mmc: core: Re-use code for MMC_CAP2_DETECT_ON_ERR in polling mode
[linux-2.6.git] / fs / buffer.c
blobd2a4d1bb2d57aec3999e494d52c4f765a0ae48e8
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 inline void touch_buffer(struct buffer_head *bh)
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
62 EXPORT_SYMBOL(touch_buffer);
64 static int sleep_on_buffer(void *word)
66 io_schedule();
67 return 0;
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
83 EXPORT_SYMBOL(unlock_buffer);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
94 EXPORT_SYMBOL(__wait_on_buffer);
96 static void
97 __clear_page_buffers(struct page *page)
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
105 static int quiet_error(struct buffer_head *bh)
107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 return 0;
109 return 1;
113 static void buffer_io_error(struct buffer_head *bh)
115 char b[BDEVNAME_SIZE];
116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh->b_bdev, b),
118 (unsigned long long)bh->b_blocknr);
122 * End-of-IO handler helper function which does not touch the bh after
123 * unlocking it.
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 * itself.
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 if (uptodate) {
132 set_buffer_uptodate(bh);
133 } else {
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh);
137 unlock_buffer(bh);
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 __end_buffer_read_notouch(bh, uptodate);
147 put_bh(bh);
149 EXPORT_SYMBOL(end_buffer_read_sync);
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 char b[BDEVNAME_SIZE];
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 if (!quiet_error(bh)) {
159 buffer_io_error(bh);
160 printk(KERN_WARNING "lost page write due to "
161 "I/O error on %s\n",
162 bdevname(bh->b_bdev, b));
164 set_buffer_write_io_error(bh);
165 clear_buffer_uptodate(bh);
167 unlock_buffer(bh);
168 put_bh(bh);
170 EXPORT_SYMBOL(end_buffer_write_sync);
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
176 * private_lock.
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 struct inode *bd_inode = bdev->bd_inode;
187 struct address_space *bd_mapping = bd_inode->i_mapping;
188 struct buffer_head *ret = NULL;
189 pgoff_t index;
190 struct buffer_head *bh;
191 struct buffer_head *head;
192 struct page *page;
193 int all_mapped = 1;
195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 page = find_get_page(bd_mapping, index);
197 if (!page)
198 goto out;
200 spin_lock(&bd_mapping->private_lock);
201 if (!page_has_buffers(page))
202 goto out_unlock;
203 head = page_buffers(page);
204 bh = head;
205 do {
206 if (!buffer_mapped(bh))
207 all_mapped = 0;
208 else if (bh->b_blocknr == block) {
209 ret = bh;
210 get_bh(bh);
211 goto out_unlock;
213 bh = bh->b_this_page;
214 } while (bh != head);
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
221 if (all_mapped) {
222 char b[BDEVNAME_SIZE];
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
226 (unsigned long long)block,
227 (unsigned long long)bh->b_blocknr);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh->b_state, bh->b_size);
230 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 1 << bd_inode->i_blkbits);
233 out_unlock:
234 spin_unlock(&bd_mapping->private_lock);
235 page_cache_release(page);
236 out:
237 return ret;
241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
243 static void free_more_memory(void)
245 struct zone *zone;
246 int nid;
248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249 yield();
251 for_each_online_node(nid) {
252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 gfp_zone(GFP_NOFS), NULL,
254 &zone);
255 if (zone)
256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257 GFP_NOFS, NULL);
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
267 unsigned long flags;
268 struct buffer_head *first;
269 struct buffer_head *tmp;
270 struct page *page;
271 int page_uptodate = 1;
273 BUG_ON(!buffer_async_read(bh));
275 page = bh->b_page;
276 if (uptodate) {
277 set_buffer_uptodate(bh);
278 } else {
279 clear_buffer_uptodate(bh);
280 if (!quiet_error(bh))
281 buffer_io_error(bh);
282 SetPageError(page);
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
290 first = page_buffers(page);
291 local_irq_save(flags);
292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293 clear_buffer_async_read(bh);
294 unlock_buffer(bh);
295 tmp = bh;
296 do {
297 if (!buffer_uptodate(tmp))
298 page_uptodate = 0;
299 if (buffer_async_read(tmp)) {
300 BUG_ON(!buffer_locked(tmp));
301 goto still_busy;
303 tmp = tmp->b_this_page;
304 } while (tmp != bh);
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
312 if (page_uptodate && !PageError(page))
313 SetPageUptodate(page);
314 unlock_page(page);
315 return;
317 still_busy:
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
320 return;
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
329 char b[BDEVNAME_SIZE];
330 unsigned long flags;
331 struct buffer_head *first;
332 struct buffer_head *tmp;
333 struct page *page;
335 BUG_ON(!buffer_async_write(bh));
337 page = bh->b_page;
338 if (uptodate) {
339 set_buffer_uptodate(bh);
340 } else {
341 if (!quiet_error(bh)) {
342 buffer_io_error(bh);
343 printk(KERN_WARNING "lost page write due to "
344 "I/O error on %s\n",
345 bdevname(bh->b_bdev, b));
347 set_bit(AS_EIO, &page->mapping->flags);
348 set_buffer_write_io_error(bh);
349 clear_buffer_uptodate(bh);
350 SetPageError(page);
353 first = page_buffers(page);
354 local_irq_save(flags);
355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
357 clear_buffer_async_write(bh);
358 unlock_buffer(bh);
359 tmp = bh->b_this_page;
360 while (tmp != bh) {
361 if (buffer_async_write(tmp)) {
362 BUG_ON(!buffer_locked(tmp));
363 goto still_busy;
365 tmp = tmp->b_this_page;
367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 local_irq_restore(flags);
369 end_page_writeback(page);
370 return;
372 still_busy:
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
375 return;
377 EXPORT_SYMBOL(end_buffer_async_write);
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
388 * The page comes unlocked when it has no locked buffer_async buffers
389 * left.
391 * PageLocked prevents anyone starting new async I/O reads any of
392 * the buffers.
394 * PageWriteback is used to prevent simultaneous writeout of the same
395 * page.
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
400 static void mark_buffer_async_read(struct buffer_head *bh)
402 bh->b_end_io = end_buffer_async_read;
403 set_buffer_async_read(bh);
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 bh_end_io_t *handler)
409 bh->b_end_io = handler;
410 set_buffer_async_write(bh);
413 void mark_buffer_async_write(struct buffer_head *bh)
415 mark_buffer_async_write_endio(bh, end_buffer_async_write);
417 EXPORT_SYMBOL(mark_buffer_async_write);
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
440 * ->private_lock.
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457 * queued up.
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
466 * b_inode back.
470 * The buffer's backing address_space's private_lock must be held
472 static void __remove_assoc_queue(struct buffer_head *bh)
474 list_del_init(&bh->b_assoc_buffers);
475 WARN_ON(!bh->b_assoc_map);
476 if (buffer_write_io_error(bh))
477 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 bh->b_assoc_map = NULL;
481 int inode_has_buffers(struct inode *inode)
483 return !list_empty(&inode->i_data.private_list);
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
498 struct buffer_head *bh;
499 struct list_head *p;
500 int err = 0;
502 spin_lock(lock);
503 repeat:
504 list_for_each_prev(p, list) {
505 bh = BH_ENTRY(p);
506 if (buffer_locked(bh)) {
507 get_bh(bh);
508 spin_unlock(lock);
509 wait_on_buffer(bh);
510 if (!buffer_uptodate(bh))
511 err = -EIO;
512 brelse(bh);
513 spin_lock(lock);
514 goto repeat;
517 spin_unlock(lock);
518 return err;
521 static void do_thaw_one(struct super_block *sb, void *unused)
523 char b[BDEVNAME_SIZE];
524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 printk(KERN_WARNING "Emergency Thaw on %s\n",
526 bdevname(sb->s_bdev, b));
529 static void do_thaw_all(struct work_struct *work)
531 iterate_supers(do_thaw_one, NULL);
532 kfree(work);
533 printk(KERN_WARNING "Emergency Thaw complete\n");
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
539 * Used for emergency unfreeze of all filesystems via SysRq
541 void emergency_thaw_all(void)
543 struct work_struct *work;
545 work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 if (work) {
547 INIT_WORK(work, do_thaw_all);
548 schedule_work(work);
553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554 * @mapping: the mapping which wants those buffers written
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
557 * that I/O.
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
563 int sync_mapping_buffers(struct address_space *mapping)
565 struct address_space *buffer_mapping = mapping->private_data;
567 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 return 0;
570 return fsync_buffers_list(&buffer_mapping->private_lock,
571 &mapping->private_list);
573 EXPORT_SYMBOL(sync_mapping_buffers);
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
581 void write_boundary_block(struct block_device *bdev,
582 sector_t bblock, unsigned blocksize)
584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 if (bh) {
586 if (buffer_dirty(bh))
587 ll_rw_block(WRITE, 1, &bh);
588 put_bh(bh);
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
594 struct address_space *mapping = inode->i_mapping;
595 struct address_space *buffer_mapping = bh->b_page->mapping;
597 mark_buffer_dirty(bh);
598 if (!mapping->private_data) {
599 mapping->private_data = buffer_mapping;
600 } else {
601 BUG_ON(mapping->private_data != buffer_mapping);
603 if (!bh->b_assoc_map) {
604 spin_lock(&buffer_mapping->private_lock);
605 list_move_tail(&bh->b_assoc_buffers,
606 &mapping->private_list);
607 bh->b_assoc_map = mapping;
608 spin_unlock(&buffer_mapping->private_lock);
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615 * dirty.
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
620 static void __set_page_dirty(struct page *page,
621 struct address_space *mapping, int warn)
623 spin_lock_irq(&mapping->tree_lock);
624 if (page->mapping) { /* Race with truncate? */
625 WARN_ON_ONCE(warn && !PageUptodate(page));
626 account_page_dirtied(page, mapping);
627 radix_tree_tag_set(&mapping->page_tree,
628 page_index(page), PAGECACHE_TAG_DIRTY);
630 spin_unlock_irq(&mapping->tree_lock);
631 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
635 * Add a page to the dirty page list.
637 * It is a sad fact of life that this function is called from several places
638 * deeply under spinlocking. It may not sleep.
640 * If the page has buffers, the uptodate buffers are set dirty, to preserve
641 * dirty-state coherency between the page and the buffers. It the page does
642 * not have buffers then when they are later attached they will all be set
643 * dirty.
645 * The buffers are dirtied before the page is dirtied. There's a small race
646 * window in which a writepage caller may see the page cleanness but not the
647 * buffer dirtiness. That's fine. If this code were to set the page dirty
648 * before the buffers, a concurrent writepage caller could clear the page dirty
649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650 * page on the dirty page list.
652 * We use private_lock to lock against try_to_free_buffers while using the
653 * page's buffer list. Also use this to protect against clean buffers being
654 * added to the page after it was set dirty.
656 * FIXME: may need to call ->reservepage here as well. That's rather up to the
657 * address_space though.
659 int __set_page_dirty_buffers(struct page *page)
661 int newly_dirty;
662 struct address_space *mapping = page_mapping(page);
664 if (unlikely(!mapping))
665 return !TestSetPageDirty(page);
667 spin_lock(&mapping->private_lock);
668 if (page_has_buffers(page)) {
669 struct buffer_head *head = page_buffers(page);
670 struct buffer_head *bh = head;
672 do {
673 set_buffer_dirty(bh);
674 bh = bh->b_this_page;
675 } while (bh != head);
677 newly_dirty = !TestSetPageDirty(page);
678 spin_unlock(&mapping->private_lock);
680 if (newly_dirty)
681 __set_page_dirty(page, mapping, 1);
682 return newly_dirty;
684 EXPORT_SYMBOL(__set_page_dirty_buffers);
687 * Write out and wait upon a list of buffers.
689 * We have conflicting pressures: we want to make sure that all
690 * initially dirty buffers get waited on, but that any subsequently
691 * dirtied buffers don't. After all, we don't want fsync to last
692 * forever if somebody is actively writing to the file.
694 * Do this in two main stages: first we copy dirty buffers to a
695 * temporary inode list, queueing the writes as we go. Then we clean
696 * up, waiting for those writes to complete.
698 * During this second stage, any subsequent updates to the file may end
699 * up refiling the buffer on the original inode's dirty list again, so
700 * there is a chance we will end up with a buffer queued for write but
701 * not yet completed on that list. So, as a final cleanup we go through
702 * the osync code to catch these locked, dirty buffers without requeuing
703 * any newly dirty buffers for write.
705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
707 struct buffer_head *bh;
708 struct list_head tmp;
709 struct address_space *mapping;
710 int err = 0, err2;
711 struct blk_plug plug;
713 INIT_LIST_HEAD(&tmp);
714 blk_start_plug(&plug);
716 spin_lock(lock);
717 while (!list_empty(list)) {
718 bh = BH_ENTRY(list->next);
719 mapping = bh->b_assoc_map;
720 __remove_assoc_queue(bh);
721 /* Avoid race with mark_buffer_dirty_inode() which does
722 * a lockless check and we rely on seeing the dirty bit */
723 smp_mb();
724 if (buffer_dirty(bh) || buffer_locked(bh)) {
725 list_add(&bh->b_assoc_buffers, &tmp);
726 bh->b_assoc_map = mapping;
727 if (buffer_dirty(bh)) {
728 get_bh(bh);
729 spin_unlock(lock);
731 * Ensure any pending I/O completes so that
732 * write_dirty_buffer() actually writes the
733 * current contents - it is a noop if I/O is
734 * still in flight on potentially older
735 * contents.
737 write_dirty_buffer(bh, WRITE_SYNC);
740 * Kick off IO for the previous mapping. Note
741 * that we will not run the very last mapping,
742 * wait_on_buffer() will do that for us
743 * through sync_buffer().
745 brelse(bh);
746 spin_lock(lock);
751 spin_unlock(lock);
752 blk_finish_plug(&plug);
753 spin_lock(lock);
755 while (!list_empty(&tmp)) {
756 bh = BH_ENTRY(tmp.prev);
757 get_bh(bh);
758 mapping = bh->b_assoc_map;
759 __remove_assoc_queue(bh);
760 /* Avoid race with mark_buffer_dirty_inode() which does
761 * a lockless check and we rely on seeing the dirty bit */
762 smp_mb();
763 if (buffer_dirty(bh)) {
764 list_add(&bh->b_assoc_buffers,
765 &mapping->private_list);
766 bh->b_assoc_map = mapping;
768 spin_unlock(lock);
769 wait_on_buffer(bh);
770 if (!buffer_uptodate(bh))
771 err = -EIO;
772 brelse(bh);
773 spin_lock(lock);
776 spin_unlock(lock);
777 err2 = osync_buffers_list(lock, list);
778 if (err)
779 return err;
780 else
781 return err2;
785 * Invalidate any and all dirty buffers on a given inode. We are
786 * probably unmounting the fs, but that doesn't mean we have already
787 * done a sync(). Just drop the buffers from the inode list.
789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
790 * assumes that all the buffers are against the blockdev. Not true
791 * for reiserfs.
793 void invalidate_inode_buffers(struct inode *inode)
795 if (inode_has_buffers(inode)) {
796 struct address_space *mapping = &inode->i_data;
797 struct list_head *list = &mapping->private_list;
798 struct address_space *buffer_mapping = mapping->private_data;
800 spin_lock(&buffer_mapping->private_lock);
801 while (!list_empty(list))
802 __remove_assoc_queue(BH_ENTRY(list->next));
803 spin_unlock(&buffer_mapping->private_lock);
806 EXPORT_SYMBOL(invalidate_inode_buffers);
809 * Remove any clean buffers from the inode's buffer list. This is called
810 * when we're trying to free the inode itself. Those buffers can pin it.
812 * Returns true if all buffers were removed.
814 int remove_inode_buffers(struct inode *inode)
816 int ret = 1;
818 if (inode_has_buffers(inode)) {
819 struct address_space *mapping = &inode->i_data;
820 struct list_head *list = &mapping->private_list;
821 struct address_space *buffer_mapping = mapping->private_data;
823 spin_lock(&buffer_mapping->private_lock);
824 while (!list_empty(list)) {
825 struct buffer_head *bh = BH_ENTRY(list->next);
826 if (buffer_dirty(bh)) {
827 ret = 0;
828 break;
830 __remove_assoc_queue(bh);
832 spin_unlock(&buffer_mapping->private_lock);
834 return ret;
838 * Create the appropriate buffers when given a page for data area and
839 * the size of each buffer.. Use the bh->b_this_page linked list to
840 * follow the buffers created. Return NULL if unable to create more
841 * buffers.
843 * The retry flag is used to differentiate async IO (paging, swapping)
844 * which may not fail from ordinary buffer allocations.
846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
847 int retry)
849 struct buffer_head *bh, *head;
850 long offset;
852 try_again:
853 head = NULL;
854 offset = PAGE_SIZE;
855 while ((offset -= size) >= 0) {
856 bh = alloc_buffer_head(GFP_NOFS);
857 if (!bh)
858 goto no_grow;
860 bh->b_this_page = head;
861 bh->b_blocknr = -1;
862 head = bh;
864 bh->b_size = size;
866 /* Link the buffer to its page */
867 set_bh_page(bh, page, offset);
869 return head;
871 * In case anything failed, we just free everything we got.
873 no_grow:
874 if (head) {
875 do {
876 bh = head;
877 head = head->b_this_page;
878 free_buffer_head(bh);
879 } while (head);
883 * Return failure for non-async IO requests. Async IO requests
884 * are not allowed to fail, so we have to wait until buffer heads
885 * become available. But we don't want tasks sleeping with
886 * partially complete buffers, so all were released above.
888 if (!retry)
889 return NULL;
891 /* We're _really_ low on memory. Now we just
892 * wait for old buffer heads to become free due to
893 * finishing IO. Since this is an async request and
894 * the reserve list is empty, we're sure there are
895 * async buffer heads in use.
897 free_more_memory();
898 goto try_again;
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
902 static inline void
903 link_dev_buffers(struct page *page, struct buffer_head *head)
905 struct buffer_head *bh, *tail;
907 bh = head;
908 do {
909 tail = bh;
910 bh = bh->b_this_page;
911 } while (bh);
912 tail->b_this_page = head;
913 attach_page_buffers(page, head);
916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
918 sector_t retval = ~((sector_t)0);
919 loff_t sz = i_size_read(bdev->bd_inode);
921 if (sz) {
922 unsigned int sizebits = blksize_bits(size);
923 retval = (sz >> sizebits);
925 return retval;
929 * Initialise the state of a blockdev page's buffers.
931 static sector_t
932 init_page_buffers(struct page *page, struct block_device *bdev,
933 sector_t block, int size)
935 struct buffer_head *head = page_buffers(page);
936 struct buffer_head *bh = head;
937 int uptodate = PageUptodate(page);
938 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
940 do {
941 if (!buffer_mapped(bh)) {
942 init_buffer(bh, NULL, NULL);
943 bh->b_bdev = bdev;
944 bh->b_blocknr = block;
945 if (uptodate)
946 set_buffer_uptodate(bh);
947 if (block < end_block)
948 set_buffer_mapped(bh);
950 block++;
951 bh = bh->b_this_page;
952 } while (bh != head);
955 * Caller needs to validate requested block against end of device.
957 return end_block;
961 * Create the page-cache page that contains the requested block.
963 * This is used purely for blockdev mappings.
965 static int
966 grow_dev_page(struct block_device *bdev, sector_t block,
967 pgoff_t index, int size, int sizebits)
969 struct inode *inode = bdev->bd_inode;
970 struct page *page;
971 struct buffer_head *bh;
972 sector_t end_block;
973 int ret = 0; /* Will call free_more_memory() */
975 page = find_or_create_page(inode->i_mapping, index,
976 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
977 if (!page)
978 return ret;
980 BUG_ON(!PageLocked(page));
982 if (page_has_buffers(page)) {
983 bh = page_buffers(page);
984 if (bh->b_size == size) {
985 end_block = init_page_buffers(page, bdev,
986 index << sizebits, size);
987 goto done;
989 if (!try_to_free_buffers(page))
990 goto failed;
994 * Allocate some buffers for this page
996 bh = alloc_page_buffers(page, size, 0);
997 if (!bh)
998 goto failed;
1001 * Link the page to the buffers and initialise them. Take the
1002 * lock to be atomic wrt __find_get_block(), which does not
1003 * run under the page lock.
1005 spin_lock(&inode->i_mapping->private_lock);
1006 link_dev_buffers(page, bh);
1007 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1008 spin_unlock(&inode->i_mapping->private_lock);
1009 done:
1010 ret = (block < end_block) ? 1 : -ENXIO;
1011 failed:
1012 unlock_page(page);
1013 page_cache_release(page);
1014 return ret;
1018 * Create buffers for the specified block device block's page. If
1019 * that page was dirty, the buffers are set dirty also.
1021 static int
1022 grow_buffers(struct block_device *bdev, sector_t block, int size)
1024 pgoff_t index;
1025 int sizebits;
1027 sizebits = -1;
1028 do {
1029 sizebits++;
1030 } while ((size << sizebits) < PAGE_SIZE);
1032 index = block >> sizebits;
1035 * Check for a block which wants to lie outside our maximum possible
1036 * pagecache index. (this comparison is done using sector_t types).
1038 if (unlikely(index != block >> sizebits)) {
1039 char b[BDEVNAME_SIZE];
1041 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1042 "device %s\n",
1043 __func__, (unsigned long long)block,
1044 bdevname(bdev, b));
1045 return -EIO;
1048 /* Create a page with the proper size buffers.. */
1049 return grow_dev_page(bdev, block, index, size, sizebits);
1052 static struct buffer_head *
1053 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1055 /* Size must be multiple of hard sectorsize */
1056 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1057 (size < 512 || size > PAGE_SIZE))) {
1058 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1059 size);
1060 printk(KERN_ERR "logical block size: %d\n",
1061 bdev_logical_block_size(bdev));
1063 dump_stack();
1064 return NULL;
1067 for (;;) {
1068 struct buffer_head *bh;
1069 int ret;
1071 bh = __find_get_block(bdev, block, size);
1072 if (bh)
1073 return bh;
1075 ret = grow_buffers(bdev, block, size);
1076 if (ret < 0)
1077 return NULL;
1078 if (ret == 0)
1079 free_more_memory();
1084 * The relationship between dirty buffers and dirty pages:
1086 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087 * the page is tagged dirty in its radix tree.
1089 * At all times, the dirtiness of the buffers represents the dirtiness of
1090 * subsections of the page. If the page has buffers, the page dirty bit is
1091 * merely a hint about the true dirty state.
1093 * When a page is set dirty in its entirety, all its buffers are marked dirty
1094 * (if the page has buffers).
1096 * When a buffer is marked dirty, its page is dirtied, but the page's other
1097 * buffers are not.
1099 * Also. When blockdev buffers are explicitly read with bread(), they
1100 * individually become uptodate. But their backing page remains not
1101 * uptodate - even if all of its buffers are uptodate. A subsequent
1102 * block_read_full_page() against that page will discover all the uptodate
1103 * buffers, will set the page uptodate and will perform no I/O.
1107 * mark_buffer_dirty - mark a buffer_head as needing writeout
1108 * @bh: the buffer_head to mark dirty
1110 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111 * backing page dirty, then tag the page as dirty in its address_space's radix
1112 * tree and then attach the address_space's inode to its superblock's dirty
1113 * inode list.
1115 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1116 * mapping->tree_lock and mapping->host->i_lock.
1118 void mark_buffer_dirty(struct buffer_head *bh)
1120 WARN_ON_ONCE(!buffer_uptodate(bh));
1122 trace_block_dirty_buffer(bh);
1125 * Very *carefully* optimize the it-is-already-dirty case.
1127 * Don't let the final "is it dirty" escape to before we
1128 * perhaps modified the buffer.
1130 if (buffer_dirty(bh)) {
1131 smp_mb();
1132 if (buffer_dirty(bh))
1133 return;
1136 if (!test_set_buffer_dirty(bh)) {
1137 struct page *page = bh->b_page;
1138 if (!TestSetPageDirty(page)) {
1139 struct address_space *mapping = page_mapping(page);
1140 if (mapping)
1141 __set_page_dirty(page, mapping, 0);
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1148 * Decrement a buffer_head's reference count. If all buffers against a page
1149 * have zero reference count, are clean and unlocked, and if the page is clean
1150 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152 * a page but it ends up not being freed, and buffers may later be reattached).
1154 void __brelse(struct buffer_head * buf)
1156 if (atomic_read(&buf->b_count)) {
1157 put_bh(buf);
1158 return;
1160 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1162 EXPORT_SYMBOL(__brelse);
1165 * bforget() is like brelse(), except it discards any
1166 * potentially dirty data.
1168 void __bforget(struct buffer_head *bh)
1170 clear_buffer_dirty(bh);
1171 if (bh->b_assoc_map) {
1172 struct address_space *buffer_mapping = bh->b_page->mapping;
1174 spin_lock(&buffer_mapping->private_lock);
1175 list_del_init(&bh->b_assoc_buffers);
1176 bh->b_assoc_map = NULL;
1177 spin_unlock(&buffer_mapping->private_lock);
1179 __brelse(bh);
1181 EXPORT_SYMBOL(__bforget);
1183 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1185 lock_buffer(bh);
1186 if (buffer_uptodate(bh)) {
1187 unlock_buffer(bh);
1188 return bh;
1189 } else {
1190 get_bh(bh);
1191 bh->b_end_io = end_buffer_read_sync;
1192 submit_bh(READ, bh);
1193 wait_on_buffer(bh);
1194 if (buffer_uptodate(bh))
1195 return bh;
1197 brelse(bh);
1198 return NULL;
1202 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1203 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1204 * refcount elevated by one when they're in an LRU. A buffer can only appear
1205 * once in a particular CPU's LRU. A single buffer can be present in multiple
1206 * CPU's LRUs at the same time.
1208 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209 * sb_find_get_block().
1211 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1212 * a local interrupt disable for that.
1215 #define BH_LRU_SIZE 8
1217 struct bh_lru {
1218 struct buffer_head *bhs[BH_LRU_SIZE];
1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1223 #ifdef CONFIG_SMP
1224 #define bh_lru_lock() local_irq_disable()
1225 #define bh_lru_unlock() local_irq_enable()
1226 #else
1227 #define bh_lru_lock() preempt_disable()
1228 #define bh_lru_unlock() preempt_enable()
1229 #endif
1231 static inline void check_irqs_on(void)
1233 #ifdef irqs_disabled
1234 BUG_ON(irqs_disabled());
1235 #endif
1239 * The LRU management algorithm is dopey-but-simple. Sorry.
1241 static void bh_lru_install(struct buffer_head *bh)
1243 struct buffer_head *evictee = NULL;
1245 check_irqs_on();
1246 bh_lru_lock();
1247 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1248 struct buffer_head *bhs[BH_LRU_SIZE];
1249 int in;
1250 int out = 0;
1252 get_bh(bh);
1253 bhs[out++] = bh;
1254 for (in = 0; in < BH_LRU_SIZE; in++) {
1255 struct buffer_head *bh2 =
1256 __this_cpu_read(bh_lrus.bhs[in]);
1258 if (bh2 == bh) {
1259 __brelse(bh2);
1260 } else {
1261 if (out >= BH_LRU_SIZE) {
1262 BUG_ON(evictee != NULL);
1263 evictee = bh2;
1264 } else {
1265 bhs[out++] = bh2;
1269 while (out < BH_LRU_SIZE)
1270 bhs[out++] = NULL;
1271 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1273 bh_lru_unlock();
1275 if (evictee)
1276 __brelse(evictee);
1280 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1285 struct buffer_head *ret = NULL;
1286 unsigned int i;
1288 check_irqs_on();
1289 bh_lru_lock();
1290 for (i = 0; i < BH_LRU_SIZE; i++) {
1291 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1293 if (bh && bh->b_bdev == bdev &&
1294 bh->b_blocknr == block && bh->b_size == size) {
1295 if (i) {
1296 while (i) {
1297 __this_cpu_write(bh_lrus.bhs[i],
1298 __this_cpu_read(bh_lrus.bhs[i - 1]));
1299 i--;
1301 __this_cpu_write(bh_lrus.bhs[0], bh);
1303 get_bh(bh);
1304 ret = bh;
1305 break;
1308 bh_lru_unlock();
1309 return ret;
1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1314 * it in the LRU and mark it as accessed. If it is not present then return
1315 * NULL
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1320 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1322 if (bh == NULL) {
1323 bh = __find_get_block_slow(bdev, block);
1324 if (bh)
1325 bh_lru_install(bh);
1327 if (bh)
1328 touch_buffer(bh);
1329 return bh;
1331 EXPORT_SYMBOL(__find_get_block);
1334 * __getblk will locate (and, if necessary, create) the buffer_head
1335 * which corresponds to the passed block_device, block and size. The
1336 * returned buffer has its reference count incremented.
1338 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1339 * attempt is failing. FIXME, perhaps?
1341 struct buffer_head *
1342 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1344 struct buffer_head *bh = __find_get_block(bdev, block, size);
1346 might_sleep();
1347 if (bh == NULL)
1348 bh = __getblk_slow(bdev, block, size);
1349 return bh;
1351 EXPORT_SYMBOL(__getblk);
1354 * Do async read-ahead on a buffer..
1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1358 struct buffer_head *bh = __getblk(bdev, block, size);
1359 if (likely(bh)) {
1360 ll_rw_block(READA, 1, &bh);
1361 brelse(bh);
1364 EXPORT_SYMBOL(__breadahead);
1367 * __bread() - reads a specified block and returns the bh
1368 * @bdev: the block_device to read from
1369 * @block: number of block
1370 * @size: size (in bytes) to read
1372 * Reads a specified block, and returns buffer head that contains it.
1373 * It returns NULL if the block was unreadable.
1375 struct buffer_head *
1376 __bread(struct block_device *bdev, sector_t block, unsigned size)
1378 struct buffer_head *bh = __getblk(bdev, block, size);
1380 if (likely(bh) && !buffer_uptodate(bh))
1381 bh = __bread_slow(bh);
1382 return bh;
1384 EXPORT_SYMBOL(__bread);
1387 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1388 * This doesn't race because it runs in each cpu either in irq
1389 * or with preempt disabled.
1391 static void invalidate_bh_lru(void *arg)
1393 struct bh_lru *b = &get_cpu_var(bh_lrus);
1394 int i;
1396 for (i = 0; i < BH_LRU_SIZE; i++) {
1397 brelse(b->bhs[i]);
1398 b->bhs[i] = NULL;
1400 put_cpu_var(bh_lrus);
1403 static bool has_bh_in_lru(int cpu, void *dummy)
1405 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1406 int i;
1408 for (i = 0; i < BH_LRU_SIZE; i++) {
1409 if (b->bhs[i])
1410 return 1;
1413 return 0;
1416 void invalidate_bh_lrus(void)
1418 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1422 void set_bh_page(struct buffer_head *bh,
1423 struct page *page, unsigned long offset)
1425 bh->b_page = page;
1426 BUG_ON(offset >= PAGE_SIZE);
1427 if (PageHighMem(page))
1429 * This catches illegal uses and preserves the offset:
1431 bh->b_data = (char *)(0 + offset);
1432 else
1433 bh->b_data = page_address(page) + offset;
1435 EXPORT_SYMBOL(set_bh_page);
1438 * Called when truncating a buffer on a page completely.
1440 static void discard_buffer(struct buffer_head * bh)
1442 lock_buffer(bh);
1443 clear_buffer_dirty(bh);
1444 bh->b_bdev = NULL;
1445 clear_buffer_mapped(bh);
1446 clear_buffer_req(bh);
1447 clear_buffer_new(bh);
1448 clear_buffer_delay(bh);
1449 clear_buffer_unwritten(bh);
1450 unlock_buffer(bh);
1454 * block_invalidatepage - invalidate part or all of a buffer-backed page
1456 * @page: the page which is affected
1457 * @offset: the index of the truncation point
1459 * block_invalidatepage() is called when all or part of the page has become
1460 * invalidated by a truncate operation.
1462 * block_invalidatepage() does not have to release all buffers, but it must
1463 * ensure that no dirty buffer is left outside @offset and that no I/O
1464 * is underway against any of the blocks which are outside the truncation
1465 * point. Because the caller is about to free (and possibly reuse) those
1466 * blocks on-disk.
1468 void block_invalidatepage(struct page *page, unsigned long offset)
1470 struct buffer_head *head, *bh, *next;
1471 unsigned int curr_off = 0;
1473 BUG_ON(!PageLocked(page));
1474 if (!page_has_buffers(page))
1475 goto out;
1477 head = page_buffers(page);
1478 bh = head;
1479 do {
1480 unsigned int next_off = curr_off + bh->b_size;
1481 next = bh->b_this_page;
1484 * is this block fully invalidated?
1486 if (offset <= curr_off)
1487 discard_buffer(bh);
1488 curr_off = next_off;
1489 bh = next;
1490 } while (bh != head);
1493 * We release buffers only if the entire page is being invalidated.
1494 * The get_block cached value has been unconditionally invalidated,
1495 * so real IO is not possible anymore.
1497 if (offset == 0)
1498 try_to_release_page(page, 0);
1499 out:
1500 return;
1502 EXPORT_SYMBOL(block_invalidatepage);
1505 * We attach and possibly dirty the buffers atomically wrt
1506 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1507 * is already excluded via the page lock.
1509 void create_empty_buffers(struct page *page,
1510 unsigned long blocksize, unsigned long b_state)
1512 struct buffer_head *bh, *head, *tail;
1514 head = alloc_page_buffers(page, blocksize, 1);
1515 bh = head;
1516 do {
1517 bh->b_state |= b_state;
1518 tail = bh;
1519 bh = bh->b_this_page;
1520 } while (bh);
1521 tail->b_this_page = head;
1523 spin_lock(&page->mapping->private_lock);
1524 if (PageUptodate(page) || PageDirty(page)) {
1525 bh = head;
1526 do {
1527 if (PageDirty(page))
1528 set_buffer_dirty(bh);
1529 if (PageUptodate(page))
1530 set_buffer_uptodate(bh);
1531 bh = bh->b_this_page;
1532 } while (bh != head);
1534 attach_page_buffers(page, head);
1535 spin_unlock(&page->mapping->private_lock);
1537 EXPORT_SYMBOL(create_empty_buffers);
1540 * We are taking a block for data and we don't want any output from any
1541 * buffer-cache aliases starting from return from that function and
1542 * until the moment when something will explicitly mark the buffer
1543 * dirty (hopefully that will not happen until we will free that block ;-)
1544 * We don't even need to mark it not-uptodate - nobody can expect
1545 * anything from a newly allocated buffer anyway. We used to used
1546 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1547 * don't want to mark the alias unmapped, for example - it would confuse
1548 * anyone who might pick it with bread() afterwards...
1550 * Also.. Note that bforget() doesn't lock the buffer. So there can
1551 * be writeout I/O going on against recently-freed buffers. We don't
1552 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1553 * only if we really need to. That happens here.
1555 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1557 struct buffer_head *old_bh;
1559 might_sleep();
1561 old_bh = __find_get_block_slow(bdev, block);
1562 if (old_bh) {
1563 clear_buffer_dirty(old_bh);
1564 wait_on_buffer(old_bh);
1565 clear_buffer_req(old_bh);
1566 __brelse(old_bh);
1569 EXPORT_SYMBOL(unmap_underlying_metadata);
1572 * Size is a power-of-two in the range 512..PAGE_SIZE,
1573 * and the case we care about most is PAGE_SIZE.
1575 * So this *could* possibly be written with those
1576 * constraints in mind (relevant mostly if some
1577 * architecture has a slow bit-scan instruction)
1579 static inline int block_size_bits(unsigned int blocksize)
1581 return ilog2(blocksize);
1584 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1586 BUG_ON(!PageLocked(page));
1588 if (!page_has_buffers(page))
1589 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1590 return page_buffers(page);
1594 * NOTE! All mapped/uptodate combinations are valid:
1596 * Mapped Uptodate Meaning
1598 * No No "unknown" - must do get_block()
1599 * No Yes "hole" - zero-filled
1600 * Yes No "allocated" - allocated on disk, not read in
1601 * Yes Yes "valid" - allocated and up-to-date in memory.
1603 * "Dirty" is valid only with the last case (mapped+uptodate).
1607 * While block_write_full_page is writing back the dirty buffers under
1608 * the page lock, whoever dirtied the buffers may decide to clean them
1609 * again at any time. We handle that by only looking at the buffer
1610 * state inside lock_buffer().
1612 * If block_write_full_page() is called for regular writeback
1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614 * locked buffer. This only can happen if someone has written the buffer
1615 * directly, with submit_bh(). At the address_space level PageWriteback
1616 * prevents this contention from occurring.
1618 * If block_write_full_page() is called with wbc->sync_mode ==
1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1620 * causes the writes to be flagged as synchronous writes.
1622 static int __block_write_full_page(struct inode *inode, struct page *page,
1623 get_block_t *get_block, struct writeback_control *wbc,
1624 bh_end_io_t *handler)
1626 int err;
1627 sector_t block;
1628 sector_t last_block;
1629 struct buffer_head *bh, *head;
1630 unsigned int blocksize, bbits;
1631 int nr_underway = 0;
1632 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1633 WRITE_SYNC : WRITE);
1635 head = create_page_buffers(page, inode,
1636 (1 << BH_Dirty)|(1 << BH_Uptodate));
1639 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1640 * here, and the (potentially unmapped) buffers may become dirty at
1641 * any time. If a buffer becomes dirty here after we've inspected it
1642 * then we just miss that fact, and the page stays dirty.
1644 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1645 * handle that here by just cleaning them.
1648 bh = head;
1649 blocksize = bh->b_size;
1650 bbits = block_size_bits(blocksize);
1652 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1653 last_block = (i_size_read(inode) - 1) >> bbits;
1656 * Get all the dirty buffers mapped to disk addresses and
1657 * handle any aliases from the underlying blockdev's mapping.
1659 do {
1660 if (block > last_block) {
1662 * mapped buffers outside i_size will occur, because
1663 * this page can be outside i_size when there is a
1664 * truncate in progress.
1667 * The buffer was zeroed by block_write_full_page()
1669 clear_buffer_dirty(bh);
1670 set_buffer_uptodate(bh);
1671 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1672 buffer_dirty(bh)) {
1673 WARN_ON(bh->b_size != blocksize);
1674 err = get_block(inode, block, bh, 1);
1675 if (err)
1676 goto recover;
1677 clear_buffer_delay(bh);
1678 if (buffer_new(bh)) {
1679 /* blockdev mappings never come here */
1680 clear_buffer_new(bh);
1681 unmap_underlying_metadata(bh->b_bdev,
1682 bh->b_blocknr);
1685 bh = bh->b_this_page;
1686 block++;
1687 } while (bh != head);
1689 do {
1690 if (!buffer_mapped(bh))
1691 continue;
1693 * If it's a fully non-blocking write attempt and we cannot
1694 * lock the buffer then redirty the page. Note that this can
1695 * potentially cause a busy-wait loop from writeback threads
1696 * and kswapd activity, but those code paths have their own
1697 * higher-level throttling.
1699 if (wbc->sync_mode != WB_SYNC_NONE) {
1700 lock_buffer(bh);
1701 } else if (!trylock_buffer(bh)) {
1702 redirty_page_for_writepage(wbc, page);
1703 continue;
1705 if (test_clear_buffer_dirty(bh)) {
1706 mark_buffer_async_write_endio(bh, handler);
1707 } else {
1708 unlock_buffer(bh);
1710 } while ((bh = bh->b_this_page) != head);
1713 * The page and its buffers are protected by PageWriteback(), so we can
1714 * drop the bh refcounts early.
1716 BUG_ON(PageWriteback(page));
1717 set_page_writeback(page);
1719 do {
1720 struct buffer_head *next = bh->b_this_page;
1721 if (buffer_async_write(bh)) {
1722 submit_bh(write_op, bh);
1723 nr_underway++;
1725 bh = next;
1726 } while (bh != head);
1727 unlock_page(page);
1729 err = 0;
1730 done:
1731 if (nr_underway == 0) {
1733 * The page was marked dirty, but the buffers were
1734 * clean. Someone wrote them back by hand with
1735 * ll_rw_block/submit_bh. A rare case.
1737 end_page_writeback(page);
1740 * The page and buffer_heads can be released at any time from
1741 * here on.
1744 return err;
1746 recover:
1748 * ENOSPC, or some other error. We may already have added some
1749 * blocks to the file, so we need to write these out to avoid
1750 * exposing stale data.
1751 * The page is currently locked and not marked for writeback
1753 bh = head;
1754 /* Recovery: lock and submit the mapped buffers */
1755 do {
1756 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1757 !buffer_delay(bh)) {
1758 lock_buffer(bh);
1759 mark_buffer_async_write_endio(bh, handler);
1760 } else {
1762 * The buffer may have been set dirty during
1763 * attachment to a dirty page.
1765 clear_buffer_dirty(bh);
1767 } while ((bh = bh->b_this_page) != head);
1768 SetPageError(page);
1769 BUG_ON(PageWriteback(page));
1770 mapping_set_error(page->mapping, err);
1771 set_page_writeback(page);
1772 do {
1773 struct buffer_head *next = bh->b_this_page;
1774 if (buffer_async_write(bh)) {
1775 clear_buffer_dirty(bh);
1776 submit_bh(write_op, bh);
1777 nr_underway++;
1779 bh = next;
1780 } while (bh != head);
1781 unlock_page(page);
1782 goto done;
1786 * If a page has any new buffers, zero them out here, and mark them uptodate
1787 * and dirty so they'll be written out (in order to prevent uninitialised
1788 * block data from leaking). And clear the new bit.
1790 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1792 unsigned int block_start, block_end;
1793 struct buffer_head *head, *bh;
1795 BUG_ON(!PageLocked(page));
1796 if (!page_has_buffers(page))
1797 return;
1799 bh = head = page_buffers(page);
1800 block_start = 0;
1801 do {
1802 block_end = block_start + bh->b_size;
1804 if (buffer_new(bh)) {
1805 if (block_end > from && block_start < to) {
1806 if (!PageUptodate(page)) {
1807 unsigned start, size;
1809 start = max(from, block_start);
1810 size = min(to, block_end) - start;
1812 zero_user(page, start, size);
1813 set_buffer_uptodate(bh);
1816 clear_buffer_new(bh);
1817 mark_buffer_dirty(bh);
1821 block_start = block_end;
1822 bh = bh->b_this_page;
1823 } while (bh != head);
1825 EXPORT_SYMBOL(page_zero_new_buffers);
1827 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1828 get_block_t *get_block)
1830 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1831 unsigned to = from + len;
1832 struct inode *inode = page->mapping->host;
1833 unsigned block_start, block_end;
1834 sector_t block;
1835 int err = 0;
1836 unsigned blocksize, bbits;
1837 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1839 BUG_ON(!PageLocked(page));
1840 BUG_ON(from > PAGE_CACHE_SIZE);
1841 BUG_ON(to > PAGE_CACHE_SIZE);
1842 BUG_ON(from > to);
1844 head = create_page_buffers(page, inode, 0);
1845 blocksize = head->b_size;
1846 bbits = block_size_bits(blocksize);
1848 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1850 for(bh = head, block_start = 0; bh != head || !block_start;
1851 block++, block_start=block_end, bh = bh->b_this_page) {
1852 block_end = block_start + blocksize;
1853 if (block_end <= from || block_start >= to) {
1854 if (PageUptodate(page)) {
1855 if (!buffer_uptodate(bh))
1856 set_buffer_uptodate(bh);
1858 continue;
1860 if (buffer_new(bh))
1861 clear_buffer_new(bh);
1862 if (!buffer_mapped(bh)) {
1863 WARN_ON(bh->b_size != blocksize);
1864 err = get_block(inode, block, bh, 1);
1865 if (err)
1866 break;
1867 if (buffer_new(bh)) {
1868 unmap_underlying_metadata(bh->b_bdev,
1869 bh->b_blocknr);
1870 if (PageUptodate(page)) {
1871 clear_buffer_new(bh);
1872 set_buffer_uptodate(bh);
1873 mark_buffer_dirty(bh);
1874 continue;
1876 if (block_end > to || block_start < from)
1877 zero_user_segments(page,
1878 to, block_end,
1879 block_start, from);
1880 continue;
1883 if (PageUptodate(page)) {
1884 if (!buffer_uptodate(bh))
1885 set_buffer_uptodate(bh);
1886 continue;
1888 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1889 !buffer_unwritten(bh) &&
1890 (block_start < from || block_end > to)) {
1891 ll_rw_block(READ, 1, &bh);
1892 *wait_bh++=bh;
1896 * If we issued read requests - let them complete.
1898 while(wait_bh > wait) {
1899 wait_on_buffer(*--wait_bh);
1900 if (!buffer_uptodate(*wait_bh))
1901 err = -EIO;
1903 if (unlikely(err))
1904 page_zero_new_buffers(page, from, to);
1905 return err;
1907 EXPORT_SYMBOL(__block_write_begin);
1909 static int __block_commit_write(struct inode *inode, struct page *page,
1910 unsigned from, unsigned to)
1912 unsigned block_start, block_end;
1913 int partial = 0;
1914 unsigned blocksize;
1915 struct buffer_head *bh, *head;
1917 bh = head = page_buffers(page);
1918 blocksize = bh->b_size;
1920 block_start = 0;
1921 do {
1922 block_end = block_start + blocksize;
1923 if (block_end <= from || block_start >= to) {
1924 if (!buffer_uptodate(bh))
1925 partial = 1;
1926 } else {
1927 set_buffer_uptodate(bh);
1928 mark_buffer_dirty(bh);
1930 clear_buffer_new(bh);
1932 block_start = block_end;
1933 bh = bh->b_this_page;
1934 } while (bh != head);
1937 * If this is a partial write which happened to make all buffers
1938 * uptodate then we can optimize away a bogus readpage() for
1939 * the next read(). Here we 'discover' whether the page went
1940 * uptodate as a result of this (potentially partial) write.
1942 if (!partial)
1943 SetPageUptodate(page);
1944 return 0;
1948 * block_write_begin takes care of the basic task of block allocation and
1949 * bringing partial write blocks uptodate first.
1951 * The filesystem needs to handle block truncation upon failure.
1953 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1954 unsigned flags, struct page **pagep, get_block_t *get_block)
1956 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1957 struct page *page;
1958 int status;
1960 page = grab_cache_page_write_begin(mapping, index, flags);
1961 if (!page)
1962 return -ENOMEM;
1964 status = __block_write_begin(page, pos, len, get_block);
1965 if (unlikely(status)) {
1966 unlock_page(page);
1967 page_cache_release(page);
1968 page = NULL;
1971 *pagep = page;
1972 return status;
1974 EXPORT_SYMBOL(block_write_begin);
1976 int block_write_end(struct file *file, struct address_space *mapping,
1977 loff_t pos, unsigned len, unsigned copied,
1978 struct page *page, void *fsdata)
1980 struct inode *inode = mapping->host;
1981 unsigned start;
1983 start = pos & (PAGE_CACHE_SIZE - 1);
1985 if (unlikely(copied < len)) {
1987 * The buffers that were written will now be uptodate, so we
1988 * don't have to worry about a readpage reading them and
1989 * overwriting a partial write. However if we have encountered
1990 * a short write and only partially written into a buffer, it
1991 * will not be marked uptodate, so a readpage might come in and
1992 * destroy our partial write.
1994 * Do the simplest thing, and just treat any short write to a
1995 * non uptodate page as a zero-length write, and force the
1996 * caller to redo the whole thing.
1998 if (!PageUptodate(page))
1999 copied = 0;
2001 page_zero_new_buffers(page, start+copied, start+len);
2003 flush_dcache_page(page);
2005 /* This could be a short (even 0-length) commit */
2006 __block_commit_write(inode, page, start, start+copied);
2008 return copied;
2010 EXPORT_SYMBOL(block_write_end);
2012 int generic_write_end(struct file *file, struct address_space *mapping,
2013 loff_t pos, unsigned len, unsigned copied,
2014 struct page *page, void *fsdata)
2016 struct inode *inode = mapping->host;
2017 int i_size_changed = 0;
2019 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2022 * No need to use i_size_read() here, the i_size
2023 * cannot change under us because we hold i_mutex.
2025 * But it's important to update i_size while still holding page lock:
2026 * page writeout could otherwise come in and zero beyond i_size.
2028 if (pos+copied > inode->i_size) {
2029 i_size_write(inode, pos+copied);
2030 i_size_changed = 1;
2033 unlock_page(page);
2034 page_cache_release(page);
2037 * Don't mark the inode dirty under page lock. First, it unnecessarily
2038 * makes the holding time of page lock longer. Second, it forces lock
2039 * ordering of page lock and transaction start for journaling
2040 * filesystems.
2042 if (i_size_changed)
2043 mark_inode_dirty(inode);
2045 return copied;
2047 EXPORT_SYMBOL(generic_write_end);
2050 * block_is_partially_uptodate checks whether buffers within a page are
2051 * uptodate or not.
2053 * Returns true if all buffers which correspond to a file portion
2054 * we want to read are uptodate.
2056 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2057 unsigned long from)
2059 unsigned block_start, block_end, blocksize;
2060 unsigned to;
2061 struct buffer_head *bh, *head;
2062 int ret = 1;
2064 if (!page_has_buffers(page))
2065 return 0;
2067 head = page_buffers(page);
2068 blocksize = head->b_size;
2069 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2070 to = from + to;
2071 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2072 return 0;
2074 bh = head;
2075 block_start = 0;
2076 do {
2077 block_end = block_start + blocksize;
2078 if (block_end > from && block_start < to) {
2079 if (!buffer_uptodate(bh)) {
2080 ret = 0;
2081 break;
2083 if (block_end >= to)
2084 break;
2086 block_start = block_end;
2087 bh = bh->b_this_page;
2088 } while (bh != head);
2090 return ret;
2092 EXPORT_SYMBOL(block_is_partially_uptodate);
2095 * Generic "read page" function for block devices that have the normal
2096 * get_block functionality. This is most of the block device filesystems.
2097 * Reads the page asynchronously --- the unlock_buffer() and
2098 * set/clear_buffer_uptodate() functions propagate buffer state into the
2099 * page struct once IO has completed.
2101 int block_read_full_page(struct page *page, get_block_t *get_block)
2103 struct inode *inode = page->mapping->host;
2104 sector_t iblock, lblock;
2105 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2106 unsigned int blocksize, bbits;
2107 int nr, i;
2108 int fully_mapped = 1;
2110 head = create_page_buffers(page, inode, 0);
2111 blocksize = head->b_size;
2112 bbits = block_size_bits(blocksize);
2114 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2115 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2116 bh = head;
2117 nr = 0;
2118 i = 0;
2120 do {
2121 if (buffer_uptodate(bh))
2122 continue;
2124 if (!buffer_mapped(bh)) {
2125 int err = 0;
2127 fully_mapped = 0;
2128 if (iblock < lblock) {
2129 WARN_ON(bh->b_size != blocksize);
2130 err = get_block(inode, iblock, bh, 0);
2131 if (err)
2132 SetPageError(page);
2134 if (!buffer_mapped(bh)) {
2135 zero_user(page, i * blocksize, blocksize);
2136 if (!err)
2137 set_buffer_uptodate(bh);
2138 continue;
2141 * get_block() might have updated the buffer
2142 * synchronously
2144 if (buffer_uptodate(bh))
2145 continue;
2147 arr[nr++] = bh;
2148 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2150 if (fully_mapped)
2151 SetPageMappedToDisk(page);
2153 if (!nr) {
2155 * All buffers are uptodate - we can set the page uptodate
2156 * as well. But not if get_block() returned an error.
2158 if (!PageError(page))
2159 SetPageUptodate(page);
2160 unlock_page(page);
2161 return 0;
2164 /* Stage two: lock the buffers */
2165 for (i = 0; i < nr; i++) {
2166 bh = arr[i];
2167 lock_buffer(bh);
2168 mark_buffer_async_read(bh);
2172 * Stage 3: start the IO. Check for uptodateness
2173 * inside the buffer lock in case another process reading
2174 * the underlying blockdev brought it uptodate (the sct fix).
2176 for (i = 0; i < nr; i++) {
2177 bh = arr[i];
2178 if (buffer_uptodate(bh))
2179 end_buffer_async_read(bh, 1);
2180 else
2181 submit_bh(READ, bh);
2183 return 0;
2185 EXPORT_SYMBOL(block_read_full_page);
2187 /* utility function for filesystems that need to do work on expanding
2188 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2189 * deal with the hole.
2191 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2193 struct address_space *mapping = inode->i_mapping;
2194 struct page *page;
2195 void *fsdata;
2196 int err;
2198 err = inode_newsize_ok(inode, size);
2199 if (err)
2200 goto out;
2202 err = pagecache_write_begin(NULL, mapping, size, 0,
2203 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2204 &page, &fsdata);
2205 if (err)
2206 goto out;
2208 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2209 BUG_ON(err > 0);
2211 out:
2212 return err;
2214 EXPORT_SYMBOL(generic_cont_expand_simple);
2216 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2217 loff_t pos, loff_t *bytes)
2219 struct inode *inode = mapping->host;
2220 unsigned blocksize = 1 << inode->i_blkbits;
2221 struct page *page;
2222 void *fsdata;
2223 pgoff_t index, curidx;
2224 loff_t curpos;
2225 unsigned zerofrom, offset, len;
2226 int err = 0;
2228 index = pos >> PAGE_CACHE_SHIFT;
2229 offset = pos & ~PAGE_CACHE_MASK;
2231 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2232 zerofrom = curpos & ~PAGE_CACHE_MASK;
2233 if (zerofrom & (blocksize-1)) {
2234 *bytes |= (blocksize-1);
2235 (*bytes)++;
2237 len = PAGE_CACHE_SIZE - zerofrom;
2239 err = pagecache_write_begin(file, mapping, curpos, len,
2240 AOP_FLAG_UNINTERRUPTIBLE,
2241 &page, &fsdata);
2242 if (err)
2243 goto out;
2244 zero_user(page, zerofrom, len);
2245 err = pagecache_write_end(file, mapping, curpos, len, len,
2246 page, fsdata);
2247 if (err < 0)
2248 goto out;
2249 BUG_ON(err != len);
2250 err = 0;
2252 balance_dirty_pages_ratelimited(mapping);
2255 /* page covers the boundary, find the boundary offset */
2256 if (index == curidx) {
2257 zerofrom = curpos & ~PAGE_CACHE_MASK;
2258 /* if we will expand the thing last block will be filled */
2259 if (offset <= zerofrom) {
2260 goto out;
2262 if (zerofrom & (blocksize-1)) {
2263 *bytes |= (blocksize-1);
2264 (*bytes)++;
2266 len = offset - zerofrom;
2268 err = pagecache_write_begin(file, mapping, curpos, len,
2269 AOP_FLAG_UNINTERRUPTIBLE,
2270 &page, &fsdata);
2271 if (err)
2272 goto out;
2273 zero_user(page, zerofrom, len);
2274 err = pagecache_write_end(file, mapping, curpos, len, len,
2275 page, fsdata);
2276 if (err < 0)
2277 goto out;
2278 BUG_ON(err != len);
2279 err = 0;
2281 out:
2282 return err;
2286 * For moronic filesystems that do not allow holes in file.
2287 * We may have to extend the file.
2289 int cont_write_begin(struct file *file, struct address_space *mapping,
2290 loff_t pos, unsigned len, unsigned flags,
2291 struct page **pagep, void **fsdata,
2292 get_block_t *get_block, loff_t *bytes)
2294 struct inode *inode = mapping->host;
2295 unsigned blocksize = 1 << inode->i_blkbits;
2296 unsigned zerofrom;
2297 int err;
2299 err = cont_expand_zero(file, mapping, pos, bytes);
2300 if (err)
2301 return err;
2303 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2304 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2305 *bytes |= (blocksize-1);
2306 (*bytes)++;
2309 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2311 EXPORT_SYMBOL(cont_write_begin);
2313 int block_commit_write(struct page *page, unsigned from, unsigned to)
2315 struct inode *inode = page->mapping->host;
2316 __block_commit_write(inode,page,from,to);
2317 return 0;
2319 EXPORT_SYMBOL(block_commit_write);
2322 * block_page_mkwrite() is not allowed to change the file size as it gets
2323 * called from a page fault handler when a page is first dirtied. Hence we must
2324 * be careful to check for EOF conditions here. We set the page up correctly
2325 * for a written page which means we get ENOSPC checking when writing into
2326 * holes and correct delalloc and unwritten extent mapping on filesystems that
2327 * support these features.
2329 * We are not allowed to take the i_mutex here so we have to play games to
2330 * protect against truncate races as the page could now be beyond EOF. Because
2331 * truncate writes the inode size before removing pages, once we have the
2332 * page lock we can determine safely if the page is beyond EOF. If it is not
2333 * beyond EOF, then the page is guaranteed safe against truncation until we
2334 * unlock the page.
2336 * Direct callers of this function should protect against filesystem freezing
2337 * using sb_start_write() - sb_end_write() functions.
2339 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2340 get_block_t get_block)
2342 struct page *page = vmf->page;
2343 struct inode *inode = file_inode(vma->vm_file);
2344 unsigned long end;
2345 loff_t size;
2346 int ret;
2348 lock_page(page);
2349 size = i_size_read(inode);
2350 if ((page->mapping != inode->i_mapping) ||
2351 (page_offset(page) > size)) {
2352 /* We overload EFAULT to mean page got truncated */
2353 ret = -EFAULT;
2354 goto out_unlock;
2357 /* page is wholly or partially inside EOF */
2358 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2359 end = size & ~PAGE_CACHE_MASK;
2360 else
2361 end = PAGE_CACHE_SIZE;
2363 ret = __block_write_begin(page, 0, end, get_block);
2364 if (!ret)
2365 ret = block_commit_write(page, 0, end);
2367 if (unlikely(ret < 0))
2368 goto out_unlock;
2369 set_page_dirty(page);
2370 wait_for_stable_page(page);
2371 return 0;
2372 out_unlock:
2373 unlock_page(page);
2374 return ret;
2376 EXPORT_SYMBOL(__block_page_mkwrite);
2378 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2379 get_block_t get_block)
2381 int ret;
2382 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2384 sb_start_pagefault(sb);
2387 * Update file times before taking page lock. We may end up failing the
2388 * fault so this update may be superfluous but who really cares...
2390 file_update_time(vma->vm_file);
2392 ret = __block_page_mkwrite(vma, vmf, get_block);
2393 sb_end_pagefault(sb);
2394 return block_page_mkwrite_return(ret);
2396 EXPORT_SYMBOL(block_page_mkwrite);
2399 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2400 * immediately, while under the page lock. So it needs a special end_io
2401 * handler which does not touch the bh after unlocking it.
2403 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2405 __end_buffer_read_notouch(bh, uptodate);
2409 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2410 * the page (converting it to circular linked list and taking care of page
2411 * dirty races).
2413 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2415 struct buffer_head *bh;
2417 BUG_ON(!PageLocked(page));
2419 spin_lock(&page->mapping->private_lock);
2420 bh = head;
2421 do {
2422 if (PageDirty(page))
2423 set_buffer_dirty(bh);
2424 if (!bh->b_this_page)
2425 bh->b_this_page = head;
2426 bh = bh->b_this_page;
2427 } while (bh != head);
2428 attach_page_buffers(page, head);
2429 spin_unlock(&page->mapping->private_lock);
2433 * On entry, the page is fully not uptodate.
2434 * On exit the page is fully uptodate in the areas outside (from,to)
2435 * The filesystem needs to handle block truncation upon failure.
2437 int nobh_write_begin(struct address_space *mapping,
2438 loff_t pos, unsigned len, unsigned flags,
2439 struct page **pagep, void **fsdata,
2440 get_block_t *get_block)
2442 struct inode *inode = mapping->host;
2443 const unsigned blkbits = inode->i_blkbits;
2444 const unsigned blocksize = 1 << blkbits;
2445 struct buffer_head *head, *bh;
2446 struct page *page;
2447 pgoff_t index;
2448 unsigned from, to;
2449 unsigned block_in_page;
2450 unsigned block_start, block_end;
2451 sector_t block_in_file;
2452 int nr_reads = 0;
2453 int ret = 0;
2454 int is_mapped_to_disk = 1;
2456 index = pos >> PAGE_CACHE_SHIFT;
2457 from = pos & (PAGE_CACHE_SIZE - 1);
2458 to = from + len;
2460 page = grab_cache_page_write_begin(mapping, index, flags);
2461 if (!page)
2462 return -ENOMEM;
2463 *pagep = page;
2464 *fsdata = NULL;
2466 if (page_has_buffers(page)) {
2467 ret = __block_write_begin(page, pos, len, get_block);
2468 if (unlikely(ret))
2469 goto out_release;
2470 return ret;
2473 if (PageMappedToDisk(page))
2474 return 0;
2477 * Allocate buffers so that we can keep track of state, and potentially
2478 * attach them to the page if an error occurs. In the common case of
2479 * no error, they will just be freed again without ever being attached
2480 * to the page (which is all OK, because we're under the page lock).
2482 * Be careful: the buffer linked list is a NULL terminated one, rather
2483 * than the circular one we're used to.
2485 head = alloc_page_buffers(page, blocksize, 0);
2486 if (!head) {
2487 ret = -ENOMEM;
2488 goto out_release;
2491 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2494 * We loop across all blocks in the page, whether or not they are
2495 * part of the affected region. This is so we can discover if the
2496 * page is fully mapped-to-disk.
2498 for (block_start = 0, block_in_page = 0, bh = head;
2499 block_start < PAGE_CACHE_SIZE;
2500 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2501 int create;
2503 block_end = block_start + blocksize;
2504 bh->b_state = 0;
2505 create = 1;
2506 if (block_start >= to)
2507 create = 0;
2508 ret = get_block(inode, block_in_file + block_in_page,
2509 bh, create);
2510 if (ret)
2511 goto failed;
2512 if (!buffer_mapped(bh))
2513 is_mapped_to_disk = 0;
2514 if (buffer_new(bh))
2515 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2516 if (PageUptodate(page)) {
2517 set_buffer_uptodate(bh);
2518 continue;
2520 if (buffer_new(bh) || !buffer_mapped(bh)) {
2521 zero_user_segments(page, block_start, from,
2522 to, block_end);
2523 continue;
2525 if (buffer_uptodate(bh))
2526 continue; /* reiserfs does this */
2527 if (block_start < from || block_end > to) {
2528 lock_buffer(bh);
2529 bh->b_end_io = end_buffer_read_nobh;
2530 submit_bh(READ, bh);
2531 nr_reads++;
2535 if (nr_reads) {
2537 * The page is locked, so these buffers are protected from
2538 * any VM or truncate activity. Hence we don't need to care
2539 * for the buffer_head refcounts.
2541 for (bh = head; bh; bh = bh->b_this_page) {
2542 wait_on_buffer(bh);
2543 if (!buffer_uptodate(bh))
2544 ret = -EIO;
2546 if (ret)
2547 goto failed;
2550 if (is_mapped_to_disk)
2551 SetPageMappedToDisk(page);
2553 *fsdata = head; /* to be released by nobh_write_end */
2555 return 0;
2557 failed:
2558 BUG_ON(!ret);
2560 * Error recovery is a bit difficult. We need to zero out blocks that
2561 * were newly allocated, and dirty them to ensure they get written out.
2562 * Buffers need to be attached to the page at this point, otherwise
2563 * the handling of potential IO errors during writeout would be hard
2564 * (could try doing synchronous writeout, but what if that fails too?)
2566 attach_nobh_buffers(page, head);
2567 page_zero_new_buffers(page, from, to);
2569 out_release:
2570 unlock_page(page);
2571 page_cache_release(page);
2572 *pagep = NULL;
2574 return ret;
2576 EXPORT_SYMBOL(nobh_write_begin);
2578 int nobh_write_end(struct file *file, struct address_space *mapping,
2579 loff_t pos, unsigned len, unsigned copied,
2580 struct page *page, void *fsdata)
2582 struct inode *inode = page->mapping->host;
2583 struct buffer_head *head = fsdata;
2584 struct buffer_head *bh;
2585 BUG_ON(fsdata != NULL && page_has_buffers(page));
2587 if (unlikely(copied < len) && head)
2588 attach_nobh_buffers(page, head);
2589 if (page_has_buffers(page))
2590 return generic_write_end(file, mapping, pos, len,
2591 copied, page, fsdata);
2593 SetPageUptodate(page);
2594 set_page_dirty(page);
2595 if (pos+copied > inode->i_size) {
2596 i_size_write(inode, pos+copied);
2597 mark_inode_dirty(inode);
2600 unlock_page(page);
2601 page_cache_release(page);
2603 while (head) {
2604 bh = head;
2605 head = head->b_this_page;
2606 free_buffer_head(bh);
2609 return copied;
2611 EXPORT_SYMBOL(nobh_write_end);
2614 * nobh_writepage() - based on block_full_write_page() except
2615 * that it tries to operate without attaching bufferheads to
2616 * the page.
2618 int nobh_writepage(struct page *page, get_block_t *get_block,
2619 struct writeback_control *wbc)
2621 struct inode * const inode = page->mapping->host;
2622 loff_t i_size = i_size_read(inode);
2623 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2624 unsigned offset;
2625 int ret;
2627 /* Is the page fully inside i_size? */
2628 if (page->index < end_index)
2629 goto out;
2631 /* Is the page fully outside i_size? (truncate in progress) */
2632 offset = i_size & (PAGE_CACHE_SIZE-1);
2633 if (page->index >= end_index+1 || !offset) {
2635 * The page may have dirty, unmapped buffers. For example,
2636 * they may have been added in ext3_writepage(). Make them
2637 * freeable here, so the page does not leak.
2639 #if 0
2640 /* Not really sure about this - do we need this ? */
2641 if (page->mapping->a_ops->invalidatepage)
2642 page->mapping->a_ops->invalidatepage(page, offset);
2643 #endif
2644 unlock_page(page);
2645 return 0; /* don't care */
2649 * The page straddles i_size. It must be zeroed out on each and every
2650 * writepage invocation because it may be mmapped. "A file is mapped
2651 * in multiples of the page size. For a file that is not a multiple of
2652 * the page size, the remaining memory is zeroed when mapped, and
2653 * writes to that region are not written out to the file."
2655 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2656 out:
2657 ret = mpage_writepage(page, get_block, wbc);
2658 if (ret == -EAGAIN)
2659 ret = __block_write_full_page(inode, page, get_block, wbc,
2660 end_buffer_async_write);
2661 return ret;
2663 EXPORT_SYMBOL(nobh_writepage);
2665 int nobh_truncate_page(struct address_space *mapping,
2666 loff_t from, get_block_t *get_block)
2668 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2669 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2670 unsigned blocksize;
2671 sector_t iblock;
2672 unsigned length, pos;
2673 struct inode *inode = mapping->host;
2674 struct page *page;
2675 struct buffer_head map_bh;
2676 int err;
2678 blocksize = 1 << inode->i_blkbits;
2679 length = offset & (blocksize - 1);
2681 /* Block boundary? Nothing to do */
2682 if (!length)
2683 return 0;
2685 length = blocksize - length;
2686 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2688 page = grab_cache_page(mapping, index);
2689 err = -ENOMEM;
2690 if (!page)
2691 goto out;
2693 if (page_has_buffers(page)) {
2694 has_buffers:
2695 unlock_page(page);
2696 page_cache_release(page);
2697 return block_truncate_page(mapping, from, get_block);
2700 /* Find the buffer that contains "offset" */
2701 pos = blocksize;
2702 while (offset >= pos) {
2703 iblock++;
2704 pos += blocksize;
2707 map_bh.b_size = blocksize;
2708 map_bh.b_state = 0;
2709 err = get_block(inode, iblock, &map_bh, 0);
2710 if (err)
2711 goto unlock;
2712 /* unmapped? It's a hole - nothing to do */
2713 if (!buffer_mapped(&map_bh))
2714 goto unlock;
2716 /* Ok, it's mapped. Make sure it's up-to-date */
2717 if (!PageUptodate(page)) {
2718 err = mapping->a_ops->readpage(NULL, page);
2719 if (err) {
2720 page_cache_release(page);
2721 goto out;
2723 lock_page(page);
2724 if (!PageUptodate(page)) {
2725 err = -EIO;
2726 goto unlock;
2728 if (page_has_buffers(page))
2729 goto has_buffers;
2731 zero_user(page, offset, length);
2732 set_page_dirty(page);
2733 err = 0;
2735 unlock:
2736 unlock_page(page);
2737 page_cache_release(page);
2738 out:
2739 return err;
2741 EXPORT_SYMBOL(nobh_truncate_page);
2743 int block_truncate_page(struct address_space *mapping,
2744 loff_t from, get_block_t *get_block)
2746 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2747 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2748 unsigned blocksize;
2749 sector_t iblock;
2750 unsigned length, pos;
2751 struct inode *inode = mapping->host;
2752 struct page *page;
2753 struct buffer_head *bh;
2754 int err;
2756 blocksize = 1 << inode->i_blkbits;
2757 length = offset & (blocksize - 1);
2759 /* Block boundary? Nothing to do */
2760 if (!length)
2761 return 0;
2763 length = blocksize - length;
2764 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2766 page = grab_cache_page(mapping, index);
2767 err = -ENOMEM;
2768 if (!page)
2769 goto out;
2771 if (!page_has_buffers(page))
2772 create_empty_buffers(page, blocksize, 0);
2774 /* Find the buffer that contains "offset" */
2775 bh = page_buffers(page);
2776 pos = blocksize;
2777 while (offset >= pos) {
2778 bh = bh->b_this_page;
2779 iblock++;
2780 pos += blocksize;
2783 err = 0;
2784 if (!buffer_mapped(bh)) {
2785 WARN_ON(bh->b_size != blocksize);
2786 err = get_block(inode, iblock, bh, 0);
2787 if (err)
2788 goto unlock;
2789 /* unmapped? It's a hole - nothing to do */
2790 if (!buffer_mapped(bh))
2791 goto unlock;
2794 /* Ok, it's mapped. Make sure it's up-to-date */
2795 if (PageUptodate(page))
2796 set_buffer_uptodate(bh);
2798 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2799 err = -EIO;
2800 ll_rw_block(READ, 1, &bh);
2801 wait_on_buffer(bh);
2802 /* Uhhuh. Read error. Complain and punt. */
2803 if (!buffer_uptodate(bh))
2804 goto unlock;
2807 zero_user(page, offset, length);
2808 mark_buffer_dirty(bh);
2809 err = 0;
2811 unlock:
2812 unlock_page(page);
2813 page_cache_release(page);
2814 out:
2815 return err;
2817 EXPORT_SYMBOL(block_truncate_page);
2820 * The generic ->writepage function for buffer-backed address_spaces
2821 * this form passes in the end_io handler used to finish the IO.
2823 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2824 struct writeback_control *wbc, bh_end_io_t *handler)
2826 struct inode * const inode = page->mapping->host;
2827 loff_t i_size = i_size_read(inode);
2828 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2829 unsigned offset;
2831 /* Is the page fully inside i_size? */
2832 if (page->index < end_index)
2833 return __block_write_full_page(inode, page, get_block, wbc,
2834 handler);
2836 /* Is the page fully outside i_size? (truncate in progress) */
2837 offset = i_size & (PAGE_CACHE_SIZE-1);
2838 if (page->index >= end_index+1 || !offset) {
2840 * The page may have dirty, unmapped buffers. For example,
2841 * they may have been added in ext3_writepage(). Make them
2842 * freeable here, so the page does not leak.
2844 do_invalidatepage(page, 0);
2845 unlock_page(page);
2846 return 0; /* don't care */
2850 * The page straddles i_size. It must be zeroed out on each and every
2851 * writepage invocation because it may be mmapped. "A file is mapped
2852 * in multiples of the page size. For a file that is not a multiple of
2853 * the page size, the remaining memory is zeroed when mapped, and
2854 * writes to that region are not written out to the file."
2856 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2857 return __block_write_full_page(inode, page, get_block, wbc, handler);
2859 EXPORT_SYMBOL(block_write_full_page_endio);
2862 * The generic ->writepage function for buffer-backed address_spaces
2864 int block_write_full_page(struct page *page, get_block_t *get_block,
2865 struct writeback_control *wbc)
2867 return block_write_full_page_endio(page, get_block, wbc,
2868 end_buffer_async_write);
2870 EXPORT_SYMBOL(block_write_full_page);
2872 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2873 get_block_t *get_block)
2875 struct buffer_head tmp;
2876 struct inode *inode = mapping->host;
2877 tmp.b_state = 0;
2878 tmp.b_blocknr = 0;
2879 tmp.b_size = 1 << inode->i_blkbits;
2880 get_block(inode, block, &tmp, 0);
2881 return tmp.b_blocknr;
2883 EXPORT_SYMBOL(generic_block_bmap);
2885 static void end_bio_bh_io_sync(struct bio *bio, int err)
2887 struct buffer_head *bh = bio->bi_private;
2889 if (err == -EOPNOTSUPP) {
2890 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2893 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2894 set_bit(BH_Quiet, &bh->b_state);
2896 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2897 bio_put(bio);
2901 * This allows us to do IO even on the odd last sectors
2902 * of a device, even if the bh block size is some multiple
2903 * of the physical sector size.
2905 * We'll just truncate the bio to the size of the device,
2906 * and clear the end of the buffer head manually.
2908 * Truly out-of-range accesses will turn into actual IO
2909 * errors, this only handles the "we need to be able to
2910 * do IO at the final sector" case.
2912 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2914 sector_t maxsector;
2915 unsigned bytes;
2917 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2918 if (!maxsector)
2919 return;
2922 * If the *whole* IO is past the end of the device,
2923 * let it through, and the IO layer will turn it into
2924 * an EIO.
2926 if (unlikely(bio->bi_sector >= maxsector))
2927 return;
2929 maxsector -= bio->bi_sector;
2930 bytes = bio->bi_size;
2931 if (likely((bytes >> 9) <= maxsector))
2932 return;
2934 /* Uhhuh. We've got a bh that straddles the device size! */
2935 bytes = maxsector << 9;
2937 /* Truncate the bio.. */
2938 bio->bi_size = bytes;
2939 bio->bi_io_vec[0].bv_len = bytes;
2941 /* ..and clear the end of the buffer for reads */
2942 if ((rw & RW_MASK) == READ) {
2943 void *kaddr = kmap_atomic(bh->b_page);
2944 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2945 kunmap_atomic(kaddr);
2946 flush_dcache_page(bh->b_page);
2950 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
2952 struct bio *bio;
2953 int ret = 0;
2955 BUG_ON(!buffer_locked(bh));
2956 BUG_ON(!buffer_mapped(bh));
2957 BUG_ON(!bh->b_end_io);
2958 BUG_ON(buffer_delay(bh));
2959 BUG_ON(buffer_unwritten(bh));
2962 * Only clear out a write error when rewriting
2964 if (test_set_buffer_req(bh) && (rw & WRITE))
2965 clear_buffer_write_io_error(bh);
2968 * from here on down, it's all bio -- do the initial mapping,
2969 * submit_bio -> generic_make_request may further map this bio around
2971 bio = bio_alloc(GFP_NOIO, 1);
2973 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2974 bio->bi_bdev = bh->b_bdev;
2975 bio->bi_io_vec[0].bv_page = bh->b_page;
2976 bio->bi_io_vec[0].bv_len = bh->b_size;
2977 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2979 bio->bi_vcnt = 1;
2980 bio->bi_size = bh->b_size;
2982 bio->bi_end_io = end_bio_bh_io_sync;
2983 bio->bi_private = bh;
2984 bio->bi_flags |= bio_flags;
2986 /* Take care of bh's that straddle the end of the device */
2987 guard_bh_eod(rw, bio, bh);
2989 if (buffer_meta(bh))
2990 rw |= REQ_META;
2991 if (buffer_prio(bh))
2992 rw |= REQ_PRIO;
2994 bio_get(bio);
2995 submit_bio(rw, bio);
2997 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2998 ret = -EOPNOTSUPP;
3000 bio_put(bio);
3001 return ret;
3003 EXPORT_SYMBOL_GPL(_submit_bh);
3005 int submit_bh(int rw, struct buffer_head *bh)
3007 return _submit_bh(rw, bh, 0);
3009 EXPORT_SYMBOL(submit_bh);
3012 * ll_rw_block: low-level access to block devices (DEPRECATED)
3013 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3014 * @nr: number of &struct buffer_heads in the array
3015 * @bhs: array of pointers to &struct buffer_head
3017 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3018 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3019 * %READA option is described in the documentation for generic_make_request()
3020 * which ll_rw_block() calls.
3022 * This function drops any buffer that it cannot get a lock on (with the
3023 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3024 * request, and any buffer that appears to be up-to-date when doing read
3025 * request. Further it marks as clean buffers that are processed for
3026 * writing (the buffer cache won't assume that they are actually clean
3027 * until the buffer gets unlocked).
3029 * ll_rw_block sets b_end_io to simple completion handler that marks
3030 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3031 * any waiters.
3033 * All of the buffers must be for the same device, and must also be a
3034 * multiple of the current approved size for the device.
3036 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3038 int i;
3040 for (i = 0; i < nr; i++) {
3041 struct buffer_head *bh = bhs[i];
3043 if (!trylock_buffer(bh))
3044 continue;
3045 if (rw == WRITE) {
3046 if (test_clear_buffer_dirty(bh)) {
3047 bh->b_end_io = end_buffer_write_sync;
3048 get_bh(bh);
3049 submit_bh(WRITE, bh);
3050 continue;
3052 } else {
3053 if (!buffer_uptodate(bh)) {
3054 bh->b_end_io = end_buffer_read_sync;
3055 get_bh(bh);
3056 submit_bh(rw, bh);
3057 continue;
3060 unlock_buffer(bh);
3063 EXPORT_SYMBOL(ll_rw_block);
3065 void write_dirty_buffer(struct buffer_head *bh, int rw)
3067 lock_buffer(bh);
3068 if (!test_clear_buffer_dirty(bh)) {
3069 unlock_buffer(bh);
3070 return;
3072 bh->b_end_io = end_buffer_write_sync;
3073 get_bh(bh);
3074 submit_bh(rw, bh);
3076 EXPORT_SYMBOL(write_dirty_buffer);
3079 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3080 * and then start new I/O and then wait upon it. The caller must have a ref on
3081 * the buffer_head.
3083 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3085 int ret = 0;
3087 WARN_ON(atomic_read(&bh->b_count) < 1);
3088 lock_buffer(bh);
3089 if (test_clear_buffer_dirty(bh)) {
3090 get_bh(bh);
3091 bh->b_end_io = end_buffer_write_sync;
3092 ret = submit_bh(rw, bh);
3093 wait_on_buffer(bh);
3094 if (!ret && !buffer_uptodate(bh))
3095 ret = -EIO;
3096 } else {
3097 unlock_buffer(bh);
3099 return ret;
3101 EXPORT_SYMBOL(__sync_dirty_buffer);
3103 int sync_dirty_buffer(struct buffer_head *bh)
3105 return __sync_dirty_buffer(bh, WRITE_SYNC);
3107 EXPORT_SYMBOL(sync_dirty_buffer);
3110 * try_to_free_buffers() checks if all the buffers on this particular page
3111 * are unused, and releases them if so.
3113 * Exclusion against try_to_free_buffers may be obtained by either
3114 * locking the page or by holding its mapping's private_lock.
3116 * If the page is dirty but all the buffers are clean then we need to
3117 * be sure to mark the page clean as well. This is because the page
3118 * may be against a block device, and a later reattachment of buffers
3119 * to a dirty page will set *all* buffers dirty. Which would corrupt
3120 * filesystem data on the same device.
3122 * The same applies to regular filesystem pages: if all the buffers are
3123 * clean then we set the page clean and proceed. To do that, we require
3124 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3125 * private_lock.
3127 * try_to_free_buffers() is non-blocking.
3129 static inline int buffer_busy(struct buffer_head *bh)
3131 return atomic_read(&bh->b_count) |
3132 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3135 static int
3136 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3138 struct buffer_head *head = page_buffers(page);
3139 struct buffer_head *bh;
3141 bh = head;
3142 do {
3143 if (buffer_write_io_error(bh) && page->mapping)
3144 set_bit(AS_EIO, &page->mapping->flags);
3145 if (buffer_busy(bh))
3146 goto failed;
3147 bh = bh->b_this_page;
3148 } while (bh != head);
3150 do {
3151 struct buffer_head *next = bh->b_this_page;
3153 if (bh->b_assoc_map)
3154 __remove_assoc_queue(bh);
3155 bh = next;
3156 } while (bh != head);
3157 *buffers_to_free = head;
3158 __clear_page_buffers(page);
3159 return 1;
3160 failed:
3161 return 0;
3164 int try_to_free_buffers(struct page *page)
3166 struct address_space * const mapping = page->mapping;
3167 struct buffer_head *buffers_to_free = NULL;
3168 int ret = 0;
3170 BUG_ON(!PageLocked(page));
3171 if (PageWriteback(page))
3172 return 0;
3174 if (mapping == NULL) { /* can this still happen? */
3175 ret = drop_buffers(page, &buffers_to_free);
3176 goto out;
3179 spin_lock(&mapping->private_lock);
3180 ret = drop_buffers(page, &buffers_to_free);
3183 * If the filesystem writes its buffers by hand (eg ext3)
3184 * then we can have clean buffers against a dirty page. We
3185 * clean the page here; otherwise the VM will never notice
3186 * that the filesystem did any IO at all.
3188 * Also, during truncate, discard_buffer will have marked all
3189 * the page's buffers clean. We discover that here and clean
3190 * the page also.
3192 * private_lock must be held over this entire operation in order
3193 * to synchronise against __set_page_dirty_buffers and prevent the
3194 * dirty bit from being lost.
3196 if (ret)
3197 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3198 spin_unlock(&mapping->private_lock);
3199 out:
3200 if (buffers_to_free) {
3201 struct buffer_head *bh = buffers_to_free;
3203 do {
3204 struct buffer_head *next = bh->b_this_page;
3205 free_buffer_head(bh);
3206 bh = next;
3207 } while (bh != buffers_to_free);
3209 return ret;
3211 EXPORT_SYMBOL(try_to_free_buffers);
3214 * There are no bdflush tunables left. But distributions are
3215 * still running obsolete flush daemons, so we terminate them here.
3217 * Use of bdflush() is deprecated and will be removed in a future kernel.
3218 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3220 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3222 static int msg_count;
3224 if (!capable(CAP_SYS_ADMIN))
3225 return -EPERM;
3227 if (msg_count < 5) {
3228 msg_count++;
3229 printk(KERN_INFO
3230 "warning: process `%s' used the obsolete bdflush"
3231 " system call\n", current->comm);
3232 printk(KERN_INFO "Fix your initscripts?\n");
3235 if (func == 1)
3236 do_exit(0);
3237 return 0;
3241 * Buffer-head allocation
3243 static struct kmem_cache *bh_cachep __read_mostly;
3246 * Once the number of bh's in the machine exceeds this level, we start
3247 * stripping them in writeback.
3249 static unsigned long max_buffer_heads;
3251 int buffer_heads_over_limit;
3253 struct bh_accounting {
3254 int nr; /* Number of live bh's */
3255 int ratelimit; /* Limit cacheline bouncing */
3258 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3260 static void recalc_bh_state(void)
3262 int i;
3263 int tot = 0;
3265 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3266 return;
3267 __this_cpu_write(bh_accounting.ratelimit, 0);
3268 for_each_online_cpu(i)
3269 tot += per_cpu(bh_accounting, i).nr;
3270 buffer_heads_over_limit = (tot > max_buffer_heads);
3273 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3275 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3276 if (ret) {
3277 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3278 preempt_disable();
3279 __this_cpu_inc(bh_accounting.nr);
3280 recalc_bh_state();
3281 preempt_enable();
3283 return ret;
3285 EXPORT_SYMBOL(alloc_buffer_head);
3287 void free_buffer_head(struct buffer_head *bh)
3289 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3290 kmem_cache_free(bh_cachep, bh);
3291 preempt_disable();
3292 __this_cpu_dec(bh_accounting.nr);
3293 recalc_bh_state();
3294 preempt_enable();
3296 EXPORT_SYMBOL(free_buffer_head);
3298 static void buffer_exit_cpu(int cpu)
3300 int i;
3301 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3303 for (i = 0; i < BH_LRU_SIZE; i++) {
3304 brelse(b->bhs[i]);
3305 b->bhs[i] = NULL;
3307 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3308 per_cpu(bh_accounting, cpu).nr = 0;
3311 static int buffer_cpu_notify(struct notifier_block *self,
3312 unsigned long action, void *hcpu)
3314 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3315 buffer_exit_cpu((unsigned long)hcpu);
3316 return NOTIFY_OK;
3320 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3321 * @bh: struct buffer_head
3323 * Return true if the buffer is up-to-date and false,
3324 * with the buffer locked, if not.
3326 int bh_uptodate_or_lock(struct buffer_head *bh)
3328 if (!buffer_uptodate(bh)) {
3329 lock_buffer(bh);
3330 if (!buffer_uptodate(bh))
3331 return 0;
3332 unlock_buffer(bh);
3334 return 1;
3336 EXPORT_SYMBOL(bh_uptodate_or_lock);
3339 * bh_submit_read - Submit a locked buffer for reading
3340 * @bh: struct buffer_head
3342 * Returns zero on success and -EIO on error.
3344 int bh_submit_read(struct buffer_head *bh)
3346 BUG_ON(!buffer_locked(bh));
3348 if (buffer_uptodate(bh)) {
3349 unlock_buffer(bh);
3350 return 0;
3353 get_bh(bh);
3354 bh->b_end_io = end_buffer_read_sync;
3355 submit_bh(READ, bh);
3356 wait_on_buffer(bh);
3357 if (buffer_uptodate(bh))
3358 return 0;
3359 return -EIO;
3361 EXPORT_SYMBOL(bh_submit_read);
3363 void __init buffer_init(void)
3365 unsigned long nrpages;
3367 bh_cachep = kmem_cache_create("buffer_head",
3368 sizeof(struct buffer_head), 0,
3369 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3370 SLAB_MEM_SPREAD),
3371 NULL);
3374 * Limit the bh occupancy to 10% of ZONE_NORMAL
3376 nrpages = (nr_free_buffer_pages() * 10) / 100;
3377 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3378 hotcpu_notifier(buffer_cpu_notify, 0);