if (!pci_acs_enabled(pdev
, acs_flags
))
2412 if (pci_is_root_bus(pdev
->bus
))
2413 return (end
== NULL
);
2415 parent
= pdev
->bus
->self
;
2416 } while (pdev
!= end
);
2422 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2423 * @dev: the PCI device
2424 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2426 * Perform INTx swizzling for a device behind one level of bridge. This is
2427 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2428 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2429 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2430 * the PCI Express Base Specification, Revision 2.1)
2432 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2436 if (pci_ari_enabled(dev
->bus
))
2439 slot
= PCI_SLOT(dev
->devfn
);
2441 return (((pin
- 1) + slot
) % 4) + 1;
2445 pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2453 while (!pci_is_root_bus(dev
->bus
)) {
2454 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2455 dev
= dev
->bus
->self
;
2462 * pci_common_swizzle - swizzle INTx all the way to root bridge
2463 * @dev: the PCI device
2464 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2466 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2467 * bridges all the way up to a PCI root bus.
2469 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
2473 while (!pci_is_root_bus(dev
->bus
)) {
2474 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2475 dev
= dev
->bus
->self
;
2478 return PCI_SLOT(dev
->devfn
);
2482 * pci_release_region - Release a PCI bar
2483 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2484 * @bar: BAR to release
2486 * Releases the PCI I/O and memory resources previously reserved by a
2487 * successful call to pci_request_region. Call this function only
2488 * after all use of the PCI regions has ceased.
2490 void pci_release_region(struct pci_dev
*pdev
, int bar
)
2492 struct pci_devres
*dr
;
2494 if (pci_resource_len(pdev
, bar
) == 0)
2496 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
2497 release_region(pci_resource_start(pdev
, bar
),
2498 pci_resource_len(pdev
, bar
));
2499 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
2500 release_mem_region(pci_resource_start(pdev
, bar
),
2501 pci_resource_len(pdev
, bar
));
2503 dr
= find_pci_dr(pdev
);
2505 dr
->region_mask
&= ~(1 << bar
);
2509 * __pci_request_region - Reserved PCI I/O and memory resource
2510 * @pdev: PCI device whose resources are to be reserved
2511 * @bar: BAR to be reserved
2512 * @res_name: Name to be associated with resource.
2513 * @exclusive: whether the region access is exclusive or not
2515 * Mark the PCI region associated with PCI device @pdev BR @bar as
2516 * being reserved by owner @res_name. Do not access any
2517 * address inside the PCI regions unless this call returns
2520 * If @exclusive is set, then the region is marked so that userspace
2521 * is explicitly not allowed to map the resource via /dev/mem or
2522 * sysfs MMIO access.
2524 * Returns 0 on success, or %EBUSY on error. A warning
2525 * message is also printed on failure.
2527 static int __pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
,
2530 struct pci_devres
*dr
;
2532 if (pci_resource_len(pdev
, bar
) == 0)
2535 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
2536 if (!request_region(pci_resource_start(pdev
, bar
),
2537 pci_resource_len(pdev
, bar
), res_name
))
2540 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
2541 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
2542 pci_resource_len(pdev
, bar
), res_name
,
2547 dr
= find_pci_dr(pdev
);
2549 dr
->region_mask
|= 1 << bar
;
2554 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
2555 &pdev
->resource
[bar
]);
2560 * pci_request_region - Reserve PCI I/O and memory resource
2561 * @pdev: PCI device whose resources are to be reserved
2562 * @bar: BAR to be reserved
2563 * @res_name: Name to be associated with resource
2565 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2566 * being reserved by owner @res_name. Do not access any
2567 * address inside the PCI regions unless this call returns
2570 * Returns 0 on success, or %EBUSY on error. A warning
2571 * message is also printed on failure.
2573 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
2575 return __pci_request_region(pdev
, bar
, res_name
, 0);
2579 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2580 * @pdev: PCI device whose resources are to be reserved
2581 * @bar: BAR to be reserved
2582 * @res_name: Name to be associated with resource.
2584 * Mark the PCI region associated with PCI device @pdev BR @bar as
2585 * being reserved by owner @res_name. Do not access any
2586 * address inside the PCI regions unless this call returns
2589 * Returns 0 on success, or %EBUSY on error. A warning
2590 * message is also printed on failure.
2592 * The key difference that _exclusive makes it that userspace is
2593 * explicitly not allowed to map the resource via /dev/mem or
2596 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
, const char *res_name
)
2598 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
2601 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources were previously reserved
2603 * @bars: Bitmask of BARs to be released
2605 * Release selected PCI I/O and memory resources previously reserved.
2606 * Call this function only after all use of the PCI regions has ceased.
2608 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
2612 for (i
= 0; i
< 6; i
++)
2613 if (bars
& (1 << i
))
2614 pci_release_region(pdev
, i
);
2617 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2618 const char *res_name
, int excl
)
2622 for (i
= 0; i
< 6; i
++)
2623 if (bars
& (1 << i
))
2624 if (__pci_request_region(pdev
, i
, res_name
, excl
))
2630 if (bars
& (1 << i
))
2631 pci_release_region(pdev
, i
);
2638 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2639 * @pdev: PCI device whose resources are to be reserved
2640 * @bars: Bitmask of BARs to be requested
2641 * @res_name: Name to be associated with resource
2643 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2644 const char *res_name
)
2646 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
2649 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
,
2650 int bars
, const char *res_name
)
2652 return __pci_request_selected_regions(pdev
, bars
, res_name
,
2653 IORESOURCE_EXCLUSIVE
);
2657 * pci_release_regions - Release reserved PCI I/O and memory resources
2658 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2660 * Releases all PCI I/O and memory resources previously reserved by a
2661 * successful call to pci_request_regions. Call this function only
2662 * after all use of the PCI regions has ceased.
2665 void pci_release_regions(struct pci_dev
*pdev
)
2667 pci_release_selected_regions(pdev
, (1 << 6) - 1);
2671 * pci_request_regions - Reserved PCI I/O and memory resources
2672 * @pdev: PCI device whose resources are to be reserved
2673 * @res_name: Name to be associated with resource.
2675 * Mark all PCI regions associated with PCI device @pdev as
2676 * being reserved by owner @res_name. Do not access any
2677 * address inside the PCI regions unless this call returns
2680 * Returns 0 on success, or %EBUSY on error. A warning
2681 * message is also printed on failure.
2683 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
2685 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
2689 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2690 * @pdev: PCI device whose resources are to be reserved
2691 * @res_name: Name to be associated with resource.
2693 * Mark all PCI regions associated with PCI device @pdev as
2694 * being reserved by owner @res_name. Do not access any
2695 * address inside the PCI regions unless this call returns
2698 * pci_request_regions_exclusive() will mark the region so that
2699 * /dev/mem and the sysfs MMIO access will not be allowed.
2701 * Returns 0 on success, or %EBUSY on error. A warning
2702 * message is also printed on failure.
2704 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
2706 return pci_request_selected_regions_exclusive(pdev
,
2707 ((1 << 6) - 1), res_name
);
2710 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
2714 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
2716 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
2718 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
2719 if (cmd
!= old_cmd
) {
2720 dev_dbg(&dev
->dev
, "%s bus mastering\n",
2721 enable
? "enabling" : "disabling");
2722 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2724 dev
->is_busmaster
= enable
;
2728 * pcibios_setup - process "pci=" kernel boot arguments
2729 * @str: string used to pass in "pci=" kernel boot arguments
2731 * Process kernel boot arguments. This is the default implementation.
2732 * Architecture specific implementations can override this as necessary.
2734 char * __weak __init
pcibios_setup(char *str
)
2740 * pcibios_set_master - enable PCI bus-mastering for device dev
2741 * @dev: the PCI device to enable
2743 * Enables PCI bus-mastering for the device. This is the default
2744 * implementation. Architecture specific implementations can override
2745 * this if necessary.
2747 void __weak
pcibios_set_master(struct pci_dev
*dev
)
2751 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2752 if (pci_is_pcie(dev
))
2755 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
2757 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
2758 else if (lat
> pcibios_max_latency
)
2759 lat
= pcibios_max_latency
;
2762 dev_printk(KERN_DEBUG
, &dev
->dev
, "setting latency timer to %d\n", lat
);
2763 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
2767 * pci_set_master - enables bus-mastering for device dev
2768 * @dev: the PCI device to enable
2770 * Enables bus-mastering on the device and calls pcibios_set_master()
2771 * to do the needed arch specific settings.
2773 void pci_set_master(struct pci_dev
*dev
)
2775 __pci_set_master(dev
, true);
2776 pcibios_set_master(dev
);
2780 * pci_clear_master - disables bus-mastering for device dev
2781 * @dev: the PCI device to disable
2783 void pci_clear_master(struct pci_dev
*dev
)
2785 __pci_set_master(dev
, false);
2789 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2790 * @dev: the PCI device for which MWI is to be enabled
2792 * Helper function for pci_set_mwi.
2793 * Originally copied from drivers/net/acenic.c.
2794 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2796 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2798 int pci_set_cacheline_size(struct pci_dev
*dev
)
2802 if (!pci_cache_line_size
)
2805 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2806 equal to or multiple of the right value. */
2807 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2808 if (cacheline_size
>= pci_cache_line_size
&&
2809 (cacheline_size
% pci_cache_line_size
) == 0)
2812 /* Write the correct value. */
2813 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
2815 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2816 if (cacheline_size
== pci_cache_line_size
)
2819 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not "
2820 "supported\n", pci_cache_line_size
<< 2);
2824 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
2826 #ifdef PCI_DISABLE_MWI
2827 int pci_set_mwi(struct pci_dev
*dev
)
2832 int pci_try_set_mwi(struct pci_dev
*dev
)
2837 void pci_clear_mwi(struct pci_dev
*dev
)
2844 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2845 * @dev: the PCI device for which MWI is enabled
2847 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2849 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2852 pci_set_mwi(struct pci_dev
*dev
)
2857 rc
= pci_set_cacheline_size(dev
);
2861 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2862 if (! (cmd
& PCI_COMMAND_INVALIDATE
)) {
2863 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
2864 cmd
|= PCI_COMMAND_INVALIDATE
;
2865 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2872 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2873 * @dev: the PCI device for which MWI is enabled
2875 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2876 * Callers are not required to check the return value.
2878 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2880 int pci_try_set_mwi(struct pci_dev
*dev
)
2882 int rc
= pci_set_mwi(dev
);
2887 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2888 * @dev: the PCI device to disable
2890 * Disables PCI Memory-Write-Invalidate transaction on the device
2893 pci_clear_mwi(struct pci_dev
*dev
)
2897 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2898 if (cmd
& PCI_COMMAND_INVALIDATE
) {
2899 cmd
&= ~PCI_COMMAND_INVALIDATE
;
2900 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2903 #endif /* ! PCI_DISABLE_MWI */
2906 * pci_intx - enables/disables PCI INTx for device dev
2907 * @pdev: the PCI device to operate on
2908 * @enable: boolean: whether to enable or disable PCI INTx
2910 * Enables/disables PCI INTx for device dev
2913 pci_intx(struct pci_dev
*pdev
, int enable
)
2915 u16 pci_command
, new;
2917 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
2920 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
2922 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
2925 if (new != pci_command
) {
2926 struct pci_devres
*dr
;
2928 pci_write_config_word(pdev
, PCI_COMMAND
, new);
2930 dr
= find_pci_dr(pdev
);
2931 if (dr
&& !dr
->restore_intx
) {
2932 dr
->restore_intx
= 1;
2933 dr
->orig_intx
= !enable
;
2939 * pci_intx_mask_supported - probe for INTx masking support
2940 * @dev: the PCI device to operate on
2942 * Check if the device dev support INTx masking via the config space
2945 bool pci_intx_mask_supported(struct pci_dev
*dev
)
2947 bool mask_supported
= false;
2950 if (dev
->broken_intx_masking
)
2953 pci_cfg_access_lock(dev
);
2955 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
2956 pci_write_config_word(dev
, PCI_COMMAND
,
2957 orig
^ PCI_COMMAND_INTX_DISABLE
);
2958 pci_read_config_word(dev
, PCI_COMMAND
, &new);
2961 * There's no way to protect against hardware bugs or detect them
2962 * reliably, but as long as we know what the value should be, let's
2963 * go ahead and check it.
2965 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
2966 dev_err(&dev
->dev
, "Command register changed from "
2967 "0x%x to 0x%x: driver or hardware bug?\n", orig
, new);
2968 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
2969 mask_supported
= true;
2970 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
2973 pci_cfg_access_unlock(dev
);
2974 return mask_supported
;
2976 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
2978 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
2980 struct pci_bus
*bus
= dev
->bus
;
2981 bool mask_updated
= true;
2982 u32 cmd_status_dword
;
2983 u16 origcmd
, newcmd
;
2984 unsigned long flags
;
2988 * We do a single dword read to retrieve both command and status.
2989 * Document assumptions that make this possible.
2991 BUILD_BUG_ON(PCI_COMMAND
% 4);
2992 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
2994 raw_spin_lock_irqsave(&pci_lock
, flags
);
2996 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
2998 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3001 * Check interrupt status register to see whether our device
3002 * triggered the interrupt (when masking) or the next IRQ is
3003 * already pending (when unmasking).
3005 if (mask
!= irq_pending
) {
3006 mask_updated
= false;
3010 origcmd
= cmd_status_dword
;
3011 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3013 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3014 if (newcmd
!= origcmd
)
3015 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3018 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3020 return mask_updated
;
3024 * pci_check_and_mask_intx - mask INTx on pending interrupt
3025 * @dev: the PCI device to operate on
3027 * Check if the device dev has its INTx line asserted, mask it and
3028 * return true in that case. False is returned if not interrupt was
3031 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3033 return pci_check_and_set_intx_mask(dev
, true);
3035 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3038 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3039 * @dev: the PCI device to operate on
3041 * Check if the device dev has its INTx line asserted, unmask it if not
3042 * and return true. False is returned and the mask remains active if
3043 * there was still an interrupt pending.
3045 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3047 return pci_check_and_set_intx_mask(dev
, false);
3049 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3052 * pci_msi_off - disables any msi or msix capabilities
3053 * @dev: the PCI device to operate on
3055 * If you want to use msi see pci_enable_msi and friends.
3056 * This is a lower level primitive that allows us to disable
3057 * msi operation at the device level.
3059 void pci_msi_off(struct pci_dev
*dev
)
3064 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSI
);
3066 pci_read_config_word(dev
, pos
+ PCI_MSI_FLAGS
, &control
);
3067 control
&= ~PCI_MSI_FLAGS_ENABLE
;
3068 pci_write_config_word(dev
, pos
+ PCI_MSI_FLAGS
, control
);
3070 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSIX
);
3072 pci_read_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, &control
);
3073 control
&= ~PCI_MSIX_FLAGS_ENABLE
;
3074 pci_write_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, control
);
3077 EXPORT_SYMBOL_GPL(pci_msi_off
);
3079 int pci_set_dma_max_seg_size(struct pci_dev
*dev
, unsigned int size
)
3081 return dma_set_max_seg_size(&dev
->dev
, size
);
3083 EXPORT_SYMBOL(pci_set_dma_max_seg_size
);
3085 int pci_set_dma_seg_boundary(struct pci_dev
*dev
, unsigned long mask
)
3087 return dma_set_seg_boundary(&dev
->dev
, mask
);
3089 EXPORT_SYMBOL(pci_set_dma_seg_boundary
);
3091 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3097 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3098 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3104 /* Wait for Transaction Pending bit clean */
3105 for (i
= 0; i
< 4; i
++) {
3107 msleep((1 << (i
- 1)) * 100);
3109 pcie_capability_read_word(dev
, PCI_EXP_DEVSTA
, &status
);
3110 if (!(status
& PCI_EXP_DEVSTA_TRPND
))
3114 dev_err(&dev
->dev
, "transaction is not cleared; "
3115 "proceeding with reset anyway\n");
3118 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3125 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3132 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3136 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3137 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3143 /* Wait for Transaction Pending bit clean */
3144 for (i
= 0; i
< 4; i
++) {
3146 msleep((1 << (i
- 1)) * 100);
3148 pci_read_config_byte(dev
, pos
+ PCI_AF_STATUS
, &status
);
3149 if (!(status
& PCI_AF_STATUS_TP
))
3153 dev_err(&dev
->dev
, "transaction is not cleared; "
3154 "proceeding with reset anyway\n");
3157 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3164 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3165 * @dev: Device to reset.
3166 * @probe: If set, only check if the device can be reset this way.
3168 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3169 * unset, it will be reinitialized internally when going from PCI_D3hot to
3170 * PCI_D0. If that's the case and the device is not in a low-power state
3171 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3173 * NOTE: This causes the caller to sleep for twice the device power transition
3174 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3175 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3176 * Moreover, only devices in D0 can be reset by this function.
3178 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3185 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3186 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3192 if (dev
->current_state
!= PCI_D0
)
3195 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3197 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3198 pci_dev_d3_sleep(dev
);
3200 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3202 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3203 pci_dev_d3_sleep(dev
);
3208 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
3211 struct pci_dev
*pdev
;
3213 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
|| !dev
->bus
->self
)
3216 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3223 pci_read_config_word(dev
->bus
->self
, PCI_BRIDGE_CONTROL
, &ctrl
);
3224 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3225 pci_write_config_word(dev
->bus
->self
, PCI_BRIDGE_CONTROL
, ctrl
);
3228 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3229 pci_write_config_word(dev
->bus
->self
, PCI_BRIDGE_CONTROL
, ctrl
);
3235 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
3241 rc
= pci_dev_specific_reset(dev
, probe
);
3245 rc
= pcie_flr(dev
, probe
);
3249 rc
= pci_af_flr(dev
, probe
);
3253 rc
= pci_pm_reset(dev
, probe
);
3257 rc
= pci_parent_bus_reset(dev
, probe
);
3262 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
3267 pci_cfg_access_lock(dev
);
3268 /* block PM suspend, driver probe, etc. */
3269 device_lock(&dev
->dev
);
3272 rc
= __pci_dev_reset(dev
, probe
);
3275 device_unlock(&dev
->dev
);
3276 pci_cfg_access_unlock(dev
);
3281 * __pci_reset_function - reset a PCI device function
3282 * @dev: PCI device to reset
3284 * Some devices allow an individual function to be reset without affecting
3285 * other functions in the same device. The PCI device must be responsive
3286 * to PCI config space in order to use this function.
3288 * The device function is presumed to be unused when this function is called.
3289 * Resetting the device will make the contents of PCI configuration space
3290 * random, so any caller of this must be prepared to reinitialise the
3291 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3294 * Returns 0 if the device function was successfully reset or negative if the
3295 * device doesn't support resetting a single function.
3297 int __pci_reset_function(struct pci_dev
*dev
)
3299 return pci_dev_reset(dev
, 0);
3301 EXPORT_SYMBOL_GPL(__pci_reset_function
);
3304 * __pci_reset_function_locked - reset a PCI device function while holding
3305 * the @dev mutex lock.
3306 * @dev: PCI device to reset
3308 * Some devices allow an individual function to be reset without affecting
3309 * other functions in the same device. The PCI device must be responsive
3310 * to PCI config space in order to use this function.
3312 * The device function is presumed to be unused and the caller is holding
3313 * the device mutex lock when this function is called.
3314 * Resetting the device will make the contents of PCI configuration space
3315 * random, so any caller of this must be prepared to reinitialise the
3316 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3319 * Returns 0 if the device function was successfully reset or negative if the
3320 * device doesn't support resetting a single function.
3322 int __pci_reset_function_locked(struct pci_dev
*dev
)
3324 return __pci_dev_reset(dev
, 0);
3326 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
3329 * pci_probe_reset_function - check whether the device can be safely reset
3330 * @dev: PCI device to reset
3332 * Some devices allow an individual function to be reset without affecting
3333 * other functions in the same device. The PCI device must be responsive
3334 * to PCI config space in order to use this function.
3336 * Returns 0 if the device function can be reset or negative if the
3337 * device doesn't support resetting a single function.
3339 int pci_probe_reset_function(struct pci_dev
*dev
)
3341 return pci_dev_reset(dev
, 1);
3345 * pci_reset_function - quiesce and reset a PCI device function
3346 * @dev: PCI device to reset
3348 * Some devices allow an individual function to be reset without affecting
3349 * other functions in the same device. The PCI device must be responsive
3350 * to PCI config space in order to use this function.
3352 * This function does not just reset the PCI portion of a device, but
3353 * clears all the state associated with the device. This function differs
3354 * from __pci_reset_function in that it saves and restores device state
3357 * Returns 0 if the device function was successfully reset or negative if the
3358 * device doesn't support resetting a single function.
3360 int pci_reset_function(struct pci_dev
*dev
)
3364 rc
= pci_dev_reset(dev
, 1);
3368 pci_save_state(dev
);
3371 * both INTx and MSI are disabled after the Interrupt Disable bit
3372 * is set and the Bus Master bit is cleared.
3374 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
3376 rc
= pci_dev_reset(dev
, 0);
3378 pci_restore_state(dev
);
3382 EXPORT_SYMBOL_GPL(pci_reset_function
);
3385 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3386 * @dev: PCI device to query
3388 * Returns mmrbc: maximum designed memory read count in bytes
3389 * or appropriate error value.
3391 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
3396 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3400 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
3403 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
3405 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
3408 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3409 * @dev: PCI device to query
3411 * Returns mmrbc: maximum memory read count in bytes
3412 * or appropriate error value.
3414 int pcix_get_mmrbc(struct pci_dev
*dev
)
3419 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3423 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
3426 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
3428 EXPORT_SYMBOL(pcix_get_mmrbc
);
3431 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3432 * @dev: PCI device to query
3433 * @mmrbc: maximum memory read count in bytes
3434 * valid values are 512, 1024, 2048, 4096
3436 * If possible sets maximum memory read byte count, some bridges have erratas
3437 * that prevent this.
3439 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
3445 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
3448 v
= ffs(mmrbc
) - 10;
3450 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3454 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
3457 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
3460 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
3463 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
3465 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
3468 cmd
&= ~PCI_X_CMD_MAX_READ
;
3470 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
3475 EXPORT_SYMBOL(pcix_set_mmrbc
);
3478 * pcie_get_readrq - get PCI Express read request size
3479 * @dev: PCI device to query
3481 * Returns maximum memory read request in bytes
3482 * or appropriate error value.
3484 int pcie_get_readrq(struct pci_dev
*dev
)
3488 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
3490 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
3492 EXPORT_SYMBOL(pcie_get_readrq
);
3495 * pcie_set_readrq - set PCI Express maximum memory read request
3496 * @dev: PCI device to query
3497 * @rq: maximum memory read count in bytes
3498 * valid values are 128, 256, 512, 1024, 2048, 4096
3500 * If possible sets maximum memory read request in bytes
3502 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
3506 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
3510 * If using the "performance" PCIe config, we clamp the
3511 * read rq size to the max packet size to prevent the
3512 * host bridge generating requests larger than we can
3515 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
3516 int mps
= pcie_get_mps(dev
);
3524 v
= (ffs(rq
) - 8) << 12;
3526 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
3527 PCI_EXP_DEVCTL_READRQ
, v
);
3529 EXPORT_SYMBOL(pcie_set_readrq
);
3532 * pcie_get_mps - get PCI Express maximum payload size
3533 * @dev: PCI device to query
3535 * Returns maximum payload size in bytes
3536 * or appropriate error value.
3538 int pcie_get_mps(struct pci_dev
*dev
)
3542 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
3544 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
3548 * pcie_set_mps - set PCI Express maximum payload size
3549 * @dev: PCI device to query
3550 * @mps: maximum payload size in bytes
3551 * valid values are 128, 256, 512, 1024, 2048, 4096
3553 * If possible sets maximum payload size
3555 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
3559 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
3563 if (v
> dev
->pcie_mpss
)
3567 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
3568 PCI_EXP_DEVCTL_PAYLOAD
, v
);
3572 * pci_select_bars - Make BAR mask from the type of resource
3573 * @dev: the PCI device for which BAR mask is made
3574 * @flags: resource type mask to be selected
3576 * This helper routine makes bar mask from the type of resource.
3578 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
3581 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
3582 if (pci_resource_flags(dev
, i
) & flags
)
3588 * pci_resource_bar - get position of the BAR associated with a resource
3589 * @dev: the PCI device
3590 * @resno: the resource number
3591 * @type: the BAR type to be filled in
3593 * Returns BAR position in config space, or 0 if the BAR is invalid.
3595 int pci_resource_bar(struct pci_dev
*dev
, int resno
, enum pci_bar_type
*type
)
3599 if (resno
< PCI_ROM_RESOURCE
) {
3600 *type
= pci_bar_unknown
;
3601 return PCI_BASE_ADDRESS_0
+ 4 * resno
;
3602 } else if (resno
== PCI_ROM_RESOURCE
) {
3603 *type
= pci_bar_mem32
;
3604 return dev
->rom_base_reg
;
3605 } else if (resno
< PCI_BRIDGE_RESOURCES
) {
3606 /* device specific resource */
3607 reg
= pci_iov_resource_bar(dev
, resno
, type
);
3612 dev_err(&dev
->dev
, "BAR %d: invalid resource\n", resno
);
3616 /* Some architectures require additional programming to enable VGA */
3617 static arch_set_vga_state_t arch_set_vga_state
;
3619 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
3621 arch_set_vga_state
= func
; /* NULL disables */
3624 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
3625 unsigned int command_bits
, u32 flags
)
3627 if (arch_set_vga_state
)
3628 return arch_set_vga_state(dev
, decode
, command_bits
,
3634 * pci_set_vga_state - set VGA decode state on device and parents if requested
3635 * @dev: the PCI device
3636 * @decode: true = enable decoding, false = disable decoding
3637 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3638 * @flags: traverse ancestors and change bridges
3639 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3641 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
3642 unsigned int command_bits
, u32 flags
)
3644 struct pci_bus
*bus
;
3645 struct pci_dev
*bridge
;
3649 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) & (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
3651 /* ARCH specific VGA enables */
3652 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
3656 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
3657 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3659 cmd
|= command_bits
;
3661 cmd
&= ~command_bits
;
3662 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3665 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
3672 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
3675 cmd
|= PCI_BRIDGE_CTL_VGA
;
3677 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
3678 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
3686 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3687 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
3688 static DEFINE_SPINLOCK(resource_alignment_lock
);
3691 * pci_specified_resource_alignment - get resource alignment specified by user.
3692 * @dev: the PCI device to get
3694 * RETURNS: Resource alignment if it is specified.
3695 * Zero if it is not specified.
3697 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
3699 int seg
, bus
, slot
, func
, align_order
, count
;
3700 resource_size_t align
= 0;
3703 spin_lock(&resource_alignment_lock
);
3704 p
= resource_alignment_param
;
3707 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
3713 if (sscanf(p
, "%x:%x:%x.%x%n",
3714 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
3716 if (sscanf(p
, "%x:%x.%x%n",
3717 &bus
, &slot
, &func
, &count
) != 3) {
3718 /* Invalid format */
3719 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
3725 if (seg
== pci_domain_nr(dev
->bus
) &&
3726 bus
== dev
->bus
->number
&&
3727 slot
== PCI_SLOT(dev
->devfn
) &&
3728 func
== PCI_FUNC(dev
->devfn
)) {
3729 if (align_order
== -1) {
3732 align
= 1 << align_order
;
3737 if (*p
!= ';' && *p
!= ',') {
3738 /* End of param or invalid format */
3743 spin_unlock(&resource_alignment_lock
);
3748 * This function disables memory decoding and releases memory resources
3749 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3750 * It also rounds up size to specified alignment.
3751 * Later on, the kernel will assign page-aligned memory resource back
3754 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
3758 resource_size_t align
, size
;
3761 /* check if specified PCI is target device to reassign */
3762 align
= pci_specified_resource_alignment(dev
);
3766 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
3767 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
3769 "Can't reassign resources to host bridge.\n");
3774 "Disabling memory decoding and releasing memory resources.\n");
3775 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
3776 command
&= ~PCI_COMMAND_MEMORY
;
3777 pci_write_config_word(dev
, PCI_COMMAND
, command
);
3779 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
3780 r
= &dev
->resource
[i
];
3781 if (!(r
->flags
& IORESOURCE_MEM
))
3783 size
= resource_size(r
);
3787 "Rounding up size of resource #%d to %#llx.\n",
3788 i
, (unsigned long long)size
);
3793 /* Need to disable bridge's resource window,
3794 * to enable the kernel to reassign new resource
3797 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
3798 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
3799 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
3800 r
= &dev
->resource
[i
];
3801 if (!(r
->flags
& IORESOURCE_MEM
))
3803 r
->end
= resource_size(r
) - 1;
3806 pci_disable_bridge_window(dev
);
3810 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
3812 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
3813 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
3814 spin_lock(&resource_alignment_lock
);
3815 strncpy(resource_alignment_param
, buf
, count
);
3816 resource_alignment_param
[count
] = '\0';
3817 spin_unlock(&resource_alignment_lock
);
3821 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
3824 spin_lock(&resource_alignment_lock
);
3825 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
3826 spin_unlock(&resource_alignment_lock
);
3830 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
3832 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
3835 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
3836 const char *buf
, size_t count
)
3838 return pci_set_resource_alignment_param(buf
, count
);
3841 BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
3842 pci_resource_alignment_store
);
3844 static int __init
pci_resource_alignment_sysfs_init(void)
3846 return bus_create_file(&pci_bus_type
,
3847 &bus_attr_resource_alignment
);
3850 late_initcall(pci_resource_alignment_sysfs_init
);
3852 static void pci_no_domains(void)
3854 #ifdef CONFIG_PCI_DOMAINS
3855 pci_domains_supported
= 0;
3860 * pci_ext_cfg_avail - can we access extended PCI config space?
3862 * Returns 1 if we can access PCI extended config space (offsets
3863 * greater than 0xff). This is the default implementation. Architecture
3864 * implementations can override this.
3866 int __weak
pci_ext_cfg_avail(void)
3871 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
3874 EXPORT_SYMBOL(pci_fixup_cardbus
);
3876 static int __init
pci_setup(char *str
)
3879 char *k
= strchr(str
, ',');
3882 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
3883 if (!strcmp(str
, "nomsi")) {
3885 } else if (!strcmp(str
, "noaer")) {
3887 } else if (!strncmp(str
, "realloc=", 8)) {
3888 pci_realloc_get_opt(str
+ 8);
3889 } else if (!strncmp(str
, "realloc", 7)) {
3890 pci_realloc_get_opt("on");
3891 } else if (!strcmp(str
, "nodomains")) {
3893 } else if (!strncmp(str
, "noari", 5)) {
3894 pcie_ari_disabled
= true;
3895 } else if (!strncmp(str
, "cbiosize=", 9)) {
3896 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
3897 } else if (!strncmp(str
, "cbmemsize=", 10)) {
3898 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
3899 } else if (!strncmp(str
, "resource_alignment=", 19)) {
3900 pci_set_resource_alignment_param(str
+ 19,
3902 } else if (!strncmp(str
, "ecrc=", 5)) {
3903 pcie_ecrc_get_policy(str
+ 5);
3904 } else if (!strncmp(str
, "hpiosize=", 9)) {
3905 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
3906 } else if (!strncmp(str
, "hpmemsize=", 10)) {
3907 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
3908 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
3909 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
3910 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
3911 pcie_bus_config
= PCIE_BUS_SAFE
;
3912 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
3913 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
3914 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
3915 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
3916 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
3917 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
3919 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
3927 early_param("pci", pci_setup
);
3929 EXPORT_SYMBOL(pci_reenable_device
);
3930 EXPORT_SYMBOL(pci_enable_device_io
);
3931 EXPORT_SYMBOL(pci_enable_device_mem
);
3932 EXPORT_SYMBOL(pci_enable_device
);
3933 EXPORT_SYMBOL(pcim_enable_device
);
3934 EXPORT_SYMBOL(pcim_pin_device
);
3935 EXPORT_SYMBOL(pci_disable_device
);
3936 EXPORT_SYMBOL(pci_find_capability
);
3937 EXPORT_SYMBOL(pci_bus_find_capability
);
3938 EXPORT_SYMBOL(pci_release_regions
);
3939 EXPORT_SYMBOL(pci_request_regions
);
3940 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3941 EXPORT_SYMBOL(pci_release_region
);
3942 EXPORT_SYMBOL(pci_request_region
);
3943 EXPORT_SYMBOL(pci_request_region_exclusive
);
3944 EXPORT_SYMBOL(pci_release_selected_regions
);
3945 EXPORT_SYMBOL(pci_request_selected_regions
);
3946 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3947 EXPORT_SYMBOL(pci_set_master
);
3948 EXPORT_SYMBOL(pci_clear_master
);
3949 EXPORT_SYMBOL(pci_set_mwi
);
3950 EXPORT_SYMBOL(pci_try_set_mwi
);
3951 EXPORT_SYMBOL(pci_clear_mwi
);
3952 EXPORT_SYMBOL_GPL(pci_intx
);
3953 EXPORT_SYMBOL(pci_assign_resource
);
3954 EXPORT_SYMBOL(pci_find_parent_resource
);
3955 EXPORT_SYMBOL(pci_select_bars
);
3957 EXPORT_SYMBOL(pci_set_power_state
);
3958 EXPORT_SYMBOL(pci_save_state
);
3959 EXPORT_SYMBOL(pci_restore_state
);
3960 EXPORT_SYMBOL(pci_pme_capable
);
3961 EXPORT_SYMBOL(pci_pme_active
);
3962 EXPORT_SYMBOL(pci_wake_from_d3
);
3963 EXPORT_SYMBOL(pci_target_state
);
3964 EXPORT_SYMBOL(pci_prepare_to_sleep
);
3965 EXPORT_SYMBOL(pci_back_from_sleep
);
3966 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);