dm thin metadata: remove duplicate pmd initialisation
[linux-2.6.git] / drivers / md / dm-thin-metadata.c
blob51b97f07aca3fbc4a2ae00a776d55f7c08ae7bbb
1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 #define THIN_MAX_CONCURRENT_LOCKS 5
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
93 * Little endian on-disk superblock and device details.
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
97 __le32 flags;
98 __le64 blocknr; /* This block number, dm_block_t. */
100 __u8 uuid[16];
101 __le64 magic;
102 __le32 version;
103 __le32 time;
105 __le64 trans_id;
108 * Root held by userspace transactions.
110 __le64 held_root;
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
118 __le64 data_mapping_root;
121 * Device detail root mapping dev_id -> device_details
123 __le64 device_details_root;
125 __le32 data_block_size; /* In 512-byte sectors. */
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
130 __le32 compat_flags;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
133 } __packed;
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
140 } __packed;
142 struct dm_pool_metadata {
143 struct hlist_node hash;
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
153 * Two-level btree.
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
157 struct dm_btree_info info;
160 * Non-blocking version of the above.
162 struct dm_btree_info nb_info;
165 * Just the top level for deleting whole devices.
167 struct dm_btree_info tl_info;
170 * Just the bottom level for creating new devices.
172 struct dm_btree_info bl_info;
175 * Describes the device details btree.
177 struct dm_btree_info details_info;
179 struct rw_semaphore root_lock;
180 uint32_t time;
181 dm_block_t root;
182 dm_block_t details_root;
183 struct list_head thin_devices;
184 uint64_t trans_id;
185 unsigned long flags;
186 sector_t data_block_size;
189 struct dm_thin_device {
190 struct list_head list;
191 struct dm_pool_metadata *pmd;
192 dm_thin_id id;
194 int open_count;
195 int changed;
196 uint64_t mapped_blocks;
197 uint64_t transaction_id;
198 uint32_t creation_time;
199 uint32_t snapshotted_time;
202 /*----------------------------------------------------------------
203 * superblock validator
204 *--------------------------------------------------------------*/
206 #define SUPERBLOCK_CSUM_XOR 160774
208 static void sb_prepare_for_write(struct dm_block_validator *v,
209 struct dm_block *b,
210 size_t block_size)
212 struct thin_disk_superblock *disk_super = dm_block_data(b);
214 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
215 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
216 block_size - sizeof(__le32),
217 SUPERBLOCK_CSUM_XOR));
220 static int sb_check(struct dm_block_validator *v,
221 struct dm_block *b,
222 size_t block_size)
224 struct thin_disk_superblock *disk_super = dm_block_data(b);
225 __le32 csum_le;
227 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
228 DMERR("sb_check failed: blocknr %llu: "
229 "wanted %llu", le64_to_cpu(disk_super->blocknr),
230 (unsigned long long)dm_block_location(b));
231 return -ENOTBLK;
234 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
235 DMERR("sb_check failed: magic %llu: "
236 "wanted %llu", le64_to_cpu(disk_super->magic),
237 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
238 return -EILSEQ;
241 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
242 block_size - sizeof(__le32),
243 SUPERBLOCK_CSUM_XOR));
244 if (csum_le != disk_super->csum) {
245 DMERR("sb_check failed: csum %u: wanted %u",
246 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
247 return -EILSEQ;
250 return 0;
253 static struct dm_block_validator sb_validator = {
254 .name = "superblock",
255 .prepare_for_write = sb_prepare_for_write,
256 .check = sb_check
259 /*----------------------------------------------------------------
260 * Methods for the btree value types
261 *--------------------------------------------------------------*/
263 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
265 return (b << 24) | t;
268 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
270 *b = v >> 24;
271 *t = v & ((1 << 24) - 1);
274 static void data_block_inc(void *context, void *value_le)
276 struct dm_space_map *sm = context;
277 __le64 v_le;
278 uint64_t b;
279 uint32_t t;
281 memcpy(&v_le, value_le, sizeof(v_le));
282 unpack_block_time(le64_to_cpu(v_le), &b, &t);
283 dm_sm_inc_block(sm, b);
286 static void data_block_dec(void *context, void *value_le)
288 struct dm_space_map *sm = context;
289 __le64 v_le;
290 uint64_t b;
291 uint32_t t;
293 memcpy(&v_le, value_le, sizeof(v_le));
294 unpack_block_time(le64_to_cpu(v_le), &b, &t);
295 dm_sm_dec_block(sm, b);
298 static int data_block_equal(void *context, void *value1_le, void *value2_le)
300 __le64 v1_le, v2_le;
301 uint64_t b1, b2;
302 uint32_t t;
304 memcpy(&v1_le, value1_le, sizeof(v1_le));
305 memcpy(&v2_le, value2_le, sizeof(v2_le));
306 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
307 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
309 return b1 == b2;
312 static void subtree_inc(void *context, void *value)
314 struct dm_btree_info *info = context;
315 __le64 root_le;
316 uint64_t root;
318 memcpy(&root_le, value, sizeof(root_le));
319 root = le64_to_cpu(root_le);
320 dm_tm_inc(info->tm, root);
323 static void subtree_dec(void *context, void *value)
325 struct dm_btree_info *info = context;
326 __le64 root_le;
327 uint64_t root;
329 memcpy(&root_le, value, sizeof(root_le));
330 root = le64_to_cpu(root_le);
331 if (dm_btree_del(info, root))
332 DMERR("btree delete failed\n");
335 static int subtree_equal(void *context, void *value1_le, void *value2_le)
337 __le64 v1_le, v2_le;
338 memcpy(&v1_le, value1_le, sizeof(v1_le));
339 memcpy(&v2_le, value2_le, sizeof(v2_le));
341 return v1_le == v2_le;
344 /*----------------------------------------------------------------*/
346 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
347 struct dm_block **sblock)
349 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
350 &sb_validator, sblock);
353 static int superblock_lock(struct dm_pool_metadata *pmd,
354 struct dm_block **sblock)
356 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
357 &sb_validator, sblock);
360 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
362 int r;
363 unsigned i;
364 struct dm_block *b;
365 __le64 *data_le, zero = cpu_to_le64(0);
366 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
369 * We can't use a validator here - it may be all zeroes.
371 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
372 if (r)
373 return r;
375 data_le = dm_block_data(b);
376 *result = 1;
377 for (i = 0; i < block_size; i++) {
378 if (data_le[i] != zero) {
379 *result = 0;
380 break;
384 return dm_bm_unlock(b);
387 static void __setup_btree_details(struct dm_pool_metadata *pmd)
389 pmd->info.tm = pmd->tm;
390 pmd->info.levels = 2;
391 pmd->info.value_type.context = pmd->data_sm;
392 pmd->info.value_type.size = sizeof(__le64);
393 pmd->info.value_type.inc = data_block_inc;
394 pmd->info.value_type.dec = data_block_dec;
395 pmd->info.value_type.equal = data_block_equal;
397 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
398 pmd->nb_info.tm = pmd->nb_tm;
400 pmd->tl_info.tm = pmd->tm;
401 pmd->tl_info.levels = 1;
402 pmd->tl_info.value_type.context = &pmd->info;
403 pmd->tl_info.value_type.size = sizeof(__le64);
404 pmd->tl_info.value_type.inc = subtree_inc;
405 pmd->tl_info.value_type.dec = subtree_dec;
406 pmd->tl_info.value_type.equal = subtree_equal;
408 pmd->bl_info.tm = pmd->tm;
409 pmd->bl_info.levels = 1;
410 pmd->bl_info.value_type.context = pmd->data_sm;
411 pmd->bl_info.value_type.size = sizeof(__le64);
412 pmd->bl_info.value_type.inc = data_block_inc;
413 pmd->bl_info.value_type.dec = data_block_dec;
414 pmd->bl_info.value_type.equal = data_block_equal;
416 pmd->details_info.tm = pmd->tm;
417 pmd->details_info.levels = 1;
418 pmd->details_info.value_type.context = NULL;
419 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
420 pmd->details_info.value_type.inc = NULL;
421 pmd->details_info.value_type.dec = NULL;
422 pmd->details_info.value_type.equal = NULL;
425 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
427 int r;
428 struct dm_block *sblock;
429 size_t metadata_len, data_len;
430 struct thin_disk_superblock *disk_super;
431 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
433 if (bdev_size > THIN_METADATA_MAX_SECTORS)
434 bdev_size = THIN_METADATA_MAX_SECTORS;
436 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
437 if (r < 0)
438 return r;
440 r = dm_sm_root_size(pmd->data_sm, &data_len);
441 if (r < 0)
442 return r;
444 r = dm_sm_commit(pmd->data_sm);
445 if (r < 0)
446 return r;
448 r = dm_tm_pre_commit(pmd->tm);
449 if (r < 0)
450 return r;
452 r = superblock_lock_zero(pmd, &sblock);
453 if (r)
454 return r;
456 disk_super = dm_block_data(sblock);
457 disk_super->flags = 0;
458 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
459 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
460 disk_super->version = cpu_to_le32(THIN_VERSION);
461 disk_super->time = 0;
462 disk_super->trans_id = 0;
463 disk_super->held_root = 0;
465 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
466 metadata_len);
467 if (r < 0)
468 goto bad_locked;
470 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
471 data_len);
472 if (r < 0)
473 goto bad_locked;
475 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
476 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
477 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
478 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
479 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
481 return dm_tm_commit(pmd->tm, sblock);
483 bad_locked:
484 dm_bm_unlock(sblock);
485 return r;
488 static int __format_metadata(struct dm_pool_metadata *pmd)
490 int r;
492 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
493 &pmd->tm, &pmd->metadata_sm);
494 if (r < 0) {
495 DMERR("tm_create_with_sm failed");
496 return r;
499 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
500 if (IS_ERR(pmd->data_sm)) {
501 DMERR("sm_disk_create failed");
502 r = PTR_ERR(pmd->data_sm);
503 goto bad;
506 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
507 if (!pmd->nb_tm) {
508 DMERR("could not create clone tm");
509 r = -ENOMEM;
510 goto bad_data_sm;
513 __setup_btree_details(pmd);
515 r = dm_btree_empty(&pmd->info, &pmd->root);
516 if (r < 0)
517 goto bad_data_sm;
519 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
520 if (r < 0) {
521 DMERR("couldn't create devices root");
522 goto bad_data_sm;
525 r = __write_initial_superblock(pmd);
526 if (r)
527 goto bad_data_sm;
529 return 0;
531 bad_data_sm:
532 dm_sm_destroy(pmd->data_sm);
533 bad:
534 dm_tm_destroy(pmd->tm);
535 dm_sm_destroy(pmd->metadata_sm);
537 return r;
540 static int __open_metadata(struct dm_pool_metadata *pmd)
542 int r;
543 struct dm_block *sblock;
544 struct thin_disk_superblock *disk_super;
546 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
547 &sb_validator, &sblock);
548 if (r < 0) {
549 DMERR("couldn't read superblock");
550 return r;
553 disk_super = dm_block_data(sblock);
554 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
555 disk_super->metadata_space_map_root,
556 sizeof(disk_super->metadata_space_map_root),
557 &pmd->tm, &pmd->metadata_sm);
558 if (r < 0) {
559 DMERR("tm_open_with_sm failed");
560 dm_bm_unlock(sblock);
561 return r;
564 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
565 sizeof(disk_super->data_space_map_root));
566 if (IS_ERR(pmd->data_sm)) {
567 DMERR("sm_disk_open failed");
568 dm_bm_unlock(sblock);
569 r = PTR_ERR(pmd->data_sm);
570 goto bad;
573 dm_bm_unlock(sblock);
575 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
576 if (!pmd->nb_tm) {
577 DMERR("could not create clone tm");
578 r = -ENOMEM;
579 goto bad_data_sm;
582 __setup_btree_details(pmd);
584 bad_data_sm:
585 dm_sm_destroy(pmd->data_sm);
586 bad:
587 dm_tm_destroy(pmd->tm);
588 dm_sm_destroy(pmd->metadata_sm);
590 return r;
593 static int __open_or_format_metadata(struct dm_pool_metadata *pmd)
595 int r, unformatted;
597 r = __superblock_all_zeroes(pmd->bm, &unformatted);
598 if (r)
599 return r;
601 if (unformatted)
602 return __format_metadata(pmd);
603 else
604 return __open_metadata(pmd);
607 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd)
609 int r;
611 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
612 THIN_METADATA_CACHE_SIZE,
613 THIN_MAX_CONCURRENT_LOCKS);
614 if (IS_ERR(pmd->bm)) {
615 DMERR("could not create block manager");
616 return PTR_ERR(pmd->bm);
619 r = __open_or_format_metadata(pmd);
620 if (r)
621 dm_block_manager_destroy(pmd->bm);
623 return r;
626 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
628 dm_sm_destroy(pmd->data_sm);
629 dm_sm_destroy(pmd->metadata_sm);
630 dm_tm_destroy(pmd->nb_tm);
631 dm_tm_destroy(pmd->tm);
632 dm_block_manager_destroy(pmd->bm);
635 static int __begin_transaction(struct dm_pool_metadata *pmd)
637 int r;
638 u32 features;
639 struct thin_disk_superblock *disk_super;
640 struct dm_block *sblock;
643 * We re-read the superblock every time. Shouldn't need to do this
644 * really.
646 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
647 &sb_validator, &sblock);
648 if (r)
649 return r;
651 disk_super = dm_block_data(sblock);
652 pmd->time = le32_to_cpu(disk_super->time);
653 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
654 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
655 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
656 pmd->flags = le32_to_cpu(disk_super->flags);
657 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
659 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
660 if (features) {
661 DMERR("could not access metadata due to "
662 "unsupported optional features (%lx).",
663 (unsigned long)features);
664 r = -EINVAL;
665 goto out;
669 * Check for read-only metadata to skip the following RDWR checks.
671 if (get_disk_ro(pmd->bdev->bd_disk))
672 goto out;
674 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
675 if (features) {
676 DMERR("could not access metadata RDWR due to "
677 "unsupported optional features (%lx).",
678 (unsigned long)features);
679 r = -EINVAL;
682 out:
683 dm_bm_unlock(sblock);
684 return r;
687 static int __write_changed_details(struct dm_pool_metadata *pmd)
689 int r;
690 struct dm_thin_device *td, *tmp;
691 struct disk_device_details details;
692 uint64_t key;
694 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
695 if (!td->changed)
696 continue;
698 key = td->id;
700 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
701 details.transaction_id = cpu_to_le64(td->transaction_id);
702 details.creation_time = cpu_to_le32(td->creation_time);
703 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
704 __dm_bless_for_disk(&details);
706 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
707 &key, &details, &pmd->details_root);
708 if (r)
709 return r;
711 if (td->open_count)
712 td->changed = 0;
713 else {
714 list_del(&td->list);
715 kfree(td);
719 return 0;
722 static int __commit_transaction(struct dm_pool_metadata *pmd)
725 * FIXME: Associated pool should be made read-only on failure.
727 int r;
728 size_t metadata_len, data_len;
729 struct thin_disk_superblock *disk_super;
730 struct dm_block *sblock;
733 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
735 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
737 r = __write_changed_details(pmd);
738 if (r < 0)
739 return r;
741 r = dm_sm_commit(pmd->data_sm);
742 if (r < 0)
743 return r;
745 r = dm_tm_pre_commit(pmd->tm);
746 if (r < 0)
747 return r;
749 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
750 if (r < 0)
751 return r;
753 r = dm_sm_root_size(pmd->data_sm, &data_len);
754 if (r < 0)
755 return r;
757 r = superblock_lock(pmd, &sblock);
758 if (r)
759 return r;
761 disk_super = dm_block_data(sblock);
762 disk_super->time = cpu_to_le32(pmd->time);
763 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
764 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
765 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
766 disk_super->flags = cpu_to_le32(pmd->flags);
768 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
769 metadata_len);
770 if (r < 0)
771 goto out_locked;
773 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
774 data_len);
775 if (r < 0)
776 goto out_locked;
778 return dm_tm_commit(pmd->tm, sblock);
780 out_locked:
781 dm_bm_unlock(sblock);
782 return r;
785 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
786 sector_t data_block_size)
788 int r;
789 struct dm_pool_metadata *pmd;
791 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
792 if (!pmd) {
793 DMERR("could not allocate metadata struct");
794 return ERR_PTR(-ENOMEM);
797 init_rwsem(&pmd->root_lock);
798 pmd->time = 0;
799 INIT_LIST_HEAD(&pmd->thin_devices);
800 pmd->bdev = bdev;
801 pmd->data_block_size = data_block_size;
803 r = __create_persistent_data_objects(pmd);
804 if (r) {
805 kfree(pmd);
806 return ERR_PTR(r);
809 r = __begin_transaction(pmd);
810 if (r < 0) {
811 if (dm_pool_metadata_close(pmd) < 0)
812 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
813 return ERR_PTR(r);
816 return pmd;
819 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
821 int r;
822 unsigned open_devices = 0;
823 struct dm_thin_device *td, *tmp;
825 down_read(&pmd->root_lock);
826 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
827 if (td->open_count)
828 open_devices++;
829 else {
830 list_del(&td->list);
831 kfree(td);
834 up_read(&pmd->root_lock);
836 if (open_devices) {
837 DMERR("attempt to close pmd when %u device(s) are still open",
838 open_devices);
839 return -EBUSY;
842 r = __commit_transaction(pmd);
843 if (r < 0)
844 DMWARN("%s: __commit_transaction() failed, error = %d",
845 __func__, r);
847 __destroy_persistent_data_objects(pmd);
848 kfree(pmd);
850 return 0;
854 * __open_device: Returns @td corresponding to device with id @dev,
855 * creating it if @create is set and incrementing @td->open_count.
856 * On failure, @td is undefined.
858 static int __open_device(struct dm_pool_metadata *pmd,
859 dm_thin_id dev, int create,
860 struct dm_thin_device **td)
862 int r, changed = 0;
863 struct dm_thin_device *td2;
864 uint64_t key = dev;
865 struct disk_device_details details_le;
868 * If the device is already open, return it.
870 list_for_each_entry(td2, &pmd->thin_devices, list)
871 if (td2->id == dev) {
873 * May not create an already-open device.
875 if (create)
876 return -EEXIST;
878 td2->open_count++;
879 *td = td2;
880 return 0;
884 * Check the device exists.
886 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
887 &key, &details_le);
888 if (r) {
889 if (r != -ENODATA || !create)
890 return r;
893 * Create new device.
895 changed = 1;
896 details_le.mapped_blocks = 0;
897 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
898 details_le.creation_time = cpu_to_le32(pmd->time);
899 details_le.snapshotted_time = cpu_to_le32(pmd->time);
902 *td = kmalloc(sizeof(**td), GFP_NOIO);
903 if (!*td)
904 return -ENOMEM;
906 (*td)->pmd = pmd;
907 (*td)->id = dev;
908 (*td)->open_count = 1;
909 (*td)->changed = changed;
910 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
911 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
912 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
913 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
915 list_add(&(*td)->list, &pmd->thin_devices);
917 return 0;
920 static void __close_device(struct dm_thin_device *td)
922 --td->open_count;
925 static int __create_thin(struct dm_pool_metadata *pmd,
926 dm_thin_id dev)
928 int r;
929 dm_block_t dev_root;
930 uint64_t key = dev;
931 struct disk_device_details details_le;
932 struct dm_thin_device *td;
933 __le64 value;
935 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
936 &key, &details_le);
937 if (!r)
938 return -EEXIST;
941 * Create an empty btree for the mappings.
943 r = dm_btree_empty(&pmd->bl_info, &dev_root);
944 if (r)
945 return r;
948 * Insert it into the main mapping tree.
950 value = cpu_to_le64(dev_root);
951 __dm_bless_for_disk(&value);
952 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
953 if (r) {
954 dm_btree_del(&pmd->bl_info, dev_root);
955 return r;
958 r = __open_device(pmd, dev, 1, &td);
959 if (r) {
960 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
961 dm_btree_del(&pmd->bl_info, dev_root);
962 return r;
964 __close_device(td);
966 return r;
969 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
971 int r;
973 down_write(&pmd->root_lock);
974 r = __create_thin(pmd, dev);
975 up_write(&pmd->root_lock);
977 return r;
980 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
981 struct dm_thin_device *snap,
982 dm_thin_id origin, uint32_t time)
984 int r;
985 struct dm_thin_device *td;
987 r = __open_device(pmd, origin, 0, &td);
988 if (r)
989 return r;
991 td->changed = 1;
992 td->snapshotted_time = time;
994 snap->mapped_blocks = td->mapped_blocks;
995 snap->snapshotted_time = time;
996 __close_device(td);
998 return 0;
1001 static int __create_snap(struct dm_pool_metadata *pmd,
1002 dm_thin_id dev, dm_thin_id origin)
1004 int r;
1005 dm_block_t origin_root;
1006 uint64_t key = origin, dev_key = dev;
1007 struct dm_thin_device *td;
1008 struct disk_device_details details_le;
1009 __le64 value;
1011 /* check this device is unused */
1012 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1013 &dev_key, &details_le);
1014 if (!r)
1015 return -EEXIST;
1017 /* find the mapping tree for the origin */
1018 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1019 if (r)
1020 return r;
1021 origin_root = le64_to_cpu(value);
1023 /* clone the origin, an inc will do */
1024 dm_tm_inc(pmd->tm, origin_root);
1026 /* insert into the main mapping tree */
1027 value = cpu_to_le64(origin_root);
1028 __dm_bless_for_disk(&value);
1029 key = dev;
1030 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1031 if (r) {
1032 dm_tm_dec(pmd->tm, origin_root);
1033 return r;
1036 pmd->time++;
1038 r = __open_device(pmd, dev, 1, &td);
1039 if (r)
1040 goto bad;
1042 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1043 __close_device(td);
1045 if (r)
1046 goto bad;
1048 return 0;
1050 bad:
1051 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1052 dm_btree_remove(&pmd->details_info, pmd->details_root,
1053 &key, &pmd->details_root);
1054 return r;
1057 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1058 dm_thin_id dev,
1059 dm_thin_id origin)
1061 int r;
1063 down_write(&pmd->root_lock);
1064 r = __create_snap(pmd, dev, origin);
1065 up_write(&pmd->root_lock);
1067 return r;
1070 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1072 int r;
1073 uint64_t key = dev;
1074 struct dm_thin_device *td;
1076 /* TODO: failure should mark the transaction invalid */
1077 r = __open_device(pmd, dev, 0, &td);
1078 if (r)
1079 return r;
1081 if (td->open_count > 1) {
1082 __close_device(td);
1083 return -EBUSY;
1086 list_del(&td->list);
1087 kfree(td);
1088 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1089 &key, &pmd->details_root);
1090 if (r)
1091 return r;
1093 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1094 if (r)
1095 return r;
1097 return 0;
1100 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1101 dm_thin_id dev)
1103 int r;
1105 down_write(&pmd->root_lock);
1106 r = __delete_device(pmd, dev);
1107 up_write(&pmd->root_lock);
1109 return r;
1112 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1113 uint64_t current_id,
1114 uint64_t new_id)
1116 down_write(&pmd->root_lock);
1117 if (pmd->trans_id != current_id) {
1118 up_write(&pmd->root_lock);
1119 DMERR("mismatched transaction id");
1120 return -EINVAL;
1123 pmd->trans_id = new_id;
1124 up_write(&pmd->root_lock);
1126 return 0;
1129 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1130 uint64_t *result)
1132 down_read(&pmd->root_lock);
1133 *result = pmd->trans_id;
1134 up_read(&pmd->root_lock);
1136 return 0;
1139 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1141 int r, inc;
1142 struct thin_disk_superblock *disk_super;
1143 struct dm_block *copy, *sblock;
1144 dm_block_t held_root;
1147 * Copy the superblock.
1149 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1150 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1151 &sb_validator, &copy, &inc);
1152 if (r)
1153 return r;
1155 BUG_ON(!inc);
1157 held_root = dm_block_location(copy);
1158 disk_super = dm_block_data(copy);
1160 if (le64_to_cpu(disk_super->held_root)) {
1161 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1163 dm_tm_dec(pmd->tm, held_root);
1164 dm_tm_unlock(pmd->tm, copy);
1165 return -EBUSY;
1169 * Wipe the spacemap since we're not publishing this.
1171 memset(&disk_super->data_space_map_root, 0,
1172 sizeof(disk_super->data_space_map_root));
1173 memset(&disk_super->metadata_space_map_root, 0,
1174 sizeof(disk_super->metadata_space_map_root));
1177 * Increment the data structures that need to be preserved.
1179 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1180 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1181 dm_tm_unlock(pmd->tm, copy);
1184 * Write the held root into the superblock.
1186 r = superblock_lock(pmd, &sblock);
1187 if (r) {
1188 dm_tm_dec(pmd->tm, held_root);
1189 return r;
1192 disk_super = dm_block_data(sblock);
1193 disk_super->held_root = cpu_to_le64(held_root);
1194 dm_bm_unlock(sblock);
1195 return 0;
1198 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1200 int r;
1202 down_write(&pmd->root_lock);
1203 r = __reserve_metadata_snap(pmd);
1204 up_write(&pmd->root_lock);
1206 return r;
1209 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1211 int r;
1212 struct thin_disk_superblock *disk_super;
1213 struct dm_block *sblock, *copy;
1214 dm_block_t held_root;
1216 r = superblock_lock(pmd, &sblock);
1217 if (r)
1218 return r;
1220 disk_super = dm_block_data(sblock);
1221 held_root = le64_to_cpu(disk_super->held_root);
1222 disk_super->held_root = cpu_to_le64(0);
1224 dm_bm_unlock(sblock);
1226 if (!held_root) {
1227 DMWARN("No pool metadata snapshot found: nothing to release.");
1228 return -EINVAL;
1231 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1232 if (r)
1233 return r;
1235 disk_super = dm_block_data(copy);
1236 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1237 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1238 dm_sm_dec_block(pmd->metadata_sm, held_root);
1240 return dm_tm_unlock(pmd->tm, copy);
1243 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1245 int r;
1247 down_write(&pmd->root_lock);
1248 r = __release_metadata_snap(pmd);
1249 up_write(&pmd->root_lock);
1251 return r;
1254 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1255 dm_block_t *result)
1257 int r;
1258 struct thin_disk_superblock *disk_super;
1259 struct dm_block *sblock;
1261 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1262 &sb_validator, &sblock);
1263 if (r)
1264 return r;
1266 disk_super = dm_block_data(sblock);
1267 *result = le64_to_cpu(disk_super->held_root);
1269 return dm_bm_unlock(sblock);
1272 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1273 dm_block_t *result)
1275 int r;
1277 down_read(&pmd->root_lock);
1278 r = __get_metadata_snap(pmd, result);
1279 up_read(&pmd->root_lock);
1281 return r;
1284 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1285 struct dm_thin_device **td)
1287 int r;
1289 down_write(&pmd->root_lock);
1290 r = __open_device(pmd, dev, 0, td);
1291 up_write(&pmd->root_lock);
1293 return r;
1296 int dm_pool_close_thin_device(struct dm_thin_device *td)
1298 down_write(&td->pmd->root_lock);
1299 __close_device(td);
1300 up_write(&td->pmd->root_lock);
1302 return 0;
1305 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1307 return td->id;
1310 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1312 return td->snapshotted_time > time;
1315 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1316 int can_block, struct dm_thin_lookup_result *result)
1318 int r;
1319 uint64_t block_time = 0;
1320 __le64 value;
1321 struct dm_pool_metadata *pmd = td->pmd;
1322 dm_block_t keys[2] = { td->id, block };
1324 if (can_block) {
1325 down_read(&pmd->root_lock);
1326 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1327 if (!r)
1328 block_time = le64_to_cpu(value);
1329 up_read(&pmd->root_lock);
1331 } else if (down_read_trylock(&pmd->root_lock)) {
1332 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1333 if (!r)
1334 block_time = le64_to_cpu(value);
1335 up_read(&pmd->root_lock);
1337 } else
1338 return -EWOULDBLOCK;
1340 if (!r) {
1341 dm_block_t exception_block;
1342 uint32_t exception_time;
1343 unpack_block_time(block_time, &exception_block,
1344 &exception_time);
1345 result->block = exception_block;
1346 result->shared = __snapshotted_since(td, exception_time);
1349 return r;
1352 static int __insert(struct dm_thin_device *td, dm_block_t block,
1353 dm_block_t data_block)
1355 int r, inserted;
1356 __le64 value;
1357 struct dm_pool_metadata *pmd = td->pmd;
1358 dm_block_t keys[2] = { td->id, block };
1360 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1361 __dm_bless_for_disk(&value);
1363 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1364 &pmd->root, &inserted);
1365 if (r)
1366 return r;
1368 if (inserted) {
1369 td->mapped_blocks++;
1370 td->changed = 1;
1373 return 0;
1376 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1377 dm_block_t data_block)
1379 int r;
1381 down_write(&td->pmd->root_lock);
1382 r = __insert(td, block, data_block);
1383 up_write(&td->pmd->root_lock);
1385 return r;
1388 static int __remove(struct dm_thin_device *td, dm_block_t block)
1390 int r;
1391 struct dm_pool_metadata *pmd = td->pmd;
1392 dm_block_t keys[2] = { td->id, block };
1394 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1395 if (r)
1396 return r;
1398 td->mapped_blocks--;
1399 td->changed = 1;
1401 return 0;
1404 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1406 int r;
1408 down_write(&td->pmd->root_lock);
1409 r = __remove(td, block);
1410 up_write(&td->pmd->root_lock);
1412 return r;
1415 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1417 int r;
1419 down_write(&pmd->root_lock);
1420 r = dm_sm_new_block(pmd->data_sm, result);
1421 up_write(&pmd->root_lock);
1423 return r;
1426 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1428 int r;
1430 down_write(&pmd->root_lock);
1432 r = __commit_transaction(pmd);
1433 if (r <= 0)
1434 goto out;
1437 * Open the next transaction.
1439 r = __begin_transaction(pmd);
1440 out:
1441 up_write(&pmd->root_lock);
1442 return r;
1445 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1447 int r;
1449 down_read(&pmd->root_lock);
1450 r = dm_sm_get_nr_free(pmd->data_sm, result);
1451 up_read(&pmd->root_lock);
1453 return r;
1456 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1457 dm_block_t *result)
1459 int r;
1461 down_read(&pmd->root_lock);
1462 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1463 up_read(&pmd->root_lock);
1465 return r;
1468 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1469 dm_block_t *result)
1471 int r;
1473 down_read(&pmd->root_lock);
1474 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1475 up_read(&pmd->root_lock);
1477 return r;
1480 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1482 down_read(&pmd->root_lock);
1483 *result = pmd->data_block_size;
1484 up_read(&pmd->root_lock);
1486 return 0;
1489 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1491 int r;
1493 down_read(&pmd->root_lock);
1494 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1495 up_read(&pmd->root_lock);
1497 return r;
1500 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1502 struct dm_pool_metadata *pmd = td->pmd;
1504 down_read(&pmd->root_lock);
1505 *result = td->mapped_blocks;
1506 up_read(&pmd->root_lock);
1508 return 0;
1511 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1513 int r;
1514 __le64 value_le;
1515 dm_block_t thin_root;
1516 struct dm_pool_metadata *pmd = td->pmd;
1518 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1519 if (r)
1520 return r;
1522 thin_root = le64_to_cpu(value_le);
1524 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1527 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1528 dm_block_t *result)
1530 int r;
1531 struct dm_pool_metadata *pmd = td->pmd;
1533 down_read(&pmd->root_lock);
1534 r = __highest_block(td, result);
1535 up_read(&pmd->root_lock);
1537 return r;
1540 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1542 int r;
1543 dm_block_t old_count;
1545 r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1546 if (r)
1547 return r;
1549 if (new_count == old_count)
1550 return 0;
1552 if (new_count < old_count) {
1553 DMERR("cannot reduce size of data device");
1554 return -EINVAL;
1557 return dm_sm_extend(pmd->data_sm, new_count - old_count);
1560 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1562 int r;
1564 down_write(&pmd->root_lock);
1565 r = __resize_data_dev(pmd, new_count);
1566 up_write(&pmd->root_lock);
1568 return r;