KVM: VMX: Prepare an identity page table for EPT in real mode
[linux-2.6.git] / arch / x86 / kvm / vmx.c
blobde5f6150f2f743ad935abce2744bd722f5e4147a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
30 #include <asm/io.h>
31 #include <asm/desc.h>
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
36 static int bypass_guest_pf = 1;
37 module_param(bypass_guest_pf, bool, 0);
39 static int enable_vpid = 1;
40 module_param(enable_vpid, bool, 0);
42 static int flexpriority_enabled = 1;
43 module_param(flexpriority_enabled, bool, 0);
45 static int enable_ept;
46 module_param(enable_ept, bool, 0);
48 struct vmcs {
49 u32 revision_id;
50 u32 abort;
51 char data[0];
54 struct vcpu_vmx {
55 struct kvm_vcpu vcpu;
56 int launched;
57 u8 fail;
58 u32 idt_vectoring_info;
59 struct kvm_msr_entry *guest_msrs;
60 struct kvm_msr_entry *host_msrs;
61 int nmsrs;
62 int save_nmsrs;
63 int msr_offset_efer;
64 #ifdef CONFIG_X86_64
65 int msr_offset_kernel_gs_base;
66 #endif
67 struct vmcs *vmcs;
68 struct {
69 int loaded;
70 u16 fs_sel, gs_sel, ldt_sel;
71 int gs_ldt_reload_needed;
72 int fs_reload_needed;
73 int guest_efer_loaded;
74 } host_state;
75 struct {
76 struct {
77 bool pending;
78 u8 vector;
79 unsigned rip;
80 } irq;
81 } rmode;
82 int vpid;
85 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
87 return container_of(vcpu, struct vcpu_vmx, vcpu);
90 static int init_rmode(struct kvm *kvm);
92 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
93 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
95 static struct page *vmx_io_bitmap_a;
96 static struct page *vmx_io_bitmap_b;
97 static struct page *vmx_msr_bitmap;
99 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
100 static DEFINE_SPINLOCK(vmx_vpid_lock);
102 static struct vmcs_config {
103 int size;
104 int order;
105 u32 revision_id;
106 u32 pin_based_exec_ctrl;
107 u32 cpu_based_exec_ctrl;
108 u32 cpu_based_2nd_exec_ctrl;
109 u32 vmexit_ctrl;
110 u32 vmentry_ctrl;
111 } vmcs_config;
113 struct vmx_capability {
114 u32 ept;
115 u32 vpid;
116 } vmx_capability;
118 #define VMX_SEGMENT_FIELD(seg) \
119 [VCPU_SREG_##seg] = { \
120 .selector = GUEST_##seg##_SELECTOR, \
121 .base = GUEST_##seg##_BASE, \
122 .limit = GUEST_##seg##_LIMIT, \
123 .ar_bytes = GUEST_##seg##_AR_BYTES, \
126 static struct kvm_vmx_segment_field {
127 unsigned selector;
128 unsigned base;
129 unsigned limit;
130 unsigned ar_bytes;
131 } kvm_vmx_segment_fields[] = {
132 VMX_SEGMENT_FIELD(CS),
133 VMX_SEGMENT_FIELD(DS),
134 VMX_SEGMENT_FIELD(ES),
135 VMX_SEGMENT_FIELD(FS),
136 VMX_SEGMENT_FIELD(GS),
137 VMX_SEGMENT_FIELD(SS),
138 VMX_SEGMENT_FIELD(TR),
139 VMX_SEGMENT_FIELD(LDTR),
143 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
144 * away by decrementing the array size.
146 static const u32 vmx_msr_index[] = {
147 #ifdef CONFIG_X86_64
148 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
149 #endif
150 MSR_EFER, MSR_K6_STAR,
152 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
154 static void load_msrs(struct kvm_msr_entry *e, int n)
156 int i;
158 for (i = 0; i < n; ++i)
159 wrmsrl(e[i].index, e[i].data);
162 static void save_msrs(struct kvm_msr_entry *e, int n)
164 int i;
166 for (i = 0; i < n; ++i)
167 rdmsrl(e[i].index, e[i].data);
170 static inline int is_page_fault(u32 intr_info)
172 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
173 INTR_INFO_VALID_MASK)) ==
174 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
177 static inline int is_no_device(u32 intr_info)
179 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
180 INTR_INFO_VALID_MASK)) ==
181 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
184 static inline int is_invalid_opcode(u32 intr_info)
186 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
187 INTR_INFO_VALID_MASK)) ==
188 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
191 static inline int is_external_interrupt(u32 intr_info)
193 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
194 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
197 static inline int cpu_has_vmx_msr_bitmap(void)
199 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
202 static inline int cpu_has_vmx_tpr_shadow(void)
204 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
207 static inline int vm_need_tpr_shadow(struct kvm *kvm)
209 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
212 static inline int cpu_has_secondary_exec_ctrls(void)
214 return (vmcs_config.cpu_based_exec_ctrl &
215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
218 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
220 return flexpriority_enabled
221 && (vmcs_config.cpu_based_2nd_exec_ctrl &
222 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
225 static inline int cpu_has_vmx_invept_individual_addr(void)
227 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
230 static inline int cpu_has_vmx_invept_context(void)
232 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
235 static inline int cpu_has_vmx_invept_global(void)
237 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
240 static inline int cpu_has_vmx_ept(void)
242 return (vmcs_config.cpu_based_2nd_exec_ctrl &
243 SECONDARY_EXEC_ENABLE_EPT);
246 static inline int vm_need_ept(void)
248 return (cpu_has_vmx_ept() && enable_ept);
251 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
253 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
254 (irqchip_in_kernel(kvm)));
257 static inline int cpu_has_vmx_vpid(void)
259 return (vmcs_config.cpu_based_2nd_exec_ctrl &
260 SECONDARY_EXEC_ENABLE_VPID);
263 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
265 int i;
267 for (i = 0; i < vmx->nmsrs; ++i)
268 if (vmx->guest_msrs[i].index == msr)
269 return i;
270 return -1;
273 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
275 struct {
276 u64 vpid : 16;
277 u64 rsvd : 48;
278 u64 gva;
279 } operand = { vpid, 0, gva };
281 asm volatile (ASM_VMX_INVVPID
282 /* CF==1 or ZF==1 --> rc = -1 */
283 "; ja 1f ; ud2 ; 1:"
284 : : "a"(&operand), "c"(ext) : "cc", "memory");
287 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
289 int i;
291 i = __find_msr_index(vmx, msr);
292 if (i >= 0)
293 return &vmx->guest_msrs[i];
294 return NULL;
297 static void vmcs_clear(struct vmcs *vmcs)
299 u64 phys_addr = __pa(vmcs);
300 u8 error;
302 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
303 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
304 : "cc", "memory");
305 if (error)
306 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
307 vmcs, phys_addr);
310 static void __vcpu_clear(void *arg)
312 struct vcpu_vmx *vmx = arg;
313 int cpu = raw_smp_processor_id();
315 if (vmx->vcpu.cpu == cpu)
316 vmcs_clear(vmx->vmcs);
317 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
318 per_cpu(current_vmcs, cpu) = NULL;
319 rdtscll(vmx->vcpu.arch.host_tsc);
322 static void vcpu_clear(struct vcpu_vmx *vmx)
324 if (vmx->vcpu.cpu == -1)
325 return;
326 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
327 vmx->launched = 0;
330 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
332 if (vmx->vpid == 0)
333 return;
335 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
338 static unsigned long vmcs_readl(unsigned long field)
340 unsigned long value;
342 asm volatile (ASM_VMX_VMREAD_RDX_RAX
343 : "=a"(value) : "d"(field) : "cc");
344 return value;
347 static u16 vmcs_read16(unsigned long field)
349 return vmcs_readl(field);
352 static u32 vmcs_read32(unsigned long field)
354 return vmcs_readl(field);
357 static u64 vmcs_read64(unsigned long field)
359 #ifdef CONFIG_X86_64
360 return vmcs_readl(field);
361 #else
362 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
363 #endif
366 static noinline void vmwrite_error(unsigned long field, unsigned long value)
368 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
369 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
370 dump_stack();
373 static void vmcs_writel(unsigned long field, unsigned long value)
375 u8 error;
377 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
378 : "=q"(error) : "a"(value), "d"(field) : "cc");
379 if (unlikely(error))
380 vmwrite_error(field, value);
383 static void vmcs_write16(unsigned long field, u16 value)
385 vmcs_writel(field, value);
388 static void vmcs_write32(unsigned long field, u32 value)
390 vmcs_writel(field, value);
393 static void vmcs_write64(unsigned long field, u64 value)
395 #ifdef CONFIG_X86_64
396 vmcs_writel(field, value);
397 #else
398 vmcs_writel(field, value);
399 asm volatile ("");
400 vmcs_writel(field+1, value >> 32);
401 #endif
404 static void vmcs_clear_bits(unsigned long field, u32 mask)
406 vmcs_writel(field, vmcs_readl(field) & ~mask);
409 static void vmcs_set_bits(unsigned long field, u32 mask)
411 vmcs_writel(field, vmcs_readl(field) | mask);
414 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
416 u32 eb;
418 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
419 if (!vcpu->fpu_active)
420 eb |= 1u << NM_VECTOR;
421 if (vcpu->guest_debug.enabled)
422 eb |= 1u << 1;
423 if (vcpu->arch.rmode.active)
424 eb = ~0;
425 vmcs_write32(EXCEPTION_BITMAP, eb);
428 static void reload_tss(void)
431 * VT restores TR but not its size. Useless.
433 struct descriptor_table gdt;
434 struct desc_struct *descs;
436 get_gdt(&gdt);
437 descs = (void *)gdt.base;
438 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
439 load_TR_desc();
442 static void load_transition_efer(struct vcpu_vmx *vmx)
444 int efer_offset = vmx->msr_offset_efer;
445 u64 host_efer = vmx->host_msrs[efer_offset].data;
446 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
447 u64 ignore_bits;
449 if (efer_offset < 0)
450 return;
452 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
453 * outside long mode
455 ignore_bits = EFER_NX | EFER_SCE;
456 #ifdef CONFIG_X86_64
457 ignore_bits |= EFER_LMA | EFER_LME;
458 /* SCE is meaningful only in long mode on Intel */
459 if (guest_efer & EFER_LMA)
460 ignore_bits &= ~(u64)EFER_SCE;
461 #endif
462 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
463 return;
465 vmx->host_state.guest_efer_loaded = 1;
466 guest_efer &= ~ignore_bits;
467 guest_efer |= host_efer & ignore_bits;
468 wrmsrl(MSR_EFER, guest_efer);
469 vmx->vcpu.stat.efer_reload++;
472 static void reload_host_efer(struct vcpu_vmx *vmx)
474 if (vmx->host_state.guest_efer_loaded) {
475 vmx->host_state.guest_efer_loaded = 0;
476 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
480 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
482 struct vcpu_vmx *vmx = to_vmx(vcpu);
484 if (vmx->host_state.loaded)
485 return;
487 vmx->host_state.loaded = 1;
489 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
490 * allow segment selectors with cpl > 0 or ti == 1.
492 vmx->host_state.ldt_sel = read_ldt();
493 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
494 vmx->host_state.fs_sel = read_fs();
495 if (!(vmx->host_state.fs_sel & 7)) {
496 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
497 vmx->host_state.fs_reload_needed = 0;
498 } else {
499 vmcs_write16(HOST_FS_SELECTOR, 0);
500 vmx->host_state.fs_reload_needed = 1;
502 vmx->host_state.gs_sel = read_gs();
503 if (!(vmx->host_state.gs_sel & 7))
504 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
505 else {
506 vmcs_write16(HOST_GS_SELECTOR, 0);
507 vmx->host_state.gs_ldt_reload_needed = 1;
510 #ifdef CONFIG_X86_64
511 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
512 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
513 #else
514 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
515 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
516 #endif
518 #ifdef CONFIG_X86_64
519 if (is_long_mode(&vmx->vcpu))
520 save_msrs(vmx->host_msrs +
521 vmx->msr_offset_kernel_gs_base, 1);
523 #endif
524 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
525 load_transition_efer(vmx);
528 static void vmx_load_host_state(struct vcpu_vmx *vmx)
530 unsigned long flags;
532 if (!vmx->host_state.loaded)
533 return;
535 ++vmx->vcpu.stat.host_state_reload;
536 vmx->host_state.loaded = 0;
537 if (vmx->host_state.fs_reload_needed)
538 load_fs(vmx->host_state.fs_sel);
539 if (vmx->host_state.gs_ldt_reload_needed) {
540 load_ldt(vmx->host_state.ldt_sel);
542 * If we have to reload gs, we must take care to
543 * preserve our gs base.
545 local_irq_save(flags);
546 load_gs(vmx->host_state.gs_sel);
547 #ifdef CONFIG_X86_64
548 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
549 #endif
550 local_irq_restore(flags);
552 reload_tss();
553 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
554 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
555 reload_host_efer(vmx);
559 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
560 * vcpu mutex is already taken.
562 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
564 struct vcpu_vmx *vmx = to_vmx(vcpu);
565 u64 phys_addr = __pa(vmx->vmcs);
566 u64 tsc_this, delta, new_offset;
568 if (vcpu->cpu != cpu) {
569 vcpu_clear(vmx);
570 kvm_migrate_apic_timer(vcpu);
571 vpid_sync_vcpu_all(vmx);
574 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
575 u8 error;
577 per_cpu(current_vmcs, cpu) = vmx->vmcs;
578 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
579 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
580 : "cc");
581 if (error)
582 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
583 vmx->vmcs, phys_addr);
586 if (vcpu->cpu != cpu) {
587 struct descriptor_table dt;
588 unsigned long sysenter_esp;
590 vcpu->cpu = cpu;
592 * Linux uses per-cpu TSS and GDT, so set these when switching
593 * processors.
595 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
596 get_gdt(&dt);
597 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
599 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
600 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
603 * Make sure the time stamp counter is monotonous.
605 rdtscll(tsc_this);
606 if (tsc_this < vcpu->arch.host_tsc) {
607 delta = vcpu->arch.host_tsc - tsc_this;
608 new_offset = vmcs_read64(TSC_OFFSET) + delta;
609 vmcs_write64(TSC_OFFSET, new_offset);
614 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
616 vmx_load_host_state(to_vmx(vcpu));
619 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
621 if (vcpu->fpu_active)
622 return;
623 vcpu->fpu_active = 1;
624 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
625 if (vcpu->arch.cr0 & X86_CR0_TS)
626 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
627 update_exception_bitmap(vcpu);
630 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
632 if (!vcpu->fpu_active)
633 return;
634 vcpu->fpu_active = 0;
635 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
636 update_exception_bitmap(vcpu);
639 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
641 vcpu_clear(to_vmx(vcpu));
644 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
646 return vmcs_readl(GUEST_RFLAGS);
649 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
651 if (vcpu->arch.rmode.active)
652 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
653 vmcs_writel(GUEST_RFLAGS, rflags);
656 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
658 unsigned long rip;
659 u32 interruptibility;
661 rip = vmcs_readl(GUEST_RIP);
662 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
663 vmcs_writel(GUEST_RIP, rip);
666 * We emulated an instruction, so temporary interrupt blocking
667 * should be removed, if set.
669 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
670 if (interruptibility & 3)
671 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
672 interruptibility & ~3);
673 vcpu->arch.interrupt_window_open = 1;
676 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
677 bool has_error_code, u32 error_code)
679 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
680 nr | INTR_TYPE_EXCEPTION
681 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
682 | INTR_INFO_VALID_MASK);
683 if (has_error_code)
684 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
687 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
689 struct vcpu_vmx *vmx = to_vmx(vcpu);
691 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
695 * Swap MSR entry in host/guest MSR entry array.
697 #ifdef CONFIG_X86_64
698 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
700 struct kvm_msr_entry tmp;
702 tmp = vmx->guest_msrs[to];
703 vmx->guest_msrs[to] = vmx->guest_msrs[from];
704 vmx->guest_msrs[from] = tmp;
705 tmp = vmx->host_msrs[to];
706 vmx->host_msrs[to] = vmx->host_msrs[from];
707 vmx->host_msrs[from] = tmp;
709 #endif
712 * Set up the vmcs to automatically save and restore system
713 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
714 * mode, as fiddling with msrs is very expensive.
716 static void setup_msrs(struct vcpu_vmx *vmx)
718 int save_nmsrs;
720 vmx_load_host_state(vmx);
721 save_nmsrs = 0;
722 #ifdef CONFIG_X86_64
723 if (is_long_mode(&vmx->vcpu)) {
724 int index;
726 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
727 if (index >= 0)
728 move_msr_up(vmx, index, save_nmsrs++);
729 index = __find_msr_index(vmx, MSR_LSTAR);
730 if (index >= 0)
731 move_msr_up(vmx, index, save_nmsrs++);
732 index = __find_msr_index(vmx, MSR_CSTAR);
733 if (index >= 0)
734 move_msr_up(vmx, index, save_nmsrs++);
735 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
736 if (index >= 0)
737 move_msr_up(vmx, index, save_nmsrs++);
739 * MSR_K6_STAR is only needed on long mode guests, and only
740 * if efer.sce is enabled.
742 index = __find_msr_index(vmx, MSR_K6_STAR);
743 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
744 move_msr_up(vmx, index, save_nmsrs++);
746 #endif
747 vmx->save_nmsrs = save_nmsrs;
749 #ifdef CONFIG_X86_64
750 vmx->msr_offset_kernel_gs_base =
751 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
752 #endif
753 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
757 * reads and returns guest's timestamp counter "register"
758 * guest_tsc = host_tsc + tsc_offset -- 21.3
760 static u64 guest_read_tsc(void)
762 u64 host_tsc, tsc_offset;
764 rdtscll(host_tsc);
765 tsc_offset = vmcs_read64(TSC_OFFSET);
766 return host_tsc + tsc_offset;
770 * writes 'guest_tsc' into guest's timestamp counter "register"
771 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
773 static void guest_write_tsc(u64 guest_tsc)
775 u64 host_tsc;
777 rdtscll(host_tsc);
778 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
782 * Reads an msr value (of 'msr_index') into 'pdata'.
783 * Returns 0 on success, non-0 otherwise.
784 * Assumes vcpu_load() was already called.
786 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
788 u64 data;
789 struct kvm_msr_entry *msr;
791 if (!pdata) {
792 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
793 return -EINVAL;
796 switch (msr_index) {
797 #ifdef CONFIG_X86_64
798 case MSR_FS_BASE:
799 data = vmcs_readl(GUEST_FS_BASE);
800 break;
801 case MSR_GS_BASE:
802 data = vmcs_readl(GUEST_GS_BASE);
803 break;
804 case MSR_EFER:
805 return kvm_get_msr_common(vcpu, msr_index, pdata);
806 #endif
807 case MSR_IA32_TIME_STAMP_COUNTER:
808 data = guest_read_tsc();
809 break;
810 case MSR_IA32_SYSENTER_CS:
811 data = vmcs_read32(GUEST_SYSENTER_CS);
812 break;
813 case MSR_IA32_SYSENTER_EIP:
814 data = vmcs_readl(GUEST_SYSENTER_EIP);
815 break;
816 case MSR_IA32_SYSENTER_ESP:
817 data = vmcs_readl(GUEST_SYSENTER_ESP);
818 break;
819 default:
820 msr = find_msr_entry(to_vmx(vcpu), msr_index);
821 if (msr) {
822 data = msr->data;
823 break;
825 return kvm_get_msr_common(vcpu, msr_index, pdata);
828 *pdata = data;
829 return 0;
833 * Writes msr value into into the appropriate "register".
834 * Returns 0 on success, non-0 otherwise.
835 * Assumes vcpu_load() was already called.
837 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
839 struct vcpu_vmx *vmx = to_vmx(vcpu);
840 struct kvm_msr_entry *msr;
841 int ret = 0;
843 switch (msr_index) {
844 #ifdef CONFIG_X86_64
845 case MSR_EFER:
846 ret = kvm_set_msr_common(vcpu, msr_index, data);
847 if (vmx->host_state.loaded) {
848 reload_host_efer(vmx);
849 load_transition_efer(vmx);
851 break;
852 case MSR_FS_BASE:
853 vmcs_writel(GUEST_FS_BASE, data);
854 break;
855 case MSR_GS_BASE:
856 vmcs_writel(GUEST_GS_BASE, data);
857 break;
858 #endif
859 case MSR_IA32_SYSENTER_CS:
860 vmcs_write32(GUEST_SYSENTER_CS, data);
861 break;
862 case MSR_IA32_SYSENTER_EIP:
863 vmcs_writel(GUEST_SYSENTER_EIP, data);
864 break;
865 case MSR_IA32_SYSENTER_ESP:
866 vmcs_writel(GUEST_SYSENTER_ESP, data);
867 break;
868 case MSR_IA32_TIME_STAMP_COUNTER:
869 guest_write_tsc(data);
870 break;
871 default:
872 msr = find_msr_entry(vmx, msr_index);
873 if (msr) {
874 msr->data = data;
875 if (vmx->host_state.loaded)
876 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
877 break;
879 ret = kvm_set_msr_common(vcpu, msr_index, data);
882 return ret;
886 * Sync the rsp and rip registers into the vcpu structure. This allows
887 * registers to be accessed by indexing vcpu->arch.regs.
889 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
891 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
892 vcpu->arch.rip = vmcs_readl(GUEST_RIP);
896 * Syncs rsp and rip back into the vmcs. Should be called after possible
897 * modification.
899 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
901 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
902 vmcs_writel(GUEST_RIP, vcpu->arch.rip);
905 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
907 unsigned long dr7 = 0x400;
908 int old_singlestep;
910 old_singlestep = vcpu->guest_debug.singlestep;
912 vcpu->guest_debug.enabled = dbg->enabled;
913 if (vcpu->guest_debug.enabled) {
914 int i;
916 dr7 |= 0x200; /* exact */
917 for (i = 0; i < 4; ++i) {
918 if (!dbg->breakpoints[i].enabled)
919 continue;
920 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
921 dr7 |= 2 << (i*2); /* global enable */
922 dr7 |= 0 << (i*4+16); /* execution breakpoint */
925 vcpu->guest_debug.singlestep = dbg->singlestep;
926 } else
927 vcpu->guest_debug.singlestep = 0;
929 if (old_singlestep && !vcpu->guest_debug.singlestep) {
930 unsigned long flags;
932 flags = vmcs_readl(GUEST_RFLAGS);
933 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
934 vmcs_writel(GUEST_RFLAGS, flags);
937 update_exception_bitmap(vcpu);
938 vmcs_writel(GUEST_DR7, dr7);
940 return 0;
943 static int vmx_get_irq(struct kvm_vcpu *vcpu)
945 struct vcpu_vmx *vmx = to_vmx(vcpu);
946 u32 idtv_info_field;
948 idtv_info_field = vmx->idt_vectoring_info;
949 if (idtv_info_field & INTR_INFO_VALID_MASK) {
950 if (is_external_interrupt(idtv_info_field))
951 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
952 else
953 printk(KERN_DEBUG "pending exception: not handled yet\n");
955 return -1;
958 static __init int cpu_has_kvm_support(void)
960 unsigned long ecx = cpuid_ecx(1);
961 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
964 static __init int vmx_disabled_by_bios(void)
966 u64 msr;
968 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
969 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
970 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
971 == MSR_IA32_FEATURE_CONTROL_LOCKED;
972 /* locked but not enabled */
975 static void hardware_enable(void *garbage)
977 int cpu = raw_smp_processor_id();
978 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
979 u64 old;
981 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
982 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
983 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
984 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
985 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
986 /* enable and lock */
987 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
988 MSR_IA32_FEATURE_CONTROL_LOCKED |
989 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
990 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
991 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
992 : "memory", "cc");
995 static void hardware_disable(void *garbage)
997 asm volatile (ASM_VMX_VMXOFF : : : "cc");
1000 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1001 u32 msr, u32 *result)
1003 u32 vmx_msr_low, vmx_msr_high;
1004 u32 ctl = ctl_min | ctl_opt;
1006 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1008 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1009 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1011 /* Ensure minimum (required) set of control bits are supported. */
1012 if (ctl_min & ~ctl)
1013 return -EIO;
1015 *result = ctl;
1016 return 0;
1019 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1021 u32 vmx_msr_low, vmx_msr_high;
1022 u32 min, opt, min2, opt2;
1023 u32 _pin_based_exec_control = 0;
1024 u32 _cpu_based_exec_control = 0;
1025 u32 _cpu_based_2nd_exec_control = 0;
1026 u32 _vmexit_control = 0;
1027 u32 _vmentry_control = 0;
1029 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1030 opt = 0;
1031 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1032 &_pin_based_exec_control) < 0)
1033 return -EIO;
1035 min = CPU_BASED_HLT_EXITING |
1036 #ifdef CONFIG_X86_64
1037 CPU_BASED_CR8_LOAD_EXITING |
1038 CPU_BASED_CR8_STORE_EXITING |
1039 #endif
1040 CPU_BASED_CR3_LOAD_EXITING |
1041 CPU_BASED_CR3_STORE_EXITING |
1042 CPU_BASED_USE_IO_BITMAPS |
1043 CPU_BASED_MOV_DR_EXITING |
1044 CPU_BASED_USE_TSC_OFFSETING;
1045 opt = CPU_BASED_TPR_SHADOW |
1046 CPU_BASED_USE_MSR_BITMAPS |
1047 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1048 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1049 &_cpu_based_exec_control) < 0)
1050 return -EIO;
1051 #ifdef CONFIG_X86_64
1052 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1053 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1054 ~CPU_BASED_CR8_STORE_EXITING;
1055 #endif
1056 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1057 min2 = 0;
1058 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1059 SECONDARY_EXEC_WBINVD_EXITING |
1060 SECONDARY_EXEC_ENABLE_VPID |
1061 SECONDARY_EXEC_ENABLE_EPT;
1062 if (adjust_vmx_controls(min2, opt2,
1063 MSR_IA32_VMX_PROCBASED_CTLS2,
1064 &_cpu_based_2nd_exec_control) < 0)
1065 return -EIO;
1067 #ifndef CONFIG_X86_64
1068 if (!(_cpu_based_2nd_exec_control &
1069 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1070 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1071 #endif
1072 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1073 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1074 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1075 CPU_BASED_CR3_STORE_EXITING);
1076 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1077 &_cpu_based_exec_control) < 0)
1078 return -EIO;
1079 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1080 vmx_capability.ept, vmx_capability.vpid);
1083 min = 0;
1084 #ifdef CONFIG_X86_64
1085 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1086 #endif
1087 opt = 0;
1088 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1089 &_vmexit_control) < 0)
1090 return -EIO;
1092 min = opt = 0;
1093 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1094 &_vmentry_control) < 0)
1095 return -EIO;
1097 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1099 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1100 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1101 return -EIO;
1103 #ifdef CONFIG_X86_64
1104 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1105 if (vmx_msr_high & (1u<<16))
1106 return -EIO;
1107 #endif
1109 /* Require Write-Back (WB) memory type for VMCS accesses. */
1110 if (((vmx_msr_high >> 18) & 15) != 6)
1111 return -EIO;
1113 vmcs_conf->size = vmx_msr_high & 0x1fff;
1114 vmcs_conf->order = get_order(vmcs_config.size);
1115 vmcs_conf->revision_id = vmx_msr_low;
1117 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1118 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1119 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1120 vmcs_conf->vmexit_ctrl = _vmexit_control;
1121 vmcs_conf->vmentry_ctrl = _vmentry_control;
1123 return 0;
1126 static struct vmcs *alloc_vmcs_cpu(int cpu)
1128 int node = cpu_to_node(cpu);
1129 struct page *pages;
1130 struct vmcs *vmcs;
1132 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1133 if (!pages)
1134 return NULL;
1135 vmcs = page_address(pages);
1136 memset(vmcs, 0, vmcs_config.size);
1137 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1138 return vmcs;
1141 static struct vmcs *alloc_vmcs(void)
1143 return alloc_vmcs_cpu(raw_smp_processor_id());
1146 static void free_vmcs(struct vmcs *vmcs)
1148 free_pages((unsigned long)vmcs, vmcs_config.order);
1151 static void free_kvm_area(void)
1153 int cpu;
1155 for_each_online_cpu(cpu)
1156 free_vmcs(per_cpu(vmxarea, cpu));
1159 static __init int alloc_kvm_area(void)
1161 int cpu;
1163 for_each_online_cpu(cpu) {
1164 struct vmcs *vmcs;
1166 vmcs = alloc_vmcs_cpu(cpu);
1167 if (!vmcs) {
1168 free_kvm_area();
1169 return -ENOMEM;
1172 per_cpu(vmxarea, cpu) = vmcs;
1174 return 0;
1177 static __init int hardware_setup(void)
1179 if (setup_vmcs_config(&vmcs_config) < 0)
1180 return -EIO;
1182 if (boot_cpu_has(X86_FEATURE_NX))
1183 kvm_enable_efer_bits(EFER_NX);
1185 return alloc_kvm_area();
1188 static __exit void hardware_unsetup(void)
1190 free_kvm_area();
1193 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1195 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1197 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1198 vmcs_write16(sf->selector, save->selector);
1199 vmcs_writel(sf->base, save->base);
1200 vmcs_write32(sf->limit, save->limit);
1201 vmcs_write32(sf->ar_bytes, save->ar);
1202 } else {
1203 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1204 << AR_DPL_SHIFT;
1205 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1209 static void enter_pmode(struct kvm_vcpu *vcpu)
1211 unsigned long flags;
1213 vcpu->arch.rmode.active = 0;
1215 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1216 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1217 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1219 flags = vmcs_readl(GUEST_RFLAGS);
1220 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1221 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1222 vmcs_writel(GUEST_RFLAGS, flags);
1224 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1225 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1227 update_exception_bitmap(vcpu);
1229 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1230 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1231 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1232 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1234 vmcs_write16(GUEST_SS_SELECTOR, 0);
1235 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1237 vmcs_write16(GUEST_CS_SELECTOR,
1238 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1239 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1242 static gva_t rmode_tss_base(struct kvm *kvm)
1244 if (!kvm->arch.tss_addr) {
1245 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1246 kvm->memslots[0].npages - 3;
1247 return base_gfn << PAGE_SHIFT;
1249 return kvm->arch.tss_addr;
1252 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1254 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1256 save->selector = vmcs_read16(sf->selector);
1257 save->base = vmcs_readl(sf->base);
1258 save->limit = vmcs_read32(sf->limit);
1259 save->ar = vmcs_read32(sf->ar_bytes);
1260 vmcs_write16(sf->selector, save->base >> 4);
1261 vmcs_write32(sf->base, save->base & 0xfffff);
1262 vmcs_write32(sf->limit, 0xffff);
1263 vmcs_write32(sf->ar_bytes, 0xf3);
1266 static void enter_rmode(struct kvm_vcpu *vcpu)
1268 unsigned long flags;
1270 vcpu->arch.rmode.active = 1;
1272 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1273 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1275 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1276 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1278 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1279 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1281 flags = vmcs_readl(GUEST_RFLAGS);
1282 vcpu->arch.rmode.save_iopl
1283 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1285 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1287 vmcs_writel(GUEST_RFLAGS, flags);
1288 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1289 update_exception_bitmap(vcpu);
1291 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1292 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1293 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1295 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1296 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1297 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1298 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1299 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1301 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1302 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1303 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1304 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1306 kvm_mmu_reset_context(vcpu);
1307 init_rmode(vcpu->kvm);
1310 #ifdef CONFIG_X86_64
1312 static void enter_lmode(struct kvm_vcpu *vcpu)
1314 u32 guest_tr_ar;
1316 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1317 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1318 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1319 __func__);
1320 vmcs_write32(GUEST_TR_AR_BYTES,
1321 (guest_tr_ar & ~AR_TYPE_MASK)
1322 | AR_TYPE_BUSY_64_TSS);
1325 vcpu->arch.shadow_efer |= EFER_LMA;
1327 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1328 vmcs_write32(VM_ENTRY_CONTROLS,
1329 vmcs_read32(VM_ENTRY_CONTROLS)
1330 | VM_ENTRY_IA32E_MODE);
1333 static void exit_lmode(struct kvm_vcpu *vcpu)
1335 vcpu->arch.shadow_efer &= ~EFER_LMA;
1337 vmcs_write32(VM_ENTRY_CONTROLS,
1338 vmcs_read32(VM_ENTRY_CONTROLS)
1339 & ~VM_ENTRY_IA32E_MODE);
1342 #endif
1344 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1346 vpid_sync_vcpu_all(to_vmx(vcpu));
1349 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1351 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1352 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1355 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1357 vmx_fpu_deactivate(vcpu);
1359 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1360 enter_pmode(vcpu);
1362 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1363 enter_rmode(vcpu);
1365 #ifdef CONFIG_X86_64
1366 if (vcpu->arch.shadow_efer & EFER_LME) {
1367 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1368 enter_lmode(vcpu);
1369 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1370 exit_lmode(vcpu);
1372 #endif
1374 vmcs_writel(CR0_READ_SHADOW, cr0);
1375 vmcs_writel(GUEST_CR0,
1376 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1377 vcpu->arch.cr0 = cr0;
1379 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1380 vmx_fpu_activate(vcpu);
1383 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1385 vmx_flush_tlb(vcpu);
1386 vmcs_writel(GUEST_CR3, cr3);
1387 if (vcpu->arch.cr0 & X86_CR0_PE)
1388 vmx_fpu_deactivate(vcpu);
1391 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1393 vmcs_writel(CR4_READ_SHADOW, cr4);
1394 vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1395 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1396 vcpu->arch.cr4 = cr4;
1399 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1401 struct vcpu_vmx *vmx = to_vmx(vcpu);
1402 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1404 vcpu->arch.shadow_efer = efer;
1405 if (!msr)
1406 return;
1407 if (efer & EFER_LMA) {
1408 vmcs_write32(VM_ENTRY_CONTROLS,
1409 vmcs_read32(VM_ENTRY_CONTROLS) |
1410 VM_ENTRY_IA32E_MODE);
1411 msr->data = efer;
1413 } else {
1414 vmcs_write32(VM_ENTRY_CONTROLS,
1415 vmcs_read32(VM_ENTRY_CONTROLS) &
1416 ~VM_ENTRY_IA32E_MODE);
1418 msr->data = efer & ~EFER_LME;
1420 setup_msrs(vmx);
1423 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1425 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1427 return vmcs_readl(sf->base);
1430 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1431 struct kvm_segment *var, int seg)
1433 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1434 u32 ar;
1436 var->base = vmcs_readl(sf->base);
1437 var->limit = vmcs_read32(sf->limit);
1438 var->selector = vmcs_read16(sf->selector);
1439 ar = vmcs_read32(sf->ar_bytes);
1440 if (ar & AR_UNUSABLE_MASK)
1441 ar = 0;
1442 var->type = ar & 15;
1443 var->s = (ar >> 4) & 1;
1444 var->dpl = (ar >> 5) & 3;
1445 var->present = (ar >> 7) & 1;
1446 var->avl = (ar >> 12) & 1;
1447 var->l = (ar >> 13) & 1;
1448 var->db = (ar >> 14) & 1;
1449 var->g = (ar >> 15) & 1;
1450 var->unusable = (ar >> 16) & 1;
1453 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1455 struct kvm_segment kvm_seg;
1457 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1458 return 0;
1460 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1461 return 3;
1463 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1464 return kvm_seg.selector & 3;
1467 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1469 u32 ar;
1471 if (var->unusable)
1472 ar = 1 << 16;
1473 else {
1474 ar = var->type & 15;
1475 ar |= (var->s & 1) << 4;
1476 ar |= (var->dpl & 3) << 5;
1477 ar |= (var->present & 1) << 7;
1478 ar |= (var->avl & 1) << 12;
1479 ar |= (var->l & 1) << 13;
1480 ar |= (var->db & 1) << 14;
1481 ar |= (var->g & 1) << 15;
1483 if (ar == 0) /* a 0 value means unusable */
1484 ar = AR_UNUSABLE_MASK;
1486 return ar;
1489 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1490 struct kvm_segment *var, int seg)
1492 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1493 u32 ar;
1495 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1496 vcpu->arch.rmode.tr.selector = var->selector;
1497 vcpu->arch.rmode.tr.base = var->base;
1498 vcpu->arch.rmode.tr.limit = var->limit;
1499 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1500 return;
1502 vmcs_writel(sf->base, var->base);
1503 vmcs_write32(sf->limit, var->limit);
1504 vmcs_write16(sf->selector, var->selector);
1505 if (vcpu->arch.rmode.active && var->s) {
1507 * Hack real-mode segments into vm86 compatibility.
1509 if (var->base == 0xffff0000 && var->selector == 0xf000)
1510 vmcs_writel(sf->base, 0xf0000);
1511 ar = 0xf3;
1512 } else
1513 ar = vmx_segment_access_rights(var);
1514 vmcs_write32(sf->ar_bytes, ar);
1517 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1519 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1521 *db = (ar >> 14) & 1;
1522 *l = (ar >> 13) & 1;
1525 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1527 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1528 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1531 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1533 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1534 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1537 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1539 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1540 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1543 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1545 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1546 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1549 static int init_rmode_tss(struct kvm *kvm)
1551 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1552 u16 data = 0;
1553 int ret = 0;
1554 int r;
1556 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1557 if (r < 0)
1558 goto out;
1559 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1560 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1561 if (r < 0)
1562 goto out;
1563 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1564 if (r < 0)
1565 goto out;
1566 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1567 if (r < 0)
1568 goto out;
1569 data = ~0;
1570 r = kvm_write_guest_page(kvm, fn, &data,
1571 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1572 sizeof(u8));
1573 if (r < 0)
1574 goto out;
1576 ret = 1;
1577 out:
1578 return ret;
1581 static int init_rmode_identity_map(struct kvm *kvm)
1583 int i, r, ret;
1584 pfn_t identity_map_pfn;
1585 u32 tmp;
1587 if (!vm_need_ept())
1588 return 1;
1589 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1590 printk(KERN_ERR "EPT: identity-mapping pagetable "
1591 "haven't been allocated!\n");
1592 return 0;
1594 if (likely(kvm->arch.ept_identity_pagetable_done))
1595 return 1;
1596 ret = 0;
1597 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1598 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1599 if (r < 0)
1600 goto out;
1601 /* Set up identity-mapping pagetable for EPT in real mode */
1602 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1603 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1604 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1605 r = kvm_write_guest_page(kvm, identity_map_pfn,
1606 &tmp, i * sizeof(tmp), sizeof(tmp));
1607 if (r < 0)
1608 goto out;
1610 kvm->arch.ept_identity_pagetable_done = true;
1611 ret = 1;
1612 out:
1613 return ret;
1616 static void seg_setup(int seg)
1618 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1620 vmcs_write16(sf->selector, 0);
1621 vmcs_writel(sf->base, 0);
1622 vmcs_write32(sf->limit, 0xffff);
1623 vmcs_write32(sf->ar_bytes, 0x93);
1626 static int alloc_apic_access_page(struct kvm *kvm)
1628 struct kvm_userspace_memory_region kvm_userspace_mem;
1629 int r = 0;
1631 down_write(&kvm->slots_lock);
1632 if (kvm->arch.apic_access_page)
1633 goto out;
1634 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1635 kvm_userspace_mem.flags = 0;
1636 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1637 kvm_userspace_mem.memory_size = PAGE_SIZE;
1638 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1639 if (r)
1640 goto out;
1642 down_read(&current->mm->mmap_sem);
1643 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1644 up_read(&current->mm->mmap_sem);
1645 out:
1646 up_write(&kvm->slots_lock);
1647 return r;
1650 static int alloc_identity_pagetable(struct kvm *kvm)
1652 struct kvm_userspace_memory_region kvm_userspace_mem;
1653 int r = 0;
1655 down_write(&kvm->slots_lock);
1656 if (kvm->arch.ept_identity_pagetable)
1657 goto out;
1658 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1659 kvm_userspace_mem.flags = 0;
1660 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1661 kvm_userspace_mem.memory_size = PAGE_SIZE;
1662 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1663 if (r)
1664 goto out;
1666 down_read(&current->mm->mmap_sem);
1667 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1668 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1669 up_read(&current->mm->mmap_sem);
1670 out:
1671 up_write(&kvm->slots_lock);
1672 return r;
1675 static void allocate_vpid(struct vcpu_vmx *vmx)
1677 int vpid;
1679 vmx->vpid = 0;
1680 if (!enable_vpid || !cpu_has_vmx_vpid())
1681 return;
1682 spin_lock(&vmx_vpid_lock);
1683 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1684 if (vpid < VMX_NR_VPIDS) {
1685 vmx->vpid = vpid;
1686 __set_bit(vpid, vmx_vpid_bitmap);
1688 spin_unlock(&vmx_vpid_lock);
1691 void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1693 void *va;
1695 if (!cpu_has_vmx_msr_bitmap())
1696 return;
1699 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1700 * have the write-low and read-high bitmap offsets the wrong way round.
1701 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1703 va = kmap(msr_bitmap);
1704 if (msr <= 0x1fff) {
1705 __clear_bit(msr, va + 0x000); /* read-low */
1706 __clear_bit(msr, va + 0x800); /* write-low */
1707 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1708 msr &= 0x1fff;
1709 __clear_bit(msr, va + 0x400); /* read-high */
1710 __clear_bit(msr, va + 0xc00); /* write-high */
1712 kunmap(msr_bitmap);
1716 * Sets up the vmcs for emulated real mode.
1718 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1720 u32 host_sysenter_cs;
1721 u32 junk;
1722 unsigned long a;
1723 struct descriptor_table dt;
1724 int i;
1725 unsigned long kvm_vmx_return;
1726 u32 exec_control;
1728 /* I/O */
1729 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1730 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1732 if (cpu_has_vmx_msr_bitmap())
1733 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1735 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1737 /* Control */
1738 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1739 vmcs_config.pin_based_exec_ctrl);
1741 exec_control = vmcs_config.cpu_based_exec_ctrl;
1742 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1743 exec_control &= ~CPU_BASED_TPR_SHADOW;
1744 #ifdef CONFIG_X86_64
1745 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1746 CPU_BASED_CR8_LOAD_EXITING;
1747 #endif
1749 if (!vm_need_ept())
1750 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1751 CPU_BASED_CR3_LOAD_EXITING;
1752 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1754 if (cpu_has_secondary_exec_ctrls()) {
1755 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1756 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1757 exec_control &=
1758 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1759 if (vmx->vpid == 0)
1760 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1761 if (!vm_need_ept())
1762 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1763 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1766 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1767 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1768 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1770 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1771 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1772 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1774 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1775 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1776 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1777 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1778 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1779 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1780 #ifdef CONFIG_X86_64
1781 rdmsrl(MSR_FS_BASE, a);
1782 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1783 rdmsrl(MSR_GS_BASE, a);
1784 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1785 #else
1786 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1787 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1788 #endif
1790 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1792 get_idt(&dt);
1793 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1795 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1796 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1797 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1798 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1799 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1801 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1802 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1803 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1804 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1805 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1806 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1808 for (i = 0; i < NR_VMX_MSR; ++i) {
1809 u32 index = vmx_msr_index[i];
1810 u32 data_low, data_high;
1811 u64 data;
1812 int j = vmx->nmsrs;
1814 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1815 continue;
1816 if (wrmsr_safe(index, data_low, data_high) < 0)
1817 continue;
1818 data = data_low | ((u64)data_high << 32);
1819 vmx->host_msrs[j].index = index;
1820 vmx->host_msrs[j].reserved = 0;
1821 vmx->host_msrs[j].data = data;
1822 vmx->guest_msrs[j] = vmx->host_msrs[j];
1823 ++vmx->nmsrs;
1826 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1828 /* 22.2.1, 20.8.1 */
1829 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1831 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1832 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1835 return 0;
1838 static int init_rmode(struct kvm *kvm)
1840 if (!init_rmode_tss(kvm))
1841 return 0;
1842 if (!init_rmode_identity_map(kvm))
1843 return 0;
1844 return 1;
1847 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1849 struct vcpu_vmx *vmx = to_vmx(vcpu);
1850 u64 msr;
1851 int ret;
1853 down_read(&vcpu->kvm->slots_lock);
1854 if (!init_rmode(vmx->vcpu.kvm)) {
1855 ret = -ENOMEM;
1856 goto out;
1859 vmx->vcpu.arch.rmode.active = 0;
1861 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1862 kvm_set_cr8(&vmx->vcpu, 0);
1863 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1864 if (vmx->vcpu.vcpu_id == 0)
1865 msr |= MSR_IA32_APICBASE_BSP;
1866 kvm_set_apic_base(&vmx->vcpu, msr);
1868 fx_init(&vmx->vcpu);
1871 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1872 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1874 if (vmx->vcpu.vcpu_id == 0) {
1875 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1876 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1877 } else {
1878 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1879 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1881 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1882 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1884 seg_setup(VCPU_SREG_DS);
1885 seg_setup(VCPU_SREG_ES);
1886 seg_setup(VCPU_SREG_FS);
1887 seg_setup(VCPU_SREG_GS);
1888 seg_setup(VCPU_SREG_SS);
1890 vmcs_write16(GUEST_TR_SELECTOR, 0);
1891 vmcs_writel(GUEST_TR_BASE, 0);
1892 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1893 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1895 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1896 vmcs_writel(GUEST_LDTR_BASE, 0);
1897 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1898 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1900 vmcs_write32(GUEST_SYSENTER_CS, 0);
1901 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1902 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1904 vmcs_writel(GUEST_RFLAGS, 0x02);
1905 if (vmx->vcpu.vcpu_id == 0)
1906 vmcs_writel(GUEST_RIP, 0xfff0);
1907 else
1908 vmcs_writel(GUEST_RIP, 0);
1909 vmcs_writel(GUEST_RSP, 0);
1911 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1912 vmcs_writel(GUEST_DR7, 0x400);
1914 vmcs_writel(GUEST_GDTR_BASE, 0);
1915 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1917 vmcs_writel(GUEST_IDTR_BASE, 0);
1918 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1920 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1921 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1922 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1924 guest_write_tsc(0);
1926 /* Special registers */
1927 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1929 setup_msrs(vmx);
1931 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1933 if (cpu_has_vmx_tpr_shadow()) {
1934 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1935 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1936 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1937 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1938 vmcs_write32(TPR_THRESHOLD, 0);
1941 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1942 vmcs_write64(APIC_ACCESS_ADDR,
1943 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1945 if (vmx->vpid != 0)
1946 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1948 vmx->vcpu.arch.cr0 = 0x60000010;
1949 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1950 vmx_set_cr4(&vmx->vcpu, 0);
1951 vmx_set_efer(&vmx->vcpu, 0);
1952 vmx_fpu_activate(&vmx->vcpu);
1953 update_exception_bitmap(&vmx->vcpu);
1955 vpid_sync_vcpu_all(vmx);
1957 ret = 0;
1959 out:
1960 up_read(&vcpu->kvm->slots_lock);
1961 return ret;
1964 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1966 struct vcpu_vmx *vmx = to_vmx(vcpu);
1968 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
1970 if (vcpu->arch.rmode.active) {
1971 vmx->rmode.irq.pending = true;
1972 vmx->rmode.irq.vector = irq;
1973 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1974 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1975 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1976 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1977 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1978 return;
1980 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1981 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1984 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1986 int word_index = __ffs(vcpu->arch.irq_summary);
1987 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1988 int irq = word_index * BITS_PER_LONG + bit_index;
1990 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1991 if (!vcpu->arch.irq_pending[word_index])
1992 clear_bit(word_index, &vcpu->arch.irq_summary);
1993 vmx_inject_irq(vcpu, irq);
1997 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1998 struct kvm_run *kvm_run)
2000 u32 cpu_based_vm_exec_control;
2002 vcpu->arch.interrupt_window_open =
2003 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2004 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2006 if (vcpu->arch.interrupt_window_open &&
2007 vcpu->arch.irq_summary &&
2008 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2010 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2012 kvm_do_inject_irq(vcpu);
2014 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2015 if (!vcpu->arch.interrupt_window_open &&
2016 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2018 * Interrupts blocked. Wait for unblock.
2020 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2021 else
2022 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2023 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2026 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2028 int ret;
2029 struct kvm_userspace_memory_region tss_mem = {
2030 .slot = 8,
2031 .guest_phys_addr = addr,
2032 .memory_size = PAGE_SIZE * 3,
2033 .flags = 0,
2036 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2037 if (ret)
2038 return ret;
2039 kvm->arch.tss_addr = addr;
2040 return 0;
2043 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2045 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2047 set_debugreg(dbg->bp[0], 0);
2048 set_debugreg(dbg->bp[1], 1);
2049 set_debugreg(dbg->bp[2], 2);
2050 set_debugreg(dbg->bp[3], 3);
2052 if (dbg->singlestep) {
2053 unsigned long flags;
2055 flags = vmcs_readl(GUEST_RFLAGS);
2056 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2057 vmcs_writel(GUEST_RFLAGS, flags);
2061 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2062 int vec, u32 err_code)
2064 if (!vcpu->arch.rmode.active)
2065 return 0;
2068 * Instruction with address size override prefix opcode 0x67
2069 * Cause the #SS fault with 0 error code in VM86 mode.
2071 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2072 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2073 return 1;
2074 return 0;
2077 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2079 struct vcpu_vmx *vmx = to_vmx(vcpu);
2080 u32 intr_info, error_code;
2081 unsigned long cr2, rip;
2082 u32 vect_info;
2083 enum emulation_result er;
2085 vect_info = vmx->idt_vectoring_info;
2086 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2088 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2089 !is_page_fault(intr_info))
2090 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2091 "intr info 0x%x\n", __func__, vect_info, intr_info);
2093 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2094 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2095 set_bit(irq, vcpu->arch.irq_pending);
2096 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2099 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2100 return 1; /* already handled by vmx_vcpu_run() */
2102 if (is_no_device(intr_info)) {
2103 vmx_fpu_activate(vcpu);
2104 return 1;
2107 if (is_invalid_opcode(intr_info)) {
2108 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2109 if (er != EMULATE_DONE)
2110 kvm_queue_exception(vcpu, UD_VECTOR);
2111 return 1;
2114 error_code = 0;
2115 rip = vmcs_readl(GUEST_RIP);
2116 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2117 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2118 if (is_page_fault(intr_info)) {
2119 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2120 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2121 (u32)((u64)cr2 >> 32), handler);
2122 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2125 if (vcpu->arch.rmode.active &&
2126 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2127 error_code)) {
2128 if (vcpu->arch.halt_request) {
2129 vcpu->arch.halt_request = 0;
2130 return kvm_emulate_halt(vcpu);
2132 return 1;
2135 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2136 (INTR_TYPE_EXCEPTION | 1)) {
2137 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2138 return 0;
2140 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2141 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2142 kvm_run->ex.error_code = error_code;
2143 return 0;
2146 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2147 struct kvm_run *kvm_run)
2149 ++vcpu->stat.irq_exits;
2150 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2151 return 1;
2154 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2156 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2157 return 0;
2160 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2162 unsigned long exit_qualification;
2163 int size, down, in, string, rep;
2164 unsigned port;
2166 ++vcpu->stat.io_exits;
2167 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2168 string = (exit_qualification & 16) != 0;
2170 if (string) {
2171 if (emulate_instruction(vcpu,
2172 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2173 return 0;
2174 return 1;
2177 size = (exit_qualification & 7) + 1;
2178 in = (exit_qualification & 8) != 0;
2179 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2180 rep = (exit_qualification & 32) != 0;
2181 port = exit_qualification >> 16;
2183 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2186 static void
2187 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2190 * Patch in the VMCALL instruction:
2192 hypercall[0] = 0x0f;
2193 hypercall[1] = 0x01;
2194 hypercall[2] = 0xc1;
2197 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2199 unsigned long exit_qualification;
2200 int cr;
2201 int reg;
2203 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2204 cr = exit_qualification & 15;
2205 reg = (exit_qualification >> 8) & 15;
2206 switch ((exit_qualification >> 4) & 3) {
2207 case 0: /* mov to cr */
2208 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2209 (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2210 switch (cr) {
2211 case 0:
2212 vcpu_load_rsp_rip(vcpu);
2213 kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2214 skip_emulated_instruction(vcpu);
2215 return 1;
2216 case 3:
2217 vcpu_load_rsp_rip(vcpu);
2218 kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2219 skip_emulated_instruction(vcpu);
2220 return 1;
2221 case 4:
2222 vcpu_load_rsp_rip(vcpu);
2223 kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2224 skip_emulated_instruction(vcpu);
2225 return 1;
2226 case 8:
2227 vcpu_load_rsp_rip(vcpu);
2228 kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2229 skip_emulated_instruction(vcpu);
2230 if (irqchip_in_kernel(vcpu->kvm))
2231 return 1;
2232 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2233 return 0;
2235 break;
2236 case 2: /* clts */
2237 vcpu_load_rsp_rip(vcpu);
2238 vmx_fpu_deactivate(vcpu);
2239 vcpu->arch.cr0 &= ~X86_CR0_TS;
2240 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2241 vmx_fpu_activate(vcpu);
2242 KVMTRACE_0D(CLTS, vcpu, handler);
2243 skip_emulated_instruction(vcpu);
2244 return 1;
2245 case 1: /*mov from cr*/
2246 switch (cr) {
2247 case 3:
2248 vcpu_load_rsp_rip(vcpu);
2249 vcpu->arch.regs[reg] = vcpu->arch.cr3;
2250 vcpu_put_rsp_rip(vcpu);
2251 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2252 (u32)vcpu->arch.regs[reg],
2253 (u32)((u64)vcpu->arch.regs[reg] >> 32),
2254 handler);
2255 skip_emulated_instruction(vcpu);
2256 return 1;
2257 case 8:
2258 vcpu_load_rsp_rip(vcpu);
2259 vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2260 vcpu_put_rsp_rip(vcpu);
2261 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2262 (u32)vcpu->arch.regs[reg], handler);
2263 skip_emulated_instruction(vcpu);
2264 return 1;
2266 break;
2267 case 3: /* lmsw */
2268 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2270 skip_emulated_instruction(vcpu);
2271 return 1;
2272 default:
2273 break;
2275 kvm_run->exit_reason = 0;
2276 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2277 (int)(exit_qualification >> 4) & 3, cr);
2278 return 0;
2281 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2283 unsigned long exit_qualification;
2284 unsigned long val;
2285 int dr, reg;
2288 * FIXME: this code assumes the host is debugging the guest.
2289 * need to deal with guest debugging itself too.
2291 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2292 dr = exit_qualification & 7;
2293 reg = (exit_qualification >> 8) & 15;
2294 vcpu_load_rsp_rip(vcpu);
2295 if (exit_qualification & 16) {
2296 /* mov from dr */
2297 switch (dr) {
2298 case 6:
2299 val = 0xffff0ff0;
2300 break;
2301 case 7:
2302 val = 0x400;
2303 break;
2304 default:
2305 val = 0;
2307 vcpu->arch.regs[reg] = val;
2308 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2309 } else {
2310 /* mov to dr */
2312 vcpu_put_rsp_rip(vcpu);
2313 skip_emulated_instruction(vcpu);
2314 return 1;
2317 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2319 kvm_emulate_cpuid(vcpu);
2320 return 1;
2323 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2325 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2326 u64 data;
2328 if (vmx_get_msr(vcpu, ecx, &data)) {
2329 kvm_inject_gp(vcpu, 0);
2330 return 1;
2333 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2334 handler);
2336 /* FIXME: handling of bits 32:63 of rax, rdx */
2337 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2338 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2339 skip_emulated_instruction(vcpu);
2340 return 1;
2343 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2345 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2346 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2347 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2349 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2350 handler);
2352 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2353 kvm_inject_gp(vcpu, 0);
2354 return 1;
2357 skip_emulated_instruction(vcpu);
2358 return 1;
2361 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2362 struct kvm_run *kvm_run)
2364 return 1;
2367 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2368 struct kvm_run *kvm_run)
2370 u32 cpu_based_vm_exec_control;
2372 /* clear pending irq */
2373 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2374 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2375 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2377 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2380 * If the user space waits to inject interrupts, exit as soon as
2381 * possible
2383 if (kvm_run->request_interrupt_window &&
2384 !vcpu->arch.irq_summary) {
2385 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2386 ++vcpu->stat.irq_window_exits;
2387 return 0;
2389 return 1;
2392 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2394 skip_emulated_instruction(vcpu);
2395 return kvm_emulate_halt(vcpu);
2398 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2400 skip_emulated_instruction(vcpu);
2401 kvm_emulate_hypercall(vcpu);
2402 return 1;
2405 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2407 skip_emulated_instruction(vcpu);
2408 /* TODO: Add support for VT-d/pass-through device */
2409 return 1;
2412 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2414 u64 exit_qualification;
2415 enum emulation_result er;
2416 unsigned long offset;
2418 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2419 offset = exit_qualification & 0xffful;
2421 KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
2423 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2425 if (er != EMULATE_DONE) {
2426 printk(KERN_ERR
2427 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2428 offset);
2429 return -ENOTSUPP;
2431 return 1;
2434 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2436 unsigned long exit_qualification;
2437 u16 tss_selector;
2438 int reason;
2440 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2442 reason = (u32)exit_qualification >> 30;
2443 tss_selector = exit_qualification;
2445 return kvm_task_switch(vcpu, tss_selector, reason);
2449 * The exit handlers return 1 if the exit was handled fully and guest execution
2450 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2451 * to be done to userspace and return 0.
2453 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2454 struct kvm_run *kvm_run) = {
2455 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2456 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2457 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2458 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2459 [EXIT_REASON_CR_ACCESS] = handle_cr,
2460 [EXIT_REASON_DR_ACCESS] = handle_dr,
2461 [EXIT_REASON_CPUID] = handle_cpuid,
2462 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2463 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2464 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2465 [EXIT_REASON_HLT] = handle_halt,
2466 [EXIT_REASON_VMCALL] = handle_vmcall,
2467 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2468 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2469 [EXIT_REASON_WBINVD] = handle_wbinvd,
2470 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
2473 static const int kvm_vmx_max_exit_handlers =
2474 ARRAY_SIZE(kvm_vmx_exit_handlers);
2477 * The guest has exited. See if we can fix it or if we need userspace
2478 * assistance.
2480 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2482 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2483 struct vcpu_vmx *vmx = to_vmx(vcpu);
2484 u32 vectoring_info = vmx->idt_vectoring_info;
2486 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2487 (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2489 if (unlikely(vmx->fail)) {
2490 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2491 kvm_run->fail_entry.hardware_entry_failure_reason
2492 = vmcs_read32(VM_INSTRUCTION_ERROR);
2493 return 0;
2496 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2497 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2498 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2499 "exit reason is 0x%x\n", __func__, exit_reason);
2500 if (exit_reason < kvm_vmx_max_exit_handlers
2501 && kvm_vmx_exit_handlers[exit_reason])
2502 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2503 else {
2504 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2505 kvm_run->hw.hardware_exit_reason = exit_reason;
2507 return 0;
2510 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2512 int max_irr, tpr;
2514 if (!vm_need_tpr_shadow(vcpu->kvm))
2515 return;
2517 if (!kvm_lapic_enabled(vcpu) ||
2518 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2519 vmcs_write32(TPR_THRESHOLD, 0);
2520 return;
2523 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2524 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2527 static void enable_irq_window(struct kvm_vcpu *vcpu)
2529 u32 cpu_based_vm_exec_control;
2531 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2532 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2533 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2536 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2538 struct vcpu_vmx *vmx = to_vmx(vcpu);
2539 u32 idtv_info_field, intr_info_field;
2540 int has_ext_irq, interrupt_window_open;
2541 int vector;
2543 update_tpr_threshold(vcpu);
2545 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2546 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2547 idtv_info_field = vmx->idt_vectoring_info;
2548 if (intr_info_field & INTR_INFO_VALID_MASK) {
2549 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2550 /* TODO: fault when IDT_Vectoring */
2551 if (printk_ratelimit())
2552 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2554 if (has_ext_irq)
2555 enable_irq_window(vcpu);
2556 return;
2558 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2559 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2560 == INTR_TYPE_EXT_INTR
2561 && vcpu->arch.rmode.active) {
2562 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2564 vmx_inject_irq(vcpu, vect);
2565 if (unlikely(has_ext_irq))
2566 enable_irq_window(vcpu);
2567 return;
2570 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2572 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2573 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2574 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2576 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2577 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2578 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2579 if (unlikely(has_ext_irq))
2580 enable_irq_window(vcpu);
2581 return;
2583 if (!has_ext_irq)
2584 return;
2585 interrupt_window_open =
2586 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2587 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2588 if (interrupt_window_open) {
2589 vector = kvm_cpu_get_interrupt(vcpu);
2590 vmx_inject_irq(vcpu, vector);
2591 kvm_timer_intr_post(vcpu, vector);
2592 } else
2593 enable_irq_window(vcpu);
2597 * Failure to inject an interrupt should give us the information
2598 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2599 * when fetching the interrupt redirection bitmap in the real-mode
2600 * tss, this doesn't happen. So we do it ourselves.
2602 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2604 vmx->rmode.irq.pending = 0;
2605 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2606 return;
2607 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2608 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2609 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2610 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2611 return;
2613 vmx->idt_vectoring_info =
2614 VECTORING_INFO_VALID_MASK
2615 | INTR_TYPE_EXT_INTR
2616 | vmx->rmode.irq.vector;
2619 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2621 struct vcpu_vmx *vmx = to_vmx(vcpu);
2622 u32 intr_info;
2625 * Loading guest fpu may have cleared host cr0.ts
2627 vmcs_writel(HOST_CR0, read_cr0());
2629 asm(
2630 /* Store host registers */
2631 #ifdef CONFIG_X86_64
2632 "push %%rdx; push %%rbp;"
2633 "push %%rcx \n\t"
2634 #else
2635 "push %%edx; push %%ebp;"
2636 "push %%ecx \n\t"
2637 #endif
2638 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2639 /* Check if vmlaunch of vmresume is needed */
2640 "cmpl $0, %c[launched](%0) \n\t"
2641 /* Load guest registers. Don't clobber flags. */
2642 #ifdef CONFIG_X86_64
2643 "mov %c[cr2](%0), %%rax \n\t"
2644 "mov %%rax, %%cr2 \n\t"
2645 "mov %c[rax](%0), %%rax \n\t"
2646 "mov %c[rbx](%0), %%rbx \n\t"
2647 "mov %c[rdx](%0), %%rdx \n\t"
2648 "mov %c[rsi](%0), %%rsi \n\t"
2649 "mov %c[rdi](%0), %%rdi \n\t"
2650 "mov %c[rbp](%0), %%rbp \n\t"
2651 "mov %c[r8](%0), %%r8 \n\t"
2652 "mov %c[r9](%0), %%r9 \n\t"
2653 "mov %c[r10](%0), %%r10 \n\t"
2654 "mov %c[r11](%0), %%r11 \n\t"
2655 "mov %c[r12](%0), %%r12 \n\t"
2656 "mov %c[r13](%0), %%r13 \n\t"
2657 "mov %c[r14](%0), %%r14 \n\t"
2658 "mov %c[r15](%0), %%r15 \n\t"
2659 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2660 #else
2661 "mov %c[cr2](%0), %%eax \n\t"
2662 "mov %%eax, %%cr2 \n\t"
2663 "mov %c[rax](%0), %%eax \n\t"
2664 "mov %c[rbx](%0), %%ebx \n\t"
2665 "mov %c[rdx](%0), %%edx \n\t"
2666 "mov %c[rsi](%0), %%esi \n\t"
2667 "mov %c[rdi](%0), %%edi \n\t"
2668 "mov %c[rbp](%0), %%ebp \n\t"
2669 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2670 #endif
2671 /* Enter guest mode */
2672 "jne .Llaunched \n\t"
2673 ASM_VMX_VMLAUNCH "\n\t"
2674 "jmp .Lkvm_vmx_return \n\t"
2675 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2676 ".Lkvm_vmx_return: "
2677 /* Save guest registers, load host registers, keep flags */
2678 #ifdef CONFIG_X86_64
2679 "xchg %0, (%%rsp) \n\t"
2680 "mov %%rax, %c[rax](%0) \n\t"
2681 "mov %%rbx, %c[rbx](%0) \n\t"
2682 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2683 "mov %%rdx, %c[rdx](%0) \n\t"
2684 "mov %%rsi, %c[rsi](%0) \n\t"
2685 "mov %%rdi, %c[rdi](%0) \n\t"
2686 "mov %%rbp, %c[rbp](%0) \n\t"
2687 "mov %%r8, %c[r8](%0) \n\t"
2688 "mov %%r9, %c[r9](%0) \n\t"
2689 "mov %%r10, %c[r10](%0) \n\t"
2690 "mov %%r11, %c[r11](%0) \n\t"
2691 "mov %%r12, %c[r12](%0) \n\t"
2692 "mov %%r13, %c[r13](%0) \n\t"
2693 "mov %%r14, %c[r14](%0) \n\t"
2694 "mov %%r15, %c[r15](%0) \n\t"
2695 "mov %%cr2, %%rax \n\t"
2696 "mov %%rax, %c[cr2](%0) \n\t"
2698 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2699 #else
2700 "xchg %0, (%%esp) \n\t"
2701 "mov %%eax, %c[rax](%0) \n\t"
2702 "mov %%ebx, %c[rbx](%0) \n\t"
2703 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2704 "mov %%edx, %c[rdx](%0) \n\t"
2705 "mov %%esi, %c[rsi](%0) \n\t"
2706 "mov %%edi, %c[rdi](%0) \n\t"
2707 "mov %%ebp, %c[rbp](%0) \n\t"
2708 "mov %%cr2, %%eax \n\t"
2709 "mov %%eax, %c[cr2](%0) \n\t"
2711 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2712 #endif
2713 "setbe %c[fail](%0) \n\t"
2714 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2715 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2716 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2717 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2718 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2719 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2720 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2721 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2722 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2723 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2724 #ifdef CONFIG_X86_64
2725 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2726 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2727 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2728 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2729 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2730 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2731 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2732 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2733 #endif
2734 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2735 : "cc", "memory"
2736 #ifdef CONFIG_X86_64
2737 , "rbx", "rdi", "rsi"
2738 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2739 #else
2740 , "ebx", "edi", "rsi"
2741 #endif
2744 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2745 if (vmx->rmode.irq.pending)
2746 fixup_rmode_irq(vmx);
2748 vcpu->arch.interrupt_window_open =
2749 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2751 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2752 vmx->launched = 1;
2754 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2756 /* We need to handle NMIs before interrupts are enabled */
2757 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
2758 KVMTRACE_0D(NMI, vcpu, handler);
2759 asm("int $2");
2763 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2765 struct vcpu_vmx *vmx = to_vmx(vcpu);
2767 if (vmx->vmcs) {
2768 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2769 free_vmcs(vmx->vmcs);
2770 vmx->vmcs = NULL;
2774 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2776 struct vcpu_vmx *vmx = to_vmx(vcpu);
2778 spin_lock(&vmx_vpid_lock);
2779 if (vmx->vpid != 0)
2780 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2781 spin_unlock(&vmx_vpid_lock);
2782 vmx_free_vmcs(vcpu);
2783 kfree(vmx->host_msrs);
2784 kfree(vmx->guest_msrs);
2785 kvm_vcpu_uninit(vcpu);
2786 kmem_cache_free(kvm_vcpu_cache, vmx);
2789 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2791 int err;
2792 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2793 int cpu;
2795 if (!vmx)
2796 return ERR_PTR(-ENOMEM);
2798 allocate_vpid(vmx);
2800 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2801 if (err)
2802 goto free_vcpu;
2804 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2805 if (!vmx->guest_msrs) {
2806 err = -ENOMEM;
2807 goto uninit_vcpu;
2810 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2811 if (!vmx->host_msrs)
2812 goto free_guest_msrs;
2814 vmx->vmcs = alloc_vmcs();
2815 if (!vmx->vmcs)
2816 goto free_msrs;
2818 vmcs_clear(vmx->vmcs);
2820 cpu = get_cpu();
2821 vmx_vcpu_load(&vmx->vcpu, cpu);
2822 err = vmx_vcpu_setup(vmx);
2823 vmx_vcpu_put(&vmx->vcpu);
2824 put_cpu();
2825 if (err)
2826 goto free_vmcs;
2827 if (vm_need_virtualize_apic_accesses(kvm))
2828 if (alloc_apic_access_page(kvm) != 0)
2829 goto free_vmcs;
2831 if (vm_need_ept())
2832 if (alloc_identity_pagetable(kvm) != 0)
2833 goto free_vmcs;
2835 return &vmx->vcpu;
2837 free_vmcs:
2838 free_vmcs(vmx->vmcs);
2839 free_msrs:
2840 kfree(vmx->host_msrs);
2841 free_guest_msrs:
2842 kfree(vmx->guest_msrs);
2843 uninit_vcpu:
2844 kvm_vcpu_uninit(&vmx->vcpu);
2845 free_vcpu:
2846 kmem_cache_free(kvm_vcpu_cache, vmx);
2847 return ERR_PTR(err);
2850 static void __init vmx_check_processor_compat(void *rtn)
2852 struct vmcs_config vmcs_conf;
2854 *(int *)rtn = 0;
2855 if (setup_vmcs_config(&vmcs_conf) < 0)
2856 *(int *)rtn = -EIO;
2857 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2858 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2859 smp_processor_id());
2860 *(int *)rtn = -EIO;
2864 static int get_ept_level(void)
2866 return VMX_EPT_DEFAULT_GAW + 1;
2869 static struct kvm_x86_ops vmx_x86_ops = {
2870 .cpu_has_kvm_support = cpu_has_kvm_support,
2871 .disabled_by_bios = vmx_disabled_by_bios,
2872 .hardware_setup = hardware_setup,
2873 .hardware_unsetup = hardware_unsetup,
2874 .check_processor_compatibility = vmx_check_processor_compat,
2875 .hardware_enable = hardware_enable,
2876 .hardware_disable = hardware_disable,
2877 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2879 .vcpu_create = vmx_create_vcpu,
2880 .vcpu_free = vmx_free_vcpu,
2881 .vcpu_reset = vmx_vcpu_reset,
2883 .prepare_guest_switch = vmx_save_host_state,
2884 .vcpu_load = vmx_vcpu_load,
2885 .vcpu_put = vmx_vcpu_put,
2886 .vcpu_decache = vmx_vcpu_decache,
2888 .set_guest_debug = set_guest_debug,
2889 .guest_debug_pre = kvm_guest_debug_pre,
2890 .get_msr = vmx_get_msr,
2891 .set_msr = vmx_set_msr,
2892 .get_segment_base = vmx_get_segment_base,
2893 .get_segment = vmx_get_segment,
2894 .set_segment = vmx_set_segment,
2895 .get_cpl = vmx_get_cpl,
2896 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2897 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2898 .set_cr0 = vmx_set_cr0,
2899 .set_cr3 = vmx_set_cr3,
2900 .set_cr4 = vmx_set_cr4,
2901 .set_efer = vmx_set_efer,
2902 .get_idt = vmx_get_idt,
2903 .set_idt = vmx_set_idt,
2904 .get_gdt = vmx_get_gdt,
2905 .set_gdt = vmx_set_gdt,
2906 .cache_regs = vcpu_load_rsp_rip,
2907 .decache_regs = vcpu_put_rsp_rip,
2908 .get_rflags = vmx_get_rflags,
2909 .set_rflags = vmx_set_rflags,
2911 .tlb_flush = vmx_flush_tlb,
2913 .run = vmx_vcpu_run,
2914 .handle_exit = kvm_handle_exit,
2915 .skip_emulated_instruction = skip_emulated_instruction,
2916 .patch_hypercall = vmx_patch_hypercall,
2917 .get_irq = vmx_get_irq,
2918 .set_irq = vmx_inject_irq,
2919 .queue_exception = vmx_queue_exception,
2920 .exception_injected = vmx_exception_injected,
2921 .inject_pending_irq = vmx_intr_assist,
2922 .inject_pending_vectors = do_interrupt_requests,
2924 .set_tss_addr = vmx_set_tss_addr,
2925 .get_tdp_level = get_ept_level,
2928 static int __init vmx_init(void)
2930 void *va;
2931 int r;
2933 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2934 if (!vmx_io_bitmap_a)
2935 return -ENOMEM;
2937 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2938 if (!vmx_io_bitmap_b) {
2939 r = -ENOMEM;
2940 goto out;
2943 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2944 if (!vmx_msr_bitmap) {
2945 r = -ENOMEM;
2946 goto out1;
2950 * Allow direct access to the PC debug port (it is often used for I/O
2951 * delays, but the vmexits simply slow things down).
2953 va = kmap(vmx_io_bitmap_a);
2954 memset(va, 0xff, PAGE_SIZE);
2955 clear_bit(0x80, va);
2956 kunmap(vmx_io_bitmap_a);
2958 va = kmap(vmx_io_bitmap_b);
2959 memset(va, 0xff, PAGE_SIZE);
2960 kunmap(vmx_io_bitmap_b);
2962 va = kmap(vmx_msr_bitmap);
2963 memset(va, 0xff, PAGE_SIZE);
2964 kunmap(vmx_msr_bitmap);
2966 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
2968 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2969 if (r)
2970 goto out2;
2972 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
2973 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
2974 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
2975 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
2976 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
2978 if (bypass_guest_pf)
2979 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2981 return 0;
2983 out2:
2984 __free_page(vmx_msr_bitmap);
2985 out1:
2986 __free_page(vmx_io_bitmap_b);
2987 out:
2988 __free_page(vmx_io_bitmap_a);
2989 return r;
2992 static void __exit vmx_exit(void)
2994 __free_page(vmx_msr_bitmap);
2995 __free_page(vmx_io_bitmap_b);
2996 __free_page(vmx_io_bitmap_a);
2998 kvm_exit();
3001 module_init(vmx_init)
3002 module_exit(vmx_exit)