4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
42 * Sleep at most 200ms at a time in balance_dirty_pages().
44 #define MAX_PAUSE max(HZ/5, 1)
47 * Try to keep balance_dirty_pages() call intervals higher than this many pages
48 * by raising pause time to max_pause when falls below it.
50 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
53 * Estimate write bandwidth at 200ms intervals.
55 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
57 #define RATELIMIT_CALC_SHIFT 10
60 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
61 * will look to see if it needs to force writeback or throttling.
63 static long ratelimit_pages
= 32;
65 /* The following parameters are exported via /proc/sys/vm */
68 * Start background writeback (via writeback threads) at this percentage
70 int dirty_background_ratio
= 10;
73 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
74 * dirty_background_ratio * the amount of dirtyable memory
76 unsigned long dirty_background_bytes
;
79 * free highmem will not be subtracted from the total free memory
80 * for calculating free ratios if vm_highmem_is_dirtyable is true
82 int vm_highmem_is_dirtyable
;
85 * The generator of dirty data starts writeback at this percentage
87 int vm_dirty_ratio
= 20;
90 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
91 * vm_dirty_ratio * the amount of dirtyable memory
93 unsigned long vm_dirty_bytes
;
96 * The interval between `kupdate'-style writebacks
98 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
100 EXPORT_SYMBOL_GPL(dirty_writeback_interval
);
103 * The longest time for which data is allowed to remain dirty
105 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
108 * Flag that makes the machine dump writes/reads and block dirtyings.
113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114 * a full sync is triggered after this time elapses without any disk activity.
118 EXPORT_SYMBOL(laptop_mode
);
120 /* End of sysctl-exported parameters */
122 unsigned long global_dirty_limit
;
125 * Scale the writeback cache size proportional to the relative writeout speeds.
127 * We do this by keeping a floating proportion between BDIs, based on page
128 * writeback completions [end_page_writeback()]. Those devices that write out
129 * pages fastest will get the larger share, while the slower will get a smaller
132 * We use page writeout completions because we are interested in getting rid of
133 * dirty pages. Having them written out is the primary goal.
135 * We introduce a concept of time, a period over which we measure these events,
136 * because demand can/will vary over time. The length of this period itself is
137 * measured in page writeback completions.
140 static struct fprop_global writeout_completions
;
142 static void writeout_period(unsigned long t
);
143 /* Timer for aging of writeout_completions */
144 static struct timer_list writeout_period_timer
=
145 TIMER_DEFERRED_INITIALIZER(writeout_period
, 0, 0);
146 static unsigned long writeout_period_time
= 0;
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
156 * Work out the current dirty-memory clamping and background writeout
159 * The main aim here is to lower them aggressively if there is a lot of mapped
160 * memory around. To avoid stressing page reclaim with lots of unreclaimable
161 * pages. It is better to clamp down on writers than to start swapping, and
162 * performing lots of scanning.
164 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
166 * We don't permit the clamping level to fall below 5% - that is getting rather
169 * We make sure that the background writeout level is below the adjusted
174 * In a memory zone, there is a certain amount of pages we consider
175 * available for the page cache, which is essentially the number of
176 * free and reclaimable pages, minus some zone reserves to protect
177 * lowmem and the ability to uphold the zone's watermarks without
178 * requiring writeback.
180 * This number of dirtyable pages is the base value of which the
181 * user-configurable dirty ratio is the effictive number of pages that
182 * are allowed to be actually dirtied. Per individual zone, or
183 * globally by using the sum of dirtyable pages over all zones.
185 * Because the user is allowed to specify the dirty limit globally as
186 * absolute number of bytes, calculating the per-zone dirty limit can
187 * require translating the configured limit into a percentage of
188 * global dirtyable memory first.
191 static unsigned long highmem_dirtyable_memory(unsigned long total
)
193 #ifdef CONFIG_HIGHMEM
197 for_each_node_state(node
, N_HIGH_MEMORY
) {
199 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
201 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
202 zone_reclaimable_pages(z
) - z
->dirty_balance_reserve
;
205 * Unreclaimable memory (kernel memory or anonymous memory
206 * without swap) can bring down the dirtyable pages below
207 * the zone's dirty balance reserve and the above calculation
208 * will underflow. However we still want to add in nodes
209 * which are below threshold (negative values) to get a more
210 * accurate calculation but make sure that the total never
217 * Make sure that the number of highmem pages is never larger
218 * than the number of the total dirtyable memory. This can only
219 * occur in very strange VM situations but we want to make sure
220 * that this does not occur.
222 return min(x
, total
);
229 * global_dirtyable_memory - number of globally dirtyable pages
231 * Returns the global number of pages potentially available for dirty
232 * page cache. This is the base value for the global dirty limits.
234 static unsigned long global_dirtyable_memory(void)
238 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages();
239 x
-= min(x
, dirty_balance_reserve
);
241 if (!vm_highmem_is_dirtyable
)
242 x
-= highmem_dirtyable_memory(x
);
244 /* Subtract min_free_kbytes */
245 x
-= min_t(unsigned long, x
, min_free_kbytes
>> (PAGE_SHIFT
- 10));
247 return x
+ 1; /* Ensure that we never return 0 */
251 * global_dirty_limits - background-writeback and dirty-throttling thresholds
253 * Calculate the dirty thresholds based on sysctl parameters
254 * - vm.dirty_background_ratio or vm.dirty_background_bytes
255 * - vm.dirty_ratio or vm.dirty_bytes
256 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
259 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
261 unsigned long background
;
263 unsigned long uninitialized_var(available_memory
);
264 struct task_struct
*tsk
;
266 if (!vm_dirty_bytes
|| !dirty_background_bytes
)
267 available_memory
= global_dirtyable_memory();
270 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
272 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
274 if (dirty_background_bytes
)
275 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
277 background
= (dirty_background_ratio
* available_memory
) / 100;
279 if (background
>= dirty
)
280 background
= dirty
/ 2;
282 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
283 background
+= background
/ 4;
286 *pbackground
= background
;
288 trace_global_dirty_state(background
, dirty
);
292 * zone_dirtyable_memory - number of dirtyable pages in a zone
295 * Returns the zone's number of pages potentially available for dirty
296 * page cache. This is the base value for the per-zone dirty limits.
298 static unsigned long zone_dirtyable_memory(struct zone
*zone
)
301 * The effective global number of dirtyable pages may exclude
302 * highmem as a big-picture measure to keep the ratio between
303 * dirty memory and lowmem reasonable.
305 * But this function is purely about the individual zone and a
306 * highmem zone can hold its share of dirty pages, so we don't
307 * care about vm_highmem_is_dirtyable here.
309 unsigned long nr_pages
= zone_page_state(zone
, NR_FREE_PAGES
) +
310 zone_reclaimable_pages(zone
);
312 /* don't allow this to underflow */
313 nr_pages
-= min(nr_pages
, zone
->dirty_balance_reserve
);
318 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
321 * Returns the maximum number of dirty pages allowed in a zone, based
322 * on the zone's dirtyable memory.
324 static unsigned long zone_dirty_limit(struct zone
*zone
)
326 unsigned long zone_memory
= zone_dirtyable_memory(zone
);
327 struct task_struct
*tsk
= current
;
331 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) *
332 zone_memory
/ global_dirtyable_memory();
334 dirty
= vm_dirty_ratio
* zone_memory
/ 100;
336 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
))
343 * zone_dirty_ok - tells whether a zone is within its dirty limits
344 * @zone: the zone to check
346 * Returns %true when the dirty pages in @zone are within the zone's
347 * dirty limit, %false if the limit is exceeded.
349 bool zone_dirty_ok(struct zone
*zone
)
351 unsigned long limit
= zone_dirty_limit(zone
);
353 return zone_page_state(zone
, NR_FILE_DIRTY
) +
354 zone_page_state(zone
, NR_UNSTABLE_NFS
) +
355 zone_page_state(zone
, NR_WRITEBACK
) <= limit
;
358 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
359 void __user
*buffer
, size_t *lenp
,
364 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
365 if (ret
== 0 && write
)
366 dirty_background_bytes
= 0;
370 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
371 void __user
*buffer
, size_t *lenp
,
376 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
377 if (ret
== 0 && write
)
378 dirty_background_ratio
= 0;
382 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
383 void __user
*buffer
, size_t *lenp
,
386 int old_ratio
= vm_dirty_ratio
;
389 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
390 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
391 writeback_set_ratelimit();
397 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
398 void __user
*buffer
, size_t *lenp
,
401 unsigned long old_bytes
= vm_dirty_bytes
;
404 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
405 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
406 writeback_set_ratelimit();
412 static unsigned long wp_next_time(unsigned long cur_time
)
414 cur_time
+= VM_COMPLETIONS_PERIOD_LEN
;
415 /* 0 has a special meaning... */
422 * Increment the BDI's writeout completion count and the global writeout
423 * completion count. Called from test_clear_page_writeback().
425 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
427 __inc_bdi_stat(bdi
, BDI_WRITTEN
);
428 __fprop_inc_percpu_max(&writeout_completions
, &bdi
->completions
,
430 /* First event after period switching was turned off? */
431 if (!unlikely(writeout_period_time
)) {
433 * We can race with other __bdi_writeout_inc calls here but
434 * it does not cause any harm since the resulting time when
435 * timer will fire and what is in writeout_period_time will be
438 writeout_period_time
= wp_next_time(jiffies
);
439 mod_timer(&writeout_period_timer
, writeout_period_time
);
443 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
447 local_irq_save(flags
);
448 __bdi_writeout_inc(bdi
);
449 local_irq_restore(flags
);
451 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
454 * Obtain an accurate fraction of the BDI's portion.
456 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
457 long *numerator
, long *denominator
)
459 fprop_fraction_percpu(&writeout_completions
, &bdi
->completions
,
460 numerator
, denominator
);
464 * On idle system, we can be called long after we scheduled because we use
465 * deferred timers so count with missed periods.
467 static void writeout_period(unsigned long t
)
469 int miss_periods
= (jiffies
- writeout_period_time
) /
470 VM_COMPLETIONS_PERIOD_LEN
;
472 if (fprop_new_period(&writeout_completions
, miss_periods
+ 1)) {
473 writeout_period_time
= wp_next_time(writeout_period_time
+
474 miss_periods
* VM_COMPLETIONS_PERIOD_LEN
);
475 mod_timer(&writeout_period_timer
, writeout_period_time
);
478 * Aging has zeroed all fractions. Stop wasting CPU on period
481 writeout_period_time
= 0;
486 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
487 * registered backing devices, which, for obvious reasons, can not
490 static unsigned int bdi_min_ratio
;
492 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
496 spin_lock_bh(&bdi_lock
);
497 if (min_ratio
> bdi
->max_ratio
) {
500 min_ratio
-= bdi
->min_ratio
;
501 if (bdi_min_ratio
+ min_ratio
< 100) {
502 bdi_min_ratio
+= min_ratio
;
503 bdi
->min_ratio
+= min_ratio
;
508 spin_unlock_bh(&bdi_lock
);
513 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
520 spin_lock_bh(&bdi_lock
);
521 if (bdi
->min_ratio
> max_ratio
) {
524 bdi
->max_ratio
= max_ratio
;
525 bdi
->max_prop_frac
= (FPROP_FRAC_BASE
* max_ratio
) / 100;
527 spin_unlock_bh(&bdi_lock
);
531 EXPORT_SYMBOL(bdi_set_max_ratio
);
533 static unsigned long dirty_freerun_ceiling(unsigned long thresh
,
534 unsigned long bg_thresh
)
536 return (thresh
+ bg_thresh
) / 2;
539 static unsigned long hard_dirty_limit(unsigned long thresh
)
541 return max(thresh
, global_dirty_limit
);
545 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
546 * @bdi: the backing_dev_info to query
547 * @dirty: global dirty limit in pages
549 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
550 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
552 * Note that balance_dirty_pages() will only seriously take it as a hard limit
553 * when sleeping max_pause per page is not enough to keep the dirty pages under
554 * control. For example, when the device is completely stalled due to some error
555 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
556 * In the other normal situations, it acts more gently by throttling the tasks
557 * more (rather than completely block them) when the bdi dirty pages go high.
559 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
560 * - starving fast devices
561 * - piling up dirty pages (that will take long time to sync) on slow devices
563 * The bdi's share of dirty limit will be adapting to its throughput and
564 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
566 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
569 long numerator
, denominator
;
572 * Calculate this BDI's share of the dirty ratio.
574 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
576 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
577 bdi_dirty
*= numerator
;
578 do_div(bdi_dirty
, denominator
);
580 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
581 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
582 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
588 * Dirty position control.
590 * (o) global/bdi setpoints
592 * We want the dirty pages be balanced around the global/bdi setpoints.
593 * When the number of dirty pages is higher/lower than the setpoint, the
594 * dirty position control ratio (and hence task dirty ratelimit) will be
595 * decreased/increased to bring the dirty pages back to the setpoint.
597 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
599 * if (dirty < setpoint) scale up pos_ratio
600 * if (dirty > setpoint) scale down pos_ratio
602 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
603 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
605 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
607 * (o) global control line
611 * | |<===== global dirty control scope ======>|
619 * 1.0 ................................*
625 * 0 +------------.------------------.----------------------*------------->
626 * freerun^ setpoint^ limit^ dirty pages
628 * (o) bdi control line
636 * | * |<=========== span ============>|
637 * 1.0 .......................*
649 * 1/4 ...............................................* * * * * * * * * * * *
653 * 0 +----------------------.-------------------------------.------------->
654 * bdi_setpoint^ x_intercept^
656 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
657 * be smoothly throttled down to normal if it starts high in situations like
658 * - start writing to a slow SD card and a fast disk at the same time. The SD
659 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
660 * - the bdi dirty thresh drops quickly due to change of JBOD workload
662 static unsigned long bdi_position_ratio(struct backing_dev_info
*bdi
,
663 unsigned long thresh
,
664 unsigned long bg_thresh
,
666 unsigned long bdi_thresh
,
667 unsigned long bdi_dirty
)
669 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
670 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
671 unsigned long limit
= hard_dirty_limit(thresh
);
672 unsigned long x_intercept
;
673 unsigned long setpoint
; /* dirty pages' target balance point */
674 unsigned long bdi_setpoint
;
676 long long pos_ratio
; /* for scaling up/down the rate limit */
679 if (unlikely(dirty
>= limit
))
686 * f(dirty) := 1.0 + (----------------)
689 * it's a 3rd order polynomial that subjects to
691 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
692 * (2) f(setpoint) = 1.0 => the balance point
693 * (3) f(limit) = 0 => the hard limit
694 * (4) df/dx <= 0 => negative feedback control
695 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
696 * => fast response on large errors; small oscillation near setpoint
698 setpoint
= (freerun
+ limit
) / 2;
699 x
= div_s64(((s64
)setpoint
- (s64
)dirty
) << RATELIMIT_CALC_SHIFT
,
700 limit
- setpoint
+ 1);
702 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
703 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
704 pos_ratio
+= 1 << RATELIMIT_CALC_SHIFT
;
707 * We have computed basic pos_ratio above based on global situation. If
708 * the bdi is over/under its share of dirty pages, we want to scale
709 * pos_ratio further down/up. That is done by the following mechanism.
715 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
717 * x_intercept - bdi_dirty
718 * := --------------------------
719 * x_intercept - bdi_setpoint
721 * The main bdi control line is a linear function that subjects to
723 * (1) f(bdi_setpoint) = 1.0
724 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
725 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
727 * For single bdi case, the dirty pages are observed to fluctuate
728 * regularly within range
729 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
730 * for various filesystems, where (2) can yield in a reasonable 12.5%
731 * fluctuation range for pos_ratio.
733 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
734 * own size, so move the slope over accordingly and choose a slope that
735 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
737 if (unlikely(bdi_thresh
> thresh
))
740 * It's very possible that bdi_thresh is close to 0 not because the
741 * device is slow, but that it has remained inactive for long time.
742 * Honour such devices a reasonable good (hopefully IO efficient)
743 * threshold, so that the occasional writes won't be blocked and active
744 * writes can rampup the threshold quickly.
746 bdi_thresh
= max(bdi_thresh
, (limit
- dirty
) / 8);
748 * scale global setpoint to bdi's:
749 * bdi_setpoint = setpoint * bdi_thresh / thresh
751 x
= div_u64((u64
)bdi_thresh
<< 16, thresh
+ 1);
752 bdi_setpoint
= setpoint
* (u64
)x
>> 16;
754 * Use span=(8*write_bw) in single bdi case as indicated by
755 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
757 * bdi_thresh thresh - bdi_thresh
758 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
761 span
= (thresh
- bdi_thresh
+ 8 * write_bw
) * (u64
)x
>> 16;
762 x_intercept
= bdi_setpoint
+ span
;
764 if (bdi_dirty
< x_intercept
- span
/ 4) {
765 pos_ratio
= div_u64(pos_ratio
* (x_intercept
- bdi_dirty
),
766 x_intercept
- bdi_setpoint
+ 1);
771 * bdi reserve area, safeguard against dirty pool underrun and disk idle
772 * It may push the desired control point of global dirty pages higher
775 x_intercept
= bdi_thresh
/ 2;
776 if (bdi_dirty
< x_intercept
) {
777 if (bdi_dirty
> x_intercept
/ 8)
778 pos_ratio
= div_u64(pos_ratio
* x_intercept
, bdi_dirty
);
786 static void bdi_update_write_bandwidth(struct backing_dev_info
*bdi
,
787 unsigned long elapsed
,
788 unsigned long written
)
790 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
791 unsigned long avg
= bdi
->avg_write_bandwidth
;
792 unsigned long old
= bdi
->write_bandwidth
;
796 * bw = written * HZ / elapsed
798 * bw * elapsed + write_bandwidth * (period - elapsed)
799 * write_bandwidth = ---------------------------------------------------
802 bw
= written
- bdi
->written_stamp
;
804 if (unlikely(elapsed
> period
)) {
809 bw
+= (u64
)bdi
->write_bandwidth
* (period
- elapsed
);
810 bw
>>= ilog2(period
);
813 * one more level of smoothing, for filtering out sudden spikes
815 if (avg
> old
&& old
>= (unsigned long)bw
)
816 avg
-= (avg
- old
) >> 3;
818 if (avg
< old
&& old
<= (unsigned long)bw
)
819 avg
+= (old
- avg
) >> 3;
822 bdi
->write_bandwidth
= bw
;
823 bdi
->avg_write_bandwidth
= avg
;
827 * The global dirtyable memory and dirty threshold could be suddenly knocked
828 * down by a large amount (eg. on the startup of KVM in a swapless system).
829 * This may throw the system into deep dirty exceeded state and throttle
830 * heavy/light dirtiers alike. To retain good responsiveness, maintain
831 * global_dirty_limit for tracking slowly down to the knocked down dirty
834 static void update_dirty_limit(unsigned long thresh
, unsigned long dirty
)
836 unsigned long limit
= global_dirty_limit
;
839 * Follow up in one step.
841 if (limit
< thresh
) {
847 * Follow down slowly. Use the higher one as the target, because thresh
848 * may drop below dirty. This is exactly the reason to introduce
849 * global_dirty_limit which is guaranteed to lie above the dirty pages.
851 thresh
= max(thresh
, dirty
);
852 if (limit
> thresh
) {
853 limit
-= (limit
- thresh
) >> 5;
858 global_dirty_limit
= limit
;
861 static void global_update_bandwidth(unsigned long thresh
,
865 static DEFINE_SPINLOCK(dirty_lock
);
866 static unsigned long update_time
;
869 * check locklessly first to optimize away locking for the most time
871 if (time_before(now
, update_time
+ BANDWIDTH_INTERVAL
))
874 spin_lock(&dirty_lock
);
875 if (time_after_eq(now
, update_time
+ BANDWIDTH_INTERVAL
)) {
876 update_dirty_limit(thresh
, dirty
);
879 spin_unlock(&dirty_lock
);
883 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
885 * Normal bdi tasks will be curbed at or below it in long term.
886 * Obviously it should be around (write_bw / N) when there are N dd tasks.
888 static void bdi_update_dirty_ratelimit(struct backing_dev_info
*bdi
,
889 unsigned long thresh
,
890 unsigned long bg_thresh
,
892 unsigned long bdi_thresh
,
893 unsigned long bdi_dirty
,
894 unsigned long dirtied
,
895 unsigned long elapsed
)
897 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
898 unsigned long limit
= hard_dirty_limit(thresh
);
899 unsigned long setpoint
= (freerun
+ limit
) / 2;
900 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
901 unsigned long dirty_ratelimit
= bdi
->dirty_ratelimit
;
902 unsigned long dirty_rate
;
903 unsigned long task_ratelimit
;
904 unsigned long balanced_dirty_ratelimit
;
905 unsigned long pos_ratio
;
910 * The dirty rate will match the writeout rate in long term, except
911 * when dirty pages are truncated by userspace or re-dirtied by FS.
913 dirty_rate
= (dirtied
- bdi
->dirtied_stamp
) * HZ
/ elapsed
;
915 pos_ratio
= bdi_position_ratio(bdi
, thresh
, bg_thresh
, dirty
,
916 bdi_thresh
, bdi_dirty
);
918 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
920 task_ratelimit
= (u64
)dirty_ratelimit
*
921 pos_ratio
>> RATELIMIT_CALC_SHIFT
;
922 task_ratelimit
++; /* it helps rampup dirty_ratelimit from tiny values */
925 * A linear estimation of the "balanced" throttle rate. The theory is,
926 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
927 * dirty_rate will be measured to be (N * task_ratelimit). So the below
928 * formula will yield the balanced rate limit (write_bw / N).
930 * Note that the expanded form is not a pure rate feedback:
931 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
932 * but also takes pos_ratio into account:
933 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
935 * (1) is not realistic because pos_ratio also takes part in balancing
936 * the dirty rate. Consider the state
937 * pos_ratio = 0.5 (3)
938 * rate = 2 * (write_bw / N) (4)
939 * If (1) is used, it will stuck in that state! Because each dd will
941 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
943 * dirty_rate = N * task_ratelimit = write_bw (6)
944 * put (6) into (1) we get
945 * rate_(i+1) = rate_(i) (7)
947 * So we end up using (2) to always keep
948 * rate_(i+1) ~= (write_bw / N) (8)
949 * regardless of the value of pos_ratio. As long as (8) is satisfied,
950 * pos_ratio is able to drive itself to 1.0, which is not only where
951 * the dirty count meet the setpoint, but also where the slope of
952 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
954 balanced_dirty_ratelimit
= div_u64((u64
)task_ratelimit
* write_bw
,
957 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
959 if (unlikely(balanced_dirty_ratelimit
> write_bw
))
960 balanced_dirty_ratelimit
= write_bw
;
963 * We could safely do this and return immediately:
965 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
967 * However to get a more stable dirty_ratelimit, the below elaborated
968 * code makes use of task_ratelimit to filter out singular points and
969 * limit the step size.
971 * The below code essentially only uses the relative value of
973 * task_ratelimit - dirty_ratelimit
974 * = (pos_ratio - 1) * dirty_ratelimit
976 * which reflects the direction and size of dirty position error.
980 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
981 * task_ratelimit is on the same side of dirty_ratelimit, too.
983 * - dirty_ratelimit > balanced_dirty_ratelimit
984 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
985 * lowering dirty_ratelimit will help meet both the position and rate
986 * control targets. Otherwise, don't update dirty_ratelimit if it will
987 * only help meet the rate target. After all, what the users ultimately
988 * feel and care are stable dirty rate and small position error.
990 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
991 * and filter out the singular points of balanced_dirty_ratelimit. Which
992 * keeps jumping around randomly and can even leap far away at times
993 * due to the small 200ms estimation period of dirty_rate (we want to
994 * keep that period small to reduce time lags).
997 if (dirty
< setpoint
) {
998 x
= min(bdi
->balanced_dirty_ratelimit
,
999 min(balanced_dirty_ratelimit
, task_ratelimit
));
1000 if (dirty_ratelimit
< x
)
1001 step
= x
- dirty_ratelimit
;
1003 x
= max(bdi
->balanced_dirty_ratelimit
,
1004 max(balanced_dirty_ratelimit
, task_ratelimit
));
1005 if (dirty_ratelimit
> x
)
1006 step
= dirty_ratelimit
- x
;
1010 * Don't pursue 100% rate matching. It's impossible since the balanced
1011 * rate itself is constantly fluctuating. So decrease the track speed
1012 * when it gets close to the target. Helps eliminate pointless tremors.
1014 step
>>= dirty_ratelimit
/ (2 * step
+ 1);
1016 * Limit the tracking speed to avoid overshooting.
1018 step
= (step
+ 7) / 8;
1020 if (dirty_ratelimit
< balanced_dirty_ratelimit
)
1021 dirty_ratelimit
+= step
;
1023 dirty_ratelimit
-= step
;
1025 bdi
->dirty_ratelimit
= max(dirty_ratelimit
, 1UL);
1026 bdi
->balanced_dirty_ratelimit
= balanced_dirty_ratelimit
;
1028 trace_bdi_dirty_ratelimit(bdi
, dirty_rate
, task_ratelimit
);
1031 void __bdi_update_bandwidth(struct backing_dev_info
*bdi
,
1032 unsigned long thresh
,
1033 unsigned long bg_thresh
,
1034 unsigned long dirty
,
1035 unsigned long bdi_thresh
,
1036 unsigned long bdi_dirty
,
1037 unsigned long start_time
)
1039 unsigned long now
= jiffies
;
1040 unsigned long elapsed
= now
- bdi
->bw_time_stamp
;
1041 unsigned long dirtied
;
1042 unsigned long written
;
1045 * rate-limit, only update once every 200ms.
1047 if (elapsed
< BANDWIDTH_INTERVAL
)
1050 dirtied
= percpu_counter_read(&bdi
->bdi_stat
[BDI_DIRTIED
]);
1051 written
= percpu_counter_read(&bdi
->bdi_stat
[BDI_WRITTEN
]);
1054 * Skip quiet periods when disk bandwidth is under-utilized.
1055 * (at least 1s idle time between two flusher runs)
1057 if (elapsed
> HZ
&& time_before(bdi
->bw_time_stamp
, start_time
))
1061 global_update_bandwidth(thresh
, dirty
, now
);
1062 bdi_update_dirty_ratelimit(bdi
, thresh
, bg_thresh
, dirty
,
1063 bdi_thresh
, bdi_dirty
,
1066 bdi_update_write_bandwidth(bdi
, elapsed
, written
);
1069 bdi
->dirtied_stamp
= dirtied
;
1070 bdi
->written_stamp
= written
;
1071 bdi
->bw_time_stamp
= now
;
1074 static void bdi_update_bandwidth(struct backing_dev_info
*bdi
,
1075 unsigned long thresh
,
1076 unsigned long bg_thresh
,
1077 unsigned long dirty
,
1078 unsigned long bdi_thresh
,
1079 unsigned long bdi_dirty
,
1080 unsigned long start_time
)
1082 if (time_is_after_eq_jiffies(bdi
->bw_time_stamp
+ BANDWIDTH_INTERVAL
))
1084 spin_lock(&bdi
->wb
.list_lock
);
1085 __bdi_update_bandwidth(bdi
, thresh
, bg_thresh
, dirty
,
1086 bdi_thresh
, bdi_dirty
, start_time
);
1087 spin_unlock(&bdi
->wb
.list_lock
);
1091 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1092 * will look to see if it needs to start dirty throttling.
1094 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1095 * global_page_state() too often. So scale it near-sqrt to the safety margin
1096 * (the number of pages we may dirty without exceeding the dirty limits).
1098 static unsigned long dirty_poll_interval(unsigned long dirty
,
1099 unsigned long thresh
)
1102 return 1UL << (ilog2(thresh
- dirty
) >> 1);
1107 static long bdi_max_pause(struct backing_dev_info
*bdi
,
1108 unsigned long bdi_dirty
)
1110 long bw
= bdi
->avg_write_bandwidth
;
1114 * Limit pause time for small memory systems. If sleeping for too long
1115 * time, a small pool of dirty/writeback pages may go empty and disk go
1118 * 8 serves as the safety ratio.
1120 t
= bdi_dirty
/ (1 + bw
/ roundup_pow_of_two(1 + HZ
/ 8));
1123 return min_t(long, t
, MAX_PAUSE
);
1126 static long bdi_min_pause(struct backing_dev_info
*bdi
,
1128 unsigned long task_ratelimit
,
1129 unsigned long dirty_ratelimit
,
1130 int *nr_dirtied_pause
)
1132 long hi
= ilog2(bdi
->avg_write_bandwidth
);
1133 long lo
= ilog2(bdi
->dirty_ratelimit
);
1134 long t
; /* target pause */
1135 long pause
; /* estimated next pause */
1136 int pages
; /* target nr_dirtied_pause */
1138 /* target for 10ms pause on 1-dd case */
1139 t
= max(1, HZ
/ 100);
1142 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1145 * (N * 10ms) on 2^N concurrent tasks.
1148 t
+= (hi
- lo
) * (10 * HZ
) / 1024;
1151 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1152 * on the much more stable dirty_ratelimit. However the next pause time
1153 * will be computed based on task_ratelimit and the two rate limits may
1154 * depart considerably at some time. Especially if task_ratelimit goes
1155 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1156 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1157 * result task_ratelimit won't be executed faithfully, which could
1158 * eventually bring down dirty_ratelimit.
1160 * We apply two rules to fix it up:
1161 * 1) try to estimate the next pause time and if necessary, use a lower
1162 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1163 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1164 * 2) limit the target pause time to max_pause/2, so that the normal
1165 * small fluctuations of task_ratelimit won't trigger rule (1) and
1166 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1168 t
= min(t
, 1 + max_pause
/ 2);
1169 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1172 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1173 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1174 * When the 16 consecutive reads are often interrupted by some dirty
1175 * throttling pause during the async writes, cfq will go into idles
1176 * (deadline is fine). So push nr_dirtied_pause as high as possible
1177 * until reaches DIRTY_POLL_THRESH=32 pages.
1179 if (pages
< DIRTY_POLL_THRESH
) {
1181 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1182 if (pages
> DIRTY_POLL_THRESH
) {
1183 pages
= DIRTY_POLL_THRESH
;
1184 t
= HZ
* DIRTY_POLL_THRESH
/ dirty_ratelimit
;
1188 pause
= HZ
* pages
/ (task_ratelimit
+ 1);
1189 if (pause
> max_pause
) {
1191 pages
= task_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1194 *nr_dirtied_pause
= pages
;
1196 * The minimal pause time will normally be half the target pause time.
1198 return pages
>= DIRTY_POLL_THRESH
? 1 + t
/ 2 : t
;
1202 * balance_dirty_pages() must be called by processes which are generating dirty
1203 * data. It looks at the number of dirty pages in the machine and will force
1204 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1205 * If we're over `background_thresh' then the writeback threads are woken to
1206 * perform some writeout.
1208 static void balance_dirty_pages(struct address_space
*mapping
,
1209 unsigned long pages_dirtied
)
1211 unsigned long nr_reclaimable
; /* = file_dirty + unstable_nfs */
1212 unsigned long bdi_reclaimable
;
1213 unsigned long nr_dirty
; /* = file_dirty + writeback + unstable_nfs */
1214 unsigned long bdi_dirty
;
1215 unsigned long freerun
;
1216 unsigned long background_thresh
;
1217 unsigned long dirty_thresh
;
1218 unsigned long bdi_thresh
;
1223 int nr_dirtied_pause
;
1224 bool dirty_exceeded
= false;
1225 unsigned long task_ratelimit
;
1226 unsigned long dirty_ratelimit
;
1227 unsigned long pos_ratio
;
1228 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1229 unsigned long start_time
= jiffies
;
1232 unsigned long now
= jiffies
;
1235 * Unstable writes are a feature of certain networked
1236 * filesystems (i.e. NFS) in which data may have been
1237 * written to the server's write cache, but has not yet
1238 * been flushed to permanent storage.
1240 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
1241 global_page_state(NR_UNSTABLE_NFS
);
1242 nr_dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
1244 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1247 * Throttle it only when the background writeback cannot
1248 * catch-up. This avoids (excessively) small writeouts
1249 * when the bdi limits are ramping up.
1251 freerun
= dirty_freerun_ceiling(dirty_thresh
,
1253 if (nr_dirty
<= freerun
) {
1254 current
->dirty_paused_when
= now
;
1255 current
->nr_dirtied
= 0;
1256 current
->nr_dirtied_pause
=
1257 dirty_poll_interval(nr_dirty
, dirty_thresh
);
1261 if (unlikely(!writeback_in_progress(bdi
)))
1262 bdi_start_background_writeback(bdi
);
1265 * bdi_thresh is not treated as some limiting factor as
1266 * dirty_thresh, due to reasons
1267 * - in JBOD setup, bdi_thresh can fluctuate a lot
1268 * - in a system with HDD and USB key, the USB key may somehow
1269 * go into state (bdi_dirty >> bdi_thresh) either because
1270 * bdi_dirty starts high, or because bdi_thresh drops low.
1271 * In this case we don't want to hard throttle the USB key
1272 * dirtiers for 100 seconds until bdi_dirty drops under
1273 * bdi_thresh. Instead the auxiliary bdi control line in
1274 * bdi_position_ratio() will let the dirtier task progress
1275 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1277 bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
1280 * In order to avoid the stacked BDI deadlock we need
1281 * to ensure we accurately count the 'dirty' pages when
1282 * the threshold is low.
1284 * Otherwise it would be possible to get thresh+n pages
1285 * reported dirty, even though there are thresh-m pages
1286 * actually dirty; with m+n sitting in the percpu
1289 if (bdi_thresh
< 2 * bdi_stat_error(bdi
)) {
1290 bdi_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
1291 bdi_dirty
= bdi_reclaimable
+
1292 bdi_stat_sum(bdi
, BDI_WRITEBACK
);
1294 bdi_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
1295 bdi_dirty
= bdi_reclaimable
+
1296 bdi_stat(bdi
, BDI_WRITEBACK
);
1299 dirty_exceeded
= (bdi_dirty
> bdi_thresh
) &&
1300 (nr_dirty
> dirty_thresh
);
1301 if (dirty_exceeded
&& !bdi
->dirty_exceeded
)
1302 bdi
->dirty_exceeded
= 1;
1304 bdi_update_bandwidth(bdi
, dirty_thresh
, background_thresh
,
1305 nr_dirty
, bdi_thresh
, bdi_dirty
,
1308 dirty_ratelimit
= bdi
->dirty_ratelimit
;
1309 pos_ratio
= bdi_position_ratio(bdi
, dirty_thresh
,
1310 background_thresh
, nr_dirty
,
1311 bdi_thresh
, bdi_dirty
);
1312 task_ratelimit
= ((u64
)dirty_ratelimit
* pos_ratio
) >>
1313 RATELIMIT_CALC_SHIFT
;
1314 max_pause
= bdi_max_pause(bdi
, bdi_dirty
);
1315 min_pause
= bdi_min_pause(bdi
, max_pause
,
1316 task_ratelimit
, dirty_ratelimit
,
1319 if (unlikely(task_ratelimit
== 0)) {
1324 period
= HZ
* pages_dirtied
/ task_ratelimit
;
1326 if (current
->dirty_paused_when
)
1327 pause
-= now
- current
->dirty_paused_when
;
1329 * For less than 1s think time (ext3/4 may block the dirtier
1330 * for up to 800ms from time to time on 1-HDD; so does xfs,
1331 * however at much less frequency), try to compensate it in
1332 * future periods by updating the virtual time; otherwise just
1333 * do a reset, as it may be a light dirtier.
1335 if (pause
< min_pause
) {
1336 trace_balance_dirty_pages(bdi
,
1349 current
->dirty_paused_when
= now
;
1350 current
->nr_dirtied
= 0;
1351 } else if (period
) {
1352 current
->dirty_paused_when
+= period
;
1353 current
->nr_dirtied
= 0;
1354 } else if (current
->nr_dirtied_pause
<= pages_dirtied
)
1355 current
->nr_dirtied_pause
+= pages_dirtied
;
1358 if (unlikely(pause
> max_pause
)) {
1359 /* for occasional dropped task_ratelimit */
1360 now
+= min(pause
- max_pause
, max_pause
);
1365 trace_balance_dirty_pages(bdi
,
1377 __set_current_state(TASK_KILLABLE
);
1378 io_schedule_timeout(pause
);
1380 current
->dirty_paused_when
= now
+ pause
;
1381 current
->nr_dirtied
= 0;
1382 current
->nr_dirtied_pause
= nr_dirtied_pause
;
1385 * This is typically equal to (nr_dirty < dirty_thresh) and can
1386 * also keep "1000+ dd on a slow USB stick" under control.
1392 * In the case of an unresponding NFS server and the NFS dirty
1393 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1394 * to go through, so that tasks on them still remain responsive.
1396 * In theory 1 page is enough to keep the comsumer-producer
1397 * pipe going: the flusher cleans 1 page => the task dirties 1
1398 * more page. However bdi_dirty has accounting errors. So use
1399 * the larger and more IO friendly bdi_stat_error.
1401 if (bdi_dirty
<= bdi_stat_error(bdi
))
1404 if (fatal_signal_pending(current
))
1408 if (!dirty_exceeded
&& bdi
->dirty_exceeded
)
1409 bdi
->dirty_exceeded
= 0;
1411 if (writeback_in_progress(bdi
))
1415 * In laptop mode, we wait until hitting the higher threshold before
1416 * starting background writeout, and then write out all the way down
1417 * to the lower threshold. So slow writers cause minimal disk activity.
1419 * In normal mode, we start background writeout at the lower
1420 * background_thresh, to keep the amount of dirty memory low.
1425 if (nr_reclaimable
> background_thresh
)
1426 bdi_start_background_writeback(bdi
);
1429 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
1431 if (set_page_dirty(page
) || page_mkwrite
) {
1432 struct address_space
*mapping
= page_mapping(page
);
1435 balance_dirty_pages_ratelimited(mapping
);
1439 static DEFINE_PER_CPU(int, bdp_ratelimits
);
1442 * Normal tasks are throttled by
1444 * dirty tsk->nr_dirtied_pause pages;
1445 * take a snap in balance_dirty_pages();
1447 * However there is a worst case. If every task exit immediately when dirtied
1448 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1449 * called to throttle the page dirties. The solution is to save the not yet
1450 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1451 * randomly into the running tasks. This works well for the above worst case,
1452 * as the new task will pick up and accumulate the old task's leaked dirty
1453 * count and eventually get throttled.
1455 DEFINE_PER_CPU(int, dirty_throttle_leaks
) = 0;
1458 * balance_dirty_pages_ratelimited - balance dirty memory state
1459 * @mapping: address_space which was dirtied
1461 * Processes which are dirtying memory should call in here once for each page
1462 * which was newly dirtied. The function will periodically check the system's
1463 * dirty state and will initiate writeback if needed.
1465 * On really big machines, get_writeback_state is expensive, so try to avoid
1466 * calling it too often (ratelimiting). But once we're over the dirty memory
1467 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1468 * from overshooting the limit by (ratelimit_pages) each.
1470 void balance_dirty_pages_ratelimited(struct address_space
*mapping
)
1472 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1476 if (!bdi_cap_account_dirty(bdi
))
1479 ratelimit
= current
->nr_dirtied_pause
;
1480 if (bdi
->dirty_exceeded
)
1481 ratelimit
= min(ratelimit
, 32 >> (PAGE_SHIFT
- 10));
1485 * This prevents one CPU to accumulate too many dirtied pages without
1486 * calling into balance_dirty_pages(), which can happen when there are
1487 * 1000+ tasks, all of them start dirtying pages at exactly the same
1488 * time, hence all honoured too large initial task->nr_dirtied_pause.
1490 p
= &__get_cpu_var(bdp_ratelimits
);
1491 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1493 else if (unlikely(*p
>= ratelimit_pages
)) {
1498 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1499 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1500 * the dirty throttling and livelock other long-run dirtiers.
1502 p
= &__get_cpu_var(dirty_throttle_leaks
);
1503 if (*p
> 0 && current
->nr_dirtied
< ratelimit
) {
1504 unsigned long nr_pages_dirtied
;
1505 nr_pages_dirtied
= min(*p
, ratelimit
- current
->nr_dirtied
);
1506 *p
-= nr_pages_dirtied
;
1507 current
->nr_dirtied
+= nr_pages_dirtied
;
1511 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1512 balance_dirty_pages(mapping
, current
->nr_dirtied
);
1514 EXPORT_SYMBOL(balance_dirty_pages_ratelimited
);
1516 void throttle_vm_writeout(gfp_t gfp_mask
)
1518 unsigned long background_thresh
;
1519 unsigned long dirty_thresh
;
1522 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1523 dirty_thresh
= hard_dirty_limit(dirty_thresh
);
1526 * Boost the allowable dirty threshold a bit for page
1527 * allocators so they don't get DoS'ed by heavy writers
1529 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
1531 if (global_page_state(NR_UNSTABLE_NFS
) +
1532 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
1534 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1537 * The caller might hold locks which can prevent IO completion
1538 * or progress in the filesystem. So we cannot just sit here
1539 * waiting for IO to complete.
1541 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
1547 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1549 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
1550 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1552 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1557 void laptop_mode_timer_fn(unsigned long data
)
1559 struct request_queue
*q
= (struct request_queue
*)data
;
1560 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1561 global_page_state(NR_UNSTABLE_NFS
);
1564 * We want to write everything out, not just down to the dirty
1567 if (bdi_has_dirty_io(&q
->backing_dev_info
))
1568 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
,
1569 WB_REASON_LAPTOP_TIMER
);
1573 * We've spun up the disk and we're in laptop mode: schedule writeback
1574 * of all dirty data a few seconds from now. If the flush is already scheduled
1575 * then push it back - the user is still using the disk.
1577 void laptop_io_completion(struct backing_dev_info
*info
)
1579 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
1583 * We're in laptop mode and we've just synced. The sync's writes will have
1584 * caused another writeback to be scheduled by laptop_io_completion.
1585 * Nothing needs to be written back anymore, so we unschedule the writeback.
1587 void laptop_sync_completion(void)
1589 struct backing_dev_info
*bdi
;
1593 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
1594 del_timer(&bdi
->laptop_mode_wb_timer
);
1601 * If ratelimit_pages is too high then we can get into dirty-data overload
1602 * if a large number of processes all perform writes at the same time.
1603 * If it is too low then SMP machines will call the (expensive)
1604 * get_writeback_state too often.
1606 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1607 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1611 void writeback_set_ratelimit(void)
1613 unsigned long background_thresh
;
1614 unsigned long dirty_thresh
;
1615 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1616 global_dirty_limit
= dirty_thresh
;
1617 ratelimit_pages
= dirty_thresh
/ (num_online_cpus() * 32);
1618 if (ratelimit_pages
< 16)
1619 ratelimit_pages
= 16;
1622 static int __cpuinit
1623 ratelimit_handler(struct notifier_block
*self
, unsigned long action
,
1627 switch (action
& ~CPU_TASKS_FROZEN
) {
1630 writeback_set_ratelimit();
1637 static struct notifier_block __cpuinitdata ratelimit_nb
= {
1638 .notifier_call
= ratelimit_handler
,
1643 * Called early on to tune the page writeback dirty limits.
1645 * We used to scale dirty pages according to how total memory
1646 * related to pages that could be allocated for buffers (by
1647 * comparing nr_free_buffer_pages() to vm_total_pages.
1649 * However, that was when we used "dirty_ratio" to scale with
1650 * all memory, and we don't do that any more. "dirty_ratio"
1651 * is now applied to total non-HIGHPAGE memory (by subtracting
1652 * totalhigh_pages from vm_total_pages), and as such we can't
1653 * get into the old insane situation any more where we had
1654 * large amounts of dirty pages compared to a small amount of
1655 * non-HIGHMEM memory.
1657 * But we might still want to scale the dirty_ratio by how
1658 * much memory the box has..
1660 void __init
page_writeback_init(void)
1662 writeback_set_ratelimit();
1663 register_cpu_notifier(&ratelimit_nb
);
1665 fprop_global_init(&writeout_completions
);
1669 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1670 * @mapping: address space structure to write
1671 * @start: starting page index
1672 * @end: ending page index (inclusive)
1674 * This function scans the page range from @start to @end (inclusive) and tags
1675 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1676 * that write_cache_pages (or whoever calls this function) will then use
1677 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1678 * used to avoid livelocking of writeback by a process steadily creating new
1679 * dirty pages in the file (thus it is important for this function to be quick
1680 * so that it can tag pages faster than a dirtying process can create them).
1683 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1685 void tag_pages_for_writeback(struct address_space
*mapping
,
1686 pgoff_t start
, pgoff_t end
)
1688 #define WRITEBACK_TAG_BATCH 4096
1689 unsigned long tagged
;
1692 spin_lock_irq(&mapping
->tree_lock
);
1693 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
1694 &start
, end
, WRITEBACK_TAG_BATCH
,
1695 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
1696 spin_unlock_irq(&mapping
->tree_lock
);
1697 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
1699 /* We check 'start' to handle wrapping when end == ~0UL */
1700 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
1702 EXPORT_SYMBOL(tag_pages_for_writeback
);
1705 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1706 * @mapping: address space structure to write
1707 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1708 * @writepage: function called for each page
1709 * @data: data passed to writepage function
1711 * If a page is already under I/O, write_cache_pages() skips it, even
1712 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1713 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1714 * and msync() need to guarantee that all the data which was dirty at the time
1715 * the call was made get new I/O started against them. If wbc->sync_mode is
1716 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1717 * existing IO to complete.
1719 * To avoid livelocks (when other process dirties new pages), we first tag
1720 * pages which should be written back with TOWRITE tag and only then start
1721 * writing them. For data-integrity sync we have to be careful so that we do
1722 * not miss some pages (e.g., because some other process has cleared TOWRITE
1723 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1724 * by the process clearing the DIRTY tag (and submitting the page for IO).
1726 int write_cache_pages(struct address_space
*mapping
,
1727 struct writeback_control
*wbc
, writepage_t writepage
,
1732 struct pagevec pvec
;
1734 pgoff_t
uninitialized_var(writeback_index
);
1736 pgoff_t end
; /* Inclusive */
1739 int range_whole
= 0;
1742 pagevec_init(&pvec
, 0);
1743 if (wbc
->range_cyclic
) {
1744 writeback_index
= mapping
->writeback_index
; /* prev offset */
1745 index
= writeback_index
;
1752 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1753 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1754 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1756 cycled
= 1; /* ignore range_cyclic tests */
1758 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1759 tag
= PAGECACHE_TAG_TOWRITE
;
1761 tag
= PAGECACHE_TAG_DIRTY
;
1763 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1764 tag_pages_for_writeback(mapping
, index
, end
);
1766 while (!done
&& (index
<= end
)) {
1769 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1770 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1774 for (i
= 0; i
< nr_pages
; i
++) {
1775 struct page
*page
= pvec
.pages
[i
];
1778 * At this point, the page may be truncated or
1779 * invalidated (changing page->mapping to NULL), or
1780 * even swizzled back from swapper_space to tmpfs file
1781 * mapping. However, page->index will not change
1782 * because we have a reference on the page.
1784 if (page
->index
> end
) {
1786 * can't be range_cyclic (1st pass) because
1787 * end == -1 in that case.
1793 done_index
= page
->index
;
1798 * Page truncated or invalidated. We can freely skip it
1799 * then, even for data integrity operations: the page
1800 * has disappeared concurrently, so there could be no
1801 * real expectation of this data interity operation
1802 * even if there is now a new, dirty page at the same
1803 * pagecache address.
1805 if (unlikely(page
->mapping
!= mapping
)) {
1811 if (!PageDirty(page
)) {
1812 /* someone wrote it for us */
1813 goto continue_unlock
;
1816 if (PageWriteback(page
)) {
1817 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1818 wait_on_page_writeback(page
);
1820 goto continue_unlock
;
1823 BUG_ON(PageWriteback(page
));
1824 if (!clear_page_dirty_for_io(page
))
1825 goto continue_unlock
;
1827 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
1828 ret
= (*writepage
)(page
, wbc
, data
);
1829 if (unlikely(ret
)) {
1830 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1835 * done_index is set past this page,
1836 * so media errors will not choke
1837 * background writeout for the entire
1838 * file. This has consequences for
1839 * range_cyclic semantics (ie. it may
1840 * not be suitable for data integrity
1843 done_index
= page
->index
+ 1;
1850 * We stop writing back only if we are not doing
1851 * integrity sync. In case of integrity sync we have to
1852 * keep going until we have written all the pages
1853 * we tagged for writeback prior to entering this loop.
1855 if (--wbc
->nr_to_write
<= 0 &&
1856 wbc
->sync_mode
== WB_SYNC_NONE
) {
1861 pagevec_release(&pvec
);
1864 if (!cycled
&& !done
) {
1867 * We hit the last page and there is more work to be done: wrap
1868 * back to the start of the file
1872 end
= writeback_index
- 1;
1875 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1876 mapping
->writeback_index
= done_index
;
1880 EXPORT_SYMBOL(write_cache_pages
);
1883 * Function used by generic_writepages to call the real writepage
1884 * function and set the mapping flags on error
1886 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1889 struct address_space
*mapping
= data
;
1890 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1891 mapping_set_error(mapping
, ret
);
1896 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1897 * @mapping: address space structure to write
1898 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1900 * This is a library function, which implements the writepages()
1901 * address_space_operation.
1903 int generic_writepages(struct address_space
*mapping
,
1904 struct writeback_control
*wbc
)
1906 struct blk_plug plug
;
1909 /* deal with chardevs and other special file */
1910 if (!mapping
->a_ops
->writepage
)
1913 blk_start_plug(&plug
);
1914 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1915 blk_finish_plug(&plug
);
1919 EXPORT_SYMBOL(generic_writepages
);
1921 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1925 if (wbc
->nr_to_write
<= 0)
1927 if (mapping
->a_ops
->writepages
)
1928 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1930 ret
= generic_writepages(mapping
, wbc
);
1935 * write_one_page - write out a single page and optionally wait on I/O
1936 * @page: the page to write
1937 * @wait: if true, wait on writeout
1939 * The page must be locked by the caller and will be unlocked upon return.
1941 * write_one_page() returns a negative error code if I/O failed.
1943 int write_one_page(struct page
*page
, int wait
)
1945 struct address_space
*mapping
= page
->mapping
;
1947 struct writeback_control wbc
= {
1948 .sync_mode
= WB_SYNC_ALL
,
1952 BUG_ON(!PageLocked(page
));
1955 wait_on_page_writeback(page
);
1957 if (clear_page_dirty_for_io(page
)) {
1958 page_cache_get(page
);
1959 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1960 if (ret
== 0 && wait
) {
1961 wait_on_page_writeback(page
);
1962 if (PageError(page
))
1965 page_cache_release(page
);
1971 EXPORT_SYMBOL(write_one_page
);
1974 * For address_spaces which do not use buffers nor write back.
1976 int __set_page_dirty_no_writeback(struct page
*page
)
1978 if (!PageDirty(page
))
1979 return !TestSetPageDirty(page
);
1984 * Helper function for set_page_dirty family.
1985 * NOTE: This relies on being atomic wrt interrupts.
1987 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1989 trace_writeback_dirty_page(page
, mapping
);
1991 if (mapping_cap_account_dirty(mapping
)) {
1992 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1993 __inc_zone_page_state(page
, NR_DIRTIED
);
1994 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1995 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
1996 task_io_account_write(PAGE_CACHE_SIZE
);
1997 current
->nr_dirtied
++;
1998 this_cpu_inc(bdp_ratelimits
);
2001 EXPORT_SYMBOL(account_page_dirtied
);
2004 * Helper function for set_page_writeback family.
2005 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2008 void account_page_writeback(struct page
*page
)
2010 inc_zone_page_state(page
, NR_WRITEBACK
);
2012 EXPORT_SYMBOL(account_page_writeback
);
2015 * For address_spaces which do not use buffers. Just tag the page as dirty in
2018 * This is also used when a single buffer is being dirtied: we want to set the
2019 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2020 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2022 * Most callers have locked the page, which pins the address_space in memory.
2023 * But zap_pte_range() does not lock the page, however in that case the
2024 * mapping is pinned by the vma's ->vm_file reference.
2026 * We take care to handle the case where the page was truncated from the
2027 * mapping by re-checking page_mapping() inside tree_lock.
2029 int __set_page_dirty_nobuffers(struct page
*page
)
2031 if (!TestSetPageDirty(page
)) {
2032 struct address_space
*mapping
= page_mapping(page
);
2033 struct address_space
*mapping2
;
2038 spin_lock_irq(&mapping
->tree_lock
);
2039 mapping2
= page_mapping(page
);
2040 if (mapping2
) { /* Race with truncate? */
2041 BUG_ON(mapping2
!= mapping
);
2042 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
2043 account_page_dirtied(page
, mapping
);
2044 radix_tree_tag_set(&mapping
->page_tree
,
2045 page_index(page
), PAGECACHE_TAG_DIRTY
);
2047 spin_unlock_irq(&mapping
->tree_lock
);
2048 if (mapping
->host
) {
2049 /* !PageAnon && !swapper_space */
2050 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2056 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
2059 * Call this whenever redirtying a page, to de-account the dirty counters
2060 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2061 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2062 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2065 void account_page_redirty(struct page
*page
)
2067 struct address_space
*mapping
= page
->mapping
;
2068 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2069 current
->nr_dirtied
--;
2070 dec_zone_page_state(page
, NR_DIRTIED
);
2071 dec_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
2074 EXPORT_SYMBOL(account_page_redirty
);
2077 * When a writepage implementation decides that it doesn't want to write this
2078 * page for some reason, it should redirty the locked page via
2079 * redirty_page_for_writepage() and it should then unlock the page and return 0
2081 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
2083 wbc
->pages_skipped
++;
2084 account_page_redirty(page
);
2085 return __set_page_dirty_nobuffers(page
);
2087 EXPORT_SYMBOL(redirty_page_for_writepage
);
2092 * For pages with a mapping this should be done under the page lock
2093 * for the benefit of asynchronous memory errors who prefer a consistent
2094 * dirty state. This rule can be broken in some special cases,
2095 * but should be better not to.
2097 * If the mapping doesn't provide a set_page_dirty a_op, then
2098 * just fall through and assume that it wants buffer_heads.
2100 int set_page_dirty(struct page
*page
)
2102 struct address_space
*mapping
= page_mapping(page
);
2104 if (likely(mapping
)) {
2105 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
2107 * readahead/lru_deactivate_page could remain
2108 * PG_readahead/PG_reclaim due to race with end_page_writeback
2109 * About readahead, if the page is written, the flags would be
2110 * reset. So no problem.
2111 * About lru_deactivate_page, if the page is redirty, the flag
2112 * will be reset. So no problem. but if the page is used by readahead
2113 * it will confuse readahead and make it restart the size rampup
2114 * process. But it's a trivial problem.
2116 ClearPageReclaim(page
);
2119 spd
= __set_page_dirty_buffers
;
2121 return (*spd
)(page
);
2123 if (!PageDirty(page
)) {
2124 if (!TestSetPageDirty(page
))
2129 EXPORT_SYMBOL(set_page_dirty
);
2132 * set_page_dirty() is racy if the caller has no reference against
2133 * page->mapping->host, and if the page is unlocked. This is because another
2134 * CPU could truncate the page off the mapping and then free the mapping.
2136 * Usually, the page _is_ locked, or the caller is a user-space process which
2137 * holds a reference on the inode by having an open file.
2139 * In other cases, the page should be locked before running set_page_dirty().
2141 int set_page_dirty_lock(struct page
*page
)
2146 ret
= set_page_dirty(page
);
2150 EXPORT_SYMBOL(set_page_dirty_lock
);
2153 * Clear a page's dirty flag, while caring for dirty memory accounting.
2154 * Returns true if the page was previously dirty.
2156 * This is for preparing to put the page under writeout. We leave the page
2157 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2158 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2159 * implementation will run either set_page_writeback() or set_page_dirty(),
2160 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2163 * This incoherency between the page's dirty flag and radix-tree tag is
2164 * unfortunate, but it only exists while the page is locked.
2166 int clear_page_dirty_for_io(struct page
*page
)
2168 struct address_space
*mapping
= page_mapping(page
);
2170 BUG_ON(!PageLocked(page
));
2172 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2174 * Yes, Virginia, this is indeed insane.
2176 * We use this sequence to make sure that
2177 * (a) we account for dirty stats properly
2178 * (b) we tell the low-level filesystem to
2179 * mark the whole page dirty if it was
2180 * dirty in a pagetable. Only to then
2181 * (c) clean the page again and return 1 to
2182 * cause the writeback.
2184 * This way we avoid all nasty races with the
2185 * dirty bit in multiple places and clearing
2186 * them concurrently from different threads.
2188 * Note! Normally the "set_page_dirty(page)"
2189 * has no effect on the actual dirty bit - since
2190 * that will already usually be set. But we
2191 * need the side effects, and it can help us
2194 * We basically use the page "master dirty bit"
2195 * as a serialization point for all the different
2196 * threads doing their things.
2198 if (page_mkclean(page
))
2199 set_page_dirty(page
);
2201 * We carefully synchronise fault handlers against
2202 * installing a dirty pte and marking the page dirty
2203 * at this point. We do this by having them hold the
2204 * page lock at some point after installing their
2205 * pte, but before marking the page dirty.
2206 * Pages are always locked coming in here, so we get
2207 * the desired exclusion. See mm/memory.c:do_wp_page()
2208 * for more comments.
2210 if (TestClearPageDirty(page
)) {
2211 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2212 dec_bdi_stat(mapping
->backing_dev_info
,
2218 return TestClearPageDirty(page
);
2220 EXPORT_SYMBOL(clear_page_dirty_for_io
);
2222 int test_clear_page_writeback(struct page
*page
)
2224 struct address_space
*mapping
= page_mapping(page
);
2228 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2229 unsigned long flags
;
2231 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2232 ret
= TestClearPageWriteback(page
);
2234 radix_tree_tag_clear(&mapping
->page_tree
,
2236 PAGECACHE_TAG_WRITEBACK
);
2237 if (bdi_cap_account_writeback(bdi
)) {
2238 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
2239 __bdi_writeout_inc(bdi
);
2242 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2244 ret
= TestClearPageWriteback(page
);
2247 dec_zone_page_state(page
, NR_WRITEBACK
);
2248 inc_zone_page_state(page
, NR_WRITTEN
);
2253 int test_set_page_writeback(struct page
*page
)
2255 struct address_space
*mapping
= page_mapping(page
);
2259 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2260 unsigned long flags
;
2262 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2263 ret
= TestSetPageWriteback(page
);
2265 radix_tree_tag_set(&mapping
->page_tree
,
2267 PAGECACHE_TAG_WRITEBACK
);
2268 if (bdi_cap_account_writeback(bdi
))
2269 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
2271 if (!PageDirty(page
))
2272 radix_tree_tag_clear(&mapping
->page_tree
,
2274 PAGECACHE_TAG_DIRTY
);
2275 radix_tree_tag_clear(&mapping
->page_tree
,
2277 PAGECACHE_TAG_TOWRITE
);
2278 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2280 ret
= TestSetPageWriteback(page
);
2283 account_page_writeback(page
);
2287 EXPORT_SYMBOL(test_set_page_writeback
);
2290 * Return true if any of the pages in the mapping are marked with the
2293 int mapping_tagged(struct address_space
*mapping
, int tag
)
2295 return radix_tree_tagged(&mapping
->page_tree
, tag
);
2297 EXPORT_SYMBOL(mapping_tagged
);
2300 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2301 * @page: The page to wait on.
2303 * This function determines if the given page is related to a backing device
2304 * that requires page contents to be held stable during writeback. If so, then
2305 * it will wait for any pending writeback to complete.
2307 void wait_for_stable_page(struct page
*page
)
2309 struct address_space
*mapping
= page_mapping(page
);
2310 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2312 if (!bdi_cap_stable_pages_required(bdi
))
2315 wait_on_page_writeback(page
);
2317 EXPORT_SYMBOL_GPL(wait_for_stable_page
);