vfs: do_last(): separate O_CREAT specific code
[linux-2.6.git] / fs / namei.c
blob12ed29712b4e03cfad6cc53cc1bdc09413f34a21
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
39 #include "internal.h"
40 #include "mount.h"
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
90 * [10-Sep-98 Alan Modra] Another symlink change.
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
122 char *result = __getname(), *err;
123 int len;
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
148 error:
149 __putname(result);
150 return err;
153 char *getname(const char __user * filename)
155 return getname_flags(filename, 0, NULL);
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
166 EXPORT_SYMBOL(putname);
167 #endif
169 static int check_acl(struct inode *inode, int mask)
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
210 #endif
212 return -EAGAIN;
216 * This does the basic permission checking
218 static int acl_permission_check(struct inode *inode, int mask)
220 unsigned int mode = inode->i_mode;
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
236 * If the DACs are ok we don't need any capability check.
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
257 int generic_permission(struct inode *inode, int mask)
259 int ret;
262 * Do the basic permission checks.
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
287 * Searching includes executable on directories, else just read.
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
294 return -EACCES;
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
303 static inline int do_inode_permission(struct inode *inode, int mask)
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
314 return generic_permission(inode, mask);
318 * inode_permission - check for access rights to a given inode
319 * @inode: inode to check permission on
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 * Used to check for read/write/execute permissions on an inode.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
327 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
329 int inode_permission(struct inode *inode, int mask)
331 int retval;
333 if (unlikely(mask & MAY_WRITE)) {
334 umode_t mode = inode->i_mode;
337 * Nobody gets write access to a read-only fs.
339 if (IS_RDONLY(inode) &&
340 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 return -EROFS;
344 * Nobody gets write access to an immutable file.
346 if (IS_IMMUTABLE(inode))
347 return -EACCES;
350 retval = do_inode_permission(inode, mask);
351 if (retval)
352 return retval;
354 retval = devcgroup_inode_permission(inode, mask);
355 if (retval)
356 return retval;
358 return security_inode_permission(inode, mask);
362 * path_get - get a reference to a path
363 * @path: path to get the reference to
365 * Given a path increment the reference count to the dentry and the vfsmount.
367 void path_get(struct path *path)
369 mntget(path->mnt);
370 dget(path->dentry);
372 EXPORT_SYMBOL(path_get);
375 * path_put - put a reference to a path
376 * @path: path to put the reference to
378 * Given a path decrement the reference count to the dentry and the vfsmount.
380 void path_put(struct path *path)
382 dput(path->dentry);
383 mntput(path->mnt);
385 EXPORT_SYMBOL(path_put);
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). In situations when we can't
390 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392 * mode. Refcounts are grabbed at the last known good point before rcu-walk
393 * got stuck, so ref-walk may continue from there. If this is not successful
394 * (eg. a seqcount has changed), then failure is returned and it's up to caller
395 * to restart the path walk from the beginning in ref-walk mode.
399 * unlazy_walk - try to switch to ref-walk mode.
400 * @nd: nameidata pathwalk data
401 * @dentry: child of nd->path.dentry or NULL
402 * Returns: 0 on success, -ECHILD on failure
404 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
406 * @nd or NULL. Must be called from rcu-walk context.
408 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
410 struct fs_struct *fs = current->fs;
411 struct dentry *parent = nd->path.dentry;
412 int want_root = 0;
414 BUG_ON(!(nd->flags & LOOKUP_RCU));
415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 want_root = 1;
417 spin_lock(&fs->lock);
418 if (nd->root.mnt != fs->root.mnt ||
419 nd->root.dentry != fs->root.dentry)
420 goto err_root;
422 spin_lock(&parent->d_lock);
423 if (!dentry) {
424 if (!__d_rcu_to_refcount(parent, nd->seq))
425 goto err_parent;
426 BUG_ON(nd->inode != parent->d_inode);
427 } else {
428 if (dentry->d_parent != parent)
429 goto err_parent;
430 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 if (!__d_rcu_to_refcount(dentry, nd->seq))
432 goto err_child;
434 * If the sequence check on the child dentry passed, then
435 * the child has not been removed from its parent. This
436 * means the parent dentry must be valid and able to take
437 * a reference at this point.
439 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 BUG_ON(!parent->d_count);
441 parent->d_count++;
442 spin_unlock(&dentry->d_lock);
444 spin_unlock(&parent->d_lock);
445 if (want_root) {
446 path_get(&nd->root);
447 spin_unlock(&fs->lock);
449 mntget(nd->path.mnt);
451 rcu_read_unlock();
452 br_read_unlock(&vfsmount_lock);
453 nd->flags &= ~LOOKUP_RCU;
454 return 0;
456 err_child:
457 spin_unlock(&dentry->d_lock);
458 err_parent:
459 spin_unlock(&parent->d_lock);
460 err_root:
461 if (want_root)
462 spin_unlock(&fs->lock);
463 return -ECHILD;
467 * release_open_intent - free up open intent resources
468 * @nd: pointer to nameidata
470 void release_open_intent(struct nameidata *nd)
472 struct file *file = nd->intent.open.file;
474 if (file && !IS_ERR(file)) {
475 if (file->f_path.dentry == NULL)
476 put_filp(file);
477 else
478 fput(file);
482 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
484 return dentry->d_op->d_revalidate(dentry, nd);
488 * complete_walk - successful completion of path walk
489 * @nd: pointer nameidata
491 * If we had been in RCU mode, drop out of it and legitimize nd->path.
492 * Revalidate the final result, unless we'd already done that during
493 * the path walk or the filesystem doesn't ask for it. Return 0 on
494 * success, -error on failure. In case of failure caller does not
495 * need to drop nd->path.
497 static int complete_walk(struct nameidata *nd)
499 struct dentry *dentry = nd->path.dentry;
500 int status;
502 if (nd->flags & LOOKUP_RCU) {
503 nd->flags &= ~LOOKUP_RCU;
504 if (!(nd->flags & LOOKUP_ROOT))
505 nd->root.mnt = NULL;
506 spin_lock(&dentry->d_lock);
507 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
508 spin_unlock(&dentry->d_lock);
509 rcu_read_unlock();
510 br_read_unlock(&vfsmount_lock);
511 return -ECHILD;
513 BUG_ON(nd->inode != dentry->d_inode);
514 spin_unlock(&dentry->d_lock);
515 mntget(nd->path.mnt);
516 rcu_read_unlock();
517 br_read_unlock(&vfsmount_lock);
520 if (likely(!(nd->flags & LOOKUP_JUMPED)))
521 return 0;
523 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
524 return 0;
526 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
527 return 0;
529 /* Note: we do not d_invalidate() */
530 status = d_revalidate(dentry, nd);
531 if (status > 0)
532 return 0;
534 if (!status)
535 status = -ESTALE;
537 path_put(&nd->path);
538 return status;
541 static __always_inline void set_root(struct nameidata *nd)
543 if (!nd->root.mnt)
544 get_fs_root(current->fs, &nd->root);
547 static int link_path_walk(const char *, struct nameidata *);
549 static __always_inline void set_root_rcu(struct nameidata *nd)
551 if (!nd->root.mnt) {
552 struct fs_struct *fs = current->fs;
553 unsigned seq;
555 do {
556 seq = read_seqcount_begin(&fs->seq);
557 nd->root = fs->root;
558 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
559 } while (read_seqcount_retry(&fs->seq, seq));
563 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
565 int ret;
567 if (IS_ERR(link))
568 goto fail;
570 if (*link == '/') {
571 set_root(nd);
572 path_put(&nd->path);
573 nd->path = nd->root;
574 path_get(&nd->root);
575 nd->flags |= LOOKUP_JUMPED;
577 nd->inode = nd->path.dentry->d_inode;
579 ret = link_path_walk(link, nd);
580 return ret;
581 fail:
582 path_put(&nd->path);
583 return PTR_ERR(link);
586 static void path_put_conditional(struct path *path, struct nameidata *nd)
588 dput(path->dentry);
589 if (path->mnt != nd->path.mnt)
590 mntput(path->mnt);
593 static inline void path_to_nameidata(const struct path *path,
594 struct nameidata *nd)
596 if (!(nd->flags & LOOKUP_RCU)) {
597 dput(nd->path.dentry);
598 if (nd->path.mnt != path->mnt)
599 mntput(nd->path.mnt);
601 nd->path.mnt = path->mnt;
602 nd->path.dentry = path->dentry;
605 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
607 struct inode *inode = link->dentry->d_inode;
608 if (inode->i_op->put_link)
609 inode->i_op->put_link(link->dentry, nd, cookie);
610 path_put(link);
613 static __always_inline int
614 follow_link(struct path *link, struct nameidata *nd, void **p)
616 struct dentry *dentry = link->dentry;
617 int error;
618 char *s;
620 BUG_ON(nd->flags & LOOKUP_RCU);
622 if (link->mnt == nd->path.mnt)
623 mntget(link->mnt);
625 error = -ELOOP;
626 if (unlikely(current->total_link_count >= 40))
627 goto out_put_nd_path;
629 cond_resched();
630 current->total_link_count++;
632 touch_atime(link);
633 nd_set_link(nd, NULL);
635 error = security_inode_follow_link(link->dentry, nd);
636 if (error)
637 goto out_put_nd_path;
639 nd->last_type = LAST_BIND;
640 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
641 error = PTR_ERR(*p);
642 if (IS_ERR(*p))
643 goto out_put_link;
645 error = 0;
646 s = nd_get_link(nd);
647 if (s) {
648 error = __vfs_follow_link(nd, s);
649 } else if (nd->last_type == LAST_BIND) {
650 nd->flags |= LOOKUP_JUMPED;
651 nd->inode = nd->path.dentry->d_inode;
652 if (nd->inode->i_op->follow_link) {
653 /* stepped on a _really_ weird one */
654 path_put(&nd->path);
655 error = -ELOOP;
658 if (unlikely(error))
659 put_link(nd, link, *p);
661 return error;
663 out_put_nd_path:
664 path_put(&nd->path);
665 out_put_link:
666 path_put(link);
667 return error;
670 static int follow_up_rcu(struct path *path)
672 struct mount *mnt = real_mount(path->mnt);
673 struct mount *parent;
674 struct dentry *mountpoint;
676 parent = mnt->mnt_parent;
677 if (&parent->mnt == path->mnt)
678 return 0;
679 mountpoint = mnt->mnt_mountpoint;
680 path->dentry = mountpoint;
681 path->mnt = &parent->mnt;
682 return 1;
685 int follow_up(struct path *path)
687 struct mount *mnt = real_mount(path->mnt);
688 struct mount *parent;
689 struct dentry *mountpoint;
691 br_read_lock(&vfsmount_lock);
692 parent = mnt->mnt_parent;
693 if (&parent->mnt == path->mnt) {
694 br_read_unlock(&vfsmount_lock);
695 return 0;
697 mntget(&parent->mnt);
698 mountpoint = dget(mnt->mnt_mountpoint);
699 br_read_unlock(&vfsmount_lock);
700 dput(path->dentry);
701 path->dentry = mountpoint;
702 mntput(path->mnt);
703 path->mnt = &parent->mnt;
704 return 1;
708 * Perform an automount
709 * - return -EISDIR to tell follow_managed() to stop and return the path we
710 * were called with.
712 static int follow_automount(struct path *path, unsigned flags,
713 bool *need_mntput)
715 struct vfsmount *mnt;
716 int err;
718 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
719 return -EREMOTE;
721 /* We don't want to mount if someone's just doing a stat -
722 * unless they're stat'ing a directory and appended a '/' to
723 * the name.
725 * We do, however, want to mount if someone wants to open or
726 * create a file of any type under the mountpoint, wants to
727 * traverse through the mountpoint or wants to open the
728 * mounted directory. Also, autofs may mark negative dentries
729 * as being automount points. These will need the attentions
730 * of the daemon to instantiate them before they can be used.
732 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
733 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
734 path->dentry->d_inode)
735 return -EISDIR;
737 current->total_link_count++;
738 if (current->total_link_count >= 40)
739 return -ELOOP;
741 mnt = path->dentry->d_op->d_automount(path);
742 if (IS_ERR(mnt)) {
744 * The filesystem is allowed to return -EISDIR here to indicate
745 * it doesn't want to automount. For instance, autofs would do
746 * this so that its userspace daemon can mount on this dentry.
748 * However, we can only permit this if it's a terminal point in
749 * the path being looked up; if it wasn't then the remainder of
750 * the path is inaccessible and we should say so.
752 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
753 return -EREMOTE;
754 return PTR_ERR(mnt);
757 if (!mnt) /* mount collision */
758 return 0;
760 if (!*need_mntput) {
761 /* lock_mount() may release path->mnt on error */
762 mntget(path->mnt);
763 *need_mntput = true;
765 err = finish_automount(mnt, path);
767 switch (err) {
768 case -EBUSY:
769 /* Someone else made a mount here whilst we were busy */
770 return 0;
771 case 0:
772 path_put(path);
773 path->mnt = mnt;
774 path->dentry = dget(mnt->mnt_root);
775 return 0;
776 default:
777 return err;
783 * Handle a dentry that is managed in some way.
784 * - Flagged for transit management (autofs)
785 * - Flagged as mountpoint
786 * - Flagged as automount point
788 * This may only be called in refwalk mode.
790 * Serialization is taken care of in namespace.c
792 static int follow_managed(struct path *path, unsigned flags)
794 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
795 unsigned managed;
796 bool need_mntput = false;
797 int ret = 0;
799 /* Given that we're not holding a lock here, we retain the value in a
800 * local variable for each dentry as we look at it so that we don't see
801 * the components of that value change under us */
802 while (managed = ACCESS_ONCE(path->dentry->d_flags),
803 managed &= DCACHE_MANAGED_DENTRY,
804 unlikely(managed != 0)) {
805 /* Allow the filesystem to manage the transit without i_mutex
806 * being held. */
807 if (managed & DCACHE_MANAGE_TRANSIT) {
808 BUG_ON(!path->dentry->d_op);
809 BUG_ON(!path->dentry->d_op->d_manage);
810 ret = path->dentry->d_op->d_manage(path->dentry, false);
811 if (ret < 0)
812 break;
815 /* Transit to a mounted filesystem. */
816 if (managed & DCACHE_MOUNTED) {
817 struct vfsmount *mounted = lookup_mnt(path);
818 if (mounted) {
819 dput(path->dentry);
820 if (need_mntput)
821 mntput(path->mnt);
822 path->mnt = mounted;
823 path->dentry = dget(mounted->mnt_root);
824 need_mntput = true;
825 continue;
828 /* Something is mounted on this dentry in another
829 * namespace and/or whatever was mounted there in this
830 * namespace got unmounted before we managed to get the
831 * vfsmount_lock */
834 /* Handle an automount point */
835 if (managed & DCACHE_NEED_AUTOMOUNT) {
836 ret = follow_automount(path, flags, &need_mntput);
837 if (ret < 0)
838 break;
839 continue;
842 /* We didn't change the current path point */
843 break;
846 if (need_mntput && path->mnt == mnt)
847 mntput(path->mnt);
848 if (ret == -EISDIR)
849 ret = 0;
850 return ret < 0 ? ret : need_mntput;
853 int follow_down_one(struct path *path)
855 struct vfsmount *mounted;
857 mounted = lookup_mnt(path);
858 if (mounted) {
859 dput(path->dentry);
860 mntput(path->mnt);
861 path->mnt = mounted;
862 path->dentry = dget(mounted->mnt_root);
863 return 1;
865 return 0;
868 static inline bool managed_dentry_might_block(struct dentry *dentry)
870 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
871 dentry->d_op->d_manage(dentry, true) < 0);
875 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
876 * we meet a managed dentry that would need blocking.
878 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
879 struct inode **inode)
881 for (;;) {
882 struct mount *mounted;
884 * Don't forget we might have a non-mountpoint managed dentry
885 * that wants to block transit.
887 if (unlikely(managed_dentry_might_block(path->dentry)))
888 return false;
890 if (!d_mountpoint(path->dentry))
891 break;
893 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
894 if (!mounted)
895 break;
896 path->mnt = &mounted->mnt;
897 path->dentry = mounted->mnt.mnt_root;
898 nd->flags |= LOOKUP_JUMPED;
899 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
901 * Update the inode too. We don't need to re-check the
902 * dentry sequence number here after this d_inode read,
903 * because a mount-point is always pinned.
905 *inode = path->dentry->d_inode;
907 return true;
910 static void follow_mount_rcu(struct nameidata *nd)
912 while (d_mountpoint(nd->path.dentry)) {
913 struct mount *mounted;
914 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
915 if (!mounted)
916 break;
917 nd->path.mnt = &mounted->mnt;
918 nd->path.dentry = mounted->mnt.mnt_root;
919 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
923 static int follow_dotdot_rcu(struct nameidata *nd)
925 set_root_rcu(nd);
927 while (1) {
928 if (nd->path.dentry == nd->root.dentry &&
929 nd->path.mnt == nd->root.mnt) {
930 break;
932 if (nd->path.dentry != nd->path.mnt->mnt_root) {
933 struct dentry *old = nd->path.dentry;
934 struct dentry *parent = old->d_parent;
935 unsigned seq;
937 seq = read_seqcount_begin(&parent->d_seq);
938 if (read_seqcount_retry(&old->d_seq, nd->seq))
939 goto failed;
940 nd->path.dentry = parent;
941 nd->seq = seq;
942 break;
944 if (!follow_up_rcu(&nd->path))
945 break;
946 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
948 follow_mount_rcu(nd);
949 nd->inode = nd->path.dentry->d_inode;
950 return 0;
952 failed:
953 nd->flags &= ~LOOKUP_RCU;
954 if (!(nd->flags & LOOKUP_ROOT))
955 nd->root.mnt = NULL;
956 rcu_read_unlock();
957 br_read_unlock(&vfsmount_lock);
958 return -ECHILD;
962 * Follow down to the covering mount currently visible to userspace. At each
963 * point, the filesystem owning that dentry may be queried as to whether the
964 * caller is permitted to proceed or not.
966 int follow_down(struct path *path)
968 unsigned managed;
969 int ret;
971 while (managed = ACCESS_ONCE(path->dentry->d_flags),
972 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
973 /* Allow the filesystem to manage the transit without i_mutex
974 * being held.
976 * We indicate to the filesystem if someone is trying to mount
977 * something here. This gives autofs the chance to deny anyone
978 * other than its daemon the right to mount on its
979 * superstructure.
981 * The filesystem may sleep at this point.
983 if (managed & DCACHE_MANAGE_TRANSIT) {
984 BUG_ON(!path->dentry->d_op);
985 BUG_ON(!path->dentry->d_op->d_manage);
986 ret = path->dentry->d_op->d_manage(
987 path->dentry, false);
988 if (ret < 0)
989 return ret == -EISDIR ? 0 : ret;
992 /* Transit to a mounted filesystem. */
993 if (managed & DCACHE_MOUNTED) {
994 struct vfsmount *mounted = lookup_mnt(path);
995 if (!mounted)
996 break;
997 dput(path->dentry);
998 mntput(path->mnt);
999 path->mnt = mounted;
1000 path->dentry = dget(mounted->mnt_root);
1001 continue;
1004 /* Don't handle automount points here */
1005 break;
1007 return 0;
1011 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1013 static void follow_mount(struct path *path)
1015 while (d_mountpoint(path->dentry)) {
1016 struct vfsmount *mounted = lookup_mnt(path);
1017 if (!mounted)
1018 break;
1019 dput(path->dentry);
1020 mntput(path->mnt);
1021 path->mnt = mounted;
1022 path->dentry = dget(mounted->mnt_root);
1026 static void follow_dotdot(struct nameidata *nd)
1028 set_root(nd);
1030 while(1) {
1031 struct dentry *old = nd->path.dentry;
1033 if (nd->path.dentry == nd->root.dentry &&
1034 nd->path.mnt == nd->root.mnt) {
1035 break;
1037 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1038 /* rare case of legitimate dget_parent()... */
1039 nd->path.dentry = dget_parent(nd->path.dentry);
1040 dput(old);
1041 break;
1043 if (!follow_up(&nd->path))
1044 break;
1046 follow_mount(&nd->path);
1047 nd->inode = nd->path.dentry->d_inode;
1051 * This looks up the name in dcache, possibly revalidates the old dentry and
1052 * allocates a new one if not found or not valid. In the need_lookup argument
1053 * returns whether i_op->lookup is necessary.
1055 * dir->d_inode->i_mutex must be held
1057 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1058 struct nameidata *nd, bool *need_lookup)
1060 struct dentry *dentry;
1061 int error;
1063 *need_lookup = false;
1064 dentry = d_lookup(dir, name);
1065 if (dentry) {
1066 if (d_need_lookup(dentry)) {
1067 *need_lookup = true;
1068 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1069 error = d_revalidate(dentry, nd);
1070 if (unlikely(error <= 0)) {
1071 if (error < 0) {
1072 dput(dentry);
1073 return ERR_PTR(error);
1074 } else if (!d_invalidate(dentry)) {
1075 dput(dentry);
1076 dentry = NULL;
1082 if (!dentry) {
1083 dentry = d_alloc(dir, name);
1084 if (unlikely(!dentry))
1085 return ERR_PTR(-ENOMEM);
1087 *need_lookup = true;
1089 return dentry;
1093 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1094 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1096 * dir->d_inode->i_mutex must be held
1098 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1099 struct nameidata *nd)
1101 struct dentry *old;
1103 /* Don't create child dentry for a dead directory. */
1104 if (unlikely(IS_DEADDIR(dir))) {
1105 dput(dentry);
1106 return ERR_PTR(-ENOENT);
1109 old = dir->i_op->lookup(dir, dentry, nd);
1110 if (unlikely(old)) {
1111 dput(dentry);
1112 dentry = old;
1114 return dentry;
1117 static struct dentry *__lookup_hash(struct qstr *name,
1118 struct dentry *base, struct nameidata *nd)
1120 bool need_lookup;
1121 struct dentry *dentry;
1123 dentry = lookup_dcache(name, base, nd, &need_lookup);
1124 if (!need_lookup)
1125 return dentry;
1127 return lookup_real(base->d_inode, dentry, nd);
1131 * It's more convoluted than I'd like it to be, but... it's still fairly
1132 * small and for now I'd prefer to have fast path as straight as possible.
1133 * It _is_ time-critical.
1135 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1136 struct path *path, struct inode **inode)
1138 struct vfsmount *mnt = nd->path.mnt;
1139 struct dentry *dentry, *parent = nd->path.dentry;
1140 int need_reval = 1;
1141 int status = 1;
1142 int err;
1145 * Rename seqlock is not required here because in the off chance
1146 * of a false negative due to a concurrent rename, we're going to
1147 * do the non-racy lookup, below.
1149 if (nd->flags & LOOKUP_RCU) {
1150 unsigned seq;
1151 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1152 if (!dentry)
1153 goto unlazy;
1156 * This sequence count validates that the inode matches
1157 * the dentry name information from lookup.
1159 *inode = dentry->d_inode;
1160 if (read_seqcount_retry(&dentry->d_seq, seq))
1161 return -ECHILD;
1164 * This sequence count validates that the parent had no
1165 * changes while we did the lookup of the dentry above.
1167 * The memory barrier in read_seqcount_begin of child is
1168 * enough, we can use __read_seqcount_retry here.
1170 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1171 return -ECHILD;
1172 nd->seq = seq;
1174 if (unlikely(d_need_lookup(dentry)))
1175 goto unlazy;
1176 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1177 status = d_revalidate(dentry, nd);
1178 if (unlikely(status <= 0)) {
1179 if (status != -ECHILD)
1180 need_reval = 0;
1181 goto unlazy;
1184 path->mnt = mnt;
1185 path->dentry = dentry;
1186 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1187 goto unlazy;
1188 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1189 goto unlazy;
1190 return 0;
1191 unlazy:
1192 if (unlazy_walk(nd, dentry))
1193 return -ECHILD;
1194 } else {
1195 dentry = __d_lookup(parent, name);
1198 if (unlikely(!dentry))
1199 goto need_lookup;
1201 if (unlikely(d_need_lookup(dentry))) {
1202 dput(dentry);
1203 goto need_lookup;
1206 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1207 status = d_revalidate(dentry, nd);
1208 if (unlikely(status <= 0)) {
1209 if (status < 0) {
1210 dput(dentry);
1211 return status;
1213 if (!d_invalidate(dentry)) {
1214 dput(dentry);
1215 goto need_lookup;
1219 path->mnt = mnt;
1220 path->dentry = dentry;
1221 err = follow_managed(path, nd->flags);
1222 if (unlikely(err < 0)) {
1223 path_put_conditional(path, nd);
1224 return err;
1226 if (err)
1227 nd->flags |= LOOKUP_JUMPED;
1228 *inode = path->dentry->d_inode;
1229 return 0;
1231 need_lookup:
1232 return 1;
1235 /* Fast lookup failed, do it the slow way */
1236 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1237 struct path *path)
1239 struct dentry *dentry, *parent;
1240 int err;
1242 parent = nd->path.dentry;
1243 BUG_ON(nd->inode != parent->d_inode);
1245 mutex_lock(&parent->d_inode->i_mutex);
1246 dentry = __lookup_hash(name, parent, nd);
1247 mutex_unlock(&parent->d_inode->i_mutex);
1248 if (IS_ERR(dentry))
1249 return PTR_ERR(dentry);
1250 path->mnt = nd->path.mnt;
1251 path->dentry = dentry;
1252 err = follow_managed(path, nd->flags);
1253 if (unlikely(err < 0)) {
1254 path_put_conditional(path, nd);
1255 return err;
1257 if (err)
1258 nd->flags |= LOOKUP_JUMPED;
1259 return 0;
1262 static inline int may_lookup(struct nameidata *nd)
1264 if (nd->flags & LOOKUP_RCU) {
1265 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1266 if (err != -ECHILD)
1267 return err;
1268 if (unlazy_walk(nd, NULL))
1269 return -ECHILD;
1271 return inode_permission(nd->inode, MAY_EXEC);
1274 static inline int handle_dots(struct nameidata *nd, int type)
1276 if (type == LAST_DOTDOT) {
1277 if (nd->flags & LOOKUP_RCU) {
1278 if (follow_dotdot_rcu(nd))
1279 return -ECHILD;
1280 } else
1281 follow_dotdot(nd);
1283 return 0;
1286 static void terminate_walk(struct nameidata *nd)
1288 if (!(nd->flags & LOOKUP_RCU)) {
1289 path_put(&nd->path);
1290 } else {
1291 nd->flags &= ~LOOKUP_RCU;
1292 if (!(nd->flags & LOOKUP_ROOT))
1293 nd->root.mnt = NULL;
1294 rcu_read_unlock();
1295 br_read_unlock(&vfsmount_lock);
1300 * Do we need to follow links? We _really_ want to be able
1301 * to do this check without having to look at inode->i_op,
1302 * so we keep a cache of "no, this doesn't need follow_link"
1303 * for the common case.
1305 static inline int should_follow_link(struct inode *inode, int follow)
1307 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1308 if (likely(inode->i_op->follow_link))
1309 return follow;
1311 /* This gets set once for the inode lifetime */
1312 spin_lock(&inode->i_lock);
1313 inode->i_opflags |= IOP_NOFOLLOW;
1314 spin_unlock(&inode->i_lock);
1316 return 0;
1319 static inline int walk_component(struct nameidata *nd, struct path *path,
1320 struct qstr *name, int type, int follow)
1322 struct inode *inode;
1323 int err;
1325 * "." and ".." are special - ".." especially so because it has
1326 * to be able to know about the current root directory and
1327 * parent relationships.
1329 if (unlikely(type != LAST_NORM))
1330 return handle_dots(nd, type);
1331 err = lookup_fast(nd, name, path, &inode);
1332 if (unlikely(err)) {
1333 if (err < 0)
1334 goto out_err;
1336 err = lookup_slow(nd, name, path);
1337 if (err < 0)
1338 goto out_err;
1340 inode = path->dentry->d_inode;
1342 err = -ENOENT;
1343 if (!inode)
1344 goto out_path_put;
1346 if (should_follow_link(inode, follow)) {
1347 if (nd->flags & LOOKUP_RCU) {
1348 if (unlikely(unlazy_walk(nd, path->dentry))) {
1349 err = -ECHILD;
1350 goto out_err;
1353 BUG_ON(inode != path->dentry->d_inode);
1354 return 1;
1356 path_to_nameidata(path, nd);
1357 nd->inode = inode;
1358 return 0;
1360 out_path_put:
1361 path_to_nameidata(path, nd);
1362 out_err:
1363 terminate_walk(nd);
1364 return err;
1368 * This limits recursive symlink follows to 8, while
1369 * limiting consecutive symlinks to 40.
1371 * Without that kind of total limit, nasty chains of consecutive
1372 * symlinks can cause almost arbitrarily long lookups.
1374 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1376 int res;
1378 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1379 path_put_conditional(path, nd);
1380 path_put(&nd->path);
1381 return -ELOOP;
1383 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1385 nd->depth++;
1386 current->link_count++;
1388 do {
1389 struct path link = *path;
1390 void *cookie;
1392 res = follow_link(&link, nd, &cookie);
1393 if (res)
1394 break;
1395 res = walk_component(nd, path, &nd->last,
1396 nd->last_type, LOOKUP_FOLLOW);
1397 put_link(nd, &link, cookie);
1398 } while (res > 0);
1400 current->link_count--;
1401 nd->depth--;
1402 return res;
1406 * We really don't want to look at inode->i_op->lookup
1407 * when we don't have to. So we keep a cache bit in
1408 * the inode ->i_opflags field that says "yes, we can
1409 * do lookup on this inode".
1411 static inline int can_lookup(struct inode *inode)
1413 if (likely(inode->i_opflags & IOP_LOOKUP))
1414 return 1;
1415 if (likely(!inode->i_op->lookup))
1416 return 0;
1418 /* We do this once for the lifetime of the inode */
1419 spin_lock(&inode->i_lock);
1420 inode->i_opflags |= IOP_LOOKUP;
1421 spin_unlock(&inode->i_lock);
1422 return 1;
1426 * We can do the critical dentry name comparison and hashing
1427 * operations one word at a time, but we are limited to:
1429 * - Architectures with fast unaligned word accesses. We could
1430 * do a "get_unaligned()" if this helps and is sufficiently
1431 * fast.
1433 * - Little-endian machines (so that we can generate the mask
1434 * of low bytes efficiently). Again, we *could* do a byte
1435 * swapping load on big-endian architectures if that is not
1436 * expensive enough to make the optimization worthless.
1438 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1439 * do not trap on the (extremely unlikely) case of a page
1440 * crossing operation.
1442 * - Furthermore, we need an efficient 64-bit compile for the
1443 * 64-bit case in order to generate the "number of bytes in
1444 * the final mask". Again, that could be replaced with a
1445 * efficient population count instruction or similar.
1447 #ifdef CONFIG_DCACHE_WORD_ACCESS
1449 #include <asm/word-at-a-time.h>
1451 #ifdef CONFIG_64BIT
1453 static inline unsigned int fold_hash(unsigned long hash)
1455 hash += hash >> (8*sizeof(int));
1456 return hash;
1459 #else /* 32-bit case */
1461 #define fold_hash(x) (x)
1463 #endif
1465 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1467 unsigned long a, mask;
1468 unsigned long hash = 0;
1470 for (;;) {
1471 a = load_unaligned_zeropad(name);
1472 if (len < sizeof(unsigned long))
1473 break;
1474 hash += a;
1475 hash *= 9;
1476 name += sizeof(unsigned long);
1477 len -= sizeof(unsigned long);
1478 if (!len)
1479 goto done;
1481 mask = ~(~0ul << len*8);
1482 hash += mask & a;
1483 done:
1484 return fold_hash(hash);
1486 EXPORT_SYMBOL(full_name_hash);
1489 * Calculate the length and hash of the path component, and
1490 * return the length of the component;
1492 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1494 unsigned long a, b, adata, bdata, mask, hash, len;
1495 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1497 hash = a = 0;
1498 len = -sizeof(unsigned long);
1499 do {
1500 hash = (hash + a) * 9;
1501 len += sizeof(unsigned long);
1502 a = load_unaligned_zeropad(name+len);
1503 b = a ^ REPEAT_BYTE('/');
1504 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1506 adata = prep_zero_mask(a, adata, &constants);
1507 bdata = prep_zero_mask(b, bdata, &constants);
1509 mask = create_zero_mask(adata | bdata);
1511 hash += a & zero_bytemask(mask);
1512 *hashp = fold_hash(hash);
1514 return len + find_zero(mask);
1517 #else
1519 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1521 unsigned long hash = init_name_hash();
1522 while (len--)
1523 hash = partial_name_hash(*name++, hash);
1524 return end_name_hash(hash);
1526 EXPORT_SYMBOL(full_name_hash);
1529 * We know there's a real path component here of at least
1530 * one character.
1532 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1534 unsigned long hash = init_name_hash();
1535 unsigned long len = 0, c;
1537 c = (unsigned char)*name;
1538 do {
1539 len++;
1540 hash = partial_name_hash(c, hash);
1541 c = (unsigned char)name[len];
1542 } while (c && c != '/');
1543 *hashp = end_name_hash(hash);
1544 return len;
1547 #endif
1550 * Name resolution.
1551 * This is the basic name resolution function, turning a pathname into
1552 * the final dentry. We expect 'base' to be positive and a directory.
1554 * Returns 0 and nd will have valid dentry and mnt on success.
1555 * Returns error and drops reference to input namei data on failure.
1557 static int link_path_walk(const char *name, struct nameidata *nd)
1559 struct path next;
1560 int err;
1562 while (*name=='/')
1563 name++;
1564 if (!*name)
1565 return 0;
1567 /* At this point we know we have a real path component. */
1568 for(;;) {
1569 struct qstr this;
1570 long len;
1571 int type;
1573 err = may_lookup(nd);
1574 if (err)
1575 break;
1577 len = hash_name(name, &this.hash);
1578 this.name = name;
1579 this.len = len;
1581 type = LAST_NORM;
1582 if (name[0] == '.') switch (len) {
1583 case 2:
1584 if (name[1] == '.') {
1585 type = LAST_DOTDOT;
1586 nd->flags |= LOOKUP_JUMPED;
1588 break;
1589 case 1:
1590 type = LAST_DOT;
1592 if (likely(type == LAST_NORM)) {
1593 struct dentry *parent = nd->path.dentry;
1594 nd->flags &= ~LOOKUP_JUMPED;
1595 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1596 err = parent->d_op->d_hash(parent, nd->inode,
1597 &this);
1598 if (err < 0)
1599 break;
1603 if (!name[len])
1604 goto last_component;
1606 * If it wasn't NUL, we know it was '/'. Skip that
1607 * slash, and continue until no more slashes.
1609 do {
1610 len++;
1611 } while (unlikely(name[len] == '/'));
1612 if (!name[len])
1613 goto last_component;
1614 name += len;
1616 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1617 if (err < 0)
1618 return err;
1620 if (err) {
1621 err = nested_symlink(&next, nd);
1622 if (err)
1623 return err;
1625 if (can_lookup(nd->inode))
1626 continue;
1627 err = -ENOTDIR;
1628 break;
1629 /* here ends the main loop */
1631 last_component:
1632 nd->last = this;
1633 nd->last_type = type;
1634 return 0;
1636 terminate_walk(nd);
1637 return err;
1640 static int path_init(int dfd, const char *name, unsigned int flags,
1641 struct nameidata *nd, struct file **fp)
1643 int retval = 0;
1644 int fput_needed;
1645 struct file *file;
1647 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1648 nd->flags = flags | LOOKUP_JUMPED;
1649 nd->depth = 0;
1650 if (flags & LOOKUP_ROOT) {
1651 struct inode *inode = nd->root.dentry->d_inode;
1652 if (*name) {
1653 if (!inode->i_op->lookup)
1654 return -ENOTDIR;
1655 retval = inode_permission(inode, MAY_EXEC);
1656 if (retval)
1657 return retval;
1659 nd->path = nd->root;
1660 nd->inode = inode;
1661 if (flags & LOOKUP_RCU) {
1662 br_read_lock(&vfsmount_lock);
1663 rcu_read_lock();
1664 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1665 } else {
1666 path_get(&nd->path);
1668 return 0;
1671 nd->root.mnt = NULL;
1673 if (*name=='/') {
1674 if (flags & LOOKUP_RCU) {
1675 br_read_lock(&vfsmount_lock);
1676 rcu_read_lock();
1677 set_root_rcu(nd);
1678 } else {
1679 set_root(nd);
1680 path_get(&nd->root);
1682 nd->path = nd->root;
1683 } else if (dfd == AT_FDCWD) {
1684 if (flags & LOOKUP_RCU) {
1685 struct fs_struct *fs = current->fs;
1686 unsigned seq;
1688 br_read_lock(&vfsmount_lock);
1689 rcu_read_lock();
1691 do {
1692 seq = read_seqcount_begin(&fs->seq);
1693 nd->path = fs->pwd;
1694 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1695 } while (read_seqcount_retry(&fs->seq, seq));
1696 } else {
1697 get_fs_pwd(current->fs, &nd->path);
1699 } else {
1700 struct dentry *dentry;
1702 file = fget_raw_light(dfd, &fput_needed);
1703 retval = -EBADF;
1704 if (!file)
1705 goto out_fail;
1707 dentry = file->f_path.dentry;
1709 if (*name) {
1710 retval = -ENOTDIR;
1711 if (!S_ISDIR(dentry->d_inode->i_mode))
1712 goto fput_fail;
1714 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1715 if (retval)
1716 goto fput_fail;
1719 nd->path = file->f_path;
1720 if (flags & LOOKUP_RCU) {
1721 if (fput_needed)
1722 *fp = file;
1723 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1724 br_read_lock(&vfsmount_lock);
1725 rcu_read_lock();
1726 } else {
1727 path_get(&file->f_path);
1728 fput_light(file, fput_needed);
1732 nd->inode = nd->path.dentry->d_inode;
1733 return 0;
1735 fput_fail:
1736 fput_light(file, fput_needed);
1737 out_fail:
1738 return retval;
1741 static inline int lookup_last(struct nameidata *nd, struct path *path)
1743 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1744 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1746 nd->flags &= ~LOOKUP_PARENT;
1747 return walk_component(nd, path, &nd->last, nd->last_type,
1748 nd->flags & LOOKUP_FOLLOW);
1751 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1752 static int path_lookupat(int dfd, const char *name,
1753 unsigned int flags, struct nameidata *nd)
1755 struct file *base = NULL;
1756 struct path path;
1757 int err;
1760 * Path walking is largely split up into 2 different synchronisation
1761 * schemes, rcu-walk and ref-walk (explained in
1762 * Documentation/filesystems/path-lookup.txt). These share much of the
1763 * path walk code, but some things particularly setup, cleanup, and
1764 * following mounts are sufficiently divergent that functions are
1765 * duplicated. Typically there is a function foo(), and its RCU
1766 * analogue, foo_rcu().
1768 * -ECHILD is the error number of choice (just to avoid clashes) that
1769 * is returned if some aspect of an rcu-walk fails. Such an error must
1770 * be handled by restarting a traditional ref-walk (which will always
1771 * be able to complete).
1773 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1775 if (unlikely(err))
1776 return err;
1778 current->total_link_count = 0;
1779 err = link_path_walk(name, nd);
1781 if (!err && !(flags & LOOKUP_PARENT)) {
1782 err = lookup_last(nd, &path);
1783 while (err > 0) {
1784 void *cookie;
1785 struct path link = path;
1786 nd->flags |= LOOKUP_PARENT;
1787 err = follow_link(&link, nd, &cookie);
1788 if (err)
1789 break;
1790 err = lookup_last(nd, &path);
1791 put_link(nd, &link, cookie);
1795 if (!err)
1796 err = complete_walk(nd);
1798 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1799 if (!nd->inode->i_op->lookup) {
1800 path_put(&nd->path);
1801 err = -ENOTDIR;
1805 if (base)
1806 fput(base);
1808 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1809 path_put(&nd->root);
1810 nd->root.mnt = NULL;
1812 return err;
1815 static int do_path_lookup(int dfd, const char *name,
1816 unsigned int flags, struct nameidata *nd)
1818 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1819 if (unlikely(retval == -ECHILD))
1820 retval = path_lookupat(dfd, name, flags, nd);
1821 if (unlikely(retval == -ESTALE))
1822 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1824 if (likely(!retval)) {
1825 if (unlikely(!audit_dummy_context())) {
1826 if (nd->path.dentry && nd->inode)
1827 audit_inode(name, nd->path.dentry);
1830 return retval;
1833 int kern_path_parent(const char *name, struct nameidata *nd)
1835 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1838 int kern_path(const char *name, unsigned int flags, struct path *path)
1840 struct nameidata nd;
1841 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1842 if (!res)
1843 *path = nd.path;
1844 return res;
1848 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1849 * @dentry: pointer to dentry of the base directory
1850 * @mnt: pointer to vfs mount of the base directory
1851 * @name: pointer to file name
1852 * @flags: lookup flags
1853 * @path: pointer to struct path to fill
1855 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1856 const char *name, unsigned int flags,
1857 struct path *path)
1859 struct nameidata nd;
1860 int err;
1861 nd.root.dentry = dentry;
1862 nd.root.mnt = mnt;
1863 BUG_ON(flags & LOOKUP_PARENT);
1864 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1865 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1866 if (!err)
1867 *path = nd.path;
1868 return err;
1872 * Restricted form of lookup. Doesn't follow links, single-component only,
1873 * needs parent already locked. Doesn't follow mounts.
1874 * SMP-safe.
1876 static struct dentry *lookup_hash(struct nameidata *nd)
1878 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1882 * lookup_one_len - filesystem helper to lookup single pathname component
1883 * @name: pathname component to lookup
1884 * @base: base directory to lookup from
1885 * @len: maximum length @len should be interpreted to
1887 * Note that this routine is purely a helper for filesystem usage and should
1888 * not be called by generic code. Also note that by using this function the
1889 * nameidata argument is passed to the filesystem methods and a filesystem
1890 * using this helper needs to be prepared for that.
1892 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1894 struct qstr this;
1895 unsigned int c;
1896 int err;
1898 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1900 this.name = name;
1901 this.len = len;
1902 this.hash = full_name_hash(name, len);
1903 if (!len)
1904 return ERR_PTR(-EACCES);
1906 while (len--) {
1907 c = *(const unsigned char *)name++;
1908 if (c == '/' || c == '\0')
1909 return ERR_PTR(-EACCES);
1912 * See if the low-level filesystem might want
1913 * to use its own hash..
1915 if (base->d_flags & DCACHE_OP_HASH) {
1916 int err = base->d_op->d_hash(base, base->d_inode, &this);
1917 if (err < 0)
1918 return ERR_PTR(err);
1921 err = inode_permission(base->d_inode, MAY_EXEC);
1922 if (err)
1923 return ERR_PTR(err);
1925 return __lookup_hash(&this, base, NULL);
1928 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1929 struct path *path, int *empty)
1931 struct nameidata nd;
1932 char *tmp = getname_flags(name, flags, empty);
1933 int err = PTR_ERR(tmp);
1934 if (!IS_ERR(tmp)) {
1936 BUG_ON(flags & LOOKUP_PARENT);
1938 err = do_path_lookup(dfd, tmp, flags, &nd);
1939 putname(tmp);
1940 if (!err)
1941 *path = nd.path;
1943 return err;
1946 int user_path_at(int dfd, const char __user *name, unsigned flags,
1947 struct path *path)
1949 return user_path_at_empty(dfd, name, flags, path, NULL);
1952 static int user_path_parent(int dfd, const char __user *path,
1953 struct nameidata *nd, char **name)
1955 char *s = getname(path);
1956 int error;
1958 if (IS_ERR(s))
1959 return PTR_ERR(s);
1961 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1962 if (error)
1963 putname(s);
1964 else
1965 *name = s;
1967 return error;
1971 * It's inline, so penalty for filesystems that don't use sticky bit is
1972 * minimal.
1974 static inline int check_sticky(struct inode *dir, struct inode *inode)
1976 kuid_t fsuid = current_fsuid();
1978 if (!(dir->i_mode & S_ISVTX))
1979 return 0;
1980 if (uid_eq(inode->i_uid, fsuid))
1981 return 0;
1982 if (uid_eq(dir->i_uid, fsuid))
1983 return 0;
1984 return !inode_capable(inode, CAP_FOWNER);
1988 * Check whether we can remove a link victim from directory dir, check
1989 * whether the type of victim is right.
1990 * 1. We can't do it if dir is read-only (done in permission())
1991 * 2. We should have write and exec permissions on dir
1992 * 3. We can't remove anything from append-only dir
1993 * 4. We can't do anything with immutable dir (done in permission())
1994 * 5. If the sticky bit on dir is set we should either
1995 * a. be owner of dir, or
1996 * b. be owner of victim, or
1997 * c. have CAP_FOWNER capability
1998 * 6. If the victim is append-only or immutable we can't do antyhing with
1999 * links pointing to it.
2000 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2001 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2002 * 9. We can't remove a root or mountpoint.
2003 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2004 * nfs_async_unlink().
2006 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2008 int error;
2010 if (!victim->d_inode)
2011 return -ENOENT;
2013 BUG_ON(victim->d_parent->d_inode != dir);
2014 audit_inode_child(victim, dir);
2016 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2017 if (error)
2018 return error;
2019 if (IS_APPEND(dir))
2020 return -EPERM;
2021 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2022 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2023 return -EPERM;
2024 if (isdir) {
2025 if (!S_ISDIR(victim->d_inode->i_mode))
2026 return -ENOTDIR;
2027 if (IS_ROOT(victim))
2028 return -EBUSY;
2029 } else if (S_ISDIR(victim->d_inode->i_mode))
2030 return -EISDIR;
2031 if (IS_DEADDIR(dir))
2032 return -ENOENT;
2033 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2034 return -EBUSY;
2035 return 0;
2038 /* Check whether we can create an object with dentry child in directory
2039 * dir.
2040 * 1. We can't do it if child already exists (open has special treatment for
2041 * this case, but since we are inlined it's OK)
2042 * 2. We can't do it if dir is read-only (done in permission())
2043 * 3. We should have write and exec permissions on dir
2044 * 4. We can't do it if dir is immutable (done in permission())
2046 static inline int may_create(struct inode *dir, struct dentry *child)
2048 if (child->d_inode)
2049 return -EEXIST;
2050 if (IS_DEADDIR(dir))
2051 return -ENOENT;
2052 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2056 * p1 and p2 should be directories on the same fs.
2058 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2060 struct dentry *p;
2062 if (p1 == p2) {
2063 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2064 return NULL;
2067 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2069 p = d_ancestor(p2, p1);
2070 if (p) {
2071 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2072 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2073 return p;
2076 p = d_ancestor(p1, p2);
2077 if (p) {
2078 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2079 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2080 return p;
2083 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2084 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2085 return NULL;
2088 void unlock_rename(struct dentry *p1, struct dentry *p2)
2090 mutex_unlock(&p1->d_inode->i_mutex);
2091 if (p1 != p2) {
2092 mutex_unlock(&p2->d_inode->i_mutex);
2093 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2097 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2098 struct nameidata *nd)
2100 int error = may_create(dir, dentry);
2102 if (error)
2103 return error;
2105 if (!dir->i_op->create)
2106 return -EACCES; /* shouldn't it be ENOSYS? */
2107 mode &= S_IALLUGO;
2108 mode |= S_IFREG;
2109 error = security_inode_create(dir, dentry, mode);
2110 if (error)
2111 return error;
2112 error = dir->i_op->create(dir, dentry, mode, nd);
2113 if (!error)
2114 fsnotify_create(dir, dentry);
2115 return error;
2118 static int may_open(struct path *path, int acc_mode, int flag)
2120 struct dentry *dentry = path->dentry;
2121 struct inode *inode = dentry->d_inode;
2122 int error;
2124 /* O_PATH? */
2125 if (!acc_mode)
2126 return 0;
2128 if (!inode)
2129 return -ENOENT;
2131 switch (inode->i_mode & S_IFMT) {
2132 case S_IFLNK:
2133 return -ELOOP;
2134 case S_IFDIR:
2135 if (acc_mode & MAY_WRITE)
2136 return -EISDIR;
2137 break;
2138 case S_IFBLK:
2139 case S_IFCHR:
2140 if (path->mnt->mnt_flags & MNT_NODEV)
2141 return -EACCES;
2142 /*FALLTHRU*/
2143 case S_IFIFO:
2144 case S_IFSOCK:
2145 flag &= ~O_TRUNC;
2146 break;
2149 error = inode_permission(inode, acc_mode);
2150 if (error)
2151 return error;
2154 * An append-only file must be opened in append mode for writing.
2156 if (IS_APPEND(inode)) {
2157 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2158 return -EPERM;
2159 if (flag & O_TRUNC)
2160 return -EPERM;
2163 /* O_NOATIME can only be set by the owner or superuser */
2164 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2165 return -EPERM;
2167 return 0;
2170 static int handle_truncate(struct file *filp)
2172 struct path *path = &filp->f_path;
2173 struct inode *inode = path->dentry->d_inode;
2174 int error = get_write_access(inode);
2175 if (error)
2176 return error;
2178 * Refuse to truncate files with mandatory locks held on them.
2180 error = locks_verify_locked(inode);
2181 if (!error)
2182 error = security_path_truncate(path);
2183 if (!error) {
2184 error = do_truncate(path->dentry, 0,
2185 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2186 filp);
2188 put_write_access(inode);
2189 return error;
2192 static inline int open_to_namei_flags(int flag)
2194 if ((flag & O_ACCMODE) == 3)
2195 flag--;
2196 return flag;
2200 * Handle the last step of open()
2202 static struct file *do_last(struct nameidata *nd, struct path *path,
2203 const struct open_flags *op, const char *pathname)
2205 struct dentry *dir = nd->path.dentry;
2206 struct dentry *dentry;
2207 int open_flag = op->open_flag;
2208 int will_truncate = open_flag & O_TRUNC;
2209 int want_write = 0;
2210 int acc_mode = op->acc_mode;
2211 struct file *filp;
2212 struct inode *inode;
2213 int symlink_ok = 0;
2214 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2215 bool retried = false;
2216 int error;
2218 nd->flags &= ~LOOKUP_PARENT;
2219 nd->flags |= op->intent;
2221 switch (nd->last_type) {
2222 case LAST_DOTDOT:
2223 case LAST_DOT:
2224 error = handle_dots(nd, nd->last_type);
2225 if (error)
2226 return ERR_PTR(error);
2227 /* fallthrough */
2228 case LAST_ROOT:
2229 error = complete_walk(nd);
2230 if (error)
2231 return ERR_PTR(error);
2232 audit_inode(pathname, nd->path.dentry);
2233 if (open_flag & O_CREAT) {
2234 error = -EISDIR;
2235 goto exit;
2237 goto ok;
2238 case LAST_BIND:
2239 error = complete_walk(nd);
2240 if (error)
2241 return ERR_PTR(error);
2242 audit_inode(pathname, dir);
2243 goto ok;
2246 if (!(open_flag & O_CREAT)) {
2247 if (nd->last.name[nd->last.len])
2248 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2249 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2250 symlink_ok = 1;
2251 /* we _can_ be in RCU mode here */
2252 error = lookup_fast(nd, &nd->last, path, &inode);
2253 if (unlikely(error)) {
2254 if (error < 0)
2255 goto exit;
2257 BUG_ON(nd->inode != dir->d_inode);
2259 mutex_lock(&dir->d_inode->i_mutex);
2260 dentry = __lookup_hash(&nd->last, dir, nd);
2261 mutex_unlock(&dir->d_inode->i_mutex);
2262 error = PTR_ERR(dentry);
2263 if (IS_ERR(dentry))
2264 goto exit;
2265 path->mnt = nd->path.mnt;
2266 path->dentry = dentry;
2267 error = follow_managed(path, nd->flags);
2268 if (unlikely(error < 0))
2269 goto exit_dput;
2271 if (error)
2272 nd->flags |= LOOKUP_JUMPED;
2274 inode = path->dentry->d_inode;
2276 goto finish_lookup;
2277 } else {
2278 /* create side of things */
2280 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2281 * has been cleared when we got to the last component we are
2282 * about to look up
2284 error = complete_walk(nd);
2285 if (error)
2286 return ERR_PTR(error);
2288 audit_inode(pathname, dir);
2289 error = -EISDIR;
2290 /* trailing slashes? */
2291 if (nd->last.name[nd->last.len])
2292 goto exit;
2295 retry_lookup:
2296 mutex_lock(&dir->d_inode->i_mutex);
2298 dentry = lookup_hash(nd);
2299 error = PTR_ERR(dentry);
2300 if (IS_ERR(dentry)) {
2301 mutex_unlock(&dir->d_inode->i_mutex);
2302 goto exit;
2305 path->dentry = dentry;
2306 path->mnt = nd->path.mnt;
2308 /* Negative dentry, just create the file */
2309 if (!dentry->d_inode && (open_flag & O_CREAT)) {
2310 umode_t mode = op->mode;
2311 if (!IS_POSIXACL(dir->d_inode))
2312 mode &= ~current_umask();
2314 * This write is needed to ensure that a
2315 * rw->ro transition does not occur between
2316 * the time when the file is created and when
2317 * a permanent write count is taken through
2318 * the 'struct file' in nameidata_to_filp().
2320 error = mnt_want_write(nd->path.mnt);
2321 if (error)
2322 goto exit_mutex_unlock;
2323 want_write = 1;
2324 /* Don't check for write permission, don't truncate */
2325 open_flag &= ~O_TRUNC;
2326 will_truncate = 0;
2327 acc_mode = MAY_OPEN;
2328 error = security_path_mknod(&nd->path, dentry, mode, 0);
2329 if (error)
2330 goto exit_mutex_unlock;
2331 error = vfs_create(dir->d_inode, dentry, mode, nd);
2332 if (error)
2333 goto exit_mutex_unlock;
2334 mutex_unlock(&dir->d_inode->i_mutex);
2335 dput(nd->path.dentry);
2336 nd->path.dentry = dentry;
2337 goto common;
2341 * It already exists.
2343 mutex_unlock(&dir->d_inode->i_mutex);
2344 audit_inode(pathname, path->dentry);
2346 error = -EEXIST;
2347 if (open_flag & O_EXCL)
2348 goto exit_dput;
2350 error = follow_managed(path, nd->flags);
2351 if (error < 0)
2352 goto exit_dput;
2354 if (error)
2355 nd->flags |= LOOKUP_JUMPED;
2357 BUG_ON(nd->flags & LOOKUP_RCU);
2358 inode = path->dentry->d_inode;
2359 finish_lookup:
2360 /* we _can_ be in RCU mode here */
2361 error = -ENOENT;
2362 if (!inode) {
2363 path_to_nameidata(path, nd);
2364 goto exit;
2367 if (should_follow_link(inode, !symlink_ok)) {
2368 if (nd->flags & LOOKUP_RCU) {
2369 if (unlikely(unlazy_walk(nd, path->dentry))) {
2370 error = -ECHILD;
2371 goto exit;
2374 BUG_ON(inode != path->dentry->d_inode);
2375 return NULL;
2378 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2379 path_to_nameidata(path, nd);
2380 } else {
2381 save_parent.dentry = nd->path.dentry;
2382 save_parent.mnt = mntget(path->mnt);
2383 nd->path.dentry = path->dentry;
2386 nd->inode = inode;
2387 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2388 error = complete_walk(nd);
2389 if (error) {
2390 path_put(&save_parent);
2391 return ERR_PTR(error);
2393 error = -EISDIR;
2394 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2395 goto exit;
2396 error = -ENOTDIR;
2397 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2398 goto exit;
2399 audit_inode(pathname, nd->path.dentry);
2401 if (!S_ISREG(nd->inode->i_mode))
2402 will_truncate = 0;
2404 if (will_truncate) {
2405 error = mnt_want_write(nd->path.mnt);
2406 if (error)
2407 goto exit;
2408 want_write = 1;
2410 common:
2411 error = may_open(&nd->path, acc_mode, open_flag);
2412 if (error)
2413 goto exit;
2414 filp = nameidata_to_filp(nd);
2415 if (filp == ERR_PTR(-EOPENSTALE) && save_parent.dentry && !retried) {
2416 BUG_ON(save_parent.dentry != dir);
2417 path_put(&nd->path);
2418 nd->path = save_parent;
2419 nd->inode = dir->d_inode;
2420 save_parent.mnt = NULL;
2421 save_parent.dentry = NULL;
2422 if (want_write) {
2423 mnt_drop_write(nd->path.mnt);
2424 want_write = 0;
2426 retried = true;
2427 goto retry_lookup;
2429 if (!IS_ERR(filp)) {
2430 error = ima_file_check(filp, op->acc_mode);
2431 if (error) {
2432 fput(filp);
2433 filp = ERR_PTR(error);
2436 if (!IS_ERR(filp)) {
2437 if (will_truncate) {
2438 error = handle_truncate(filp);
2439 if (error) {
2440 fput(filp);
2441 filp = ERR_PTR(error);
2445 out:
2446 if (want_write)
2447 mnt_drop_write(nd->path.mnt);
2448 path_put(&save_parent);
2449 terminate_walk(nd);
2450 return filp;
2452 exit_mutex_unlock:
2453 mutex_unlock(&dir->d_inode->i_mutex);
2454 exit_dput:
2455 path_put_conditional(path, nd);
2456 exit:
2457 filp = ERR_PTR(error);
2458 goto out;
2461 static struct file *path_openat(int dfd, const char *pathname,
2462 struct nameidata *nd, const struct open_flags *op, int flags)
2464 struct file *base = NULL;
2465 struct file *filp;
2466 struct path path;
2467 int error;
2469 filp = get_empty_filp();
2470 if (!filp)
2471 return ERR_PTR(-ENFILE);
2473 filp->f_flags = op->open_flag;
2474 nd->intent.open.file = filp;
2475 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2476 nd->intent.open.create_mode = op->mode;
2478 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2479 if (unlikely(error))
2480 goto out_filp;
2482 current->total_link_count = 0;
2483 error = link_path_walk(pathname, nd);
2484 if (unlikely(error))
2485 goto out_filp;
2487 filp = do_last(nd, &path, op, pathname);
2488 while (unlikely(!filp)) { /* trailing symlink */
2489 struct path link = path;
2490 void *cookie;
2491 if (!(nd->flags & LOOKUP_FOLLOW)) {
2492 path_put_conditional(&path, nd);
2493 path_put(&nd->path);
2494 filp = ERR_PTR(-ELOOP);
2495 break;
2497 nd->flags |= LOOKUP_PARENT;
2498 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2499 error = follow_link(&link, nd, &cookie);
2500 if (unlikely(error))
2501 goto out_filp;
2502 filp = do_last(nd, &path, op, pathname);
2503 put_link(nd, &link, cookie);
2505 out:
2506 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2507 path_put(&nd->root);
2508 if (base)
2509 fput(base);
2510 release_open_intent(nd);
2511 if (filp == ERR_PTR(-EOPENSTALE)) {
2512 if (flags & LOOKUP_RCU)
2513 filp = ERR_PTR(-ECHILD);
2514 else
2515 filp = ERR_PTR(-ESTALE);
2517 return filp;
2519 out_filp:
2520 filp = ERR_PTR(error);
2521 goto out;
2524 struct file *do_filp_open(int dfd, const char *pathname,
2525 const struct open_flags *op, int flags)
2527 struct nameidata nd;
2528 struct file *filp;
2530 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2531 if (unlikely(filp == ERR_PTR(-ECHILD)))
2532 filp = path_openat(dfd, pathname, &nd, op, flags);
2533 if (unlikely(filp == ERR_PTR(-ESTALE)))
2534 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2535 return filp;
2538 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2539 const char *name, const struct open_flags *op, int flags)
2541 struct nameidata nd;
2542 struct file *file;
2544 nd.root.mnt = mnt;
2545 nd.root.dentry = dentry;
2547 flags |= LOOKUP_ROOT;
2549 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2550 return ERR_PTR(-ELOOP);
2552 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2553 if (unlikely(file == ERR_PTR(-ECHILD)))
2554 file = path_openat(-1, name, &nd, op, flags);
2555 if (unlikely(file == ERR_PTR(-ESTALE)))
2556 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2557 return file;
2560 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2562 struct dentry *dentry = ERR_PTR(-EEXIST);
2563 struct nameidata nd;
2564 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2565 if (error)
2566 return ERR_PTR(error);
2569 * Yucky last component or no last component at all?
2570 * (foo/., foo/.., /////)
2572 if (nd.last_type != LAST_NORM)
2573 goto out;
2574 nd.flags &= ~LOOKUP_PARENT;
2575 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2576 nd.intent.open.flags = O_EXCL;
2579 * Do the final lookup.
2581 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2582 dentry = lookup_hash(&nd);
2583 if (IS_ERR(dentry))
2584 goto fail;
2586 if (dentry->d_inode)
2587 goto eexist;
2589 * Special case - lookup gave negative, but... we had foo/bar/
2590 * From the vfs_mknod() POV we just have a negative dentry -
2591 * all is fine. Let's be bastards - you had / on the end, you've
2592 * been asking for (non-existent) directory. -ENOENT for you.
2594 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2595 dput(dentry);
2596 dentry = ERR_PTR(-ENOENT);
2597 goto fail;
2599 *path = nd.path;
2600 return dentry;
2601 eexist:
2602 dput(dentry);
2603 dentry = ERR_PTR(-EEXIST);
2604 fail:
2605 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2606 out:
2607 path_put(&nd.path);
2608 return dentry;
2610 EXPORT_SYMBOL(kern_path_create);
2612 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2614 char *tmp = getname(pathname);
2615 struct dentry *res;
2616 if (IS_ERR(tmp))
2617 return ERR_CAST(tmp);
2618 res = kern_path_create(dfd, tmp, path, is_dir);
2619 putname(tmp);
2620 return res;
2622 EXPORT_SYMBOL(user_path_create);
2624 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2626 int error = may_create(dir, dentry);
2628 if (error)
2629 return error;
2631 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2632 return -EPERM;
2634 if (!dir->i_op->mknod)
2635 return -EPERM;
2637 error = devcgroup_inode_mknod(mode, dev);
2638 if (error)
2639 return error;
2641 error = security_inode_mknod(dir, dentry, mode, dev);
2642 if (error)
2643 return error;
2645 error = dir->i_op->mknod(dir, dentry, mode, dev);
2646 if (!error)
2647 fsnotify_create(dir, dentry);
2648 return error;
2651 static int may_mknod(umode_t mode)
2653 switch (mode & S_IFMT) {
2654 case S_IFREG:
2655 case S_IFCHR:
2656 case S_IFBLK:
2657 case S_IFIFO:
2658 case S_IFSOCK:
2659 case 0: /* zero mode translates to S_IFREG */
2660 return 0;
2661 case S_IFDIR:
2662 return -EPERM;
2663 default:
2664 return -EINVAL;
2668 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2669 unsigned, dev)
2671 struct dentry *dentry;
2672 struct path path;
2673 int error;
2675 if (S_ISDIR(mode))
2676 return -EPERM;
2678 dentry = user_path_create(dfd, filename, &path, 0);
2679 if (IS_ERR(dentry))
2680 return PTR_ERR(dentry);
2682 if (!IS_POSIXACL(path.dentry->d_inode))
2683 mode &= ~current_umask();
2684 error = may_mknod(mode);
2685 if (error)
2686 goto out_dput;
2687 error = mnt_want_write(path.mnt);
2688 if (error)
2689 goto out_dput;
2690 error = security_path_mknod(&path, dentry, mode, dev);
2691 if (error)
2692 goto out_drop_write;
2693 switch (mode & S_IFMT) {
2694 case 0: case S_IFREG:
2695 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2696 break;
2697 case S_IFCHR: case S_IFBLK:
2698 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2699 new_decode_dev(dev));
2700 break;
2701 case S_IFIFO: case S_IFSOCK:
2702 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2703 break;
2705 out_drop_write:
2706 mnt_drop_write(path.mnt);
2707 out_dput:
2708 dput(dentry);
2709 mutex_unlock(&path.dentry->d_inode->i_mutex);
2710 path_put(&path);
2712 return error;
2715 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2717 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2720 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2722 int error = may_create(dir, dentry);
2723 unsigned max_links = dir->i_sb->s_max_links;
2725 if (error)
2726 return error;
2728 if (!dir->i_op->mkdir)
2729 return -EPERM;
2731 mode &= (S_IRWXUGO|S_ISVTX);
2732 error = security_inode_mkdir(dir, dentry, mode);
2733 if (error)
2734 return error;
2736 if (max_links && dir->i_nlink >= max_links)
2737 return -EMLINK;
2739 error = dir->i_op->mkdir(dir, dentry, mode);
2740 if (!error)
2741 fsnotify_mkdir(dir, dentry);
2742 return error;
2745 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2747 struct dentry *dentry;
2748 struct path path;
2749 int error;
2751 dentry = user_path_create(dfd, pathname, &path, 1);
2752 if (IS_ERR(dentry))
2753 return PTR_ERR(dentry);
2755 if (!IS_POSIXACL(path.dentry->d_inode))
2756 mode &= ~current_umask();
2757 error = mnt_want_write(path.mnt);
2758 if (error)
2759 goto out_dput;
2760 error = security_path_mkdir(&path, dentry, mode);
2761 if (error)
2762 goto out_drop_write;
2763 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2764 out_drop_write:
2765 mnt_drop_write(path.mnt);
2766 out_dput:
2767 dput(dentry);
2768 mutex_unlock(&path.dentry->d_inode->i_mutex);
2769 path_put(&path);
2770 return error;
2773 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2775 return sys_mkdirat(AT_FDCWD, pathname, mode);
2779 * The dentry_unhash() helper will try to drop the dentry early: we
2780 * should have a usage count of 1 if we're the only user of this
2781 * dentry, and if that is true (possibly after pruning the dcache),
2782 * then we drop the dentry now.
2784 * A low-level filesystem can, if it choses, legally
2785 * do a
2787 * if (!d_unhashed(dentry))
2788 * return -EBUSY;
2790 * if it cannot handle the case of removing a directory
2791 * that is still in use by something else..
2793 void dentry_unhash(struct dentry *dentry)
2795 shrink_dcache_parent(dentry);
2796 spin_lock(&dentry->d_lock);
2797 if (dentry->d_count == 1)
2798 __d_drop(dentry);
2799 spin_unlock(&dentry->d_lock);
2802 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2804 int error = may_delete(dir, dentry, 1);
2806 if (error)
2807 return error;
2809 if (!dir->i_op->rmdir)
2810 return -EPERM;
2812 dget(dentry);
2813 mutex_lock(&dentry->d_inode->i_mutex);
2815 error = -EBUSY;
2816 if (d_mountpoint(dentry))
2817 goto out;
2819 error = security_inode_rmdir(dir, dentry);
2820 if (error)
2821 goto out;
2823 shrink_dcache_parent(dentry);
2824 error = dir->i_op->rmdir(dir, dentry);
2825 if (error)
2826 goto out;
2828 dentry->d_inode->i_flags |= S_DEAD;
2829 dont_mount(dentry);
2831 out:
2832 mutex_unlock(&dentry->d_inode->i_mutex);
2833 dput(dentry);
2834 if (!error)
2835 d_delete(dentry);
2836 return error;
2839 static long do_rmdir(int dfd, const char __user *pathname)
2841 int error = 0;
2842 char * name;
2843 struct dentry *dentry;
2844 struct nameidata nd;
2846 error = user_path_parent(dfd, pathname, &nd, &name);
2847 if (error)
2848 return error;
2850 switch(nd.last_type) {
2851 case LAST_DOTDOT:
2852 error = -ENOTEMPTY;
2853 goto exit1;
2854 case LAST_DOT:
2855 error = -EINVAL;
2856 goto exit1;
2857 case LAST_ROOT:
2858 error = -EBUSY;
2859 goto exit1;
2862 nd.flags &= ~LOOKUP_PARENT;
2864 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2865 dentry = lookup_hash(&nd);
2866 error = PTR_ERR(dentry);
2867 if (IS_ERR(dentry))
2868 goto exit2;
2869 if (!dentry->d_inode) {
2870 error = -ENOENT;
2871 goto exit3;
2873 error = mnt_want_write(nd.path.mnt);
2874 if (error)
2875 goto exit3;
2876 error = security_path_rmdir(&nd.path, dentry);
2877 if (error)
2878 goto exit4;
2879 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2880 exit4:
2881 mnt_drop_write(nd.path.mnt);
2882 exit3:
2883 dput(dentry);
2884 exit2:
2885 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2886 exit1:
2887 path_put(&nd.path);
2888 putname(name);
2889 return error;
2892 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2894 return do_rmdir(AT_FDCWD, pathname);
2897 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2899 int error = may_delete(dir, dentry, 0);
2901 if (error)
2902 return error;
2904 if (!dir->i_op->unlink)
2905 return -EPERM;
2907 mutex_lock(&dentry->d_inode->i_mutex);
2908 if (d_mountpoint(dentry))
2909 error = -EBUSY;
2910 else {
2911 error = security_inode_unlink(dir, dentry);
2912 if (!error) {
2913 error = dir->i_op->unlink(dir, dentry);
2914 if (!error)
2915 dont_mount(dentry);
2918 mutex_unlock(&dentry->d_inode->i_mutex);
2920 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2921 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2922 fsnotify_link_count(dentry->d_inode);
2923 d_delete(dentry);
2926 return error;
2930 * Make sure that the actual truncation of the file will occur outside its
2931 * directory's i_mutex. Truncate can take a long time if there is a lot of
2932 * writeout happening, and we don't want to prevent access to the directory
2933 * while waiting on the I/O.
2935 static long do_unlinkat(int dfd, const char __user *pathname)
2937 int error;
2938 char *name;
2939 struct dentry *dentry;
2940 struct nameidata nd;
2941 struct inode *inode = NULL;
2943 error = user_path_parent(dfd, pathname, &nd, &name);
2944 if (error)
2945 return error;
2947 error = -EISDIR;
2948 if (nd.last_type != LAST_NORM)
2949 goto exit1;
2951 nd.flags &= ~LOOKUP_PARENT;
2953 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2954 dentry = lookup_hash(&nd);
2955 error = PTR_ERR(dentry);
2956 if (!IS_ERR(dentry)) {
2957 /* Why not before? Because we want correct error value */
2958 if (nd.last.name[nd.last.len])
2959 goto slashes;
2960 inode = dentry->d_inode;
2961 if (!inode)
2962 goto slashes;
2963 ihold(inode);
2964 error = mnt_want_write(nd.path.mnt);
2965 if (error)
2966 goto exit2;
2967 error = security_path_unlink(&nd.path, dentry);
2968 if (error)
2969 goto exit3;
2970 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2971 exit3:
2972 mnt_drop_write(nd.path.mnt);
2973 exit2:
2974 dput(dentry);
2976 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2977 if (inode)
2978 iput(inode); /* truncate the inode here */
2979 exit1:
2980 path_put(&nd.path);
2981 putname(name);
2982 return error;
2984 slashes:
2985 error = !dentry->d_inode ? -ENOENT :
2986 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2987 goto exit2;
2990 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2992 if ((flag & ~AT_REMOVEDIR) != 0)
2993 return -EINVAL;
2995 if (flag & AT_REMOVEDIR)
2996 return do_rmdir(dfd, pathname);
2998 return do_unlinkat(dfd, pathname);
3001 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3003 return do_unlinkat(AT_FDCWD, pathname);
3006 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3008 int error = may_create(dir, dentry);
3010 if (error)
3011 return error;
3013 if (!dir->i_op->symlink)
3014 return -EPERM;
3016 error = security_inode_symlink(dir, dentry, oldname);
3017 if (error)
3018 return error;
3020 error = dir->i_op->symlink(dir, dentry, oldname);
3021 if (!error)
3022 fsnotify_create(dir, dentry);
3023 return error;
3026 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3027 int, newdfd, const char __user *, newname)
3029 int error;
3030 char *from;
3031 struct dentry *dentry;
3032 struct path path;
3034 from = getname(oldname);
3035 if (IS_ERR(from))
3036 return PTR_ERR(from);
3038 dentry = user_path_create(newdfd, newname, &path, 0);
3039 error = PTR_ERR(dentry);
3040 if (IS_ERR(dentry))
3041 goto out_putname;
3043 error = mnt_want_write(path.mnt);
3044 if (error)
3045 goto out_dput;
3046 error = security_path_symlink(&path, dentry, from);
3047 if (error)
3048 goto out_drop_write;
3049 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3050 out_drop_write:
3051 mnt_drop_write(path.mnt);
3052 out_dput:
3053 dput(dentry);
3054 mutex_unlock(&path.dentry->d_inode->i_mutex);
3055 path_put(&path);
3056 out_putname:
3057 putname(from);
3058 return error;
3061 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3063 return sys_symlinkat(oldname, AT_FDCWD, newname);
3066 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3068 struct inode *inode = old_dentry->d_inode;
3069 unsigned max_links = dir->i_sb->s_max_links;
3070 int error;
3072 if (!inode)
3073 return -ENOENT;
3075 error = may_create(dir, new_dentry);
3076 if (error)
3077 return error;
3079 if (dir->i_sb != inode->i_sb)
3080 return -EXDEV;
3083 * A link to an append-only or immutable file cannot be created.
3085 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3086 return -EPERM;
3087 if (!dir->i_op->link)
3088 return -EPERM;
3089 if (S_ISDIR(inode->i_mode))
3090 return -EPERM;
3092 error = security_inode_link(old_dentry, dir, new_dentry);
3093 if (error)
3094 return error;
3096 mutex_lock(&inode->i_mutex);
3097 /* Make sure we don't allow creating hardlink to an unlinked file */
3098 if (inode->i_nlink == 0)
3099 error = -ENOENT;
3100 else if (max_links && inode->i_nlink >= max_links)
3101 error = -EMLINK;
3102 else
3103 error = dir->i_op->link(old_dentry, dir, new_dentry);
3104 mutex_unlock(&inode->i_mutex);
3105 if (!error)
3106 fsnotify_link(dir, inode, new_dentry);
3107 return error;
3111 * Hardlinks are often used in delicate situations. We avoid
3112 * security-related surprises by not following symlinks on the
3113 * newname. --KAB
3115 * We don't follow them on the oldname either to be compatible
3116 * with linux 2.0, and to avoid hard-linking to directories
3117 * and other special files. --ADM
3119 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3120 int, newdfd, const char __user *, newname, int, flags)
3122 struct dentry *new_dentry;
3123 struct path old_path, new_path;
3124 int how = 0;
3125 int error;
3127 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3128 return -EINVAL;
3130 * To use null names we require CAP_DAC_READ_SEARCH
3131 * This ensures that not everyone will be able to create
3132 * handlink using the passed filedescriptor.
3134 if (flags & AT_EMPTY_PATH) {
3135 if (!capable(CAP_DAC_READ_SEARCH))
3136 return -ENOENT;
3137 how = LOOKUP_EMPTY;
3140 if (flags & AT_SYMLINK_FOLLOW)
3141 how |= LOOKUP_FOLLOW;
3143 error = user_path_at(olddfd, oldname, how, &old_path);
3144 if (error)
3145 return error;
3147 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3148 error = PTR_ERR(new_dentry);
3149 if (IS_ERR(new_dentry))
3150 goto out;
3152 error = -EXDEV;
3153 if (old_path.mnt != new_path.mnt)
3154 goto out_dput;
3155 error = mnt_want_write(new_path.mnt);
3156 if (error)
3157 goto out_dput;
3158 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3159 if (error)
3160 goto out_drop_write;
3161 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3162 out_drop_write:
3163 mnt_drop_write(new_path.mnt);
3164 out_dput:
3165 dput(new_dentry);
3166 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3167 path_put(&new_path);
3168 out:
3169 path_put(&old_path);
3171 return error;
3174 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3176 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3180 * The worst of all namespace operations - renaming directory. "Perverted"
3181 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3182 * Problems:
3183 * a) we can get into loop creation. Check is done in is_subdir().
3184 * b) race potential - two innocent renames can create a loop together.
3185 * That's where 4.4 screws up. Current fix: serialization on
3186 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3187 * story.
3188 * c) we have to lock _three_ objects - parents and victim (if it exists).
3189 * And that - after we got ->i_mutex on parents (until then we don't know
3190 * whether the target exists). Solution: try to be smart with locking
3191 * order for inodes. We rely on the fact that tree topology may change
3192 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3193 * move will be locked. Thus we can rank directories by the tree
3194 * (ancestors first) and rank all non-directories after them.
3195 * That works since everybody except rename does "lock parent, lookup,
3196 * lock child" and rename is under ->s_vfs_rename_mutex.
3197 * HOWEVER, it relies on the assumption that any object with ->lookup()
3198 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3199 * we'd better make sure that there's no link(2) for them.
3200 * d) conversion from fhandle to dentry may come in the wrong moment - when
3201 * we are removing the target. Solution: we will have to grab ->i_mutex
3202 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3203 * ->i_mutex on parents, which works but leads to some truly excessive
3204 * locking].
3206 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3207 struct inode *new_dir, struct dentry *new_dentry)
3209 int error = 0;
3210 struct inode *target = new_dentry->d_inode;
3211 unsigned max_links = new_dir->i_sb->s_max_links;
3214 * If we are going to change the parent - check write permissions,
3215 * we'll need to flip '..'.
3217 if (new_dir != old_dir) {
3218 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3219 if (error)
3220 return error;
3223 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3224 if (error)
3225 return error;
3227 dget(new_dentry);
3228 if (target)
3229 mutex_lock(&target->i_mutex);
3231 error = -EBUSY;
3232 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3233 goto out;
3235 error = -EMLINK;
3236 if (max_links && !target && new_dir != old_dir &&
3237 new_dir->i_nlink >= max_links)
3238 goto out;
3240 if (target)
3241 shrink_dcache_parent(new_dentry);
3242 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3243 if (error)
3244 goto out;
3246 if (target) {
3247 target->i_flags |= S_DEAD;
3248 dont_mount(new_dentry);
3250 out:
3251 if (target)
3252 mutex_unlock(&target->i_mutex);
3253 dput(new_dentry);
3254 if (!error)
3255 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3256 d_move(old_dentry,new_dentry);
3257 return error;
3260 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3261 struct inode *new_dir, struct dentry *new_dentry)
3263 struct inode *target = new_dentry->d_inode;
3264 int error;
3266 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3267 if (error)
3268 return error;
3270 dget(new_dentry);
3271 if (target)
3272 mutex_lock(&target->i_mutex);
3274 error = -EBUSY;
3275 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3276 goto out;
3278 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3279 if (error)
3280 goto out;
3282 if (target)
3283 dont_mount(new_dentry);
3284 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3285 d_move(old_dentry, new_dentry);
3286 out:
3287 if (target)
3288 mutex_unlock(&target->i_mutex);
3289 dput(new_dentry);
3290 return error;
3293 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3294 struct inode *new_dir, struct dentry *new_dentry)
3296 int error;
3297 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3298 const unsigned char *old_name;
3300 if (old_dentry->d_inode == new_dentry->d_inode)
3301 return 0;
3303 error = may_delete(old_dir, old_dentry, is_dir);
3304 if (error)
3305 return error;
3307 if (!new_dentry->d_inode)
3308 error = may_create(new_dir, new_dentry);
3309 else
3310 error = may_delete(new_dir, new_dentry, is_dir);
3311 if (error)
3312 return error;
3314 if (!old_dir->i_op->rename)
3315 return -EPERM;
3317 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3319 if (is_dir)
3320 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3321 else
3322 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3323 if (!error)
3324 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3325 new_dentry->d_inode, old_dentry);
3326 fsnotify_oldname_free(old_name);
3328 return error;
3331 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3332 int, newdfd, const char __user *, newname)
3334 struct dentry *old_dir, *new_dir;
3335 struct dentry *old_dentry, *new_dentry;
3336 struct dentry *trap;
3337 struct nameidata oldnd, newnd;
3338 char *from;
3339 char *to;
3340 int error;
3342 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3343 if (error)
3344 goto exit;
3346 error = user_path_parent(newdfd, newname, &newnd, &to);
3347 if (error)
3348 goto exit1;
3350 error = -EXDEV;
3351 if (oldnd.path.mnt != newnd.path.mnt)
3352 goto exit2;
3354 old_dir = oldnd.path.dentry;
3355 error = -EBUSY;
3356 if (oldnd.last_type != LAST_NORM)
3357 goto exit2;
3359 new_dir = newnd.path.dentry;
3360 if (newnd.last_type != LAST_NORM)
3361 goto exit2;
3363 oldnd.flags &= ~LOOKUP_PARENT;
3364 newnd.flags &= ~LOOKUP_PARENT;
3365 newnd.flags |= LOOKUP_RENAME_TARGET;
3367 trap = lock_rename(new_dir, old_dir);
3369 old_dentry = lookup_hash(&oldnd);
3370 error = PTR_ERR(old_dentry);
3371 if (IS_ERR(old_dentry))
3372 goto exit3;
3373 /* source must exist */
3374 error = -ENOENT;
3375 if (!old_dentry->d_inode)
3376 goto exit4;
3377 /* unless the source is a directory trailing slashes give -ENOTDIR */
3378 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3379 error = -ENOTDIR;
3380 if (oldnd.last.name[oldnd.last.len])
3381 goto exit4;
3382 if (newnd.last.name[newnd.last.len])
3383 goto exit4;
3385 /* source should not be ancestor of target */
3386 error = -EINVAL;
3387 if (old_dentry == trap)
3388 goto exit4;
3389 new_dentry = lookup_hash(&newnd);
3390 error = PTR_ERR(new_dentry);
3391 if (IS_ERR(new_dentry))
3392 goto exit4;
3393 /* target should not be an ancestor of source */
3394 error = -ENOTEMPTY;
3395 if (new_dentry == trap)
3396 goto exit5;
3398 error = mnt_want_write(oldnd.path.mnt);
3399 if (error)
3400 goto exit5;
3401 error = security_path_rename(&oldnd.path, old_dentry,
3402 &newnd.path, new_dentry);
3403 if (error)
3404 goto exit6;
3405 error = vfs_rename(old_dir->d_inode, old_dentry,
3406 new_dir->d_inode, new_dentry);
3407 exit6:
3408 mnt_drop_write(oldnd.path.mnt);
3409 exit5:
3410 dput(new_dentry);
3411 exit4:
3412 dput(old_dentry);
3413 exit3:
3414 unlock_rename(new_dir, old_dir);
3415 exit2:
3416 path_put(&newnd.path);
3417 putname(to);
3418 exit1:
3419 path_put(&oldnd.path);
3420 putname(from);
3421 exit:
3422 return error;
3425 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3427 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3430 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3432 int len;
3434 len = PTR_ERR(link);
3435 if (IS_ERR(link))
3436 goto out;
3438 len = strlen(link);
3439 if (len > (unsigned) buflen)
3440 len = buflen;
3441 if (copy_to_user(buffer, link, len))
3442 len = -EFAULT;
3443 out:
3444 return len;
3448 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3449 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3450 * using) it for any given inode is up to filesystem.
3452 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3454 struct nameidata nd;
3455 void *cookie;
3456 int res;
3458 nd.depth = 0;
3459 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3460 if (IS_ERR(cookie))
3461 return PTR_ERR(cookie);
3463 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3464 if (dentry->d_inode->i_op->put_link)
3465 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3466 return res;
3469 int vfs_follow_link(struct nameidata *nd, const char *link)
3471 return __vfs_follow_link(nd, link);
3474 /* get the link contents into pagecache */
3475 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3477 char *kaddr;
3478 struct page *page;
3479 struct address_space *mapping = dentry->d_inode->i_mapping;
3480 page = read_mapping_page(mapping, 0, NULL);
3481 if (IS_ERR(page))
3482 return (char*)page;
3483 *ppage = page;
3484 kaddr = kmap(page);
3485 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3486 return kaddr;
3489 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3491 struct page *page = NULL;
3492 char *s = page_getlink(dentry, &page);
3493 int res = vfs_readlink(dentry,buffer,buflen,s);
3494 if (page) {
3495 kunmap(page);
3496 page_cache_release(page);
3498 return res;
3501 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3503 struct page *page = NULL;
3504 nd_set_link(nd, page_getlink(dentry, &page));
3505 return page;
3508 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3510 struct page *page = cookie;
3512 if (page) {
3513 kunmap(page);
3514 page_cache_release(page);
3519 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3521 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3523 struct address_space *mapping = inode->i_mapping;
3524 struct page *page;
3525 void *fsdata;
3526 int err;
3527 char *kaddr;
3528 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3529 if (nofs)
3530 flags |= AOP_FLAG_NOFS;
3532 retry:
3533 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3534 flags, &page, &fsdata);
3535 if (err)
3536 goto fail;
3538 kaddr = kmap_atomic(page);
3539 memcpy(kaddr, symname, len-1);
3540 kunmap_atomic(kaddr);
3542 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3543 page, fsdata);
3544 if (err < 0)
3545 goto fail;
3546 if (err < len-1)
3547 goto retry;
3549 mark_inode_dirty(inode);
3550 return 0;
3551 fail:
3552 return err;
3555 int page_symlink(struct inode *inode, const char *symname, int len)
3557 return __page_symlink(inode, symname, len,
3558 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3561 const struct inode_operations page_symlink_inode_operations = {
3562 .readlink = generic_readlink,
3563 .follow_link = page_follow_link_light,
3564 .put_link = page_put_link,
3567 EXPORT_SYMBOL(user_path_at);
3568 EXPORT_SYMBOL(follow_down_one);
3569 EXPORT_SYMBOL(follow_down);
3570 EXPORT_SYMBOL(follow_up);
3571 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3572 EXPORT_SYMBOL(getname);
3573 EXPORT_SYMBOL(lock_rename);
3574 EXPORT_SYMBOL(lookup_one_len);
3575 EXPORT_SYMBOL(page_follow_link_light);
3576 EXPORT_SYMBOL(page_put_link);
3577 EXPORT_SYMBOL(page_readlink);
3578 EXPORT_SYMBOL(__page_symlink);
3579 EXPORT_SYMBOL(page_symlink);
3580 EXPORT_SYMBOL(page_symlink_inode_operations);
3581 EXPORT_SYMBOL(kern_path);
3582 EXPORT_SYMBOL(vfs_path_lookup);
3583 EXPORT_SYMBOL(inode_permission);
3584 EXPORT_SYMBOL(unlock_rename);
3585 EXPORT_SYMBOL(vfs_create);
3586 EXPORT_SYMBOL(vfs_follow_link);
3587 EXPORT_SYMBOL(vfs_link);
3588 EXPORT_SYMBOL(vfs_mkdir);
3589 EXPORT_SYMBOL(vfs_mknod);
3590 EXPORT_SYMBOL(generic_permission);
3591 EXPORT_SYMBOL(vfs_readlink);
3592 EXPORT_SYMBOL(vfs_rename);
3593 EXPORT_SYMBOL(vfs_rmdir);
3594 EXPORT_SYMBOL(vfs_symlink);
3595 EXPORT_SYMBOL(vfs_unlink);
3596 EXPORT_SYMBOL(dentry_unhash);
3597 EXPORT_SYMBOL(generic_readlink);