Merge tag 'pm+acpi-3.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6.git] / mm / slub.c
blob545a170ebf9f66cf0e3716c9cd6f4cb7eef0eda6
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
39 #include "internal.h"
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
47 * slab_mutex
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache *s)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
136 * Issues still to be resolved:
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 * - Variable sizing of the per node arrays
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 #define MIN_PARTIAL 5
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
160 #define MAX_PARTIAL 10
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
173 * Set of flags that will prevent slab merging
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
195 * Tracking user of a slab.
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 return s->node[node];
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
244 void *base;
246 if (!object)
247 return 1;
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
255 return 1;
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 return *(void **)(object + s->offset);
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265 prefetch(object + s->offset);
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270 void *p;
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282 *(void **)(object + s->offset) = fp;
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 return (p - addr) / s->size;
296 static inline size_t slab_ksize(const struct kmem_cache *s)
298 #ifdef CONFIG_SLUB_DEBUG
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
306 #endif
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
315 * Else we can use all the padding etc for the allocation
317 return s->size;
320 static inline int order_objects(int order, unsigned long size, int reserved)
322 return ((PAGE_SIZE << order) - reserved) / size;
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
332 return x;
335 static inline int oo_order(struct kmem_cache_order_objects x)
337 return x.x >> OO_SHIFT;
340 static inline int oo_objects(struct kmem_cache_order_objects x)
342 return x.x & OO_MASK;
346 * Per slab locking using the pagelock
348 static __always_inline void slab_lock(struct page *page)
350 bit_spin_lock(PG_locked, &page->flags);
353 static __always_inline void slab_unlock(struct page *page)
355 __bit_spin_unlock(PG_locked, &page->flags);
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
364 VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 if (s->flags & __CMPXCHG_DOUBLE) {
368 if (cmpxchg_double(&page->freelist, &page->counters,
369 freelist_old, counters_old,
370 freelist_new, counters_new))
371 return 1;
372 } else
373 #endif
375 slab_lock(page);
376 if (page->freelist == freelist_old &&
377 page->counters == counters_old) {
378 page->freelist = freelist_new;
379 page->counters = counters_new;
380 slab_unlock(page);
381 return 1;
383 slab_unlock(page);
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
389 #ifdef SLUB_DEBUG_CMPXCHG
390 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
391 #endif
393 return 0;
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 void *freelist_old, unsigned long counters_old,
398 void *freelist_new, unsigned long counters_new,
399 const char *n)
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 if (s->flags & __CMPXCHG_DOUBLE) {
404 if (cmpxchg_double(&page->freelist, &page->counters,
405 freelist_old, counters_old,
406 freelist_new, counters_new))
407 return 1;
408 } else
409 #endif
411 unsigned long flags;
413 local_irq_save(flags);
414 slab_lock(page);
415 if (page->freelist == freelist_old &&
416 page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
423 slab_unlock(page);
424 local_irq_restore(flags);
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
434 return 0;
437 #ifdef CONFIG_SLUB_DEBUG
439 * Determine a map of object in use on a page.
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
446 void *p;
447 void *addr = page_address(page);
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
454 * Debug settings:
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
466 * Object debugging
468 static void print_section(char *text, u8 *addr, unsigned int length)
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
477 struct track *p;
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
484 return p + alloc;
487 static void set_track(struct kmem_cache *s, void *object,
488 enum track_item alloc, unsigned long addr)
490 struct track *p = get_track(s, object, alloc);
492 if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510 #endif
511 p->addr = addr;
512 p->cpu = smp_processor_id();
513 p->pid = current->pid;
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
519 static void init_tracking(struct kmem_cache *s, void *object)
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
528 static void print_track(const char *s, struct track *t)
530 if (!t->addr)
531 return;
533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
544 #endif
547 static void print_tracking(struct kmem_cache *s, void *object)
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
556 static void print_page_info(struct page *page)
558 printk(KERN_ERR
559 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
560 page, page->objects, page->inuse, page->freelist, page->flags);
564 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
566 va_list args;
567 char buf[100];
569 va_start(args, fmt);
570 vsnprintf(buf, sizeof(buf), fmt, args);
571 va_end(args);
572 printk(KERN_ERR "========================================"
573 "=====================================\n");
574 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 printk(KERN_ERR "----------------------------------------"
576 "-------------------------------------\n\n");
578 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
583 va_list args;
584 char buf[100];
586 va_start(args, fmt);
587 vsnprintf(buf, sizeof(buf), fmt, args);
588 va_end(args);
589 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
592 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
594 unsigned int off; /* Offset of last byte */
595 u8 *addr = page_address(page);
597 print_tracking(s, p);
599 print_page_info(page);
601 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
602 p, p - addr, get_freepointer(s, p));
604 if (p > addr + 16)
605 print_section("Bytes b4 ", p - 16, 16);
607 print_section("Object ", p, min_t(unsigned long, s->object_size,
608 PAGE_SIZE));
609 if (s->flags & SLAB_RED_ZONE)
610 print_section("Redzone ", p + s->object_size,
611 s->inuse - s->object_size);
613 if (s->offset)
614 off = s->offset + sizeof(void *);
615 else
616 off = s->inuse;
618 if (s->flags & SLAB_STORE_USER)
619 off += 2 * sizeof(struct track);
621 if (off != s->size)
622 /* Beginning of the filler is the free pointer */
623 print_section("Padding ", p + off, s->size - off);
625 dump_stack();
628 static void object_err(struct kmem_cache *s, struct page *page,
629 u8 *object, char *reason)
631 slab_bug(s, "%s", reason);
632 print_trailer(s, page, object);
635 static void slab_err(struct kmem_cache *s, struct page *page,
636 const char *fmt, ...)
638 va_list args;
639 char buf[100];
641 va_start(args, fmt);
642 vsnprintf(buf, sizeof(buf), fmt, args);
643 va_end(args);
644 slab_bug(s, "%s", buf);
645 print_page_info(page);
646 dump_stack();
649 static void init_object(struct kmem_cache *s, void *object, u8 val)
651 u8 *p = object;
653 if (s->flags & __OBJECT_POISON) {
654 memset(p, POISON_FREE, s->object_size - 1);
655 p[s->object_size - 1] = POISON_END;
658 if (s->flags & SLAB_RED_ZONE)
659 memset(p + s->object_size, val, s->inuse - s->object_size);
662 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
663 void *from, void *to)
665 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
666 memset(from, data, to - from);
669 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
670 u8 *object, char *what,
671 u8 *start, unsigned int value, unsigned int bytes)
673 u8 *fault;
674 u8 *end;
676 fault = memchr_inv(start, value, bytes);
677 if (!fault)
678 return 1;
680 end = start + bytes;
681 while (end > fault && end[-1] == value)
682 end--;
684 slab_bug(s, "%s overwritten", what);
685 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
686 fault, end - 1, fault[0], value);
687 print_trailer(s, page, object);
689 restore_bytes(s, what, value, fault, end);
690 return 0;
694 * Object layout:
696 * object address
697 * Bytes of the object to be managed.
698 * If the freepointer may overlay the object then the free
699 * pointer is the first word of the object.
701 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
702 * 0xa5 (POISON_END)
704 * object + s->object_size
705 * Padding to reach word boundary. This is also used for Redzoning.
706 * Padding is extended by another word if Redzoning is enabled and
707 * object_size == inuse.
709 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
710 * 0xcc (RED_ACTIVE) for objects in use.
712 * object + s->inuse
713 * Meta data starts here.
715 * A. Free pointer (if we cannot overwrite object on free)
716 * B. Tracking data for SLAB_STORE_USER
717 * C. Padding to reach required alignment boundary or at mininum
718 * one word if debugging is on to be able to detect writes
719 * before the word boundary.
721 * Padding is done using 0x5a (POISON_INUSE)
723 * object + s->size
724 * Nothing is used beyond s->size.
726 * If slabcaches are merged then the object_size and inuse boundaries are mostly
727 * ignored. And therefore no slab options that rely on these boundaries
728 * may be used with merged slabcaches.
731 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
733 unsigned long off = s->inuse; /* The end of info */
735 if (s->offset)
736 /* Freepointer is placed after the object. */
737 off += sizeof(void *);
739 if (s->flags & SLAB_STORE_USER)
740 /* We also have user information there */
741 off += 2 * sizeof(struct track);
743 if (s->size == off)
744 return 1;
746 return check_bytes_and_report(s, page, p, "Object padding",
747 p + off, POISON_INUSE, s->size - off);
750 /* Check the pad bytes at the end of a slab page */
751 static int slab_pad_check(struct kmem_cache *s, struct page *page)
753 u8 *start;
754 u8 *fault;
755 u8 *end;
756 int length;
757 int remainder;
759 if (!(s->flags & SLAB_POISON))
760 return 1;
762 start = page_address(page);
763 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 end = start + length;
765 remainder = length % s->size;
766 if (!remainder)
767 return 1;
769 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 if (!fault)
771 return 1;
772 while (end > fault && end[-1] == POISON_INUSE)
773 end--;
775 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776 print_section("Padding ", end - remainder, remainder);
778 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779 return 0;
782 static int check_object(struct kmem_cache *s, struct page *page,
783 void *object, u8 val)
785 u8 *p = object;
786 u8 *endobject = object + s->object_size;
788 if (s->flags & SLAB_RED_ZONE) {
789 if (!check_bytes_and_report(s, page, object, "Redzone",
790 endobject, val, s->inuse - s->object_size))
791 return 0;
792 } else {
793 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
794 check_bytes_and_report(s, page, p, "Alignment padding",
795 endobject, POISON_INUSE,
796 s->inuse - s->object_size);
800 if (s->flags & SLAB_POISON) {
801 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802 (!check_bytes_and_report(s, page, p, "Poison", p,
803 POISON_FREE, s->object_size - 1) ||
804 !check_bytes_and_report(s, page, p, "Poison",
805 p + s->object_size - 1, POISON_END, 1)))
806 return 0;
808 * check_pad_bytes cleans up on its own.
810 check_pad_bytes(s, page, p);
813 if (!s->offset && val == SLUB_RED_ACTIVE)
815 * Object and freepointer overlap. Cannot check
816 * freepointer while object is allocated.
818 return 1;
820 /* Check free pointer validity */
821 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
822 object_err(s, page, p, "Freepointer corrupt");
824 * No choice but to zap it and thus lose the remainder
825 * of the free objects in this slab. May cause
826 * another error because the object count is now wrong.
828 set_freepointer(s, p, NULL);
829 return 0;
831 return 1;
834 static int check_slab(struct kmem_cache *s, struct page *page)
836 int maxobj;
838 VM_BUG_ON(!irqs_disabled());
840 if (!PageSlab(page)) {
841 slab_err(s, page, "Not a valid slab page");
842 return 0;
845 maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 if (page->objects > maxobj) {
847 slab_err(s, page, "objects %u > max %u",
848 s->name, page->objects, maxobj);
849 return 0;
851 if (page->inuse > page->objects) {
852 slab_err(s, page, "inuse %u > max %u",
853 s->name, page->inuse, page->objects);
854 return 0;
856 /* Slab_pad_check fixes things up after itself */
857 slab_pad_check(s, page);
858 return 1;
862 * Determine if a certain object on a page is on the freelist. Must hold the
863 * slab lock to guarantee that the chains are in a consistent state.
865 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
867 int nr = 0;
868 void *fp;
869 void *object = NULL;
870 unsigned long max_objects;
872 fp = page->freelist;
873 while (fp && nr <= page->objects) {
874 if (fp == search)
875 return 1;
876 if (!check_valid_pointer(s, page, fp)) {
877 if (object) {
878 object_err(s, page, object,
879 "Freechain corrupt");
880 set_freepointer(s, object, NULL);
881 } else {
882 slab_err(s, page, "Freepointer corrupt");
883 page->freelist = NULL;
884 page->inuse = page->objects;
885 slab_fix(s, "Freelist cleared");
886 return 0;
888 break;
890 object = fp;
891 fp = get_freepointer(s, object);
892 nr++;
895 max_objects = order_objects(compound_order(page), s->size, s->reserved);
896 if (max_objects > MAX_OBJS_PER_PAGE)
897 max_objects = MAX_OBJS_PER_PAGE;
899 if (page->objects != max_objects) {
900 slab_err(s, page, "Wrong number of objects. Found %d but "
901 "should be %d", page->objects, max_objects);
902 page->objects = max_objects;
903 slab_fix(s, "Number of objects adjusted.");
905 if (page->inuse != page->objects - nr) {
906 slab_err(s, page, "Wrong object count. Counter is %d but "
907 "counted were %d", page->inuse, page->objects - nr);
908 page->inuse = page->objects - nr;
909 slab_fix(s, "Object count adjusted.");
911 return search == NULL;
914 static void trace(struct kmem_cache *s, struct page *page, void *object,
915 int alloc)
917 if (s->flags & SLAB_TRACE) {
918 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
919 s->name,
920 alloc ? "alloc" : "free",
921 object, page->inuse,
922 page->freelist);
924 if (!alloc)
925 print_section("Object ", (void *)object,
926 s->object_size);
928 dump_stack();
933 * Hooks for other subsystems that check memory allocations. In a typical
934 * production configuration these hooks all should produce no code at all.
936 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
938 kmemleak_alloc(ptr, size, 1, flags);
941 static inline void kfree_hook(const void *x)
943 kmemleak_free(x);
946 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
948 flags &= gfp_allowed_mask;
949 lockdep_trace_alloc(flags);
950 might_sleep_if(flags & __GFP_WAIT);
952 return should_failslab(s->object_size, flags, s->flags);
955 static inline void slab_post_alloc_hook(struct kmem_cache *s,
956 gfp_t flags, void *object)
958 flags &= gfp_allowed_mask;
959 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
960 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
963 static inline void slab_free_hook(struct kmem_cache *s, void *x)
965 kmemleak_free_recursive(x, s->flags);
968 * Trouble is that we may no longer disable interrupts in the fast path
969 * So in order to make the debug calls that expect irqs to be
970 * disabled we need to disable interrupts temporarily.
972 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
974 unsigned long flags;
976 local_irq_save(flags);
977 kmemcheck_slab_free(s, x, s->object_size);
978 debug_check_no_locks_freed(x, s->object_size);
979 local_irq_restore(flags);
981 #endif
982 if (!(s->flags & SLAB_DEBUG_OBJECTS))
983 debug_check_no_obj_freed(x, s->object_size);
987 * Tracking of fully allocated slabs for debugging purposes.
989 * list_lock must be held.
991 static void add_full(struct kmem_cache *s,
992 struct kmem_cache_node *n, struct page *page)
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
997 list_add(&page->lru, &n->full);
1001 * list_lock must be held.
1003 static void remove_full(struct kmem_cache *s, struct page *page)
1005 if (!(s->flags & SLAB_STORE_USER))
1006 return;
1008 list_del(&page->lru);
1011 /* Tracking of the number of slabs for debugging purposes */
1012 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1014 struct kmem_cache_node *n = get_node(s, node);
1016 return atomic_long_read(&n->nr_slabs);
1019 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1021 return atomic_long_read(&n->nr_slabs);
1024 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1026 struct kmem_cache_node *n = get_node(s, node);
1029 * May be called early in order to allocate a slab for the
1030 * kmem_cache_node structure. Solve the chicken-egg
1031 * dilemma by deferring the increment of the count during
1032 * bootstrap (see early_kmem_cache_node_alloc).
1034 if (likely(n)) {
1035 atomic_long_inc(&n->nr_slabs);
1036 atomic_long_add(objects, &n->total_objects);
1039 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1041 struct kmem_cache_node *n = get_node(s, node);
1043 atomic_long_dec(&n->nr_slabs);
1044 atomic_long_sub(objects, &n->total_objects);
1047 /* Object debug checks for alloc/free paths */
1048 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1049 void *object)
1051 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1052 return;
1054 init_object(s, object, SLUB_RED_INACTIVE);
1055 init_tracking(s, object);
1058 static noinline int alloc_debug_processing(struct kmem_cache *s,
1059 struct page *page,
1060 void *object, unsigned long addr)
1062 if (!check_slab(s, page))
1063 goto bad;
1065 if (!check_valid_pointer(s, page, object)) {
1066 object_err(s, page, object, "Freelist Pointer check fails");
1067 goto bad;
1070 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1071 goto bad;
1073 /* Success perform special debug activities for allocs */
1074 if (s->flags & SLAB_STORE_USER)
1075 set_track(s, object, TRACK_ALLOC, addr);
1076 trace(s, page, object, 1);
1077 init_object(s, object, SLUB_RED_ACTIVE);
1078 return 1;
1080 bad:
1081 if (PageSlab(page)) {
1083 * If this is a slab page then lets do the best we can
1084 * to avoid issues in the future. Marking all objects
1085 * as used avoids touching the remaining objects.
1087 slab_fix(s, "Marking all objects used");
1088 page->inuse = page->objects;
1089 page->freelist = NULL;
1091 return 0;
1094 static noinline struct kmem_cache_node *free_debug_processing(
1095 struct kmem_cache *s, struct page *page, void *object,
1096 unsigned long addr, unsigned long *flags)
1098 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1100 spin_lock_irqsave(&n->list_lock, *flags);
1101 slab_lock(page);
1103 if (!check_slab(s, page))
1104 goto fail;
1106 if (!check_valid_pointer(s, page, object)) {
1107 slab_err(s, page, "Invalid object pointer 0x%p", object);
1108 goto fail;
1111 if (on_freelist(s, page, object)) {
1112 object_err(s, page, object, "Object already free");
1113 goto fail;
1116 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1117 goto out;
1119 if (unlikely(s != page->slab_cache)) {
1120 if (!PageSlab(page)) {
1121 slab_err(s, page, "Attempt to free object(0x%p) "
1122 "outside of slab", object);
1123 } else if (!page->slab_cache) {
1124 printk(KERN_ERR
1125 "SLUB <none>: no slab for object 0x%p.\n",
1126 object);
1127 dump_stack();
1128 } else
1129 object_err(s, page, object,
1130 "page slab pointer corrupt.");
1131 goto fail;
1134 if (s->flags & SLAB_STORE_USER)
1135 set_track(s, object, TRACK_FREE, addr);
1136 trace(s, page, object, 0);
1137 init_object(s, object, SLUB_RED_INACTIVE);
1138 out:
1139 slab_unlock(page);
1141 * Keep node_lock to preserve integrity
1142 * until the object is actually freed
1144 return n;
1146 fail:
1147 slab_unlock(page);
1148 spin_unlock_irqrestore(&n->list_lock, *flags);
1149 slab_fix(s, "Object at 0x%p not freed", object);
1150 return NULL;
1153 static int __init setup_slub_debug(char *str)
1155 slub_debug = DEBUG_DEFAULT_FLAGS;
1156 if (*str++ != '=' || !*str)
1158 * No options specified. Switch on full debugging.
1160 goto out;
1162 if (*str == ',')
1164 * No options but restriction on slabs. This means full
1165 * debugging for slabs matching a pattern.
1167 goto check_slabs;
1169 if (tolower(*str) == 'o') {
1171 * Avoid enabling debugging on caches if its minimum order
1172 * would increase as a result.
1174 disable_higher_order_debug = 1;
1175 goto out;
1178 slub_debug = 0;
1179 if (*str == '-')
1181 * Switch off all debugging measures.
1183 goto out;
1186 * Determine which debug features should be switched on
1188 for (; *str && *str != ','; str++) {
1189 switch (tolower(*str)) {
1190 case 'f':
1191 slub_debug |= SLAB_DEBUG_FREE;
1192 break;
1193 case 'z':
1194 slub_debug |= SLAB_RED_ZONE;
1195 break;
1196 case 'p':
1197 slub_debug |= SLAB_POISON;
1198 break;
1199 case 'u':
1200 slub_debug |= SLAB_STORE_USER;
1201 break;
1202 case 't':
1203 slub_debug |= SLAB_TRACE;
1204 break;
1205 case 'a':
1206 slub_debug |= SLAB_FAILSLAB;
1207 break;
1208 default:
1209 printk(KERN_ERR "slub_debug option '%c' "
1210 "unknown. skipped\n", *str);
1214 check_slabs:
1215 if (*str == ',')
1216 slub_debug_slabs = str + 1;
1217 out:
1218 return 1;
1221 __setup("slub_debug", setup_slub_debug);
1223 static unsigned long kmem_cache_flags(unsigned long object_size,
1224 unsigned long flags, const char *name,
1225 void (*ctor)(void *))
1228 * Enable debugging if selected on the kernel commandline.
1230 if (slub_debug && (!slub_debug_slabs || (name &&
1231 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1232 flags |= slub_debug;
1234 return flags;
1236 #else
1237 static inline void setup_object_debug(struct kmem_cache *s,
1238 struct page *page, void *object) {}
1240 static inline int alloc_debug_processing(struct kmem_cache *s,
1241 struct page *page, void *object, unsigned long addr) { return 0; }
1243 static inline struct kmem_cache_node *free_debug_processing(
1244 struct kmem_cache *s, struct page *page, void *object,
1245 unsigned long addr, unsigned long *flags) { return NULL; }
1247 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1248 { return 1; }
1249 static inline int check_object(struct kmem_cache *s, struct page *page,
1250 void *object, u8 val) { return 1; }
1251 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1252 struct page *page) {}
1253 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1254 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1255 unsigned long flags, const char *name,
1256 void (*ctor)(void *))
1258 return flags;
1260 #define slub_debug 0
1262 #define disable_higher_order_debug 0
1264 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1265 { return 0; }
1266 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1267 { return 0; }
1268 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1269 int objects) {}
1270 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1271 int objects) {}
1273 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1275 kmemleak_alloc(ptr, size, 1, flags);
1278 static inline void kfree_hook(const void *x)
1280 kmemleak_free(x);
1283 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1284 { return 0; }
1286 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1287 void *object)
1289 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1290 flags & gfp_allowed_mask);
1293 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1295 kmemleak_free_recursive(x, s->flags);
1298 #endif /* CONFIG_SLUB_DEBUG */
1301 * Slab allocation and freeing
1303 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1304 struct kmem_cache_order_objects oo)
1306 int order = oo_order(oo);
1308 flags |= __GFP_NOTRACK;
1310 if (node == NUMA_NO_NODE)
1311 return alloc_pages(flags, order);
1312 else
1313 return alloc_pages_exact_node(node, flags, order);
1316 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1318 struct page *page;
1319 struct kmem_cache_order_objects oo = s->oo;
1320 gfp_t alloc_gfp;
1322 flags &= gfp_allowed_mask;
1324 if (flags & __GFP_WAIT)
1325 local_irq_enable();
1327 flags |= s->allocflags;
1330 * Let the initial higher-order allocation fail under memory pressure
1331 * so we fall-back to the minimum order allocation.
1333 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1335 page = alloc_slab_page(alloc_gfp, node, oo);
1336 if (unlikely(!page)) {
1337 oo = s->min;
1339 * Allocation may have failed due to fragmentation.
1340 * Try a lower order alloc if possible
1342 page = alloc_slab_page(flags, node, oo);
1344 if (page)
1345 stat(s, ORDER_FALLBACK);
1348 if (kmemcheck_enabled && page
1349 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1350 int pages = 1 << oo_order(oo);
1352 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1355 * Objects from caches that have a constructor don't get
1356 * cleared when they're allocated, so we need to do it here.
1358 if (s->ctor)
1359 kmemcheck_mark_uninitialized_pages(page, pages);
1360 else
1361 kmemcheck_mark_unallocated_pages(page, pages);
1364 if (flags & __GFP_WAIT)
1365 local_irq_disable();
1366 if (!page)
1367 return NULL;
1369 page->objects = oo_objects(oo);
1370 mod_zone_page_state(page_zone(page),
1371 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1372 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1373 1 << oo_order(oo));
1375 return page;
1378 static void setup_object(struct kmem_cache *s, struct page *page,
1379 void *object)
1381 setup_object_debug(s, page, object);
1382 if (unlikely(s->ctor))
1383 s->ctor(object);
1386 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1388 struct page *page;
1389 void *start;
1390 void *last;
1391 void *p;
1392 int order;
1394 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1396 page = allocate_slab(s,
1397 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1398 if (!page)
1399 goto out;
1401 order = compound_order(page);
1402 inc_slabs_node(s, page_to_nid(page), page->objects);
1403 memcg_bind_pages(s, order);
1404 page->slab_cache = s;
1405 __SetPageSlab(page);
1406 if (page->pfmemalloc)
1407 SetPageSlabPfmemalloc(page);
1409 start = page_address(page);
1411 if (unlikely(s->flags & SLAB_POISON))
1412 memset(start, POISON_INUSE, PAGE_SIZE << order);
1414 last = start;
1415 for_each_object(p, s, start, page->objects) {
1416 setup_object(s, page, last);
1417 set_freepointer(s, last, p);
1418 last = p;
1420 setup_object(s, page, last);
1421 set_freepointer(s, last, NULL);
1423 page->freelist = start;
1424 page->inuse = page->objects;
1425 page->frozen = 1;
1426 out:
1427 return page;
1430 static void __free_slab(struct kmem_cache *s, struct page *page)
1432 int order = compound_order(page);
1433 int pages = 1 << order;
1435 if (kmem_cache_debug(s)) {
1436 void *p;
1438 slab_pad_check(s, page);
1439 for_each_object(p, s, page_address(page),
1440 page->objects)
1441 check_object(s, page, p, SLUB_RED_INACTIVE);
1444 kmemcheck_free_shadow(page, compound_order(page));
1446 mod_zone_page_state(page_zone(page),
1447 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1448 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1449 -pages);
1451 __ClearPageSlabPfmemalloc(page);
1452 __ClearPageSlab(page);
1454 memcg_release_pages(s, order);
1455 page_mapcount_reset(page);
1456 if (current->reclaim_state)
1457 current->reclaim_state->reclaimed_slab += pages;
1458 __free_memcg_kmem_pages(page, order);
1461 #define need_reserve_slab_rcu \
1462 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1464 static void rcu_free_slab(struct rcu_head *h)
1466 struct page *page;
1468 if (need_reserve_slab_rcu)
1469 page = virt_to_head_page(h);
1470 else
1471 page = container_of((struct list_head *)h, struct page, lru);
1473 __free_slab(page->slab_cache, page);
1476 static void free_slab(struct kmem_cache *s, struct page *page)
1478 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1479 struct rcu_head *head;
1481 if (need_reserve_slab_rcu) {
1482 int order = compound_order(page);
1483 int offset = (PAGE_SIZE << order) - s->reserved;
1485 VM_BUG_ON(s->reserved != sizeof(*head));
1486 head = page_address(page) + offset;
1487 } else {
1489 * RCU free overloads the RCU head over the LRU
1491 head = (void *)&page->lru;
1494 call_rcu(head, rcu_free_slab);
1495 } else
1496 __free_slab(s, page);
1499 static void discard_slab(struct kmem_cache *s, struct page *page)
1501 dec_slabs_node(s, page_to_nid(page), page->objects);
1502 free_slab(s, page);
1506 * Management of partially allocated slabs.
1508 * list_lock must be held.
1510 static inline void add_partial(struct kmem_cache_node *n,
1511 struct page *page, int tail)
1513 n->nr_partial++;
1514 if (tail == DEACTIVATE_TO_TAIL)
1515 list_add_tail(&page->lru, &n->partial);
1516 else
1517 list_add(&page->lru, &n->partial);
1521 * list_lock must be held.
1523 static inline void remove_partial(struct kmem_cache_node *n,
1524 struct page *page)
1526 list_del(&page->lru);
1527 n->nr_partial--;
1531 * Remove slab from the partial list, freeze it and
1532 * return the pointer to the freelist.
1534 * Returns a list of objects or NULL if it fails.
1536 * Must hold list_lock since we modify the partial list.
1538 static inline void *acquire_slab(struct kmem_cache *s,
1539 struct kmem_cache_node *n, struct page *page,
1540 int mode, int *objects)
1542 void *freelist;
1543 unsigned long counters;
1544 struct page new;
1547 * Zap the freelist and set the frozen bit.
1548 * The old freelist is the list of objects for the
1549 * per cpu allocation list.
1551 freelist = page->freelist;
1552 counters = page->counters;
1553 new.counters = counters;
1554 *objects = new.objects - new.inuse;
1555 if (mode) {
1556 new.inuse = page->objects;
1557 new.freelist = NULL;
1558 } else {
1559 new.freelist = freelist;
1562 VM_BUG_ON(new.frozen);
1563 new.frozen = 1;
1565 if (!__cmpxchg_double_slab(s, page,
1566 freelist, counters,
1567 new.freelist, new.counters,
1568 "acquire_slab"))
1569 return NULL;
1571 remove_partial(n, page);
1572 WARN_ON(!freelist);
1573 return freelist;
1576 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1577 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1580 * Try to allocate a partial slab from a specific node.
1582 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1583 struct kmem_cache_cpu *c, gfp_t flags)
1585 struct page *page, *page2;
1586 void *object = NULL;
1587 int available = 0;
1588 int objects;
1591 * Racy check. If we mistakenly see no partial slabs then we
1592 * just allocate an empty slab. If we mistakenly try to get a
1593 * partial slab and there is none available then get_partials()
1594 * will return NULL.
1596 if (!n || !n->nr_partial)
1597 return NULL;
1599 spin_lock(&n->list_lock);
1600 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1601 void *t;
1603 if (!pfmemalloc_match(page, flags))
1604 continue;
1606 t = acquire_slab(s, n, page, object == NULL, &objects);
1607 if (!t)
1608 break;
1610 available += objects;
1611 if (!object) {
1612 c->page = page;
1613 stat(s, ALLOC_FROM_PARTIAL);
1614 object = t;
1615 } else {
1616 put_cpu_partial(s, page, 0);
1617 stat(s, CPU_PARTIAL_NODE);
1619 if (!kmem_cache_has_cpu_partial(s)
1620 || available > s->cpu_partial / 2)
1621 break;
1624 spin_unlock(&n->list_lock);
1625 return object;
1629 * Get a page from somewhere. Search in increasing NUMA distances.
1631 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1632 struct kmem_cache_cpu *c)
1634 #ifdef CONFIG_NUMA
1635 struct zonelist *zonelist;
1636 struct zoneref *z;
1637 struct zone *zone;
1638 enum zone_type high_zoneidx = gfp_zone(flags);
1639 void *object;
1640 unsigned int cpuset_mems_cookie;
1643 * The defrag ratio allows a configuration of the tradeoffs between
1644 * inter node defragmentation and node local allocations. A lower
1645 * defrag_ratio increases the tendency to do local allocations
1646 * instead of attempting to obtain partial slabs from other nodes.
1648 * If the defrag_ratio is set to 0 then kmalloc() always
1649 * returns node local objects. If the ratio is higher then kmalloc()
1650 * may return off node objects because partial slabs are obtained
1651 * from other nodes and filled up.
1653 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1654 * defrag_ratio = 1000) then every (well almost) allocation will
1655 * first attempt to defrag slab caches on other nodes. This means
1656 * scanning over all nodes to look for partial slabs which may be
1657 * expensive if we do it every time we are trying to find a slab
1658 * with available objects.
1660 if (!s->remote_node_defrag_ratio ||
1661 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1662 return NULL;
1664 do {
1665 cpuset_mems_cookie = get_mems_allowed();
1666 zonelist = node_zonelist(slab_node(), flags);
1667 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1668 struct kmem_cache_node *n;
1670 n = get_node(s, zone_to_nid(zone));
1672 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1673 n->nr_partial > s->min_partial) {
1674 object = get_partial_node(s, n, c, flags);
1675 if (object) {
1677 * Return the object even if
1678 * put_mems_allowed indicated that
1679 * the cpuset mems_allowed was
1680 * updated in parallel. It's a
1681 * harmless race between the alloc
1682 * and the cpuset update.
1684 put_mems_allowed(cpuset_mems_cookie);
1685 return object;
1689 } while (!put_mems_allowed(cpuset_mems_cookie));
1690 #endif
1691 return NULL;
1695 * Get a partial page, lock it and return it.
1697 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1698 struct kmem_cache_cpu *c)
1700 void *object;
1701 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1703 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1704 if (object || node != NUMA_NO_NODE)
1705 return object;
1707 return get_any_partial(s, flags, c);
1710 #ifdef CONFIG_PREEMPT
1712 * Calculate the next globally unique transaction for disambiguiation
1713 * during cmpxchg. The transactions start with the cpu number and are then
1714 * incremented by CONFIG_NR_CPUS.
1716 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1717 #else
1719 * No preemption supported therefore also no need to check for
1720 * different cpus.
1722 #define TID_STEP 1
1723 #endif
1725 static inline unsigned long next_tid(unsigned long tid)
1727 return tid + TID_STEP;
1730 static inline unsigned int tid_to_cpu(unsigned long tid)
1732 return tid % TID_STEP;
1735 static inline unsigned long tid_to_event(unsigned long tid)
1737 return tid / TID_STEP;
1740 static inline unsigned int init_tid(int cpu)
1742 return cpu;
1745 static inline void note_cmpxchg_failure(const char *n,
1746 const struct kmem_cache *s, unsigned long tid)
1748 #ifdef SLUB_DEBUG_CMPXCHG
1749 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1751 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1753 #ifdef CONFIG_PREEMPT
1754 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1755 printk("due to cpu change %d -> %d\n",
1756 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1757 else
1758 #endif
1759 if (tid_to_event(tid) != tid_to_event(actual_tid))
1760 printk("due to cpu running other code. Event %ld->%ld\n",
1761 tid_to_event(tid), tid_to_event(actual_tid));
1762 else
1763 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1764 actual_tid, tid, next_tid(tid));
1765 #endif
1766 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1769 static void init_kmem_cache_cpus(struct kmem_cache *s)
1771 int cpu;
1773 for_each_possible_cpu(cpu)
1774 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1778 * Remove the cpu slab
1780 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1781 void *freelist)
1783 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1784 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1785 int lock = 0;
1786 enum slab_modes l = M_NONE, m = M_NONE;
1787 void *nextfree;
1788 int tail = DEACTIVATE_TO_HEAD;
1789 struct page new;
1790 struct page old;
1792 if (page->freelist) {
1793 stat(s, DEACTIVATE_REMOTE_FREES);
1794 tail = DEACTIVATE_TO_TAIL;
1798 * Stage one: Free all available per cpu objects back
1799 * to the page freelist while it is still frozen. Leave the
1800 * last one.
1802 * There is no need to take the list->lock because the page
1803 * is still frozen.
1805 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1806 void *prior;
1807 unsigned long counters;
1809 do {
1810 prior = page->freelist;
1811 counters = page->counters;
1812 set_freepointer(s, freelist, prior);
1813 new.counters = counters;
1814 new.inuse--;
1815 VM_BUG_ON(!new.frozen);
1817 } while (!__cmpxchg_double_slab(s, page,
1818 prior, counters,
1819 freelist, new.counters,
1820 "drain percpu freelist"));
1822 freelist = nextfree;
1826 * Stage two: Ensure that the page is unfrozen while the
1827 * list presence reflects the actual number of objects
1828 * during unfreeze.
1830 * We setup the list membership and then perform a cmpxchg
1831 * with the count. If there is a mismatch then the page
1832 * is not unfrozen but the page is on the wrong list.
1834 * Then we restart the process which may have to remove
1835 * the page from the list that we just put it on again
1836 * because the number of objects in the slab may have
1837 * changed.
1839 redo:
1841 old.freelist = page->freelist;
1842 old.counters = page->counters;
1843 VM_BUG_ON(!old.frozen);
1845 /* Determine target state of the slab */
1846 new.counters = old.counters;
1847 if (freelist) {
1848 new.inuse--;
1849 set_freepointer(s, freelist, old.freelist);
1850 new.freelist = freelist;
1851 } else
1852 new.freelist = old.freelist;
1854 new.frozen = 0;
1856 if (!new.inuse && n->nr_partial > s->min_partial)
1857 m = M_FREE;
1858 else if (new.freelist) {
1859 m = M_PARTIAL;
1860 if (!lock) {
1861 lock = 1;
1863 * Taking the spinlock removes the possiblity
1864 * that acquire_slab() will see a slab page that
1865 * is frozen
1867 spin_lock(&n->list_lock);
1869 } else {
1870 m = M_FULL;
1871 if (kmem_cache_debug(s) && !lock) {
1872 lock = 1;
1874 * This also ensures that the scanning of full
1875 * slabs from diagnostic functions will not see
1876 * any frozen slabs.
1878 spin_lock(&n->list_lock);
1882 if (l != m) {
1884 if (l == M_PARTIAL)
1886 remove_partial(n, page);
1888 else if (l == M_FULL)
1890 remove_full(s, page);
1892 if (m == M_PARTIAL) {
1894 add_partial(n, page, tail);
1895 stat(s, tail);
1897 } else if (m == M_FULL) {
1899 stat(s, DEACTIVATE_FULL);
1900 add_full(s, n, page);
1905 l = m;
1906 if (!__cmpxchg_double_slab(s, page,
1907 old.freelist, old.counters,
1908 new.freelist, new.counters,
1909 "unfreezing slab"))
1910 goto redo;
1912 if (lock)
1913 spin_unlock(&n->list_lock);
1915 if (m == M_FREE) {
1916 stat(s, DEACTIVATE_EMPTY);
1917 discard_slab(s, page);
1918 stat(s, FREE_SLAB);
1923 * Unfreeze all the cpu partial slabs.
1925 * This function must be called with interrupts disabled
1926 * for the cpu using c (or some other guarantee must be there
1927 * to guarantee no concurrent accesses).
1929 static void unfreeze_partials(struct kmem_cache *s,
1930 struct kmem_cache_cpu *c)
1932 #ifdef CONFIG_SLUB_CPU_PARTIAL
1933 struct kmem_cache_node *n = NULL, *n2 = NULL;
1934 struct page *page, *discard_page = NULL;
1936 while ((page = c->partial)) {
1937 struct page new;
1938 struct page old;
1940 c->partial = page->next;
1942 n2 = get_node(s, page_to_nid(page));
1943 if (n != n2) {
1944 if (n)
1945 spin_unlock(&n->list_lock);
1947 n = n2;
1948 spin_lock(&n->list_lock);
1951 do {
1953 old.freelist = page->freelist;
1954 old.counters = page->counters;
1955 VM_BUG_ON(!old.frozen);
1957 new.counters = old.counters;
1958 new.freelist = old.freelist;
1960 new.frozen = 0;
1962 } while (!__cmpxchg_double_slab(s, page,
1963 old.freelist, old.counters,
1964 new.freelist, new.counters,
1965 "unfreezing slab"));
1967 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1968 page->next = discard_page;
1969 discard_page = page;
1970 } else {
1971 add_partial(n, page, DEACTIVATE_TO_TAIL);
1972 stat(s, FREE_ADD_PARTIAL);
1976 if (n)
1977 spin_unlock(&n->list_lock);
1979 while (discard_page) {
1980 page = discard_page;
1981 discard_page = discard_page->next;
1983 stat(s, DEACTIVATE_EMPTY);
1984 discard_slab(s, page);
1985 stat(s, FREE_SLAB);
1987 #endif
1991 * Put a page that was just frozen (in __slab_free) into a partial page
1992 * slot if available. This is done without interrupts disabled and without
1993 * preemption disabled. The cmpxchg is racy and may put the partial page
1994 * onto a random cpus partial slot.
1996 * If we did not find a slot then simply move all the partials to the
1997 * per node partial list.
1999 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2001 #ifdef CONFIG_SLUB_CPU_PARTIAL
2002 struct page *oldpage;
2003 int pages;
2004 int pobjects;
2006 do {
2007 pages = 0;
2008 pobjects = 0;
2009 oldpage = this_cpu_read(s->cpu_slab->partial);
2011 if (oldpage) {
2012 pobjects = oldpage->pobjects;
2013 pages = oldpage->pages;
2014 if (drain && pobjects > s->cpu_partial) {
2015 unsigned long flags;
2017 * partial array is full. Move the existing
2018 * set to the per node partial list.
2020 local_irq_save(flags);
2021 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2022 local_irq_restore(flags);
2023 oldpage = NULL;
2024 pobjects = 0;
2025 pages = 0;
2026 stat(s, CPU_PARTIAL_DRAIN);
2030 pages++;
2031 pobjects += page->objects - page->inuse;
2033 page->pages = pages;
2034 page->pobjects = pobjects;
2035 page->next = oldpage;
2037 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2038 != oldpage);
2039 #endif
2042 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2044 stat(s, CPUSLAB_FLUSH);
2045 deactivate_slab(s, c->page, c->freelist);
2047 c->tid = next_tid(c->tid);
2048 c->page = NULL;
2049 c->freelist = NULL;
2053 * Flush cpu slab.
2055 * Called from IPI handler with interrupts disabled.
2057 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2059 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2061 if (likely(c)) {
2062 if (c->page)
2063 flush_slab(s, c);
2065 unfreeze_partials(s, c);
2069 static void flush_cpu_slab(void *d)
2071 struct kmem_cache *s = d;
2073 __flush_cpu_slab(s, smp_processor_id());
2076 static bool has_cpu_slab(int cpu, void *info)
2078 struct kmem_cache *s = info;
2079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2081 return c->page || c->partial;
2084 static void flush_all(struct kmem_cache *s)
2086 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2090 * Check if the objects in a per cpu structure fit numa
2091 * locality expectations.
2093 static inline int node_match(struct page *page, int node)
2095 #ifdef CONFIG_NUMA
2096 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2097 return 0;
2098 #endif
2099 return 1;
2102 static int count_free(struct page *page)
2104 return page->objects - page->inuse;
2107 static unsigned long count_partial(struct kmem_cache_node *n,
2108 int (*get_count)(struct page *))
2110 unsigned long flags;
2111 unsigned long x = 0;
2112 struct page *page;
2114 spin_lock_irqsave(&n->list_lock, flags);
2115 list_for_each_entry(page, &n->partial, lru)
2116 x += get_count(page);
2117 spin_unlock_irqrestore(&n->list_lock, flags);
2118 return x;
2121 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2123 #ifdef CONFIG_SLUB_DEBUG
2124 return atomic_long_read(&n->total_objects);
2125 #else
2126 return 0;
2127 #endif
2130 static noinline void
2131 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2133 int node;
2135 printk(KERN_WARNING
2136 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2137 nid, gfpflags);
2138 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2139 "default order: %d, min order: %d\n", s->name, s->object_size,
2140 s->size, oo_order(s->oo), oo_order(s->min));
2142 if (oo_order(s->min) > get_order(s->object_size))
2143 printk(KERN_WARNING " %s debugging increased min order, use "
2144 "slub_debug=O to disable.\n", s->name);
2146 for_each_online_node(node) {
2147 struct kmem_cache_node *n = get_node(s, node);
2148 unsigned long nr_slabs;
2149 unsigned long nr_objs;
2150 unsigned long nr_free;
2152 if (!n)
2153 continue;
2155 nr_free = count_partial(n, count_free);
2156 nr_slabs = node_nr_slabs(n);
2157 nr_objs = node_nr_objs(n);
2159 printk(KERN_WARNING
2160 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2161 node, nr_slabs, nr_objs, nr_free);
2165 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2166 int node, struct kmem_cache_cpu **pc)
2168 void *freelist;
2169 struct kmem_cache_cpu *c = *pc;
2170 struct page *page;
2172 freelist = get_partial(s, flags, node, c);
2174 if (freelist)
2175 return freelist;
2177 page = new_slab(s, flags, node);
2178 if (page) {
2179 c = __this_cpu_ptr(s->cpu_slab);
2180 if (c->page)
2181 flush_slab(s, c);
2184 * No other reference to the page yet so we can
2185 * muck around with it freely without cmpxchg
2187 freelist = page->freelist;
2188 page->freelist = NULL;
2190 stat(s, ALLOC_SLAB);
2191 c->page = page;
2192 *pc = c;
2193 } else
2194 freelist = NULL;
2196 return freelist;
2199 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2201 if (unlikely(PageSlabPfmemalloc(page)))
2202 return gfp_pfmemalloc_allowed(gfpflags);
2204 return true;
2208 * Check the page->freelist of a page and either transfer the freelist to the
2209 * per cpu freelist or deactivate the page.
2211 * The page is still frozen if the return value is not NULL.
2213 * If this function returns NULL then the page has been unfrozen.
2215 * This function must be called with interrupt disabled.
2217 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2219 struct page new;
2220 unsigned long counters;
2221 void *freelist;
2223 do {
2224 freelist = page->freelist;
2225 counters = page->counters;
2227 new.counters = counters;
2228 VM_BUG_ON(!new.frozen);
2230 new.inuse = page->objects;
2231 new.frozen = freelist != NULL;
2233 } while (!__cmpxchg_double_slab(s, page,
2234 freelist, counters,
2235 NULL, new.counters,
2236 "get_freelist"));
2238 return freelist;
2242 * Slow path. The lockless freelist is empty or we need to perform
2243 * debugging duties.
2245 * Processing is still very fast if new objects have been freed to the
2246 * regular freelist. In that case we simply take over the regular freelist
2247 * as the lockless freelist and zap the regular freelist.
2249 * If that is not working then we fall back to the partial lists. We take the
2250 * first element of the freelist as the object to allocate now and move the
2251 * rest of the freelist to the lockless freelist.
2253 * And if we were unable to get a new slab from the partial slab lists then
2254 * we need to allocate a new slab. This is the slowest path since it involves
2255 * a call to the page allocator and the setup of a new slab.
2257 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2258 unsigned long addr, struct kmem_cache_cpu *c)
2260 void *freelist;
2261 struct page *page;
2262 unsigned long flags;
2264 local_irq_save(flags);
2265 #ifdef CONFIG_PREEMPT
2267 * We may have been preempted and rescheduled on a different
2268 * cpu before disabling interrupts. Need to reload cpu area
2269 * pointer.
2271 c = this_cpu_ptr(s->cpu_slab);
2272 #endif
2274 page = c->page;
2275 if (!page)
2276 goto new_slab;
2277 redo:
2279 if (unlikely(!node_match(page, node))) {
2280 stat(s, ALLOC_NODE_MISMATCH);
2281 deactivate_slab(s, page, c->freelist);
2282 c->page = NULL;
2283 c->freelist = NULL;
2284 goto new_slab;
2288 * By rights, we should be searching for a slab page that was
2289 * PFMEMALLOC but right now, we are losing the pfmemalloc
2290 * information when the page leaves the per-cpu allocator
2292 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2293 deactivate_slab(s, page, c->freelist);
2294 c->page = NULL;
2295 c->freelist = NULL;
2296 goto new_slab;
2299 /* must check again c->freelist in case of cpu migration or IRQ */
2300 freelist = c->freelist;
2301 if (freelist)
2302 goto load_freelist;
2304 stat(s, ALLOC_SLOWPATH);
2306 freelist = get_freelist(s, page);
2308 if (!freelist) {
2309 c->page = NULL;
2310 stat(s, DEACTIVATE_BYPASS);
2311 goto new_slab;
2314 stat(s, ALLOC_REFILL);
2316 load_freelist:
2318 * freelist is pointing to the list of objects to be used.
2319 * page is pointing to the page from which the objects are obtained.
2320 * That page must be frozen for per cpu allocations to work.
2322 VM_BUG_ON(!c->page->frozen);
2323 c->freelist = get_freepointer(s, freelist);
2324 c->tid = next_tid(c->tid);
2325 local_irq_restore(flags);
2326 return freelist;
2328 new_slab:
2330 if (c->partial) {
2331 page = c->page = c->partial;
2332 c->partial = page->next;
2333 stat(s, CPU_PARTIAL_ALLOC);
2334 c->freelist = NULL;
2335 goto redo;
2338 freelist = new_slab_objects(s, gfpflags, node, &c);
2340 if (unlikely(!freelist)) {
2341 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2342 slab_out_of_memory(s, gfpflags, node);
2344 local_irq_restore(flags);
2345 return NULL;
2348 page = c->page;
2349 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2350 goto load_freelist;
2352 /* Only entered in the debug case */
2353 if (kmem_cache_debug(s) &&
2354 !alloc_debug_processing(s, page, freelist, addr))
2355 goto new_slab; /* Slab failed checks. Next slab needed */
2357 deactivate_slab(s, page, get_freepointer(s, freelist));
2358 c->page = NULL;
2359 c->freelist = NULL;
2360 local_irq_restore(flags);
2361 return freelist;
2365 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2366 * have the fastpath folded into their functions. So no function call
2367 * overhead for requests that can be satisfied on the fastpath.
2369 * The fastpath works by first checking if the lockless freelist can be used.
2370 * If not then __slab_alloc is called for slow processing.
2372 * Otherwise we can simply pick the next object from the lockless free list.
2374 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2375 gfp_t gfpflags, int node, unsigned long addr)
2377 void **object;
2378 struct kmem_cache_cpu *c;
2379 struct page *page;
2380 unsigned long tid;
2382 if (slab_pre_alloc_hook(s, gfpflags))
2383 return NULL;
2385 s = memcg_kmem_get_cache(s, gfpflags);
2386 redo:
2388 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2389 * enabled. We may switch back and forth between cpus while
2390 * reading from one cpu area. That does not matter as long
2391 * as we end up on the original cpu again when doing the cmpxchg.
2393 * Preemption is disabled for the retrieval of the tid because that
2394 * must occur from the current processor. We cannot allow rescheduling
2395 * on a different processor between the determination of the pointer
2396 * and the retrieval of the tid.
2398 preempt_disable();
2399 c = __this_cpu_ptr(s->cpu_slab);
2402 * The transaction ids are globally unique per cpu and per operation on
2403 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2404 * occurs on the right processor and that there was no operation on the
2405 * linked list in between.
2407 tid = c->tid;
2408 preempt_enable();
2410 object = c->freelist;
2411 page = c->page;
2412 if (unlikely(!object || !node_match(page, node)))
2413 object = __slab_alloc(s, gfpflags, node, addr, c);
2415 else {
2416 void *next_object = get_freepointer_safe(s, object);
2419 * The cmpxchg will only match if there was no additional
2420 * operation and if we are on the right processor.
2422 * The cmpxchg does the following atomically (without lock
2423 * semantics!)
2424 * 1. Relocate first pointer to the current per cpu area.
2425 * 2. Verify that tid and freelist have not been changed
2426 * 3. If they were not changed replace tid and freelist
2428 * Since this is without lock semantics the protection is only
2429 * against code executing on this cpu *not* from access by
2430 * other cpus.
2432 if (unlikely(!this_cpu_cmpxchg_double(
2433 s->cpu_slab->freelist, s->cpu_slab->tid,
2434 object, tid,
2435 next_object, next_tid(tid)))) {
2437 note_cmpxchg_failure("slab_alloc", s, tid);
2438 goto redo;
2440 prefetch_freepointer(s, next_object);
2441 stat(s, ALLOC_FASTPATH);
2444 if (unlikely(gfpflags & __GFP_ZERO) && object)
2445 memset(object, 0, s->object_size);
2447 slab_post_alloc_hook(s, gfpflags, object);
2449 return object;
2452 static __always_inline void *slab_alloc(struct kmem_cache *s,
2453 gfp_t gfpflags, unsigned long addr)
2455 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2458 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2460 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2462 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2463 s->size, gfpflags);
2465 return ret;
2467 EXPORT_SYMBOL(kmem_cache_alloc);
2469 #ifdef CONFIG_TRACING
2470 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2472 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2473 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2474 return ret;
2476 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2477 #endif
2479 #ifdef CONFIG_NUMA
2480 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2482 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2484 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2485 s->object_size, s->size, gfpflags, node);
2487 return ret;
2489 EXPORT_SYMBOL(kmem_cache_alloc_node);
2491 #ifdef CONFIG_TRACING
2492 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2493 gfp_t gfpflags,
2494 int node, size_t size)
2496 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2498 trace_kmalloc_node(_RET_IP_, ret,
2499 size, s->size, gfpflags, node);
2500 return ret;
2502 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2503 #endif
2504 #endif
2507 * Slow patch handling. This may still be called frequently since objects
2508 * have a longer lifetime than the cpu slabs in most processing loads.
2510 * So we still attempt to reduce cache line usage. Just take the slab
2511 * lock and free the item. If there is no additional partial page
2512 * handling required then we can return immediately.
2514 static void __slab_free(struct kmem_cache *s, struct page *page,
2515 void *x, unsigned long addr)
2517 void *prior;
2518 void **object = (void *)x;
2519 int was_frozen;
2520 struct page new;
2521 unsigned long counters;
2522 struct kmem_cache_node *n = NULL;
2523 unsigned long uninitialized_var(flags);
2525 stat(s, FREE_SLOWPATH);
2527 if (kmem_cache_debug(s) &&
2528 !(n = free_debug_processing(s, page, x, addr, &flags)))
2529 return;
2531 do {
2532 if (unlikely(n)) {
2533 spin_unlock_irqrestore(&n->list_lock, flags);
2534 n = NULL;
2536 prior = page->freelist;
2537 counters = page->counters;
2538 set_freepointer(s, object, prior);
2539 new.counters = counters;
2540 was_frozen = new.frozen;
2541 new.inuse--;
2542 if ((!new.inuse || !prior) && !was_frozen) {
2544 if (kmem_cache_has_cpu_partial(s) && !prior)
2547 * Slab was on no list before and will be
2548 * partially empty
2549 * We can defer the list move and instead
2550 * freeze it.
2552 new.frozen = 1;
2554 else { /* Needs to be taken off a list */
2556 n = get_node(s, page_to_nid(page));
2558 * Speculatively acquire the list_lock.
2559 * If the cmpxchg does not succeed then we may
2560 * drop the list_lock without any processing.
2562 * Otherwise the list_lock will synchronize with
2563 * other processors updating the list of slabs.
2565 spin_lock_irqsave(&n->list_lock, flags);
2570 } while (!cmpxchg_double_slab(s, page,
2571 prior, counters,
2572 object, new.counters,
2573 "__slab_free"));
2575 if (likely(!n)) {
2578 * If we just froze the page then put it onto the
2579 * per cpu partial list.
2581 if (new.frozen && !was_frozen) {
2582 put_cpu_partial(s, page, 1);
2583 stat(s, CPU_PARTIAL_FREE);
2586 * The list lock was not taken therefore no list
2587 * activity can be necessary.
2589 if (was_frozen)
2590 stat(s, FREE_FROZEN);
2591 return;
2594 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2595 goto slab_empty;
2598 * Objects left in the slab. If it was not on the partial list before
2599 * then add it.
2601 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2602 if (kmem_cache_debug(s))
2603 remove_full(s, page);
2604 add_partial(n, page, DEACTIVATE_TO_TAIL);
2605 stat(s, FREE_ADD_PARTIAL);
2607 spin_unlock_irqrestore(&n->list_lock, flags);
2608 return;
2610 slab_empty:
2611 if (prior) {
2613 * Slab on the partial list.
2615 remove_partial(n, page);
2616 stat(s, FREE_REMOVE_PARTIAL);
2617 } else
2618 /* Slab must be on the full list */
2619 remove_full(s, page);
2621 spin_unlock_irqrestore(&n->list_lock, flags);
2622 stat(s, FREE_SLAB);
2623 discard_slab(s, page);
2627 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2628 * can perform fastpath freeing without additional function calls.
2630 * The fastpath is only possible if we are freeing to the current cpu slab
2631 * of this processor. This typically the case if we have just allocated
2632 * the item before.
2634 * If fastpath is not possible then fall back to __slab_free where we deal
2635 * with all sorts of special processing.
2637 static __always_inline void slab_free(struct kmem_cache *s,
2638 struct page *page, void *x, unsigned long addr)
2640 void **object = (void *)x;
2641 struct kmem_cache_cpu *c;
2642 unsigned long tid;
2644 slab_free_hook(s, x);
2646 redo:
2648 * Determine the currently cpus per cpu slab.
2649 * The cpu may change afterward. However that does not matter since
2650 * data is retrieved via this pointer. If we are on the same cpu
2651 * during the cmpxchg then the free will succedd.
2653 preempt_disable();
2654 c = __this_cpu_ptr(s->cpu_slab);
2656 tid = c->tid;
2657 preempt_enable();
2659 if (likely(page == c->page)) {
2660 set_freepointer(s, object, c->freelist);
2662 if (unlikely(!this_cpu_cmpxchg_double(
2663 s->cpu_slab->freelist, s->cpu_slab->tid,
2664 c->freelist, tid,
2665 object, next_tid(tid)))) {
2667 note_cmpxchg_failure("slab_free", s, tid);
2668 goto redo;
2670 stat(s, FREE_FASTPATH);
2671 } else
2672 __slab_free(s, page, x, addr);
2676 void kmem_cache_free(struct kmem_cache *s, void *x)
2678 s = cache_from_obj(s, x);
2679 if (!s)
2680 return;
2681 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2682 trace_kmem_cache_free(_RET_IP_, x);
2684 EXPORT_SYMBOL(kmem_cache_free);
2687 * Object placement in a slab is made very easy because we always start at
2688 * offset 0. If we tune the size of the object to the alignment then we can
2689 * get the required alignment by putting one properly sized object after
2690 * another.
2692 * Notice that the allocation order determines the sizes of the per cpu
2693 * caches. Each processor has always one slab available for allocations.
2694 * Increasing the allocation order reduces the number of times that slabs
2695 * must be moved on and off the partial lists and is therefore a factor in
2696 * locking overhead.
2700 * Mininum / Maximum order of slab pages. This influences locking overhead
2701 * and slab fragmentation. A higher order reduces the number of partial slabs
2702 * and increases the number of allocations possible without having to
2703 * take the list_lock.
2705 static int slub_min_order;
2706 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2707 static int slub_min_objects;
2710 * Merge control. If this is set then no merging of slab caches will occur.
2711 * (Could be removed. This was introduced to pacify the merge skeptics.)
2713 static int slub_nomerge;
2716 * Calculate the order of allocation given an slab object size.
2718 * The order of allocation has significant impact on performance and other
2719 * system components. Generally order 0 allocations should be preferred since
2720 * order 0 does not cause fragmentation in the page allocator. Larger objects
2721 * be problematic to put into order 0 slabs because there may be too much
2722 * unused space left. We go to a higher order if more than 1/16th of the slab
2723 * would be wasted.
2725 * In order to reach satisfactory performance we must ensure that a minimum
2726 * number of objects is in one slab. Otherwise we may generate too much
2727 * activity on the partial lists which requires taking the list_lock. This is
2728 * less a concern for large slabs though which are rarely used.
2730 * slub_max_order specifies the order where we begin to stop considering the
2731 * number of objects in a slab as critical. If we reach slub_max_order then
2732 * we try to keep the page order as low as possible. So we accept more waste
2733 * of space in favor of a small page order.
2735 * Higher order allocations also allow the placement of more objects in a
2736 * slab and thereby reduce object handling overhead. If the user has
2737 * requested a higher mininum order then we start with that one instead of
2738 * the smallest order which will fit the object.
2740 static inline int slab_order(int size, int min_objects,
2741 int max_order, int fract_leftover, int reserved)
2743 int order;
2744 int rem;
2745 int min_order = slub_min_order;
2747 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2748 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2750 for (order = max(min_order,
2751 fls(min_objects * size - 1) - PAGE_SHIFT);
2752 order <= max_order; order++) {
2754 unsigned long slab_size = PAGE_SIZE << order;
2756 if (slab_size < min_objects * size + reserved)
2757 continue;
2759 rem = (slab_size - reserved) % size;
2761 if (rem <= slab_size / fract_leftover)
2762 break;
2766 return order;
2769 static inline int calculate_order(int size, int reserved)
2771 int order;
2772 int min_objects;
2773 int fraction;
2774 int max_objects;
2777 * Attempt to find best configuration for a slab. This
2778 * works by first attempting to generate a layout with
2779 * the best configuration and backing off gradually.
2781 * First we reduce the acceptable waste in a slab. Then
2782 * we reduce the minimum objects required in a slab.
2784 min_objects = slub_min_objects;
2785 if (!min_objects)
2786 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2787 max_objects = order_objects(slub_max_order, size, reserved);
2788 min_objects = min(min_objects, max_objects);
2790 while (min_objects > 1) {
2791 fraction = 16;
2792 while (fraction >= 4) {
2793 order = slab_order(size, min_objects,
2794 slub_max_order, fraction, reserved);
2795 if (order <= slub_max_order)
2796 return order;
2797 fraction /= 2;
2799 min_objects--;
2803 * We were unable to place multiple objects in a slab. Now
2804 * lets see if we can place a single object there.
2806 order = slab_order(size, 1, slub_max_order, 1, reserved);
2807 if (order <= slub_max_order)
2808 return order;
2811 * Doh this slab cannot be placed using slub_max_order.
2813 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2814 if (order < MAX_ORDER)
2815 return order;
2816 return -ENOSYS;
2819 static void
2820 init_kmem_cache_node(struct kmem_cache_node *n)
2822 n->nr_partial = 0;
2823 spin_lock_init(&n->list_lock);
2824 INIT_LIST_HEAD(&n->partial);
2825 #ifdef CONFIG_SLUB_DEBUG
2826 atomic_long_set(&n->nr_slabs, 0);
2827 atomic_long_set(&n->total_objects, 0);
2828 INIT_LIST_HEAD(&n->full);
2829 #endif
2832 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2834 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2835 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2838 * Must align to double word boundary for the double cmpxchg
2839 * instructions to work; see __pcpu_double_call_return_bool().
2841 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2842 2 * sizeof(void *));
2844 if (!s->cpu_slab)
2845 return 0;
2847 init_kmem_cache_cpus(s);
2849 return 1;
2852 static struct kmem_cache *kmem_cache_node;
2855 * No kmalloc_node yet so do it by hand. We know that this is the first
2856 * slab on the node for this slabcache. There are no concurrent accesses
2857 * possible.
2859 * Note that this function only works on the kmem_cache_node
2860 * when allocating for the kmem_cache_node. This is used for bootstrapping
2861 * memory on a fresh node that has no slab structures yet.
2863 static void early_kmem_cache_node_alloc(int node)
2865 struct page *page;
2866 struct kmem_cache_node *n;
2868 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2870 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2872 BUG_ON(!page);
2873 if (page_to_nid(page) != node) {
2874 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2875 "node %d\n", node);
2876 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2877 "in order to be able to continue\n");
2880 n = page->freelist;
2881 BUG_ON(!n);
2882 page->freelist = get_freepointer(kmem_cache_node, n);
2883 page->inuse = 1;
2884 page->frozen = 0;
2885 kmem_cache_node->node[node] = n;
2886 #ifdef CONFIG_SLUB_DEBUG
2887 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2888 init_tracking(kmem_cache_node, n);
2889 #endif
2890 init_kmem_cache_node(n);
2891 inc_slabs_node(kmem_cache_node, node, page->objects);
2893 add_partial(n, page, DEACTIVATE_TO_HEAD);
2896 static void free_kmem_cache_nodes(struct kmem_cache *s)
2898 int node;
2900 for_each_node_state(node, N_NORMAL_MEMORY) {
2901 struct kmem_cache_node *n = s->node[node];
2903 if (n)
2904 kmem_cache_free(kmem_cache_node, n);
2906 s->node[node] = NULL;
2910 static int init_kmem_cache_nodes(struct kmem_cache *s)
2912 int node;
2914 for_each_node_state(node, N_NORMAL_MEMORY) {
2915 struct kmem_cache_node *n;
2917 if (slab_state == DOWN) {
2918 early_kmem_cache_node_alloc(node);
2919 continue;
2921 n = kmem_cache_alloc_node(kmem_cache_node,
2922 GFP_KERNEL, node);
2924 if (!n) {
2925 free_kmem_cache_nodes(s);
2926 return 0;
2929 s->node[node] = n;
2930 init_kmem_cache_node(n);
2932 return 1;
2935 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2937 if (min < MIN_PARTIAL)
2938 min = MIN_PARTIAL;
2939 else if (min > MAX_PARTIAL)
2940 min = MAX_PARTIAL;
2941 s->min_partial = min;
2945 * calculate_sizes() determines the order and the distribution of data within
2946 * a slab object.
2948 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2950 unsigned long flags = s->flags;
2951 unsigned long size = s->object_size;
2952 int order;
2955 * Round up object size to the next word boundary. We can only
2956 * place the free pointer at word boundaries and this determines
2957 * the possible location of the free pointer.
2959 size = ALIGN(size, sizeof(void *));
2961 #ifdef CONFIG_SLUB_DEBUG
2963 * Determine if we can poison the object itself. If the user of
2964 * the slab may touch the object after free or before allocation
2965 * then we should never poison the object itself.
2967 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2968 !s->ctor)
2969 s->flags |= __OBJECT_POISON;
2970 else
2971 s->flags &= ~__OBJECT_POISON;
2975 * If we are Redzoning then check if there is some space between the
2976 * end of the object and the free pointer. If not then add an
2977 * additional word to have some bytes to store Redzone information.
2979 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2980 size += sizeof(void *);
2981 #endif
2984 * With that we have determined the number of bytes in actual use
2985 * by the object. This is the potential offset to the free pointer.
2987 s->inuse = size;
2989 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2990 s->ctor)) {
2992 * Relocate free pointer after the object if it is not
2993 * permitted to overwrite the first word of the object on
2994 * kmem_cache_free.
2996 * This is the case if we do RCU, have a constructor or
2997 * destructor or are poisoning the objects.
2999 s->offset = size;
3000 size += sizeof(void *);
3003 #ifdef CONFIG_SLUB_DEBUG
3004 if (flags & SLAB_STORE_USER)
3006 * Need to store information about allocs and frees after
3007 * the object.
3009 size += 2 * sizeof(struct track);
3011 if (flags & SLAB_RED_ZONE)
3013 * Add some empty padding so that we can catch
3014 * overwrites from earlier objects rather than let
3015 * tracking information or the free pointer be
3016 * corrupted if a user writes before the start
3017 * of the object.
3019 size += sizeof(void *);
3020 #endif
3023 * SLUB stores one object immediately after another beginning from
3024 * offset 0. In order to align the objects we have to simply size
3025 * each object to conform to the alignment.
3027 size = ALIGN(size, s->align);
3028 s->size = size;
3029 if (forced_order >= 0)
3030 order = forced_order;
3031 else
3032 order = calculate_order(size, s->reserved);
3034 if (order < 0)
3035 return 0;
3037 s->allocflags = 0;
3038 if (order)
3039 s->allocflags |= __GFP_COMP;
3041 if (s->flags & SLAB_CACHE_DMA)
3042 s->allocflags |= GFP_DMA;
3044 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3045 s->allocflags |= __GFP_RECLAIMABLE;
3048 * Determine the number of objects per slab
3050 s->oo = oo_make(order, size, s->reserved);
3051 s->min = oo_make(get_order(size), size, s->reserved);
3052 if (oo_objects(s->oo) > oo_objects(s->max))
3053 s->max = s->oo;
3055 return !!oo_objects(s->oo);
3058 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3060 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3061 s->reserved = 0;
3063 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3064 s->reserved = sizeof(struct rcu_head);
3066 if (!calculate_sizes(s, -1))
3067 goto error;
3068 if (disable_higher_order_debug) {
3070 * Disable debugging flags that store metadata if the min slab
3071 * order increased.
3073 if (get_order(s->size) > get_order(s->object_size)) {
3074 s->flags &= ~DEBUG_METADATA_FLAGS;
3075 s->offset = 0;
3076 if (!calculate_sizes(s, -1))
3077 goto error;
3081 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3082 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3083 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3084 /* Enable fast mode */
3085 s->flags |= __CMPXCHG_DOUBLE;
3086 #endif
3089 * The larger the object size is, the more pages we want on the partial
3090 * list to avoid pounding the page allocator excessively.
3092 set_min_partial(s, ilog2(s->size) / 2);
3095 * cpu_partial determined the maximum number of objects kept in the
3096 * per cpu partial lists of a processor.
3098 * Per cpu partial lists mainly contain slabs that just have one
3099 * object freed. If they are used for allocation then they can be
3100 * filled up again with minimal effort. The slab will never hit the
3101 * per node partial lists and therefore no locking will be required.
3103 * This setting also determines
3105 * A) The number of objects from per cpu partial slabs dumped to the
3106 * per node list when we reach the limit.
3107 * B) The number of objects in cpu partial slabs to extract from the
3108 * per node list when we run out of per cpu objects. We only fetch
3109 * 50% to keep some capacity around for frees.
3111 if (!kmem_cache_has_cpu_partial(s))
3112 s->cpu_partial = 0;
3113 else if (s->size >= PAGE_SIZE)
3114 s->cpu_partial = 2;
3115 else if (s->size >= 1024)
3116 s->cpu_partial = 6;
3117 else if (s->size >= 256)
3118 s->cpu_partial = 13;
3119 else
3120 s->cpu_partial = 30;
3122 #ifdef CONFIG_NUMA
3123 s->remote_node_defrag_ratio = 1000;
3124 #endif
3125 if (!init_kmem_cache_nodes(s))
3126 goto error;
3128 if (alloc_kmem_cache_cpus(s))
3129 return 0;
3131 free_kmem_cache_nodes(s);
3132 error:
3133 if (flags & SLAB_PANIC)
3134 panic("Cannot create slab %s size=%lu realsize=%u "
3135 "order=%u offset=%u flags=%lx\n",
3136 s->name, (unsigned long)s->size, s->size,
3137 oo_order(s->oo), s->offset, flags);
3138 return -EINVAL;
3141 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3142 const char *text)
3144 #ifdef CONFIG_SLUB_DEBUG
3145 void *addr = page_address(page);
3146 void *p;
3147 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3148 sizeof(long), GFP_ATOMIC);
3149 if (!map)
3150 return;
3151 slab_err(s, page, text, s->name);
3152 slab_lock(page);
3154 get_map(s, page, map);
3155 for_each_object(p, s, addr, page->objects) {
3157 if (!test_bit(slab_index(p, s, addr), map)) {
3158 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3159 p, p - addr);
3160 print_tracking(s, p);
3163 slab_unlock(page);
3164 kfree(map);
3165 #endif
3169 * Attempt to free all partial slabs on a node.
3170 * This is called from kmem_cache_close(). We must be the last thread
3171 * using the cache and therefore we do not need to lock anymore.
3173 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3175 struct page *page, *h;
3177 list_for_each_entry_safe(page, h, &n->partial, lru) {
3178 if (!page->inuse) {
3179 remove_partial(n, page);
3180 discard_slab(s, page);
3181 } else {
3182 list_slab_objects(s, page,
3183 "Objects remaining in %s on kmem_cache_close()");
3189 * Release all resources used by a slab cache.
3191 static inline int kmem_cache_close(struct kmem_cache *s)
3193 int node;
3195 flush_all(s);
3196 /* Attempt to free all objects */
3197 for_each_node_state(node, N_NORMAL_MEMORY) {
3198 struct kmem_cache_node *n = get_node(s, node);
3200 free_partial(s, n);
3201 if (n->nr_partial || slabs_node(s, node))
3202 return 1;
3204 free_percpu(s->cpu_slab);
3205 free_kmem_cache_nodes(s);
3206 return 0;
3209 int __kmem_cache_shutdown(struct kmem_cache *s)
3211 int rc = kmem_cache_close(s);
3213 if (!rc) {
3215 * We do the same lock strategy around sysfs_slab_add, see
3216 * __kmem_cache_create. Because this is pretty much the last
3217 * operation we do and the lock will be released shortly after
3218 * that in slab_common.c, we could just move sysfs_slab_remove
3219 * to a later point in common code. We should do that when we
3220 * have a common sysfs framework for all allocators.
3222 mutex_unlock(&slab_mutex);
3223 sysfs_slab_remove(s);
3224 mutex_lock(&slab_mutex);
3227 return rc;
3230 /********************************************************************
3231 * Kmalloc subsystem
3232 *******************************************************************/
3234 static int __init setup_slub_min_order(char *str)
3236 get_option(&str, &slub_min_order);
3238 return 1;
3241 __setup("slub_min_order=", setup_slub_min_order);
3243 static int __init setup_slub_max_order(char *str)
3245 get_option(&str, &slub_max_order);
3246 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3248 return 1;
3251 __setup("slub_max_order=", setup_slub_max_order);
3253 static int __init setup_slub_min_objects(char *str)
3255 get_option(&str, &slub_min_objects);
3257 return 1;
3260 __setup("slub_min_objects=", setup_slub_min_objects);
3262 static int __init setup_slub_nomerge(char *str)
3264 slub_nomerge = 1;
3265 return 1;
3268 __setup("slub_nomerge", setup_slub_nomerge);
3270 void *__kmalloc(size_t size, gfp_t flags)
3272 struct kmem_cache *s;
3273 void *ret;
3275 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3276 return kmalloc_large(size, flags);
3278 s = kmalloc_slab(size, flags);
3280 if (unlikely(ZERO_OR_NULL_PTR(s)))
3281 return s;
3283 ret = slab_alloc(s, flags, _RET_IP_);
3285 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3287 return ret;
3289 EXPORT_SYMBOL(__kmalloc);
3291 #ifdef CONFIG_NUMA
3292 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3294 struct page *page;
3295 void *ptr = NULL;
3297 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3298 page = alloc_pages_node(node, flags, get_order(size));
3299 if (page)
3300 ptr = page_address(page);
3302 kmalloc_large_node_hook(ptr, size, flags);
3303 return ptr;
3306 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3308 struct kmem_cache *s;
3309 void *ret;
3311 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3312 ret = kmalloc_large_node(size, flags, node);
3314 trace_kmalloc_node(_RET_IP_, ret,
3315 size, PAGE_SIZE << get_order(size),
3316 flags, node);
3318 return ret;
3321 s = kmalloc_slab(size, flags);
3323 if (unlikely(ZERO_OR_NULL_PTR(s)))
3324 return s;
3326 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3328 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3330 return ret;
3332 EXPORT_SYMBOL(__kmalloc_node);
3333 #endif
3335 size_t ksize(const void *object)
3337 struct page *page;
3339 if (unlikely(object == ZERO_SIZE_PTR))
3340 return 0;
3342 page = virt_to_head_page(object);
3344 if (unlikely(!PageSlab(page))) {
3345 WARN_ON(!PageCompound(page));
3346 return PAGE_SIZE << compound_order(page);
3349 return slab_ksize(page->slab_cache);
3351 EXPORT_SYMBOL(ksize);
3353 void kfree(const void *x)
3355 struct page *page;
3356 void *object = (void *)x;
3358 trace_kfree(_RET_IP_, x);
3360 if (unlikely(ZERO_OR_NULL_PTR(x)))
3361 return;
3363 page = virt_to_head_page(x);
3364 if (unlikely(!PageSlab(page))) {
3365 BUG_ON(!PageCompound(page));
3366 kfree_hook(x);
3367 __free_memcg_kmem_pages(page, compound_order(page));
3368 return;
3370 slab_free(page->slab_cache, page, object, _RET_IP_);
3372 EXPORT_SYMBOL(kfree);
3375 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3376 * the remaining slabs by the number of items in use. The slabs with the
3377 * most items in use come first. New allocations will then fill those up
3378 * and thus they can be removed from the partial lists.
3380 * The slabs with the least items are placed last. This results in them
3381 * being allocated from last increasing the chance that the last objects
3382 * are freed in them.
3384 int kmem_cache_shrink(struct kmem_cache *s)
3386 int node;
3387 int i;
3388 struct kmem_cache_node *n;
3389 struct page *page;
3390 struct page *t;
3391 int objects = oo_objects(s->max);
3392 struct list_head *slabs_by_inuse =
3393 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3394 unsigned long flags;
3396 if (!slabs_by_inuse)
3397 return -ENOMEM;
3399 flush_all(s);
3400 for_each_node_state(node, N_NORMAL_MEMORY) {
3401 n = get_node(s, node);
3403 if (!n->nr_partial)
3404 continue;
3406 for (i = 0; i < objects; i++)
3407 INIT_LIST_HEAD(slabs_by_inuse + i);
3409 spin_lock_irqsave(&n->list_lock, flags);
3412 * Build lists indexed by the items in use in each slab.
3414 * Note that concurrent frees may occur while we hold the
3415 * list_lock. page->inuse here is the upper limit.
3417 list_for_each_entry_safe(page, t, &n->partial, lru) {
3418 list_move(&page->lru, slabs_by_inuse + page->inuse);
3419 if (!page->inuse)
3420 n->nr_partial--;
3424 * Rebuild the partial list with the slabs filled up most
3425 * first and the least used slabs at the end.
3427 for (i = objects - 1; i > 0; i--)
3428 list_splice(slabs_by_inuse + i, n->partial.prev);
3430 spin_unlock_irqrestore(&n->list_lock, flags);
3432 /* Release empty slabs */
3433 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3434 discard_slab(s, page);
3437 kfree(slabs_by_inuse);
3438 return 0;
3440 EXPORT_SYMBOL(kmem_cache_shrink);
3442 static int slab_mem_going_offline_callback(void *arg)
3444 struct kmem_cache *s;
3446 mutex_lock(&slab_mutex);
3447 list_for_each_entry(s, &slab_caches, list)
3448 kmem_cache_shrink(s);
3449 mutex_unlock(&slab_mutex);
3451 return 0;
3454 static void slab_mem_offline_callback(void *arg)
3456 struct kmem_cache_node *n;
3457 struct kmem_cache *s;
3458 struct memory_notify *marg = arg;
3459 int offline_node;
3461 offline_node = marg->status_change_nid_normal;
3464 * If the node still has available memory. we need kmem_cache_node
3465 * for it yet.
3467 if (offline_node < 0)
3468 return;
3470 mutex_lock(&slab_mutex);
3471 list_for_each_entry(s, &slab_caches, list) {
3472 n = get_node(s, offline_node);
3473 if (n) {
3475 * if n->nr_slabs > 0, slabs still exist on the node
3476 * that is going down. We were unable to free them,
3477 * and offline_pages() function shouldn't call this
3478 * callback. So, we must fail.
3480 BUG_ON(slabs_node(s, offline_node));
3482 s->node[offline_node] = NULL;
3483 kmem_cache_free(kmem_cache_node, n);
3486 mutex_unlock(&slab_mutex);
3489 static int slab_mem_going_online_callback(void *arg)
3491 struct kmem_cache_node *n;
3492 struct kmem_cache *s;
3493 struct memory_notify *marg = arg;
3494 int nid = marg->status_change_nid_normal;
3495 int ret = 0;
3498 * If the node's memory is already available, then kmem_cache_node is
3499 * already created. Nothing to do.
3501 if (nid < 0)
3502 return 0;
3505 * We are bringing a node online. No memory is available yet. We must
3506 * allocate a kmem_cache_node structure in order to bring the node
3507 * online.
3509 mutex_lock(&slab_mutex);
3510 list_for_each_entry(s, &slab_caches, list) {
3512 * XXX: kmem_cache_alloc_node will fallback to other nodes
3513 * since memory is not yet available from the node that
3514 * is brought up.
3516 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3517 if (!n) {
3518 ret = -ENOMEM;
3519 goto out;
3521 init_kmem_cache_node(n);
3522 s->node[nid] = n;
3524 out:
3525 mutex_unlock(&slab_mutex);
3526 return ret;
3529 static int slab_memory_callback(struct notifier_block *self,
3530 unsigned long action, void *arg)
3532 int ret = 0;
3534 switch (action) {
3535 case MEM_GOING_ONLINE:
3536 ret = slab_mem_going_online_callback(arg);
3537 break;
3538 case MEM_GOING_OFFLINE:
3539 ret = slab_mem_going_offline_callback(arg);
3540 break;
3541 case MEM_OFFLINE:
3542 case MEM_CANCEL_ONLINE:
3543 slab_mem_offline_callback(arg);
3544 break;
3545 case MEM_ONLINE:
3546 case MEM_CANCEL_OFFLINE:
3547 break;
3549 if (ret)
3550 ret = notifier_from_errno(ret);
3551 else
3552 ret = NOTIFY_OK;
3553 return ret;
3556 static struct notifier_block slab_memory_callback_nb = {
3557 .notifier_call = slab_memory_callback,
3558 .priority = SLAB_CALLBACK_PRI,
3561 /********************************************************************
3562 * Basic setup of slabs
3563 *******************************************************************/
3566 * Used for early kmem_cache structures that were allocated using
3567 * the page allocator. Allocate them properly then fix up the pointers
3568 * that may be pointing to the wrong kmem_cache structure.
3571 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3573 int node;
3574 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3576 memcpy(s, static_cache, kmem_cache->object_size);
3579 * This runs very early, and only the boot processor is supposed to be
3580 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3581 * IPIs around.
3583 __flush_cpu_slab(s, smp_processor_id());
3584 for_each_node_state(node, N_NORMAL_MEMORY) {
3585 struct kmem_cache_node *n = get_node(s, node);
3586 struct page *p;
3588 if (n) {
3589 list_for_each_entry(p, &n->partial, lru)
3590 p->slab_cache = s;
3592 #ifdef CONFIG_SLUB_DEBUG
3593 list_for_each_entry(p, &n->full, lru)
3594 p->slab_cache = s;
3595 #endif
3598 list_add(&s->list, &slab_caches);
3599 return s;
3602 void __init kmem_cache_init(void)
3604 static __initdata struct kmem_cache boot_kmem_cache,
3605 boot_kmem_cache_node;
3607 if (debug_guardpage_minorder())
3608 slub_max_order = 0;
3610 kmem_cache_node = &boot_kmem_cache_node;
3611 kmem_cache = &boot_kmem_cache;
3613 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3614 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3616 register_hotmemory_notifier(&slab_memory_callback_nb);
3618 /* Able to allocate the per node structures */
3619 slab_state = PARTIAL;
3621 create_boot_cache(kmem_cache, "kmem_cache",
3622 offsetof(struct kmem_cache, node) +
3623 nr_node_ids * sizeof(struct kmem_cache_node *),
3624 SLAB_HWCACHE_ALIGN);
3626 kmem_cache = bootstrap(&boot_kmem_cache);
3629 * Allocate kmem_cache_node properly from the kmem_cache slab.
3630 * kmem_cache_node is separately allocated so no need to
3631 * update any list pointers.
3633 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3635 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3636 create_kmalloc_caches(0);
3638 #ifdef CONFIG_SMP
3639 register_cpu_notifier(&slab_notifier);
3640 #endif
3642 printk(KERN_INFO
3643 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3644 " CPUs=%d, Nodes=%d\n",
3645 cache_line_size(),
3646 slub_min_order, slub_max_order, slub_min_objects,
3647 nr_cpu_ids, nr_node_ids);
3650 void __init kmem_cache_init_late(void)
3655 * Find a mergeable slab cache
3657 static int slab_unmergeable(struct kmem_cache *s)
3659 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3660 return 1;
3662 if (s->ctor)
3663 return 1;
3666 * We may have set a slab to be unmergeable during bootstrap.
3668 if (s->refcount < 0)
3669 return 1;
3671 return 0;
3674 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3675 size_t align, unsigned long flags, const char *name,
3676 void (*ctor)(void *))
3678 struct kmem_cache *s;
3680 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3681 return NULL;
3683 if (ctor)
3684 return NULL;
3686 size = ALIGN(size, sizeof(void *));
3687 align = calculate_alignment(flags, align, size);
3688 size = ALIGN(size, align);
3689 flags = kmem_cache_flags(size, flags, name, NULL);
3691 list_for_each_entry(s, &slab_caches, list) {
3692 if (slab_unmergeable(s))
3693 continue;
3695 if (size > s->size)
3696 continue;
3698 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3699 continue;
3701 * Check if alignment is compatible.
3702 * Courtesy of Adrian Drzewiecki
3704 if ((s->size & ~(align - 1)) != s->size)
3705 continue;
3707 if (s->size - size >= sizeof(void *))
3708 continue;
3710 if (!cache_match_memcg(s, memcg))
3711 continue;
3713 return s;
3715 return NULL;
3718 struct kmem_cache *
3719 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3720 size_t align, unsigned long flags, void (*ctor)(void *))
3722 struct kmem_cache *s;
3724 s = find_mergeable(memcg, size, align, flags, name, ctor);
3725 if (s) {
3726 s->refcount++;
3728 * Adjust the object sizes so that we clear
3729 * the complete object on kzalloc.
3731 s->object_size = max(s->object_size, (int)size);
3732 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3734 if (sysfs_slab_alias(s, name)) {
3735 s->refcount--;
3736 s = NULL;
3740 return s;
3743 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3745 int err;
3747 err = kmem_cache_open(s, flags);
3748 if (err)
3749 return err;
3751 /* Mutex is not taken during early boot */
3752 if (slab_state <= UP)
3753 return 0;
3755 memcg_propagate_slab_attrs(s);
3756 mutex_unlock(&slab_mutex);
3757 err = sysfs_slab_add(s);
3758 mutex_lock(&slab_mutex);
3760 if (err)
3761 kmem_cache_close(s);
3763 return err;
3766 #ifdef CONFIG_SMP
3768 * Use the cpu notifier to insure that the cpu slabs are flushed when
3769 * necessary.
3771 static int slab_cpuup_callback(struct notifier_block *nfb,
3772 unsigned long action, void *hcpu)
3774 long cpu = (long)hcpu;
3775 struct kmem_cache *s;
3776 unsigned long flags;
3778 switch (action) {
3779 case CPU_UP_CANCELED:
3780 case CPU_UP_CANCELED_FROZEN:
3781 case CPU_DEAD:
3782 case CPU_DEAD_FROZEN:
3783 mutex_lock(&slab_mutex);
3784 list_for_each_entry(s, &slab_caches, list) {
3785 local_irq_save(flags);
3786 __flush_cpu_slab(s, cpu);
3787 local_irq_restore(flags);
3789 mutex_unlock(&slab_mutex);
3790 break;
3791 default:
3792 break;
3794 return NOTIFY_OK;
3797 static struct notifier_block slab_notifier = {
3798 .notifier_call = slab_cpuup_callback
3801 #endif
3803 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3805 struct kmem_cache *s;
3806 void *ret;
3808 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3809 return kmalloc_large(size, gfpflags);
3811 s = kmalloc_slab(size, gfpflags);
3813 if (unlikely(ZERO_OR_NULL_PTR(s)))
3814 return s;
3816 ret = slab_alloc(s, gfpflags, caller);
3818 /* Honor the call site pointer we received. */
3819 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3821 return ret;
3824 #ifdef CONFIG_NUMA
3825 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3826 int node, unsigned long caller)
3828 struct kmem_cache *s;
3829 void *ret;
3831 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3832 ret = kmalloc_large_node(size, gfpflags, node);
3834 trace_kmalloc_node(caller, ret,
3835 size, PAGE_SIZE << get_order(size),
3836 gfpflags, node);
3838 return ret;
3841 s = kmalloc_slab(size, gfpflags);
3843 if (unlikely(ZERO_OR_NULL_PTR(s)))
3844 return s;
3846 ret = slab_alloc_node(s, gfpflags, node, caller);
3848 /* Honor the call site pointer we received. */
3849 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3851 return ret;
3853 #endif
3855 #ifdef CONFIG_SYSFS
3856 static int count_inuse(struct page *page)
3858 return page->inuse;
3861 static int count_total(struct page *page)
3863 return page->objects;
3865 #endif
3867 #ifdef CONFIG_SLUB_DEBUG
3868 static int validate_slab(struct kmem_cache *s, struct page *page,
3869 unsigned long *map)
3871 void *p;
3872 void *addr = page_address(page);
3874 if (!check_slab(s, page) ||
3875 !on_freelist(s, page, NULL))
3876 return 0;
3878 /* Now we know that a valid freelist exists */
3879 bitmap_zero(map, page->objects);
3881 get_map(s, page, map);
3882 for_each_object(p, s, addr, page->objects) {
3883 if (test_bit(slab_index(p, s, addr), map))
3884 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3885 return 0;
3888 for_each_object(p, s, addr, page->objects)
3889 if (!test_bit(slab_index(p, s, addr), map))
3890 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3891 return 0;
3892 return 1;
3895 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3896 unsigned long *map)
3898 slab_lock(page);
3899 validate_slab(s, page, map);
3900 slab_unlock(page);
3903 static int validate_slab_node(struct kmem_cache *s,
3904 struct kmem_cache_node *n, unsigned long *map)
3906 unsigned long count = 0;
3907 struct page *page;
3908 unsigned long flags;
3910 spin_lock_irqsave(&n->list_lock, flags);
3912 list_for_each_entry(page, &n->partial, lru) {
3913 validate_slab_slab(s, page, map);
3914 count++;
3916 if (count != n->nr_partial)
3917 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3918 "counter=%ld\n", s->name, count, n->nr_partial);
3920 if (!(s->flags & SLAB_STORE_USER))
3921 goto out;
3923 list_for_each_entry(page, &n->full, lru) {
3924 validate_slab_slab(s, page, map);
3925 count++;
3927 if (count != atomic_long_read(&n->nr_slabs))
3928 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3929 "counter=%ld\n", s->name, count,
3930 atomic_long_read(&n->nr_slabs));
3932 out:
3933 spin_unlock_irqrestore(&n->list_lock, flags);
3934 return count;
3937 static long validate_slab_cache(struct kmem_cache *s)
3939 int node;
3940 unsigned long count = 0;
3941 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3942 sizeof(unsigned long), GFP_KERNEL);
3944 if (!map)
3945 return -ENOMEM;
3947 flush_all(s);
3948 for_each_node_state(node, N_NORMAL_MEMORY) {
3949 struct kmem_cache_node *n = get_node(s, node);
3951 count += validate_slab_node(s, n, map);
3953 kfree(map);
3954 return count;
3957 * Generate lists of code addresses where slabcache objects are allocated
3958 * and freed.
3961 struct location {
3962 unsigned long count;
3963 unsigned long addr;
3964 long long sum_time;
3965 long min_time;
3966 long max_time;
3967 long min_pid;
3968 long max_pid;
3969 DECLARE_BITMAP(cpus, NR_CPUS);
3970 nodemask_t nodes;
3973 struct loc_track {
3974 unsigned long max;
3975 unsigned long count;
3976 struct location *loc;
3979 static void free_loc_track(struct loc_track *t)
3981 if (t->max)
3982 free_pages((unsigned long)t->loc,
3983 get_order(sizeof(struct location) * t->max));
3986 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3988 struct location *l;
3989 int order;
3991 order = get_order(sizeof(struct location) * max);
3993 l = (void *)__get_free_pages(flags, order);
3994 if (!l)
3995 return 0;
3997 if (t->count) {
3998 memcpy(l, t->loc, sizeof(struct location) * t->count);
3999 free_loc_track(t);
4001 t->max = max;
4002 t->loc = l;
4003 return 1;
4006 static int add_location(struct loc_track *t, struct kmem_cache *s,
4007 const struct track *track)
4009 long start, end, pos;
4010 struct location *l;
4011 unsigned long caddr;
4012 unsigned long age = jiffies - track->when;
4014 start = -1;
4015 end = t->count;
4017 for ( ; ; ) {
4018 pos = start + (end - start + 1) / 2;
4021 * There is nothing at "end". If we end up there
4022 * we need to add something to before end.
4024 if (pos == end)
4025 break;
4027 caddr = t->loc[pos].addr;
4028 if (track->addr == caddr) {
4030 l = &t->loc[pos];
4031 l->count++;
4032 if (track->when) {
4033 l->sum_time += age;
4034 if (age < l->min_time)
4035 l->min_time = age;
4036 if (age > l->max_time)
4037 l->max_time = age;
4039 if (track->pid < l->min_pid)
4040 l->min_pid = track->pid;
4041 if (track->pid > l->max_pid)
4042 l->max_pid = track->pid;
4044 cpumask_set_cpu(track->cpu,
4045 to_cpumask(l->cpus));
4047 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4048 return 1;
4051 if (track->addr < caddr)
4052 end = pos;
4053 else
4054 start = pos;
4058 * Not found. Insert new tracking element.
4060 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4061 return 0;
4063 l = t->loc + pos;
4064 if (pos < t->count)
4065 memmove(l + 1, l,
4066 (t->count - pos) * sizeof(struct location));
4067 t->count++;
4068 l->count = 1;
4069 l->addr = track->addr;
4070 l->sum_time = age;
4071 l->min_time = age;
4072 l->max_time = age;
4073 l->min_pid = track->pid;
4074 l->max_pid = track->pid;
4075 cpumask_clear(to_cpumask(l->cpus));
4076 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4077 nodes_clear(l->nodes);
4078 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4079 return 1;
4082 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4083 struct page *page, enum track_item alloc,
4084 unsigned long *map)
4086 void *addr = page_address(page);
4087 void *p;
4089 bitmap_zero(map, page->objects);
4090 get_map(s, page, map);
4092 for_each_object(p, s, addr, page->objects)
4093 if (!test_bit(slab_index(p, s, addr), map))
4094 add_location(t, s, get_track(s, p, alloc));
4097 static int list_locations(struct kmem_cache *s, char *buf,
4098 enum track_item alloc)
4100 int len = 0;
4101 unsigned long i;
4102 struct loc_track t = { 0, 0, NULL };
4103 int node;
4104 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4105 sizeof(unsigned long), GFP_KERNEL);
4107 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4108 GFP_TEMPORARY)) {
4109 kfree(map);
4110 return sprintf(buf, "Out of memory\n");
4112 /* Push back cpu slabs */
4113 flush_all(s);
4115 for_each_node_state(node, N_NORMAL_MEMORY) {
4116 struct kmem_cache_node *n = get_node(s, node);
4117 unsigned long flags;
4118 struct page *page;
4120 if (!atomic_long_read(&n->nr_slabs))
4121 continue;
4123 spin_lock_irqsave(&n->list_lock, flags);
4124 list_for_each_entry(page, &n->partial, lru)
4125 process_slab(&t, s, page, alloc, map);
4126 list_for_each_entry(page, &n->full, lru)
4127 process_slab(&t, s, page, alloc, map);
4128 spin_unlock_irqrestore(&n->list_lock, flags);
4131 for (i = 0; i < t.count; i++) {
4132 struct location *l = &t.loc[i];
4134 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4135 break;
4136 len += sprintf(buf + len, "%7ld ", l->count);
4138 if (l->addr)
4139 len += sprintf(buf + len, "%pS", (void *)l->addr);
4140 else
4141 len += sprintf(buf + len, "<not-available>");
4143 if (l->sum_time != l->min_time) {
4144 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4145 l->min_time,
4146 (long)div_u64(l->sum_time, l->count),
4147 l->max_time);
4148 } else
4149 len += sprintf(buf + len, " age=%ld",
4150 l->min_time);
4152 if (l->min_pid != l->max_pid)
4153 len += sprintf(buf + len, " pid=%ld-%ld",
4154 l->min_pid, l->max_pid);
4155 else
4156 len += sprintf(buf + len, " pid=%ld",
4157 l->min_pid);
4159 if (num_online_cpus() > 1 &&
4160 !cpumask_empty(to_cpumask(l->cpus)) &&
4161 len < PAGE_SIZE - 60) {
4162 len += sprintf(buf + len, " cpus=");
4163 len += cpulist_scnprintf(buf + len,
4164 PAGE_SIZE - len - 50,
4165 to_cpumask(l->cpus));
4168 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4169 len < PAGE_SIZE - 60) {
4170 len += sprintf(buf + len, " nodes=");
4171 len += nodelist_scnprintf(buf + len,
4172 PAGE_SIZE - len - 50,
4173 l->nodes);
4176 len += sprintf(buf + len, "\n");
4179 free_loc_track(&t);
4180 kfree(map);
4181 if (!t.count)
4182 len += sprintf(buf, "No data\n");
4183 return len;
4185 #endif
4187 #ifdef SLUB_RESILIENCY_TEST
4188 static void resiliency_test(void)
4190 u8 *p;
4192 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4194 printk(KERN_ERR "SLUB resiliency testing\n");
4195 printk(KERN_ERR "-----------------------\n");
4196 printk(KERN_ERR "A. Corruption after allocation\n");
4198 p = kzalloc(16, GFP_KERNEL);
4199 p[16] = 0x12;
4200 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4201 " 0x12->0x%p\n\n", p + 16);
4203 validate_slab_cache(kmalloc_caches[4]);
4205 /* Hmmm... The next two are dangerous */
4206 p = kzalloc(32, GFP_KERNEL);
4207 p[32 + sizeof(void *)] = 0x34;
4208 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4209 " 0x34 -> -0x%p\n", p);
4210 printk(KERN_ERR
4211 "If allocated object is overwritten then not detectable\n\n");
4213 validate_slab_cache(kmalloc_caches[5]);
4214 p = kzalloc(64, GFP_KERNEL);
4215 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4216 *p = 0x56;
4217 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4219 printk(KERN_ERR
4220 "If allocated object is overwritten then not detectable\n\n");
4221 validate_slab_cache(kmalloc_caches[6]);
4223 printk(KERN_ERR "\nB. Corruption after free\n");
4224 p = kzalloc(128, GFP_KERNEL);
4225 kfree(p);
4226 *p = 0x78;
4227 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4228 validate_slab_cache(kmalloc_caches[7]);
4230 p = kzalloc(256, GFP_KERNEL);
4231 kfree(p);
4232 p[50] = 0x9a;
4233 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4235 validate_slab_cache(kmalloc_caches[8]);
4237 p = kzalloc(512, GFP_KERNEL);
4238 kfree(p);
4239 p[512] = 0xab;
4240 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4241 validate_slab_cache(kmalloc_caches[9]);
4243 #else
4244 #ifdef CONFIG_SYSFS
4245 static void resiliency_test(void) {};
4246 #endif
4247 #endif
4249 #ifdef CONFIG_SYSFS
4250 enum slab_stat_type {
4251 SL_ALL, /* All slabs */
4252 SL_PARTIAL, /* Only partially allocated slabs */
4253 SL_CPU, /* Only slabs used for cpu caches */
4254 SL_OBJECTS, /* Determine allocated objects not slabs */
4255 SL_TOTAL /* Determine object capacity not slabs */
4258 #define SO_ALL (1 << SL_ALL)
4259 #define SO_PARTIAL (1 << SL_PARTIAL)
4260 #define SO_CPU (1 << SL_CPU)
4261 #define SO_OBJECTS (1 << SL_OBJECTS)
4262 #define SO_TOTAL (1 << SL_TOTAL)
4264 static ssize_t show_slab_objects(struct kmem_cache *s,
4265 char *buf, unsigned long flags)
4267 unsigned long total = 0;
4268 int node;
4269 int x;
4270 unsigned long *nodes;
4272 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4273 if (!nodes)
4274 return -ENOMEM;
4276 if (flags & SO_CPU) {
4277 int cpu;
4279 for_each_possible_cpu(cpu) {
4280 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4281 cpu);
4282 int node;
4283 struct page *page;
4285 page = ACCESS_ONCE(c->page);
4286 if (!page)
4287 continue;
4289 node = page_to_nid(page);
4290 if (flags & SO_TOTAL)
4291 x = page->objects;
4292 else if (flags & SO_OBJECTS)
4293 x = page->inuse;
4294 else
4295 x = 1;
4297 total += x;
4298 nodes[node] += x;
4300 page = ACCESS_ONCE(c->partial);
4301 if (page) {
4302 x = page->pobjects;
4303 total += x;
4304 nodes[node] += x;
4309 lock_memory_hotplug();
4310 #ifdef CONFIG_SLUB_DEBUG
4311 if (flags & SO_ALL) {
4312 for_each_node_state(node, N_NORMAL_MEMORY) {
4313 struct kmem_cache_node *n = get_node(s, node);
4315 if (flags & SO_TOTAL)
4316 x = atomic_long_read(&n->total_objects);
4317 else if (flags & SO_OBJECTS)
4318 x = atomic_long_read(&n->total_objects) -
4319 count_partial(n, count_free);
4320 else
4321 x = atomic_long_read(&n->nr_slabs);
4322 total += x;
4323 nodes[node] += x;
4326 } else
4327 #endif
4328 if (flags & SO_PARTIAL) {
4329 for_each_node_state(node, N_NORMAL_MEMORY) {
4330 struct kmem_cache_node *n = get_node(s, node);
4332 if (flags & SO_TOTAL)
4333 x = count_partial(n, count_total);
4334 else if (flags & SO_OBJECTS)
4335 x = count_partial(n, count_inuse);
4336 else
4337 x = n->nr_partial;
4338 total += x;
4339 nodes[node] += x;
4342 x = sprintf(buf, "%lu", total);
4343 #ifdef CONFIG_NUMA
4344 for_each_node_state(node, N_NORMAL_MEMORY)
4345 if (nodes[node])
4346 x += sprintf(buf + x, " N%d=%lu",
4347 node, nodes[node]);
4348 #endif
4349 unlock_memory_hotplug();
4350 kfree(nodes);
4351 return x + sprintf(buf + x, "\n");
4354 #ifdef CONFIG_SLUB_DEBUG
4355 static int any_slab_objects(struct kmem_cache *s)
4357 int node;
4359 for_each_online_node(node) {
4360 struct kmem_cache_node *n = get_node(s, node);
4362 if (!n)
4363 continue;
4365 if (atomic_long_read(&n->total_objects))
4366 return 1;
4368 return 0;
4370 #endif
4372 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4373 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4375 struct slab_attribute {
4376 struct attribute attr;
4377 ssize_t (*show)(struct kmem_cache *s, char *buf);
4378 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4381 #define SLAB_ATTR_RO(_name) \
4382 static struct slab_attribute _name##_attr = \
4383 __ATTR(_name, 0400, _name##_show, NULL)
4385 #define SLAB_ATTR(_name) \
4386 static struct slab_attribute _name##_attr = \
4387 __ATTR(_name, 0600, _name##_show, _name##_store)
4389 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4391 return sprintf(buf, "%d\n", s->size);
4393 SLAB_ATTR_RO(slab_size);
4395 static ssize_t align_show(struct kmem_cache *s, char *buf)
4397 return sprintf(buf, "%d\n", s->align);
4399 SLAB_ATTR_RO(align);
4401 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4403 return sprintf(buf, "%d\n", s->object_size);
4405 SLAB_ATTR_RO(object_size);
4407 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4409 return sprintf(buf, "%d\n", oo_objects(s->oo));
4411 SLAB_ATTR_RO(objs_per_slab);
4413 static ssize_t order_store(struct kmem_cache *s,
4414 const char *buf, size_t length)
4416 unsigned long order;
4417 int err;
4419 err = kstrtoul(buf, 10, &order);
4420 if (err)
4421 return err;
4423 if (order > slub_max_order || order < slub_min_order)
4424 return -EINVAL;
4426 calculate_sizes(s, order);
4427 return length;
4430 static ssize_t order_show(struct kmem_cache *s, char *buf)
4432 return sprintf(buf, "%d\n", oo_order(s->oo));
4434 SLAB_ATTR(order);
4436 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4438 return sprintf(buf, "%lu\n", s->min_partial);
4441 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4442 size_t length)
4444 unsigned long min;
4445 int err;
4447 err = kstrtoul(buf, 10, &min);
4448 if (err)
4449 return err;
4451 set_min_partial(s, min);
4452 return length;
4454 SLAB_ATTR(min_partial);
4456 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4458 return sprintf(buf, "%u\n", s->cpu_partial);
4461 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4462 size_t length)
4464 unsigned long objects;
4465 int err;
4467 err = kstrtoul(buf, 10, &objects);
4468 if (err)
4469 return err;
4470 if (objects && !kmem_cache_has_cpu_partial(s))
4471 return -EINVAL;
4473 s->cpu_partial = objects;
4474 flush_all(s);
4475 return length;
4477 SLAB_ATTR(cpu_partial);
4479 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4481 if (!s->ctor)
4482 return 0;
4483 return sprintf(buf, "%pS\n", s->ctor);
4485 SLAB_ATTR_RO(ctor);
4487 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4489 return sprintf(buf, "%d\n", s->refcount - 1);
4491 SLAB_ATTR_RO(aliases);
4493 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4495 return show_slab_objects(s, buf, SO_PARTIAL);
4497 SLAB_ATTR_RO(partial);
4499 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4501 return show_slab_objects(s, buf, SO_CPU);
4503 SLAB_ATTR_RO(cpu_slabs);
4505 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4507 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4509 SLAB_ATTR_RO(objects);
4511 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4513 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4515 SLAB_ATTR_RO(objects_partial);
4517 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4519 int objects = 0;
4520 int pages = 0;
4521 int cpu;
4522 int len;
4524 for_each_online_cpu(cpu) {
4525 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4527 if (page) {
4528 pages += page->pages;
4529 objects += page->pobjects;
4533 len = sprintf(buf, "%d(%d)", objects, pages);
4535 #ifdef CONFIG_SMP
4536 for_each_online_cpu(cpu) {
4537 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4539 if (page && len < PAGE_SIZE - 20)
4540 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4541 page->pobjects, page->pages);
4543 #endif
4544 return len + sprintf(buf + len, "\n");
4546 SLAB_ATTR_RO(slabs_cpu_partial);
4548 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4550 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4553 static ssize_t reclaim_account_store(struct kmem_cache *s,
4554 const char *buf, size_t length)
4556 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4557 if (buf[0] == '1')
4558 s->flags |= SLAB_RECLAIM_ACCOUNT;
4559 return length;
4561 SLAB_ATTR(reclaim_account);
4563 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4565 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4567 SLAB_ATTR_RO(hwcache_align);
4569 #ifdef CONFIG_ZONE_DMA
4570 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4572 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4574 SLAB_ATTR_RO(cache_dma);
4575 #endif
4577 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4579 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4581 SLAB_ATTR_RO(destroy_by_rcu);
4583 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4585 return sprintf(buf, "%d\n", s->reserved);
4587 SLAB_ATTR_RO(reserved);
4589 #ifdef CONFIG_SLUB_DEBUG
4590 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4592 return show_slab_objects(s, buf, SO_ALL);
4594 SLAB_ATTR_RO(slabs);
4596 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4598 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4600 SLAB_ATTR_RO(total_objects);
4602 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4604 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4607 static ssize_t sanity_checks_store(struct kmem_cache *s,
4608 const char *buf, size_t length)
4610 s->flags &= ~SLAB_DEBUG_FREE;
4611 if (buf[0] == '1') {
4612 s->flags &= ~__CMPXCHG_DOUBLE;
4613 s->flags |= SLAB_DEBUG_FREE;
4615 return length;
4617 SLAB_ATTR(sanity_checks);
4619 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4621 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4624 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4625 size_t length)
4627 s->flags &= ~SLAB_TRACE;
4628 if (buf[0] == '1') {
4629 s->flags &= ~__CMPXCHG_DOUBLE;
4630 s->flags |= SLAB_TRACE;
4632 return length;
4634 SLAB_ATTR(trace);
4636 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4638 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4641 static ssize_t red_zone_store(struct kmem_cache *s,
4642 const char *buf, size_t length)
4644 if (any_slab_objects(s))
4645 return -EBUSY;
4647 s->flags &= ~SLAB_RED_ZONE;
4648 if (buf[0] == '1') {
4649 s->flags &= ~__CMPXCHG_DOUBLE;
4650 s->flags |= SLAB_RED_ZONE;
4652 calculate_sizes(s, -1);
4653 return length;
4655 SLAB_ATTR(red_zone);
4657 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4662 static ssize_t poison_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4665 if (any_slab_objects(s))
4666 return -EBUSY;
4668 s->flags &= ~SLAB_POISON;
4669 if (buf[0] == '1') {
4670 s->flags &= ~__CMPXCHG_DOUBLE;
4671 s->flags |= SLAB_POISON;
4673 calculate_sizes(s, -1);
4674 return length;
4676 SLAB_ATTR(poison);
4678 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4683 static ssize_t store_user_store(struct kmem_cache *s,
4684 const char *buf, size_t length)
4686 if (any_slab_objects(s))
4687 return -EBUSY;
4689 s->flags &= ~SLAB_STORE_USER;
4690 if (buf[0] == '1') {
4691 s->flags &= ~__CMPXCHG_DOUBLE;
4692 s->flags |= SLAB_STORE_USER;
4694 calculate_sizes(s, -1);
4695 return length;
4697 SLAB_ATTR(store_user);
4699 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4701 return 0;
4704 static ssize_t validate_store(struct kmem_cache *s,
4705 const char *buf, size_t length)
4707 int ret = -EINVAL;
4709 if (buf[0] == '1') {
4710 ret = validate_slab_cache(s);
4711 if (ret >= 0)
4712 ret = length;
4714 return ret;
4716 SLAB_ATTR(validate);
4718 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4720 if (!(s->flags & SLAB_STORE_USER))
4721 return -ENOSYS;
4722 return list_locations(s, buf, TRACK_ALLOC);
4724 SLAB_ATTR_RO(alloc_calls);
4726 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4728 if (!(s->flags & SLAB_STORE_USER))
4729 return -ENOSYS;
4730 return list_locations(s, buf, TRACK_FREE);
4732 SLAB_ATTR_RO(free_calls);
4733 #endif /* CONFIG_SLUB_DEBUG */
4735 #ifdef CONFIG_FAILSLAB
4736 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4738 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4741 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4742 size_t length)
4744 s->flags &= ~SLAB_FAILSLAB;
4745 if (buf[0] == '1')
4746 s->flags |= SLAB_FAILSLAB;
4747 return length;
4749 SLAB_ATTR(failslab);
4750 #endif
4752 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4754 return 0;
4757 static ssize_t shrink_store(struct kmem_cache *s,
4758 const char *buf, size_t length)
4760 if (buf[0] == '1') {
4761 int rc = kmem_cache_shrink(s);
4763 if (rc)
4764 return rc;
4765 } else
4766 return -EINVAL;
4767 return length;
4769 SLAB_ATTR(shrink);
4771 #ifdef CONFIG_NUMA
4772 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4774 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4777 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4778 const char *buf, size_t length)
4780 unsigned long ratio;
4781 int err;
4783 err = kstrtoul(buf, 10, &ratio);
4784 if (err)
4785 return err;
4787 if (ratio <= 100)
4788 s->remote_node_defrag_ratio = ratio * 10;
4790 return length;
4792 SLAB_ATTR(remote_node_defrag_ratio);
4793 #endif
4795 #ifdef CONFIG_SLUB_STATS
4796 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4798 unsigned long sum = 0;
4799 int cpu;
4800 int len;
4801 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4803 if (!data)
4804 return -ENOMEM;
4806 for_each_online_cpu(cpu) {
4807 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4809 data[cpu] = x;
4810 sum += x;
4813 len = sprintf(buf, "%lu", sum);
4815 #ifdef CONFIG_SMP
4816 for_each_online_cpu(cpu) {
4817 if (data[cpu] && len < PAGE_SIZE - 20)
4818 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4820 #endif
4821 kfree(data);
4822 return len + sprintf(buf + len, "\n");
4825 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4827 int cpu;
4829 for_each_online_cpu(cpu)
4830 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4833 #define STAT_ATTR(si, text) \
4834 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4836 return show_stat(s, buf, si); \
4838 static ssize_t text##_store(struct kmem_cache *s, \
4839 const char *buf, size_t length) \
4841 if (buf[0] != '0') \
4842 return -EINVAL; \
4843 clear_stat(s, si); \
4844 return length; \
4846 SLAB_ATTR(text); \
4848 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4849 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4850 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4851 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4852 STAT_ATTR(FREE_FROZEN, free_frozen);
4853 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4854 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4855 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4856 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4857 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4858 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4859 STAT_ATTR(FREE_SLAB, free_slab);
4860 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4861 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4862 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4863 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4864 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4865 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4866 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4867 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4868 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4869 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4870 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4871 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4872 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4873 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4874 #endif
4876 static struct attribute *slab_attrs[] = {
4877 &slab_size_attr.attr,
4878 &object_size_attr.attr,
4879 &objs_per_slab_attr.attr,
4880 &order_attr.attr,
4881 &min_partial_attr.attr,
4882 &cpu_partial_attr.attr,
4883 &objects_attr.attr,
4884 &objects_partial_attr.attr,
4885 &partial_attr.attr,
4886 &cpu_slabs_attr.attr,
4887 &ctor_attr.attr,
4888 &aliases_attr.attr,
4889 &align_attr.attr,
4890 &hwcache_align_attr.attr,
4891 &reclaim_account_attr.attr,
4892 &destroy_by_rcu_attr.attr,
4893 &shrink_attr.attr,
4894 &reserved_attr.attr,
4895 &slabs_cpu_partial_attr.attr,
4896 #ifdef CONFIG_SLUB_DEBUG
4897 &total_objects_attr.attr,
4898 &slabs_attr.attr,
4899 &sanity_checks_attr.attr,
4900 &trace_attr.attr,
4901 &red_zone_attr.attr,
4902 &poison_attr.attr,
4903 &store_user_attr.attr,
4904 &validate_attr.attr,
4905 &alloc_calls_attr.attr,
4906 &free_calls_attr.attr,
4907 #endif
4908 #ifdef CONFIG_ZONE_DMA
4909 &cache_dma_attr.attr,
4910 #endif
4911 #ifdef CONFIG_NUMA
4912 &remote_node_defrag_ratio_attr.attr,
4913 #endif
4914 #ifdef CONFIG_SLUB_STATS
4915 &alloc_fastpath_attr.attr,
4916 &alloc_slowpath_attr.attr,
4917 &free_fastpath_attr.attr,
4918 &free_slowpath_attr.attr,
4919 &free_frozen_attr.attr,
4920 &free_add_partial_attr.attr,
4921 &free_remove_partial_attr.attr,
4922 &alloc_from_partial_attr.attr,
4923 &alloc_slab_attr.attr,
4924 &alloc_refill_attr.attr,
4925 &alloc_node_mismatch_attr.attr,
4926 &free_slab_attr.attr,
4927 &cpuslab_flush_attr.attr,
4928 &deactivate_full_attr.attr,
4929 &deactivate_empty_attr.attr,
4930 &deactivate_to_head_attr.attr,
4931 &deactivate_to_tail_attr.attr,
4932 &deactivate_remote_frees_attr.attr,
4933 &deactivate_bypass_attr.attr,
4934 &order_fallback_attr.attr,
4935 &cmpxchg_double_fail_attr.attr,
4936 &cmpxchg_double_cpu_fail_attr.attr,
4937 &cpu_partial_alloc_attr.attr,
4938 &cpu_partial_free_attr.attr,
4939 &cpu_partial_node_attr.attr,
4940 &cpu_partial_drain_attr.attr,
4941 #endif
4942 #ifdef CONFIG_FAILSLAB
4943 &failslab_attr.attr,
4944 #endif
4946 NULL
4949 static struct attribute_group slab_attr_group = {
4950 .attrs = slab_attrs,
4953 static ssize_t slab_attr_show(struct kobject *kobj,
4954 struct attribute *attr,
4955 char *buf)
4957 struct slab_attribute *attribute;
4958 struct kmem_cache *s;
4959 int err;
4961 attribute = to_slab_attr(attr);
4962 s = to_slab(kobj);
4964 if (!attribute->show)
4965 return -EIO;
4967 err = attribute->show(s, buf);
4969 return err;
4972 static ssize_t slab_attr_store(struct kobject *kobj,
4973 struct attribute *attr,
4974 const char *buf, size_t len)
4976 struct slab_attribute *attribute;
4977 struct kmem_cache *s;
4978 int err;
4980 attribute = to_slab_attr(attr);
4981 s = to_slab(kobj);
4983 if (!attribute->store)
4984 return -EIO;
4986 err = attribute->store(s, buf, len);
4987 #ifdef CONFIG_MEMCG_KMEM
4988 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4989 int i;
4991 mutex_lock(&slab_mutex);
4992 if (s->max_attr_size < len)
4993 s->max_attr_size = len;
4996 * This is a best effort propagation, so this function's return
4997 * value will be determined by the parent cache only. This is
4998 * basically because not all attributes will have a well
4999 * defined semantics for rollbacks - most of the actions will
5000 * have permanent effects.
5002 * Returning the error value of any of the children that fail
5003 * is not 100 % defined, in the sense that users seeing the
5004 * error code won't be able to know anything about the state of
5005 * the cache.
5007 * Only returning the error code for the parent cache at least
5008 * has well defined semantics. The cache being written to
5009 * directly either failed or succeeded, in which case we loop
5010 * through the descendants with best-effort propagation.
5012 for_each_memcg_cache_index(i) {
5013 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5014 if (c)
5015 attribute->store(c, buf, len);
5017 mutex_unlock(&slab_mutex);
5019 #endif
5020 return err;
5023 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5025 #ifdef CONFIG_MEMCG_KMEM
5026 int i;
5027 char *buffer = NULL;
5029 if (!is_root_cache(s))
5030 return;
5033 * This mean this cache had no attribute written. Therefore, no point
5034 * in copying default values around
5036 if (!s->max_attr_size)
5037 return;
5039 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5040 char mbuf[64];
5041 char *buf;
5042 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5044 if (!attr || !attr->store || !attr->show)
5045 continue;
5048 * It is really bad that we have to allocate here, so we will
5049 * do it only as a fallback. If we actually allocate, though,
5050 * we can just use the allocated buffer until the end.
5052 * Most of the slub attributes will tend to be very small in
5053 * size, but sysfs allows buffers up to a page, so they can
5054 * theoretically happen.
5056 if (buffer)
5057 buf = buffer;
5058 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5059 buf = mbuf;
5060 else {
5061 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5062 if (WARN_ON(!buffer))
5063 continue;
5064 buf = buffer;
5067 attr->show(s->memcg_params->root_cache, buf);
5068 attr->store(s, buf, strlen(buf));
5071 if (buffer)
5072 free_page((unsigned long)buffer);
5073 #endif
5076 static const struct sysfs_ops slab_sysfs_ops = {
5077 .show = slab_attr_show,
5078 .store = slab_attr_store,
5081 static struct kobj_type slab_ktype = {
5082 .sysfs_ops = &slab_sysfs_ops,
5085 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5087 struct kobj_type *ktype = get_ktype(kobj);
5089 if (ktype == &slab_ktype)
5090 return 1;
5091 return 0;
5094 static const struct kset_uevent_ops slab_uevent_ops = {
5095 .filter = uevent_filter,
5098 static struct kset *slab_kset;
5100 #define ID_STR_LENGTH 64
5102 /* Create a unique string id for a slab cache:
5104 * Format :[flags-]size
5106 static char *create_unique_id(struct kmem_cache *s)
5108 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5109 char *p = name;
5111 BUG_ON(!name);
5113 *p++ = ':';
5115 * First flags affecting slabcache operations. We will only
5116 * get here for aliasable slabs so we do not need to support
5117 * too many flags. The flags here must cover all flags that
5118 * are matched during merging to guarantee that the id is
5119 * unique.
5121 if (s->flags & SLAB_CACHE_DMA)
5122 *p++ = 'd';
5123 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5124 *p++ = 'a';
5125 if (s->flags & SLAB_DEBUG_FREE)
5126 *p++ = 'F';
5127 if (!(s->flags & SLAB_NOTRACK))
5128 *p++ = 't';
5129 if (p != name + 1)
5130 *p++ = '-';
5131 p += sprintf(p, "%07d", s->size);
5133 #ifdef CONFIG_MEMCG_KMEM
5134 if (!is_root_cache(s))
5135 p += sprintf(p, "-%08d",
5136 memcg_cache_id(s->memcg_params->memcg));
5137 #endif
5139 BUG_ON(p > name + ID_STR_LENGTH - 1);
5140 return name;
5143 static int sysfs_slab_add(struct kmem_cache *s)
5145 int err;
5146 const char *name;
5147 int unmergeable = slab_unmergeable(s);
5149 if (unmergeable) {
5151 * Slabcache can never be merged so we can use the name proper.
5152 * This is typically the case for debug situations. In that
5153 * case we can catch duplicate names easily.
5155 sysfs_remove_link(&slab_kset->kobj, s->name);
5156 name = s->name;
5157 } else {
5159 * Create a unique name for the slab as a target
5160 * for the symlinks.
5162 name = create_unique_id(s);
5165 s->kobj.kset = slab_kset;
5166 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5167 if (err) {
5168 kobject_put(&s->kobj);
5169 return err;
5172 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5173 if (err) {
5174 kobject_del(&s->kobj);
5175 kobject_put(&s->kobj);
5176 return err;
5178 kobject_uevent(&s->kobj, KOBJ_ADD);
5179 if (!unmergeable) {
5180 /* Setup first alias */
5181 sysfs_slab_alias(s, s->name);
5182 kfree(name);
5184 return 0;
5187 static void sysfs_slab_remove(struct kmem_cache *s)
5189 if (slab_state < FULL)
5191 * Sysfs has not been setup yet so no need to remove the
5192 * cache from sysfs.
5194 return;
5196 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5197 kobject_del(&s->kobj);
5198 kobject_put(&s->kobj);
5202 * Need to buffer aliases during bootup until sysfs becomes
5203 * available lest we lose that information.
5205 struct saved_alias {
5206 struct kmem_cache *s;
5207 const char *name;
5208 struct saved_alias *next;
5211 static struct saved_alias *alias_list;
5213 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5215 struct saved_alias *al;
5217 if (slab_state == FULL) {
5219 * If we have a leftover link then remove it.
5221 sysfs_remove_link(&slab_kset->kobj, name);
5222 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5225 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5226 if (!al)
5227 return -ENOMEM;
5229 al->s = s;
5230 al->name = name;
5231 al->next = alias_list;
5232 alias_list = al;
5233 return 0;
5236 static int __init slab_sysfs_init(void)
5238 struct kmem_cache *s;
5239 int err;
5241 mutex_lock(&slab_mutex);
5243 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5244 if (!slab_kset) {
5245 mutex_unlock(&slab_mutex);
5246 printk(KERN_ERR "Cannot register slab subsystem.\n");
5247 return -ENOSYS;
5250 slab_state = FULL;
5252 list_for_each_entry(s, &slab_caches, list) {
5253 err = sysfs_slab_add(s);
5254 if (err)
5255 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5256 " to sysfs\n", s->name);
5259 while (alias_list) {
5260 struct saved_alias *al = alias_list;
5262 alias_list = alias_list->next;
5263 err = sysfs_slab_alias(al->s, al->name);
5264 if (err)
5265 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5266 " %s to sysfs\n", al->name);
5267 kfree(al);
5270 mutex_unlock(&slab_mutex);
5271 resiliency_test();
5272 return 0;
5275 __initcall(slab_sysfs_init);
5276 #endif /* CONFIG_SYSFS */
5279 * The /proc/slabinfo ABI
5281 #ifdef CONFIG_SLABINFO
5282 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5284 unsigned long nr_slabs = 0;
5285 unsigned long nr_objs = 0;
5286 unsigned long nr_free = 0;
5287 int node;
5289 for_each_online_node(node) {
5290 struct kmem_cache_node *n = get_node(s, node);
5292 if (!n)
5293 continue;
5295 nr_slabs += node_nr_slabs(n);
5296 nr_objs += node_nr_objs(n);
5297 nr_free += count_partial(n, count_free);
5300 sinfo->active_objs = nr_objs - nr_free;
5301 sinfo->num_objs = nr_objs;
5302 sinfo->active_slabs = nr_slabs;
5303 sinfo->num_slabs = nr_slabs;
5304 sinfo->objects_per_slab = oo_objects(s->oo);
5305 sinfo->cache_order = oo_order(s->oo);
5308 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5312 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5313 size_t count, loff_t *ppos)
5315 return -EIO;
5317 #endif /* CONFIG_SLABINFO */