block, cfq: kill ioc_gone
[linux-2.6.git] / block / cfq-iosched.c
blobae7791a8ded90af4a63c0ee259300e3060ed4c20
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
21 * tunables
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) \
58 ((struct cfq_io_context *) (rq)->elevator_private[0])
59 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
60 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
62 static struct kmem_cache *cfq_pool;
63 static struct kmem_cache *cfq_ioc_pool;
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
81 unsigned count;
82 unsigned total_weight;
83 u64 min_vdisktime;
84 struct cfq_ttime ttime;
86 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
87 .ttime = {.last_end_request = jiffies,},}
90 * Per process-grouping structure
92 struct cfq_queue {
93 /* reference count */
94 int ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 unsigned int slice_dispatch;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
127 /* pending priority requests */
128 int prio_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class;
136 pid_t pid;
138 u32 seek_history;
139 sector_t last_request_pos;
141 struct cfq_rb_root *service_tree;
142 struct cfq_queue *new_cfqq;
143 struct cfq_group *cfqg;
144 /* Number of sectors dispatched from queue in single dispatch round */
145 unsigned long nr_sectors;
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
152 enum wl_prio_t {
153 BE_WORKLOAD = 0,
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
156 CFQ_PRIO_NR,
160 * Second index in the service_trees.
162 enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170 /* group service_tree member */
171 struct rb_node rb_node;
173 /* group service_tree key */
174 u64 vdisktime;
175 unsigned int weight;
176 unsigned int new_weight;
177 bool needs_update;
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
183 * Per group busy queues average. Useful for workload slice calc. We
184 * create the array for each prio class but at run time it is used
185 * only for RT and BE class and slot for IDLE class remains unused.
186 * This is primarily done to avoid confusion and a gcc warning.
188 unsigned int busy_queues_avg[CFQ_PRIO_NR];
190 * rr lists of queues with requests. We maintain service trees for
191 * RT and BE classes. These trees are subdivided in subclasses
192 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
193 * class there is no subclassification and all the cfq queues go on
194 * a single tree service_tree_idle.
195 * Counts are embedded in the cfq_rb_root
197 struct cfq_rb_root service_trees[2][3];
198 struct cfq_rb_root service_tree_idle;
200 unsigned long saved_workload_slice;
201 enum wl_type_t saved_workload;
202 enum wl_prio_t saved_serving_prio;
203 struct blkio_group blkg;
204 #ifdef CONFIG_CFQ_GROUP_IOSCHED
205 struct hlist_node cfqd_node;
206 int ref;
207 #endif
208 /* number of requests that are on the dispatch list or inside driver */
209 int dispatched;
210 struct cfq_ttime ttime;
214 * Per block device queue structure
216 struct cfq_data {
217 struct request_queue *queue;
218 /* Root service tree for cfq_groups */
219 struct cfq_rb_root grp_service_tree;
220 struct cfq_group root_group;
223 * The priority currently being served
225 enum wl_prio_t serving_prio;
226 enum wl_type_t serving_type;
227 unsigned long workload_expires;
228 struct cfq_group *serving_group;
231 * Each priority tree is sorted by next_request position. These
232 * trees are used when determining if two or more queues are
233 * interleaving requests (see cfq_close_cooperator).
235 struct rb_root prio_trees[CFQ_PRIO_LISTS];
237 unsigned int busy_queues;
238 unsigned int busy_sync_queues;
240 int rq_in_driver;
241 int rq_in_flight[2];
244 * queue-depth detection
246 int rq_queued;
247 int hw_tag;
249 * hw_tag can be
250 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
251 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
252 * 0 => no NCQ
254 int hw_tag_est_depth;
255 unsigned int hw_tag_samples;
258 * idle window management
260 struct timer_list idle_slice_timer;
261 struct work_struct unplug_work;
263 struct cfq_queue *active_queue;
264 struct cfq_io_context *active_cic;
267 * async queue for each priority case
269 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
270 struct cfq_queue *async_idle_cfqq;
272 sector_t last_position;
275 * tunables, see top of file
277 unsigned int cfq_quantum;
278 unsigned int cfq_fifo_expire[2];
279 unsigned int cfq_back_penalty;
280 unsigned int cfq_back_max;
281 unsigned int cfq_slice[2];
282 unsigned int cfq_slice_async_rq;
283 unsigned int cfq_slice_idle;
284 unsigned int cfq_group_idle;
285 unsigned int cfq_latency;
287 struct list_head cic_list;
290 * Fallback dummy cfqq for extreme OOM conditions
292 struct cfq_queue oom_cfqq;
294 unsigned long last_delayed_sync;
296 /* List of cfq groups being managed on this device*/
297 struct hlist_head cfqg_list;
299 /* Number of groups which are on blkcg->blkg_list */
300 unsigned int nr_blkcg_linked_grps;
303 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
305 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
306 enum wl_prio_t prio,
307 enum wl_type_t type)
309 if (!cfqg)
310 return NULL;
312 if (prio == IDLE_WORKLOAD)
313 return &cfqg->service_tree_idle;
315 return &cfqg->service_trees[prio][type];
318 enum cfqq_state_flags {
319 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
320 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
321 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
322 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
323 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
324 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
325 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
326 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
327 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
328 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
329 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
330 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
331 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
334 #define CFQ_CFQQ_FNS(name) \
335 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
337 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
339 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
341 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
343 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
345 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
348 CFQ_CFQQ_FNS(on_rr);
349 CFQ_CFQQ_FNS(wait_request);
350 CFQ_CFQQ_FNS(must_dispatch);
351 CFQ_CFQQ_FNS(must_alloc_slice);
352 CFQ_CFQQ_FNS(fifo_expire);
353 CFQ_CFQQ_FNS(idle_window);
354 CFQ_CFQQ_FNS(prio_changed);
355 CFQ_CFQQ_FNS(slice_new);
356 CFQ_CFQQ_FNS(sync);
357 CFQ_CFQQ_FNS(coop);
358 CFQ_CFQQ_FNS(split_coop);
359 CFQ_CFQQ_FNS(deep);
360 CFQ_CFQQ_FNS(wait_busy);
361 #undef CFQ_CFQQ_FNS
363 #ifdef CONFIG_CFQ_GROUP_IOSCHED
364 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
366 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
367 blkg_path(&(cfqq)->cfqg->blkg), ##args)
369 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
371 blkg_path(&(cfqg)->blkg), ##args) \
373 #else
374 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
376 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
377 #endif
378 #define cfq_log(cfqd, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
381 /* Traverses through cfq group service trees */
382 #define for_each_cfqg_st(cfqg, i, j, st) \
383 for (i = 0; i <= IDLE_WORKLOAD; i++) \
384 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
385 : &cfqg->service_tree_idle; \
386 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
387 (i == IDLE_WORKLOAD && j == 0); \
388 j++, st = i < IDLE_WORKLOAD ? \
389 &cfqg->service_trees[i][j]: NULL) \
391 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
392 struct cfq_ttime *ttime, bool group_idle)
394 unsigned long slice;
395 if (!sample_valid(ttime->ttime_samples))
396 return false;
397 if (group_idle)
398 slice = cfqd->cfq_group_idle;
399 else
400 slice = cfqd->cfq_slice_idle;
401 return ttime->ttime_mean > slice;
404 static inline bool iops_mode(struct cfq_data *cfqd)
407 * If we are not idling on queues and it is a NCQ drive, parallel
408 * execution of requests is on and measuring time is not possible
409 * in most of the cases until and unless we drive shallower queue
410 * depths and that becomes a performance bottleneck. In such cases
411 * switch to start providing fairness in terms of number of IOs.
413 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
414 return true;
415 else
416 return false;
419 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
421 if (cfq_class_idle(cfqq))
422 return IDLE_WORKLOAD;
423 if (cfq_class_rt(cfqq))
424 return RT_WORKLOAD;
425 return BE_WORKLOAD;
429 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
431 if (!cfq_cfqq_sync(cfqq))
432 return ASYNC_WORKLOAD;
433 if (!cfq_cfqq_idle_window(cfqq))
434 return SYNC_NOIDLE_WORKLOAD;
435 return SYNC_WORKLOAD;
438 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
439 struct cfq_data *cfqd,
440 struct cfq_group *cfqg)
442 if (wl == IDLE_WORKLOAD)
443 return cfqg->service_tree_idle.count;
445 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
446 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
447 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
450 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
451 struct cfq_group *cfqg)
453 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
454 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
457 static void cfq_dispatch_insert(struct request_queue *, struct request *);
458 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
459 struct io_context *, gfp_t);
460 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
461 struct io_context *);
463 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
464 bool is_sync)
466 return cic->cfqq[is_sync];
469 static inline void cic_set_cfqq(struct cfq_io_context *cic,
470 struct cfq_queue *cfqq, bool is_sync)
472 cic->cfqq[is_sync] = cfqq;
475 #define CIC_DEAD_KEY 1ul
476 #define CIC_DEAD_INDEX_SHIFT 1
478 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
480 return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
483 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
485 struct cfq_data *cfqd = cic->key;
487 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
488 return NULL;
490 return cfqd;
494 * We regard a request as SYNC, if it's either a read or has the SYNC bit
495 * set (in which case it could also be direct WRITE).
497 static inline bool cfq_bio_sync(struct bio *bio)
499 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
503 * scheduler run of queue, if there are requests pending and no one in the
504 * driver that will restart queueing
506 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
508 if (cfqd->busy_queues) {
509 cfq_log(cfqd, "schedule dispatch");
510 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
515 * Scale schedule slice based on io priority. Use the sync time slice only
516 * if a queue is marked sync and has sync io queued. A sync queue with async
517 * io only, should not get full sync slice length.
519 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
520 unsigned short prio)
522 const int base_slice = cfqd->cfq_slice[sync];
524 WARN_ON(prio >= IOPRIO_BE_NR);
526 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
529 static inline int
530 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
532 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
535 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
537 u64 d = delta << CFQ_SERVICE_SHIFT;
539 d = d * BLKIO_WEIGHT_DEFAULT;
540 do_div(d, cfqg->weight);
541 return d;
544 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
546 s64 delta = (s64)(vdisktime - min_vdisktime);
547 if (delta > 0)
548 min_vdisktime = vdisktime;
550 return min_vdisktime;
553 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
555 s64 delta = (s64)(vdisktime - min_vdisktime);
556 if (delta < 0)
557 min_vdisktime = vdisktime;
559 return min_vdisktime;
562 static void update_min_vdisktime(struct cfq_rb_root *st)
564 struct cfq_group *cfqg;
566 if (st->left) {
567 cfqg = rb_entry_cfqg(st->left);
568 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
569 cfqg->vdisktime);
574 * get averaged number of queues of RT/BE priority.
575 * average is updated, with a formula that gives more weight to higher numbers,
576 * to quickly follows sudden increases and decrease slowly
579 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
580 struct cfq_group *cfqg, bool rt)
582 unsigned min_q, max_q;
583 unsigned mult = cfq_hist_divisor - 1;
584 unsigned round = cfq_hist_divisor / 2;
585 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
587 min_q = min(cfqg->busy_queues_avg[rt], busy);
588 max_q = max(cfqg->busy_queues_avg[rt], busy);
589 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
590 cfq_hist_divisor;
591 return cfqg->busy_queues_avg[rt];
594 static inline unsigned
595 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
597 struct cfq_rb_root *st = &cfqd->grp_service_tree;
599 return cfq_target_latency * cfqg->weight / st->total_weight;
602 static inline unsigned
603 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
605 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
606 if (cfqd->cfq_latency) {
608 * interested queues (we consider only the ones with the same
609 * priority class in the cfq group)
611 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
612 cfq_class_rt(cfqq));
613 unsigned sync_slice = cfqd->cfq_slice[1];
614 unsigned expect_latency = sync_slice * iq;
615 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
617 if (expect_latency > group_slice) {
618 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
619 /* scale low_slice according to IO priority
620 * and sync vs async */
621 unsigned low_slice =
622 min(slice, base_low_slice * slice / sync_slice);
623 /* the adapted slice value is scaled to fit all iqs
624 * into the target latency */
625 slice = max(slice * group_slice / expect_latency,
626 low_slice);
629 return slice;
632 static inline void
633 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
635 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
637 cfqq->slice_start = jiffies;
638 cfqq->slice_end = jiffies + slice;
639 cfqq->allocated_slice = slice;
640 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
644 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
645 * isn't valid until the first request from the dispatch is activated
646 * and the slice time set.
648 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
650 if (cfq_cfqq_slice_new(cfqq))
651 return false;
652 if (time_before(jiffies, cfqq->slice_end))
653 return false;
655 return true;
659 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
660 * We choose the request that is closest to the head right now. Distance
661 * behind the head is penalized and only allowed to a certain extent.
663 static struct request *
664 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
666 sector_t s1, s2, d1 = 0, d2 = 0;
667 unsigned long back_max;
668 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
669 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
670 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
672 if (rq1 == NULL || rq1 == rq2)
673 return rq2;
674 if (rq2 == NULL)
675 return rq1;
677 if (rq_is_sync(rq1) != rq_is_sync(rq2))
678 return rq_is_sync(rq1) ? rq1 : rq2;
680 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
681 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
683 s1 = blk_rq_pos(rq1);
684 s2 = blk_rq_pos(rq2);
687 * by definition, 1KiB is 2 sectors
689 back_max = cfqd->cfq_back_max * 2;
692 * Strict one way elevator _except_ in the case where we allow
693 * short backward seeks which are biased as twice the cost of a
694 * similar forward seek.
696 if (s1 >= last)
697 d1 = s1 - last;
698 else if (s1 + back_max >= last)
699 d1 = (last - s1) * cfqd->cfq_back_penalty;
700 else
701 wrap |= CFQ_RQ1_WRAP;
703 if (s2 >= last)
704 d2 = s2 - last;
705 else if (s2 + back_max >= last)
706 d2 = (last - s2) * cfqd->cfq_back_penalty;
707 else
708 wrap |= CFQ_RQ2_WRAP;
710 /* Found required data */
713 * By doing switch() on the bit mask "wrap" we avoid having to
714 * check two variables for all permutations: --> faster!
716 switch (wrap) {
717 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
718 if (d1 < d2)
719 return rq1;
720 else if (d2 < d1)
721 return rq2;
722 else {
723 if (s1 >= s2)
724 return rq1;
725 else
726 return rq2;
729 case CFQ_RQ2_WRAP:
730 return rq1;
731 case CFQ_RQ1_WRAP:
732 return rq2;
733 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
734 default:
736 * Since both rqs are wrapped,
737 * start with the one that's further behind head
738 * (--> only *one* back seek required),
739 * since back seek takes more time than forward.
741 if (s1 <= s2)
742 return rq1;
743 else
744 return rq2;
749 * The below is leftmost cache rbtree addon
751 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
753 /* Service tree is empty */
754 if (!root->count)
755 return NULL;
757 if (!root->left)
758 root->left = rb_first(&root->rb);
760 if (root->left)
761 return rb_entry(root->left, struct cfq_queue, rb_node);
763 return NULL;
766 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
768 if (!root->left)
769 root->left = rb_first(&root->rb);
771 if (root->left)
772 return rb_entry_cfqg(root->left);
774 return NULL;
777 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
779 rb_erase(n, root);
780 RB_CLEAR_NODE(n);
783 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
785 if (root->left == n)
786 root->left = NULL;
787 rb_erase_init(n, &root->rb);
788 --root->count;
792 * would be nice to take fifo expire time into account as well
794 static struct request *
795 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
796 struct request *last)
798 struct rb_node *rbnext = rb_next(&last->rb_node);
799 struct rb_node *rbprev = rb_prev(&last->rb_node);
800 struct request *next = NULL, *prev = NULL;
802 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
804 if (rbprev)
805 prev = rb_entry_rq(rbprev);
807 if (rbnext)
808 next = rb_entry_rq(rbnext);
809 else {
810 rbnext = rb_first(&cfqq->sort_list);
811 if (rbnext && rbnext != &last->rb_node)
812 next = rb_entry_rq(rbnext);
815 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
818 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
819 struct cfq_queue *cfqq)
822 * just an approximation, should be ok.
824 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
825 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
828 static inline s64
829 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
831 return cfqg->vdisktime - st->min_vdisktime;
834 static void
835 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
837 struct rb_node **node = &st->rb.rb_node;
838 struct rb_node *parent = NULL;
839 struct cfq_group *__cfqg;
840 s64 key = cfqg_key(st, cfqg);
841 int left = 1;
843 while (*node != NULL) {
844 parent = *node;
845 __cfqg = rb_entry_cfqg(parent);
847 if (key < cfqg_key(st, __cfqg))
848 node = &parent->rb_left;
849 else {
850 node = &parent->rb_right;
851 left = 0;
855 if (left)
856 st->left = &cfqg->rb_node;
858 rb_link_node(&cfqg->rb_node, parent, node);
859 rb_insert_color(&cfqg->rb_node, &st->rb);
862 static void
863 cfq_update_group_weight(struct cfq_group *cfqg)
865 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
866 if (cfqg->needs_update) {
867 cfqg->weight = cfqg->new_weight;
868 cfqg->needs_update = false;
872 static void
873 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
875 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
877 cfq_update_group_weight(cfqg);
878 __cfq_group_service_tree_add(st, cfqg);
879 st->total_weight += cfqg->weight;
882 static void
883 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
885 struct cfq_rb_root *st = &cfqd->grp_service_tree;
886 struct cfq_group *__cfqg;
887 struct rb_node *n;
889 cfqg->nr_cfqq++;
890 if (!RB_EMPTY_NODE(&cfqg->rb_node))
891 return;
894 * Currently put the group at the end. Later implement something
895 * so that groups get lesser vtime based on their weights, so that
896 * if group does not loose all if it was not continuously backlogged.
898 n = rb_last(&st->rb);
899 if (n) {
900 __cfqg = rb_entry_cfqg(n);
901 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
902 } else
903 cfqg->vdisktime = st->min_vdisktime;
904 cfq_group_service_tree_add(st, cfqg);
907 static void
908 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
910 st->total_weight -= cfqg->weight;
911 if (!RB_EMPTY_NODE(&cfqg->rb_node))
912 cfq_rb_erase(&cfqg->rb_node, st);
915 static void
916 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
918 struct cfq_rb_root *st = &cfqd->grp_service_tree;
920 BUG_ON(cfqg->nr_cfqq < 1);
921 cfqg->nr_cfqq--;
923 /* If there are other cfq queues under this group, don't delete it */
924 if (cfqg->nr_cfqq)
925 return;
927 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
928 cfq_group_service_tree_del(st, cfqg);
929 cfqg->saved_workload_slice = 0;
930 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
933 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
934 unsigned int *unaccounted_time)
936 unsigned int slice_used;
939 * Queue got expired before even a single request completed or
940 * got expired immediately after first request completion.
942 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
944 * Also charge the seek time incurred to the group, otherwise
945 * if there are mutiple queues in the group, each can dispatch
946 * a single request on seeky media and cause lots of seek time
947 * and group will never know it.
949 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
951 } else {
952 slice_used = jiffies - cfqq->slice_start;
953 if (slice_used > cfqq->allocated_slice) {
954 *unaccounted_time = slice_used - cfqq->allocated_slice;
955 slice_used = cfqq->allocated_slice;
957 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
958 *unaccounted_time += cfqq->slice_start -
959 cfqq->dispatch_start;
962 return slice_used;
965 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
966 struct cfq_queue *cfqq)
968 struct cfq_rb_root *st = &cfqd->grp_service_tree;
969 unsigned int used_sl, charge, unaccounted_sl = 0;
970 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
971 - cfqg->service_tree_idle.count;
973 BUG_ON(nr_sync < 0);
974 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
976 if (iops_mode(cfqd))
977 charge = cfqq->slice_dispatch;
978 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
979 charge = cfqq->allocated_slice;
981 /* Can't update vdisktime while group is on service tree */
982 cfq_group_service_tree_del(st, cfqg);
983 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
984 /* If a new weight was requested, update now, off tree */
985 cfq_group_service_tree_add(st, cfqg);
987 /* This group is being expired. Save the context */
988 if (time_after(cfqd->workload_expires, jiffies)) {
989 cfqg->saved_workload_slice = cfqd->workload_expires
990 - jiffies;
991 cfqg->saved_workload = cfqd->serving_type;
992 cfqg->saved_serving_prio = cfqd->serving_prio;
993 } else
994 cfqg->saved_workload_slice = 0;
996 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
997 st->min_vdisktime);
998 cfq_log_cfqq(cfqq->cfqd, cfqq,
999 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1000 used_sl, cfqq->slice_dispatch, charge,
1001 iops_mode(cfqd), cfqq->nr_sectors);
1002 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1003 unaccounted_sl);
1004 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1007 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1008 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1010 if (blkg)
1011 return container_of(blkg, struct cfq_group, blkg);
1012 return NULL;
1015 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1016 unsigned int weight)
1018 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1019 cfqg->new_weight = weight;
1020 cfqg->needs_update = true;
1023 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1024 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1026 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1027 unsigned int major, minor;
1030 * Add group onto cgroup list. It might happen that bdi->dev is
1031 * not initialized yet. Initialize this new group without major
1032 * and minor info and this info will be filled in once a new thread
1033 * comes for IO.
1035 if (bdi->dev) {
1036 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1037 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1038 (void *)cfqd, MKDEV(major, minor));
1039 } else
1040 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1041 (void *)cfqd, 0);
1043 cfqd->nr_blkcg_linked_grps++;
1044 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1046 /* Add group on cfqd list */
1047 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1051 * Should be called from sleepable context. No request queue lock as per
1052 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1053 * from sleepable context.
1055 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1057 struct cfq_group *cfqg = NULL;
1058 int i, j, ret;
1059 struct cfq_rb_root *st;
1061 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1062 if (!cfqg)
1063 return NULL;
1065 for_each_cfqg_st(cfqg, i, j, st)
1066 *st = CFQ_RB_ROOT;
1067 RB_CLEAR_NODE(&cfqg->rb_node);
1069 cfqg->ttime.last_end_request = jiffies;
1072 * Take the initial reference that will be released on destroy
1073 * This can be thought of a joint reference by cgroup and
1074 * elevator which will be dropped by either elevator exit
1075 * or cgroup deletion path depending on who is exiting first.
1077 cfqg->ref = 1;
1079 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1080 if (ret) {
1081 kfree(cfqg);
1082 return NULL;
1085 return cfqg;
1088 static struct cfq_group *
1089 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1091 struct cfq_group *cfqg = NULL;
1092 void *key = cfqd;
1093 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1094 unsigned int major, minor;
1097 * This is the common case when there are no blkio cgroups.
1098 * Avoid lookup in this case
1100 if (blkcg == &blkio_root_cgroup)
1101 cfqg = &cfqd->root_group;
1102 else
1103 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1105 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1106 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1107 cfqg->blkg.dev = MKDEV(major, minor);
1110 return cfqg;
1114 * Search for the cfq group current task belongs to. request_queue lock must
1115 * be held.
1117 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1119 struct blkio_cgroup *blkcg;
1120 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1121 struct request_queue *q = cfqd->queue;
1123 rcu_read_lock();
1124 blkcg = task_blkio_cgroup(current);
1125 cfqg = cfq_find_cfqg(cfqd, blkcg);
1126 if (cfqg) {
1127 rcu_read_unlock();
1128 return cfqg;
1132 * Need to allocate a group. Allocation of group also needs allocation
1133 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1134 * we need to drop rcu lock and queue_lock before we call alloc.
1136 * Not taking any queue reference here and assuming that queue is
1137 * around by the time we return. CFQ queue allocation code does
1138 * the same. It might be racy though.
1141 rcu_read_unlock();
1142 spin_unlock_irq(q->queue_lock);
1144 cfqg = cfq_alloc_cfqg(cfqd);
1146 spin_lock_irq(q->queue_lock);
1148 rcu_read_lock();
1149 blkcg = task_blkio_cgroup(current);
1152 * If some other thread already allocated the group while we were
1153 * not holding queue lock, free up the group
1155 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1157 if (__cfqg) {
1158 kfree(cfqg);
1159 rcu_read_unlock();
1160 return __cfqg;
1163 if (!cfqg)
1164 cfqg = &cfqd->root_group;
1166 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1167 rcu_read_unlock();
1168 return cfqg;
1171 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1173 cfqg->ref++;
1174 return cfqg;
1177 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1179 /* Currently, all async queues are mapped to root group */
1180 if (!cfq_cfqq_sync(cfqq))
1181 cfqg = &cfqq->cfqd->root_group;
1183 cfqq->cfqg = cfqg;
1184 /* cfqq reference on cfqg */
1185 cfqq->cfqg->ref++;
1188 static void cfq_put_cfqg(struct cfq_group *cfqg)
1190 struct cfq_rb_root *st;
1191 int i, j;
1193 BUG_ON(cfqg->ref <= 0);
1194 cfqg->ref--;
1195 if (cfqg->ref)
1196 return;
1197 for_each_cfqg_st(cfqg, i, j, st)
1198 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1199 free_percpu(cfqg->blkg.stats_cpu);
1200 kfree(cfqg);
1203 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1205 /* Something wrong if we are trying to remove same group twice */
1206 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1208 hlist_del_init(&cfqg->cfqd_node);
1210 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1211 cfqd->nr_blkcg_linked_grps--;
1214 * Put the reference taken at the time of creation so that when all
1215 * queues are gone, group can be destroyed.
1217 cfq_put_cfqg(cfqg);
1220 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1222 struct hlist_node *pos, *n;
1223 struct cfq_group *cfqg;
1225 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1227 * If cgroup removal path got to blk_group first and removed
1228 * it from cgroup list, then it will take care of destroying
1229 * cfqg also.
1231 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1232 cfq_destroy_cfqg(cfqd, cfqg);
1237 * Blk cgroup controller notification saying that blkio_group object is being
1238 * delinked as associated cgroup object is going away. That also means that
1239 * no new IO will come in this group. So get rid of this group as soon as
1240 * any pending IO in the group is finished.
1242 * This function is called under rcu_read_lock(). key is the rcu protected
1243 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1244 * read lock.
1246 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1247 * it should not be NULL as even if elevator was exiting, cgroup deltion
1248 * path got to it first.
1250 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1252 unsigned long flags;
1253 struct cfq_data *cfqd = key;
1255 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1256 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1257 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1260 #else /* GROUP_IOSCHED */
1261 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1263 return &cfqd->root_group;
1266 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1268 return cfqg;
1271 static inline void
1272 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1273 cfqq->cfqg = cfqg;
1276 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1277 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1279 #endif /* GROUP_IOSCHED */
1282 * The cfqd->service_trees holds all pending cfq_queue's that have
1283 * requests waiting to be processed. It is sorted in the order that
1284 * we will service the queues.
1286 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1287 bool add_front)
1289 struct rb_node **p, *parent;
1290 struct cfq_queue *__cfqq;
1291 unsigned long rb_key;
1292 struct cfq_rb_root *service_tree;
1293 int left;
1294 int new_cfqq = 1;
1296 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1297 cfqq_type(cfqq));
1298 if (cfq_class_idle(cfqq)) {
1299 rb_key = CFQ_IDLE_DELAY;
1300 parent = rb_last(&service_tree->rb);
1301 if (parent && parent != &cfqq->rb_node) {
1302 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1303 rb_key += __cfqq->rb_key;
1304 } else
1305 rb_key += jiffies;
1306 } else if (!add_front) {
1308 * Get our rb key offset. Subtract any residual slice
1309 * value carried from last service. A negative resid
1310 * count indicates slice overrun, and this should position
1311 * the next service time further away in the tree.
1313 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1314 rb_key -= cfqq->slice_resid;
1315 cfqq->slice_resid = 0;
1316 } else {
1317 rb_key = -HZ;
1318 __cfqq = cfq_rb_first(service_tree);
1319 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1322 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1323 new_cfqq = 0;
1325 * same position, nothing more to do
1327 if (rb_key == cfqq->rb_key &&
1328 cfqq->service_tree == service_tree)
1329 return;
1331 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1332 cfqq->service_tree = NULL;
1335 left = 1;
1336 parent = NULL;
1337 cfqq->service_tree = service_tree;
1338 p = &service_tree->rb.rb_node;
1339 while (*p) {
1340 struct rb_node **n;
1342 parent = *p;
1343 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1346 * sort by key, that represents service time.
1348 if (time_before(rb_key, __cfqq->rb_key))
1349 n = &(*p)->rb_left;
1350 else {
1351 n = &(*p)->rb_right;
1352 left = 0;
1355 p = n;
1358 if (left)
1359 service_tree->left = &cfqq->rb_node;
1361 cfqq->rb_key = rb_key;
1362 rb_link_node(&cfqq->rb_node, parent, p);
1363 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1364 service_tree->count++;
1365 if (add_front || !new_cfqq)
1366 return;
1367 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1370 static struct cfq_queue *
1371 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1372 sector_t sector, struct rb_node **ret_parent,
1373 struct rb_node ***rb_link)
1375 struct rb_node **p, *parent;
1376 struct cfq_queue *cfqq = NULL;
1378 parent = NULL;
1379 p = &root->rb_node;
1380 while (*p) {
1381 struct rb_node **n;
1383 parent = *p;
1384 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1387 * Sort strictly based on sector. Smallest to the left,
1388 * largest to the right.
1390 if (sector > blk_rq_pos(cfqq->next_rq))
1391 n = &(*p)->rb_right;
1392 else if (sector < blk_rq_pos(cfqq->next_rq))
1393 n = &(*p)->rb_left;
1394 else
1395 break;
1396 p = n;
1397 cfqq = NULL;
1400 *ret_parent = parent;
1401 if (rb_link)
1402 *rb_link = p;
1403 return cfqq;
1406 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1408 struct rb_node **p, *parent;
1409 struct cfq_queue *__cfqq;
1411 if (cfqq->p_root) {
1412 rb_erase(&cfqq->p_node, cfqq->p_root);
1413 cfqq->p_root = NULL;
1416 if (cfq_class_idle(cfqq))
1417 return;
1418 if (!cfqq->next_rq)
1419 return;
1421 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1422 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1423 blk_rq_pos(cfqq->next_rq), &parent, &p);
1424 if (!__cfqq) {
1425 rb_link_node(&cfqq->p_node, parent, p);
1426 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1427 } else
1428 cfqq->p_root = NULL;
1432 * Update cfqq's position in the service tree.
1434 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1437 * Resorting requires the cfqq to be on the RR list already.
1439 if (cfq_cfqq_on_rr(cfqq)) {
1440 cfq_service_tree_add(cfqd, cfqq, 0);
1441 cfq_prio_tree_add(cfqd, cfqq);
1446 * add to busy list of queues for service, trying to be fair in ordering
1447 * the pending list according to last request service
1449 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1451 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1452 BUG_ON(cfq_cfqq_on_rr(cfqq));
1453 cfq_mark_cfqq_on_rr(cfqq);
1454 cfqd->busy_queues++;
1455 if (cfq_cfqq_sync(cfqq))
1456 cfqd->busy_sync_queues++;
1458 cfq_resort_rr_list(cfqd, cfqq);
1462 * Called when the cfqq no longer has requests pending, remove it from
1463 * the service tree.
1465 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1467 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1468 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1469 cfq_clear_cfqq_on_rr(cfqq);
1471 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1472 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1473 cfqq->service_tree = NULL;
1475 if (cfqq->p_root) {
1476 rb_erase(&cfqq->p_node, cfqq->p_root);
1477 cfqq->p_root = NULL;
1480 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1481 BUG_ON(!cfqd->busy_queues);
1482 cfqd->busy_queues--;
1483 if (cfq_cfqq_sync(cfqq))
1484 cfqd->busy_sync_queues--;
1488 * rb tree support functions
1490 static void cfq_del_rq_rb(struct request *rq)
1492 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1493 const int sync = rq_is_sync(rq);
1495 BUG_ON(!cfqq->queued[sync]);
1496 cfqq->queued[sync]--;
1498 elv_rb_del(&cfqq->sort_list, rq);
1500 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1502 * Queue will be deleted from service tree when we actually
1503 * expire it later. Right now just remove it from prio tree
1504 * as it is empty.
1506 if (cfqq->p_root) {
1507 rb_erase(&cfqq->p_node, cfqq->p_root);
1508 cfqq->p_root = NULL;
1513 static void cfq_add_rq_rb(struct request *rq)
1515 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1516 struct cfq_data *cfqd = cfqq->cfqd;
1517 struct request *prev;
1519 cfqq->queued[rq_is_sync(rq)]++;
1521 elv_rb_add(&cfqq->sort_list, rq);
1523 if (!cfq_cfqq_on_rr(cfqq))
1524 cfq_add_cfqq_rr(cfqd, cfqq);
1527 * check if this request is a better next-serve candidate
1529 prev = cfqq->next_rq;
1530 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1533 * adjust priority tree position, if ->next_rq changes
1535 if (prev != cfqq->next_rq)
1536 cfq_prio_tree_add(cfqd, cfqq);
1538 BUG_ON(!cfqq->next_rq);
1541 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1543 elv_rb_del(&cfqq->sort_list, rq);
1544 cfqq->queued[rq_is_sync(rq)]--;
1545 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1546 rq_data_dir(rq), rq_is_sync(rq));
1547 cfq_add_rq_rb(rq);
1548 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1549 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1550 rq_is_sync(rq));
1553 static struct request *
1554 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1556 struct task_struct *tsk = current;
1557 struct cfq_io_context *cic;
1558 struct cfq_queue *cfqq;
1560 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1561 if (!cic)
1562 return NULL;
1564 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1565 if (cfqq) {
1566 sector_t sector = bio->bi_sector + bio_sectors(bio);
1568 return elv_rb_find(&cfqq->sort_list, sector);
1571 return NULL;
1574 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1576 struct cfq_data *cfqd = q->elevator->elevator_data;
1578 cfqd->rq_in_driver++;
1579 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1580 cfqd->rq_in_driver);
1582 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1585 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1587 struct cfq_data *cfqd = q->elevator->elevator_data;
1589 WARN_ON(!cfqd->rq_in_driver);
1590 cfqd->rq_in_driver--;
1591 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1592 cfqd->rq_in_driver);
1595 static void cfq_remove_request(struct request *rq)
1597 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1599 if (cfqq->next_rq == rq)
1600 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1602 list_del_init(&rq->queuelist);
1603 cfq_del_rq_rb(rq);
1605 cfqq->cfqd->rq_queued--;
1606 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1607 rq_data_dir(rq), rq_is_sync(rq));
1608 if (rq->cmd_flags & REQ_PRIO) {
1609 WARN_ON(!cfqq->prio_pending);
1610 cfqq->prio_pending--;
1614 static int cfq_merge(struct request_queue *q, struct request **req,
1615 struct bio *bio)
1617 struct cfq_data *cfqd = q->elevator->elevator_data;
1618 struct request *__rq;
1620 __rq = cfq_find_rq_fmerge(cfqd, bio);
1621 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1622 *req = __rq;
1623 return ELEVATOR_FRONT_MERGE;
1626 return ELEVATOR_NO_MERGE;
1629 static void cfq_merged_request(struct request_queue *q, struct request *req,
1630 int type)
1632 if (type == ELEVATOR_FRONT_MERGE) {
1633 struct cfq_queue *cfqq = RQ_CFQQ(req);
1635 cfq_reposition_rq_rb(cfqq, req);
1639 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1640 struct bio *bio)
1642 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1643 bio_data_dir(bio), cfq_bio_sync(bio));
1646 static void
1647 cfq_merged_requests(struct request_queue *q, struct request *rq,
1648 struct request *next)
1650 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1652 * reposition in fifo if next is older than rq
1654 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1655 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1656 list_move(&rq->queuelist, &next->queuelist);
1657 rq_set_fifo_time(rq, rq_fifo_time(next));
1660 if (cfqq->next_rq == next)
1661 cfqq->next_rq = rq;
1662 cfq_remove_request(next);
1663 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1664 rq_data_dir(next), rq_is_sync(next));
1667 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1668 struct bio *bio)
1670 struct cfq_data *cfqd = q->elevator->elevator_data;
1671 struct cfq_io_context *cic;
1672 struct cfq_queue *cfqq;
1675 * Disallow merge of a sync bio into an async request.
1677 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1678 return false;
1681 * Lookup the cfqq that this bio will be queued with and allow
1682 * merge only if rq is queued there. This function can be called
1683 * from plug merge without queue_lock. In such cases, ioc of @rq
1684 * and %current are guaranteed to be equal. Avoid lookup which
1685 * requires queue_lock by using @rq's cic.
1687 if (current->io_context == RQ_CIC(rq)->ioc) {
1688 cic = RQ_CIC(rq);
1689 } else {
1690 cic = cfq_cic_lookup(cfqd, current->io_context);
1691 if (!cic)
1692 return false;
1695 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1696 return cfqq == RQ_CFQQ(rq);
1699 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1701 del_timer(&cfqd->idle_slice_timer);
1702 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1705 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1706 struct cfq_queue *cfqq)
1708 if (cfqq) {
1709 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1710 cfqd->serving_prio, cfqd->serving_type);
1711 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1712 cfqq->slice_start = 0;
1713 cfqq->dispatch_start = jiffies;
1714 cfqq->allocated_slice = 0;
1715 cfqq->slice_end = 0;
1716 cfqq->slice_dispatch = 0;
1717 cfqq->nr_sectors = 0;
1719 cfq_clear_cfqq_wait_request(cfqq);
1720 cfq_clear_cfqq_must_dispatch(cfqq);
1721 cfq_clear_cfqq_must_alloc_slice(cfqq);
1722 cfq_clear_cfqq_fifo_expire(cfqq);
1723 cfq_mark_cfqq_slice_new(cfqq);
1725 cfq_del_timer(cfqd, cfqq);
1728 cfqd->active_queue = cfqq;
1732 * current cfqq expired its slice (or was too idle), select new one
1734 static void
1735 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1736 bool timed_out)
1738 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1740 if (cfq_cfqq_wait_request(cfqq))
1741 cfq_del_timer(cfqd, cfqq);
1743 cfq_clear_cfqq_wait_request(cfqq);
1744 cfq_clear_cfqq_wait_busy(cfqq);
1747 * If this cfqq is shared between multiple processes, check to
1748 * make sure that those processes are still issuing I/Os within
1749 * the mean seek distance. If not, it may be time to break the
1750 * queues apart again.
1752 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1753 cfq_mark_cfqq_split_coop(cfqq);
1756 * store what was left of this slice, if the queue idled/timed out
1758 if (timed_out) {
1759 if (cfq_cfqq_slice_new(cfqq))
1760 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1761 else
1762 cfqq->slice_resid = cfqq->slice_end - jiffies;
1763 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1766 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1768 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1769 cfq_del_cfqq_rr(cfqd, cfqq);
1771 cfq_resort_rr_list(cfqd, cfqq);
1773 if (cfqq == cfqd->active_queue)
1774 cfqd->active_queue = NULL;
1776 if (cfqd->active_cic) {
1777 put_io_context(cfqd->active_cic->ioc, cfqd->queue);
1778 cfqd->active_cic = NULL;
1782 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1784 struct cfq_queue *cfqq = cfqd->active_queue;
1786 if (cfqq)
1787 __cfq_slice_expired(cfqd, cfqq, timed_out);
1791 * Get next queue for service. Unless we have a queue preemption,
1792 * we'll simply select the first cfqq in the service tree.
1794 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1796 struct cfq_rb_root *service_tree =
1797 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1798 cfqd->serving_type);
1800 if (!cfqd->rq_queued)
1801 return NULL;
1803 /* There is nothing to dispatch */
1804 if (!service_tree)
1805 return NULL;
1806 if (RB_EMPTY_ROOT(&service_tree->rb))
1807 return NULL;
1808 return cfq_rb_first(service_tree);
1811 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1813 struct cfq_group *cfqg;
1814 struct cfq_queue *cfqq;
1815 int i, j;
1816 struct cfq_rb_root *st;
1818 if (!cfqd->rq_queued)
1819 return NULL;
1821 cfqg = cfq_get_next_cfqg(cfqd);
1822 if (!cfqg)
1823 return NULL;
1825 for_each_cfqg_st(cfqg, i, j, st)
1826 if ((cfqq = cfq_rb_first(st)) != NULL)
1827 return cfqq;
1828 return NULL;
1832 * Get and set a new active queue for service.
1834 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1835 struct cfq_queue *cfqq)
1837 if (!cfqq)
1838 cfqq = cfq_get_next_queue(cfqd);
1840 __cfq_set_active_queue(cfqd, cfqq);
1841 return cfqq;
1844 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1845 struct request *rq)
1847 if (blk_rq_pos(rq) >= cfqd->last_position)
1848 return blk_rq_pos(rq) - cfqd->last_position;
1849 else
1850 return cfqd->last_position - blk_rq_pos(rq);
1853 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1854 struct request *rq)
1856 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1859 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1860 struct cfq_queue *cur_cfqq)
1862 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1863 struct rb_node *parent, *node;
1864 struct cfq_queue *__cfqq;
1865 sector_t sector = cfqd->last_position;
1867 if (RB_EMPTY_ROOT(root))
1868 return NULL;
1871 * First, if we find a request starting at the end of the last
1872 * request, choose it.
1874 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1875 if (__cfqq)
1876 return __cfqq;
1879 * If the exact sector wasn't found, the parent of the NULL leaf
1880 * will contain the closest sector.
1882 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1883 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1884 return __cfqq;
1886 if (blk_rq_pos(__cfqq->next_rq) < sector)
1887 node = rb_next(&__cfqq->p_node);
1888 else
1889 node = rb_prev(&__cfqq->p_node);
1890 if (!node)
1891 return NULL;
1893 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1894 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1895 return __cfqq;
1897 return NULL;
1901 * cfqd - obvious
1902 * cur_cfqq - passed in so that we don't decide that the current queue is
1903 * closely cooperating with itself.
1905 * So, basically we're assuming that that cur_cfqq has dispatched at least
1906 * one request, and that cfqd->last_position reflects a position on the disk
1907 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1908 * assumption.
1910 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1911 struct cfq_queue *cur_cfqq)
1913 struct cfq_queue *cfqq;
1915 if (cfq_class_idle(cur_cfqq))
1916 return NULL;
1917 if (!cfq_cfqq_sync(cur_cfqq))
1918 return NULL;
1919 if (CFQQ_SEEKY(cur_cfqq))
1920 return NULL;
1923 * Don't search priority tree if it's the only queue in the group.
1925 if (cur_cfqq->cfqg->nr_cfqq == 1)
1926 return NULL;
1929 * We should notice if some of the queues are cooperating, eg
1930 * working closely on the same area of the disk. In that case,
1931 * we can group them together and don't waste time idling.
1933 cfqq = cfqq_close(cfqd, cur_cfqq);
1934 if (!cfqq)
1935 return NULL;
1937 /* If new queue belongs to different cfq_group, don't choose it */
1938 if (cur_cfqq->cfqg != cfqq->cfqg)
1939 return NULL;
1942 * It only makes sense to merge sync queues.
1944 if (!cfq_cfqq_sync(cfqq))
1945 return NULL;
1946 if (CFQQ_SEEKY(cfqq))
1947 return NULL;
1950 * Do not merge queues of different priority classes
1952 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1953 return NULL;
1955 return cfqq;
1959 * Determine whether we should enforce idle window for this queue.
1962 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1964 enum wl_prio_t prio = cfqq_prio(cfqq);
1965 struct cfq_rb_root *service_tree = cfqq->service_tree;
1967 BUG_ON(!service_tree);
1968 BUG_ON(!service_tree->count);
1970 if (!cfqd->cfq_slice_idle)
1971 return false;
1973 /* We never do for idle class queues. */
1974 if (prio == IDLE_WORKLOAD)
1975 return false;
1977 /* We do for queues that were marked with idle window flag. */
1978 if (cfq_cfqq_idle_window(cfqq) &&
1979 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1980 return true;
1983 * Otherwise, we do only if they are the last ones
1984 * in their service tree.
1986 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1987 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1988 return true;
1989 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1990 service_tree->count);
1991 return false;
1994 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1996 struct cfq_queue *cfqq = cfqd->active_queue;
1997 struct cfq_io_context *cic;
1998 unsigned long sl, group_idle = 0;
2001 * SSD device without seek penalty, disable idling. But only do so
2002 * for devices that support queuing, otherwise we still have a problem
2003 * with sync vs async workloads.
2005 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2006 return;
2008 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2009 WARN_ON(cfq_cfqq_slice_new(cfqq));
2012 * idle is disabled, either manually or by past process history
2014 if (!cfq_should_idle(cfqd, cfqq)) {
2015 /* no queue idling. Check for group idling */
2016 if (cfqd->cfq_group_idle)
2017 group_idle = cfqd->cfq_group_idle;
2018 else
2019 return;
2023 * still active requests from this queue, don't idle
2025 if (cfqq->dispatched)
2026 return;
2029 * task has exited, don't wait
2031 cic = cfqd->active_cic;
2032 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2033 return;
2036 * If our average think time is larger than the remaining time
2037 * slice, then don't idle. This avoids overrunning the allotted
2038 * time slice.
2040 if (sample_valid(cic->ttime.ttime_samples) &&
2041 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2042 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2043 cic->ttime.ttime_mean);
2044 return;
2047 /* There are other queues in the group, don't do group idle */
2048 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2049 return;
2051 cfq_mark_cfqq_wait_request(cfqq);
2053 if (group_idle)
2054 sl = cfqd->cfq_group_idle;
2055 else
2056 sl = cfqd->cfq_slice_idle;
2058 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2059 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2060 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2061 group_idle ? 1 : 0);
2065 * Move request from internal lists to the request queue dispatch list.
2067 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2069 struct cfq_data *cfqd = q->elevator->elevator_data;
2070 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2072 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2074 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2075 cfq_remove_request(rq);
2076 cfqq->dispatched++;
2077 (RQ_CFQG(rq))->dispatched++;
2078 elv_dispatch_sort(q, rq);
2080 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2081 cfqq->nr_sectors += blk_rq_sectors(rq);
2082 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2083 rq_data_dir(rq), rq_is_sync(rq));
2087 * return expired entry, or NULL to just start from scratch in rbtree
2089 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2091 struct request *rq = NULL;
2093 if (cfq_cfqq_fifo_expire(cfqq))
2094 return NULL;
2096 cfq_mark_cfqq_fifo_expire(cfqq);
2098 if (list_empty(&cfqq->fifo))
2099 return NULL;
2101 rq = rq_entry_fifo(cfqq->fifo.next);
2102 if (time_before(jiffies, rq_fifo_time(rq)))
2103 rq = NULL;
2105 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2106 return rq;
2109 static inline int
2110 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2112 const int base_rq = cfqd->cfq_slice_async_rq;
2114 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2116 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2120 * Must be called with the queue_lock held.
2122 static int cfqq_process_refs(struct cfq_queue *cfqq)
2124 int process_refs, io_refs;
2126 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2127 process_refs = cfqq->ref - io_refs;
2128 BUG_ON(process_refs < 0);
2129 return process_refs;
2132 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2134 int process_refs, new_process_refs;
2135 struct cfq_queue *__cfqq;
2138 * If there are no process references on the new_cfqq, then it is
2139 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2140 * chain may have dropped their last reference (not just their
2141 * last process reference).
2143 if (!cfqq_process_refs(new_cfqq))
2144 return;
2146 /* Avoid a circular list and skip interim queue merges */
2147 while ((__cfqq = new_cfqq->new_cfqq)) {
2148 if (__cfqq == cfqq)
2149 return;
2150 new_cfqq = __cfqq;
2153 process_refs = cfqq_process_refs(cfqq);
2154 new_process_refs = cfqq_process_refs(new_cfqq);
2156 * If the process for the cfqq has gone away, there is no
2157 * sense in merging the queues.
2159 if (process_refs == 0 || new_process_refs == 0)
2160 return;
2163 * Merge in the direction of the lesser amount of work.
2165 if (new_process_refs >= process_refs) {
2166 cfqq->new_cfqq = new_cfqq;
2167 new_cfqq->ref += process_refs;
2168 } else {
2169 new_cfqq->new_cfqq = cfqq;
2170 cfqq->ref += new_process_refs;
2174 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2175 struct cfq_group *cfqg, enum wl_prio_t prio)
2177 struct cfq_queue *queue;
2178 int i;
2179 bool key_valid = false;
2180 unsigned long lowest_key = 0;
2181 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2183 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2184 /* select the one with lowest rb_key */
2185 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2186 if (queue &&
2187 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2188 lowest_key = queue->rb_key;
2189 cur_best = i;
2190 key_valid = true;
2194 return cur_best;
2197 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2199 unsigned slice;
2200 unsigned count;
2201 struct cfq_rb_root *st;
2202 unsigned group_slice;
2203 enum wl_prio_t original_prio = cfqd->serving_prio;
2205 /* Choose next priority. RT > BE > IDLE */
2206 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2207 cfqd->serving_prio = RT_WORKLOAD;
2208 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2209 cfqd->serving_prio = BE_WORKLOAD;
2210 else {
2211 cfqd->serving_prio = IDLE_WORKLOAD;
2212 cfqd->workload_expires = jiffies + 1;
2213 return;
2216 if (original_prio != cfqd->serving_prio)
2217 goto new_workload;
2220 * For RT and BE, we have to choose also the type
2221 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2222 * expiration time
2224 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2225 count = st->count;
2228 * check workload expiration, and that we still have other queues ready
2230 if (count && !time_after(jiffies, cfqd->workload_expires))
2231 return;
2233 new_workload:
2234 /* otherwise select new workload type */
2235 cfqd->serving_type =
2236 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2237 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2238 count = st->count;
2241 * the workload slice is computed as a fraction of target latency
2242 * proportional to the number of queues in that workload, over
2243 * all the queues in the same priority class
2245 group_slice = cfq_group_slice(cfqd, cfqg);
2247 slice = group_slice * count /
2248 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2249 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2251 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2252 unsigned int tmp;
2255 * Async queues are currently system wide. Just taking
2256 * proportion of queues with-in same group will lead to higher
2257 * async ratio system wide as generally root group is going
2258 * to have higher weight. A more accurate thing would be to
2259 * calculate system wide asnc/sync ratio.
2261 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2262 tmp = tmp/cfqd->busy_queues;
2263 slice = min_t(unsigned, slice, tmp);
2265 /* async workload slice is scaled down according to
2266 * the sync/async slice ratio. */
2267 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2268 } else
2269 /* sync workload slice is at least 2 * cfq_slice_idle */
2270 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2272 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2273 cfq_log(cfqd, "workload slice:%d", slice);
2274 cfqd->workload_expires = jiffies + slice;
2277 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2279 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2280 struct cfq_group *cfqg;
2282 if (RB_EMPTY_ROOT(&st->rb))
2283 return NULL;
2284 cfqg = cfq_rb_first_group(st);
2285 update_min_vdisktime(st);
2286 return cfqg;
2289 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2291 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2293 cfqd->serving_group = cfqg;
2295 /* Restore the workload type data */
2296 if (cfqg->saved_workload_slice) {
2297 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2298 cfqd->serving_type = cfqg->saved_workload;
2299 cfqd->serving_prio = cfqg->saved_serving_prio;
2300 } else
2301 cfqd->workload_expires = jiffies - 1;
2303 choose_service_tree(cfqd, cfqg);
2307 * Select a queue for service. If we have a current active queue,
2308 * check whether to continue servicing it, or retrieve and set a new one.
2310 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2312 struct cfq_queue *cfqq, *new_cfqq = NULL;
2314 cfqq = cfqd->active_queue;
2315 if (!cfqq)
2316 goto new_queue;
2318 if (!cfqd->rq_queued)
2319 return NULL;
2322 * We were waiting for group to get backlogged. Expire the queue
2324 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2325 goto expire;
2328 * The active queue has run out of time, expire it and select new.
2330 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2332 * If slice had not expired at the completion of last request
2333 * we might not have turned on wait_busy flag. Don't expire
2334 * the queue yet. Allow the group to get backlogged.
2336 * The very fact that we have used the slice, that means we
2337 * have been idling all along on this queue and it should be
2338 * ok to wait for this request to complete.
2340 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2341 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2342 cfqq = NULL;
2343 goto keep_queue;
2344 } else
2345 goto check_group_idle;
2349 * The active queue has requests and isn't expired, allow it to
2350 * dispatch.
2352 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2353 goto keep_queue;
2356 * If another queue has a request waiting within our mean seek
2357 * distance, let it run. The expire code will check for close
2358 * cooperators and put the close queue at the front of the service
2359 * tree. If possible, merge the expiring queue with the new cfqq.
2361 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2362 if (new_cfqq) {
2363 if (!cfqq->new_cfqq)
2364 cfq_setup_merge(cfqq, new_cfqq);
2365 goto expire;
2369 * No requests pending. If the active queue still has requests in
2370 * flight or is idling for a new request, allow either of these
2371 * conditions to happen (or time out) before selecting a new queue.
2373 if (timer_pending(&cfqd->idle_slice_timer)) {
2374 cfqq = NULL;
2375 goto keep_queue;
2379 * This is a deep seek queue, but the device is much faster than
2380 * the queue can deliver, don't idle
2382 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2383 (cfq_cfqq_slice_new(cfqq) ||
2384 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2385 cfq_clear_cfqq_deep(cfqq);
2386 cfq_clear_cfqq_idle_window(cfqq);
2389 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2390 cfqq = NULL;
2391 goto keep_queue;
2395 * If group idle is enabled and there are requests dispatched from
2396 * this group, wait for requests to complete.
2398 check_group_idle:
2399 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2400 cfqq->cfqg->dispatched &&
2401 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2402 cfqq = NULL;
2403 goto keep_queue;
2406 expire:
2407 cfq_slice_expired(cfqd, 0);
2408 new_queue:
2410 * Current queue expired. Check if we have to switch to a new
2411 * service tree
2413 if (!new_cfqq)
2414 cfq_choose_cfqg(cfqd);
2416 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2417 keep_queue:
2418 return cfqq;
2421 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2423 int dispatched = 0;
2425 while (cfqq->next_rq) {
2426 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2427 dispatched++;
2430 BUG_ON(!list_empty(&cfqq->fifo));
2432 /* By default cfqq is not expired if it is empty. Do it explicitly */
2433 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2434 return dispatched;
2438 * Drain our current requests. Used for barriers and when switching
2439 * io schedulers on-the-fly.
2441 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2443 struct cfq_queue *cfqq;
2444 int dispatched = 0;
2446 /* Expire the timeslice of the current active queue first */
2447 cfq_slice_expired(cfqd, 0);
2448 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2449 __cfq_set_active_queue(cfqd, cfqq);
2450 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2453 BUG_ON(cfqd->busy_queues);
2455 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2456 return dispatched;
2459 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2460 struct cfq_queue *cfqq)
2462 /* the queue hasn't finished any request, can't estimate */
2463 if (cfq_cfqq_slice_new(cfqq))
2464 return true;
2465 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2466 cfqq->slice_end))
2467 return true;
2469 return false;
2472 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2474 unsigned int max_dispatch;
2477 * Drain async requests before we start sync IO
2479 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2480 return false;
2483 * If this is an async queue and we have sync IO in flight, let it wait
2485 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2486 return false;
2488 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2489 if (cfq_class_idle(cfqq))
2490 max_dispatch = 1;
2493 * Does this cfqq already have too much IO in flight?
2495 if (cfqq->dispatched >= max_dispatch) {
2496 bool promote_sync = false;
2498 * idle queue must always only have a single IO in flight
2500 if (cfq_class_idle(cfqq))
2501 return false;
2504 * If there is only one sync queue
2505 * we can ignore async queue here and give the sync
2506 * queue no dispatch limit. The reason is a sync queue can
2507 * preempt async queue, limiting the sync queue doesn't make
2508 * sense. This is useful for aiostress test.
2510 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2511 promote_sync = true;
2514 * We have other queues, don't allow more IO from this one
2516 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2517 !promote_sync)
2518 return false;
2521 * Sole queue user, no limit
2523 if (cfqd->busy_queues == 1 || promote_sync)
2524 max_dispatch = -1;
2525 else
2527 * Normally we start throttling cfqq when cfq_quantum/2
2528 * requests have been dispatched. But we can drive
2529 * deeper queue depths at the beginning of slice
2530 * subjected to upper limit of cfq_quantum.
2531 * */
2532 max_dispatch = cfqd->cfq_quantum;
2536 * Async queues must wait a bit before being allowed dispatch.
2537 * We also ramp up the dispatch depth gradually for async IO,
2538 * based on the last sync IO we serviced
2540 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2541 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2542 unsigned int depth;
2544 depth = last_sync / cfqd->cfq_slice[1];
2545 if (!depth && !cfqq->dispatched)
2546 depth = 1;
2547 if (depth < max_dispatch)
2548 max_dispatch = depth;
2552 * If we're below the current max, allow a dispatch
2554 return cfqq->dispatched < max_dispatch;
2558 * Dispatch a request from cfqq, moving them to the request queue
2559 * dispatch list.
2561 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2563 struct request *rq;
2565 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2567 if (!cfq_may_dispatch(cfqd, cfqq))
2568 return false;
2571 * follow expired path, else get first next available
2573 rq = cfq_check_fifo(cfqq);
2574 if (!rq)
2575 rq = cfqq->next_rq;
2578 * insert request into driver dispatch list
2580 cfq_dispatch_insert(cfqd->queue, rq);
2582 if (!cfqd->active_cic) {
2583 struct cfq_io_context *cic = RQ_CIC(rq);
2585 atomic_long_inc(&cic->ioc->refcount);
2586 cfqd->active_cic = cic;
2589 return true;
2593 * Find the cfqq that we need to service and move a request from that to the
2594 * dispatch list
2596 static int cfq_dispatch_requests(struct request_queue *q, int force)
2598 struct cfq_data *cfqd = q->elevator->elevator_data;
2599 struct cfq_queue *cfqq;
2601 if (!cfqd->busy_queues)
2602 return 0;
2604 if (unlikely(force))
2605 return cfq_forced_dispatch(cfqd);
2607 cfqq = cfq_select_queue(cfqd);
2608 if (!cfqq)
2609 return 0;
2612 * Dispatch a request from this cfqq, if it is allowed
2614 if (!cfq_dispatch_request(cfqd, cfqq))
2615 return 0;
2617 cfqq->slice_dispatch++;
2618 cfq_clear_cfqq_must_dispatch(cfqq);
2621 * expire an async queue immediately if it has used up its slice. idle
2622 * queue always expire after 1 dispatch round.
2624 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2625 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2626 cfq_class_idle(cfqq))) {
2627 cfqq->slice_end = jiffies + 1;
2628 cfq_slice_expired(cfqd, 0);
2631 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2632 return 1;
2636 * task holds one reference to the queue, dropped when task exits. each rq
2637 * in-flight on this queue also holds a reference, dropped when rq is freed.
2639 * Each cfq queue took a reference on the parent group. Drop it now.
2640 * queue lock must be held here.
2642 static void cfq_put_queue(struct cfq_queue *cfqq)
2644 struct cfq_data *cfqd = cfqq->cfqd;
2645 struct cfq_group *cfqg;
2647 BUG_ON(cfqq->ref <= 0);
2649 cfqq->ref--;
2650 if (cfqq->ref)
2651 return;
2653 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2654 BUG_ON(rb_first(&cfqq->sort_list));
2655 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2656 cfqg = cfqq->cfqg;
2658 if (unlikely(cfqd->active_queue == cfqq)) {
2659 __cfq_slice_expired(cfqd, cfqq, 0);
2660 cfq_schedule_dispatch(cfqd);
2663 BUG_ON(cfq_cfqq_on_rr(cfqq));
2664 kmem_cache_free(cfq_pool, cfqq);
2665 cfq_put_cfqg(cfqg);
2668 static void cfq_cic_free_rcu(struct rcu_head *head)
2670 kmem_cache_free(cfq_ioc_pool,
2671 container_of(head, struct cfq_io_context, rcu_head));
2674 static void cfq_cic_free(struct cfq_io_context *cic)
2676 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2679 static void cfq_release_cic(struct cfq_io_context *cic)
2681 struct io_context *ioc = cic->ioc;
2682 unsigned long dead_key = (unsigned long) cic->key;
2684 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2685 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2686 hlist_del(&cic->cic_list);
2687 cfq_cic_free(cic);
2690 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2692 struct cfq_queue *__cfqq, *next;
2695 * If this queue was scheduled to merge with another queue, be
2696 * sure to drop the reference taken on that queue (and others in
2697 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2699 __cfqq = cfqq->new_cfqq;
2700 while (__cfqq) {
2701 if (__cfqq == cfqq) {
2702 WARN(1, "cfqq->new_cfqq loop detected\n");
2703 break;
2705 next = __cfqq->new_cfqq;
2706 cfq_put_queue(__cfqq);
2707 __cfqq = next;
2711 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2713 if (unlikely(cfqq == cfqd->active_queue)) {
2714 __cfq_slice_expired(cfqd, cfqq, 0);
2715 cfq_schedule_dispatch(cfqd);
2718 cfq_put_cooperator(cfqq);
2720 cfq_put_queue(cfqq);
2723 static void cfq_exit_cic(struct cfq_io_context *cic)
2725 struct cfq_data *cfqd = cic_to_cfqd(cic);
2726 struct io_context *ioc = cic->ioc;
2728 list_del_init(&cic->queue_list);
2729 cic->key = cfqd_dead_key(cfqd);
2732 * Both setting lookup hint to and clearing it from @cic are done
2733 * under queue_lock. If it's not pointing to @cic now, it never
2734 * will. Hint assignment itself can race safely.
2736 if (rcu_dereference_raw(ioc->ioc_data) == cic)
2737 rcu_assign_pointer(ioc->ioc_data, NULL);
2739 if (cic->cfqq[BLK_RW_ASYNC]) {
2740 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2741 cic->cfqq[BLK_RW_ASYNC] = NULL;
2744 if (cic->cfqq[BLK_RW_SYNC]) {
2745 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2746 cic->cfqq[BLK_RW_SYNC] = NULL;
2750 static struct cfq_io_context *
2751 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2753 struct cfq_io_context *cic;
2755 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2756 cfqd->queue->node);
2757 if (cic) {
2758 cic->ttime.last_end_request = jiffies;
2759 INIT_LIST_HEAD(&cic->queue_list);
2760 INIT_HLIST_NODE(&cic->cic_list);
2761 cic->exit = cfq_exit_cic;
2762 cic->release = cfq_release_cic;
2765 return cic;
2768 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2770 struct task_struct *tsk = current;
2771 int ioprio_class;
2773 if (!cfq_cfqq_prio_changed(cfqq))
2774 return;
2776 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2777 switch (ioprio_class) {
2778 default:
2779 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2780 case IOPRIO_CLASS_NONE:
2782 * no prio set, inherit CPU scheduling settings
2784 cfqq->ioprio = task_nice_ioprio(tsk);
2785 cfqq->ioprio_class = task_nice_ioclass(tsk);
2786 break;
2787 case IOPRIO_CLASS_RT:
2788 cfqq->ioprio = task_ioprio(ioc);
2789 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2790 break;
2791 case IOPRIO_CLASS_BE:
2792 cfqq->ioprio = task_ioprio(ioc);
2793 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2794 break;
2795 case IOPRIO_CLASS_IDLE:
2796 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2797 cfqq->ioprio = 7;
2798 cfq_clear_cfqq_idle_window(cfqq);
2799 break;
2803 * keep track of original prio settings in case we have to temporarily
2804 * elevate the priority of this queue
2806 cfqq->org_ioprio = cfqq->ioprio;
2807 cfq_clear_cfqq_prio_changed(cfqq);
2810 static void changed_ioprio(struct cfq_io_context *cic)
2812 struct cfq_data *cfqd = cic_to_cfqd(cic);
2813 struct cfq_queue *cfqq;
2815 if (unlikely(!cfqd))
2816 return;
2818 cfqq = cic->cfqq[BLK_RW_ASYNC];
2819 if (cfqq) {
2820 struct cfq_queue *new_cfqq;
2821 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2822 GFP_ATOMIC);
2823 if (new_cfqq) {
2824 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2825 cfq_put_queue(cfqq);
2829 cfqq = cic->cfqq[BLK_RW_SYNC];
2830 if (cfqq)
2831 cfq_mark_cfqq_prio_changed(cfqq);
2834 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2835 pid_t pid, bool is_sync)
2837 RB_CLEAR_NODE(&cfqq->rb_node);
2838 RB_CLEAR_NODE(&cfqq->p_node);
2839 INIT_LIST_HEAD(&cfqq->fifo);
2841 cfqq->ref = 0;
2842 cfqq->cfqd = cfqd;
2844 cfq_mark_cfqq_prio_changed(cfqq);
2846 if (is_sync) {
2847 if (!cfq_class_idle(cfqq))
2848 cfq_mark_cfqq_idle_window(cfqq);
2849 cfq_mark_cfqq_sync(cfqq);
2851 cfqq->pid = pid;
2854 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2855 static void changed_cgroup(struct cfq_io_context *cic)
2857 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2858 struct cfq_data *cfqd = cic_to_cfqd(cic);
2859 struct request_queue *q;
2861 if (unlikely(!cfqd))
2862 return;
2864 q = cfqd->queue;
2866 if (sync_cfqq) {
2868 * Drop reference to sync queue. A new sync queue will be
2869 * assigned in new group upon arrival of a fresh request.
2871 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2872 cic_set_cfqq(cic, NULL, 1);
2873 cfq_put_queue(sync_cfqq);
2876 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2878 static struct cfq_queue *
2879 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2880 struct io_context *ioc, gfp_t gfp_mask)
2882 struct cfq_queue *cfqq, *new_cfqq = NULL;
2883 struct cfq_io_context *cic;
2884 struct cfq_group *cfqg;
2886 retry:
2887 cfqg = cfq_get_cfqg(cfqd);
2888 cic = cfq_cic_lookup(cfqd, ioc);
2889 /* cic always exists here */
2890 cfqq = cic_to_cfqq(cic, is_sync);
2893 * Always try a new alloc if we fell back to the OOM cfqq
2894 * originally, since it should just be a temporary situation.
2896 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2897 cfqq = NULL;
2898 if (new_cfqq) {
2899 cfqq = new_cfqq;
2900 new_cfqq = NULL;
2901 } else if (gfp_mask & __GFP_WAIT) {
2902 spin_unlock_irq(cfqd->queue->queue_lock);
2903 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2904 gfp_mask | __GFP_ZERO,
2905 cfqd->queue->node);
2906 spin_lock_irq(cfqd->queue->queue_lock);
2907 if (new_cfqq)
2908 goto retry;
2909 } else {
2910 cfqq = kmem_cache_alloc_node(cfq_pool,
2911 gfp_mask | __GFP_ZERO,
2912 cfqd->queue->node);
2915 if (cfqq) {
2916 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2917 cfq_init_prio_data(cfqq, ioc);
2918 cfq_link_cfqq_cfqg(cfqq, cfqg);
2919 cfq_log_cfqq(cfqd, cfqq, "alloced");
2920 } else
2921 cfqq = &cfqd->oom_cfqq;
2924 if (new_cfqq)
2925 kmem_cache_free(cfq_pool, new_cfqq);
2927 return cfqq;
2930 static struct cfq_queue **
2931 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2933 switch (ioprio_class) {
2934 case IOPRIO_CLASS_RT:
2935 return &cfqd->async_cfqq[0][ioprio];
2936 case IOPRIO_CLASS_BE:
2937 return &cfqd->async_cfqq[1][ioprio];
2938 case IOPRIO_CLASS_IDLE:
2939 return &cfqd->async_idle_cfqq;
2940 default:
2941 BUG();
2945 static struct cfq_queue *
2946 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2947 gfp_t gfp_mask)
2949 const int ioprio = task_ioprio(ioc);
2950 const int ioprio_class = task_ioprio_class(ioc);
2951 struct cfq_queue **async_cfqq = NULL;
2952 struct cfq_queue *cfqq = NULL;
2954 if (!is_sync) {
2955 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2956 cfqq = *async_cfqq;
2959 if (!cfqq)
2960 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2963 * pin the queue now that it's allocated, scheduler exit will prune it
2965 if (!is_sync && !(*async_cfqq)) {
2966 cfqq->ref++;
2967 *async_cfqq = cfqq;
2970 cfqq->ref++;
2971 return cfqq;
2975 * cfq_cic_lookup - lookup cfq_io_context
2976 * @cfqd: the associated cfq_data
2977 * @ioc: the associated io_context
2979 * Look up cfq_io_context associated with @cfqd - @ioc pair. Must be
2980 * called with queue_lock held.
2982 static struct cfq_io_context *
2983 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2985 struct cfq_io_context *cic;
2987 lockdep_assert_held(cfqd->queue->queue_lock);
2988 if (unlikely(!ioc))
2989 return NULL;
2992 * cic's are indexed from @ioc using radix tree and hint pointer,
2993 * both of which are protected with RCU. All removals are done
2994 * holding both q and ioc locks, and we're holding q lock - if we
2995 * find a cic which points to us, it's guaranteed to be valid.
2997 rcu_read_lock();
2998 cic = rcu_dereference(ioc->ioc_data);
2999 if (cic && cic->key == cfqd)
3000 goto out;
3002 cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
3003 if (cic && cic->key == cfqd)
3004 rcu_assign_pointer(ioc->ioc_data, cic); /* allowed to race */
3005 else
3006 cic = NULL;
3007 out:
3008 rcu_read_unlock();
3009 return cic;
3013 * cfq_create_cic - create and link a cfq_io_context
3014 * @cfqd: cfqd of interest
3015 * @gfp_mask: allocation mask
3017 * Make sure cfq_io_context linking %current->io_context and @cfqd exists.
3018 * If ioc and/or cic doesn't exist, they will be created using @gfp_mask.
3020 static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3022 struct request_queue *q = cfqd->queue;
3023 struct cfq_io_context *cic = NULL;
3024 struct io_context *ioc;
3025 int ret = -ENOMEM;
3027 might_sleep_if(gfp_mask & __GFP_WAIT);
3029 /* allocate stuff */
3030 ioc = current_io_context(gfp_mask, q->node);
3031 if (!ioc)
3032 goto out;
3034 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3035 if (!cic)
3036 goto out;
3038 ret = radix_tree_preload(gfp_mask);
3039 if (ret)
3040 goto out;
3042 cic->ioc = ioc;
3043 cic->key = cfqd;
3044 cic->q = cfqd->queue;
3046 /* lock both q and ioc and try to link @cic */
3047 spin_lock_irq(q->queue_lock);
3048 spin_lock(&ioc->lock);
3050 ret = radix_tree_insert(&ioc->radix_root, q->id, cic);
3051 if (likely(!ret)) {
3052 hlist_add_head(&cic->cic_list, &ioc->cic_list);
3053 list_add(&cic->queue_list, &cfqd->cic_list);
3054 cic = NULL;
3055 } else if (ret == -EEXIST) {
3056 /* someone else already did it */
3057 ret = 0;
3060 spin_unlock(&ioc->lock);
3061 spin_unlock_irq(q->queue_lock);
3063 radix_tree_preload_end();
3064 out:
3065 if (ret)
3066 printk(KERN_ERR "cfq: cic link failed!\n");
3067 if (cic)
3068 cfq_cic_free(cic);
3069 return ret;
3073 * cfq_get_io_context - acquire cfq_io_context and bump refcnt on io_context
3074 * @cfqd: cfqd to setup cic for
3075 * @gfp_mask: allocation mask
3077 * Return cfq_io_context associating @cfqd and %current->io_context and
3078 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3079 * using @gfp_mask.
3081 * Must be called under queue_lock which may be released and re-acquired.
3082 * This function also may sleep depending on @gfp_mask.
3084 static struct cfq_io_context *
3085 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3087 struct request_queue *q = cfqd->queue;
3088 struct cfq_io_context *cic = NULL;
3089 struct io_context *ioc;
3090 int err;
3092 lockdep_assert_held(q->queue_lock);
3094 while (true) {
3095 /* fast path */
3096 ioc = current->io_context;
3097 if (likely(ioc)) {
3098 cic = cfq_cic_lookup(cfqd, ioc);
3099 if (likely(cic))
3100 break;
3103 /* slow path - unlock, create missing ones and retry */
3104 spin_unlock_irq(q->queue_lock);
3105 err = cfq_create_cic(cfqd, gfp_mask);
3106 spin_lock_irq(q->queue_lock);
3107 if (err)
3108 return NULL;
3111 /* bump @ioc's refcnt and handle changed notifications */
3112 get_io_context(ioc);
3114 if (unlikely(cic->changed)) {
3115 if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
3116 changed_ioprio(cic);
3117 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3118 if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
3119 changed_cgroup(cic);
3120 #endif
3123 return cic;
3126 static void
3127 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3129 unsigned long elapsed = jiffies - ttime->last_end_request;
3130 elapsed = min(elapsed, 2UL * slice_idle);
3132 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3133 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3134 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3137 static void
3138 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3139 struct cfq_io_context *cic)
3141 if (cfq_cfqq_sync(cfqq)) {
3142 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3143 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3144 cfqd->cfq_slice_idle);
3146 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3147 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3148 #endif
3151 static void
3152 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3153 struct request *rq)
3155 sector_t sdist = 0;
3156 sector_t n_sec = blk_rq_sectors(rq);
3157 if (cfqq->last_request_pos) {
3158 if (cfqq->last_request_pos < blk_rq_pos(rq))
3159 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3160 else
3161 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3164 cfqq->seek_history <<= 1;
3165 if (blk_queue_nonrot(cfqd->queue))
3166 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3167 else
3168 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3172 * Disable idle window if the process thinks too long or seeks so much that
3173 * it doesn't matter
3175 static void
3176 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3177 struct cfq_io_context *cic)
3179 int old_idle, enable_idle;
3182 * Don't idle for async or idle io prio class
3184 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3185 return;
3187 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3189 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3190 cfq_mark_cfqq_deep(cfqq);
3192 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3193 enable_idle = 0;
3194 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3195 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3196 enable_idle = 0;
3197 else if (sample_valid(cic->ttime.ttime_samples)) {
3198 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3199 enable_idle = 0;
3200 else
3201 enable_idle = 1;
3204 if (old_idle != enable_idle) {
3205 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3206 if (enable_idle)
3207 cfq_mark_cfqq_idle_window(cfqq);
3208 else
3209 cfq_clear_cfqq_idle_window(cfqq);
3214 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3215 * no or if we aren't sure, a 1 will cause a preempt.
3217 static bool
3218 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3219 struct request *rq)
3221 struct cfq_queue *cfqq;
3223 cfqq = cfqd->active_queue;
3224 if (!cfqq)
3225 return false;
3227 if (cfq_class_idle(new_cfqq))
3228 return false;
3230 if (cfq_class_idle(cfqq))
3231 return true;
3234 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3236 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3237 return false;
3240 * if the new request is sync, but the currently running queue is
3241 * not, let the sync request have priority.
3243 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3244 return true;
3246 if (new_cfqq->cfqg != cfqq->cfqg)
3247 return false;
3249 if (cfq_slice_used(cfqq))
3250 return true;
3252 /* Allow preemption only if we are idling on sync-noidle tree */
3253 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3254 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3255 new_cfqq->service_tree->count == 2 &&
3256 RB_EMPTY_ROOT(&cfqq->sort_list))
3257 return true;
3260 * So both queues are sync. Let the new request get disk time if
3261 * it's a metadata request and the current queue is doing regular IO.
3263 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3264 return true;
3267 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3269 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3270 return true;
3272 /* An idle queue should not be idle now for some reason */
3273 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3274 return true;
3276 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3277 return false;
3280 * if this request is as-good as one we would expect from the
3281 * current cfqq, let it preempt
3283 if (cfq_rq_close(cfqd, cfqq, rq))
3284 return true;
3286 return false;
3290 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3291 * let it have half of its nominal slice.
3293 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3295 struct cfq_queue *old_cfqq = cfqd->active_queue;
3297 cfq_log_cfqq(cfqd, cfqq, "preempt");
3298 cfq_slice_expired(cfqd, 1);
3301 * workload type is changed, don't save slice, otherwise preempt
3302 * doesn't happen
3304 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3305 cfqq->cfqg->saved_workload_slice = 0;
3308 * Put the new queue at the front of the of the current list,
3309 * so we know that it will be selected next.
3311 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3313 cfq_service_tree_add(cfqd, cfqq, 1);
3315 cfqq->slice_end = 0;
3316 cfq_mark_cfqq_slice_new(cfqq);
3320 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3321 * something we should do about it
3323 static void
3324 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3325 struct request *rq)
3327 struct cfq_io_context *cic = RQ_CIC(rq);
3329 cfqd->rq_queued++;
3330 if (rq->cmd_flags & REQ_PRIO)
3331 cfqq->prio_pending++;
3333 cfq_update_io_thinktime(cfqd, cfqq, cic);
3334 cfq_update_io_seektime(cfqd, cfqq, rq);
3335 cfq_update_idle_window(cfqd, cfqq, cic);
3337 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3339 if (cfqq == cfqd->active_queue) {
3341 * Remember that we saw a request from this process, but
3342 * don't start queuing just yet. Otherwise we risk seeing lots
3343 * of tiny requests, because we disrupt the normal plugging
3344 * and merging. If the request is already larger than a single
3345 * page, let it rip immediately. For that case we assume that
3346 * merging is already done. Ditto for a busy system that
3347 * has other work pending, don't risk delaying until the
3348 * idle timer unplug to continue working.
3350 if (cfq_cfqq_wait_request(cfqq)) {
3351 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3352 cfqd->busy_queues > 1) {
3353 cfq_del_timer(cfqd, cfqq);
3354 cfq_clear_cfqq_wait_request(cfqq);
3355 __blk_run_queue(cfqd->queue);
3356 } else {
3357 cfq_blkiocg_update_idle_time_stats(
3358 &cfqq->cfqg->blkg);
3359 cfq_mark_cfqq_must_dispatch(cfqq);
3362 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3364 * not the active queue - expire current slice if it is
3365 * idle and has expired it's mean thinktime or this new queue
3366 * has some old slice time left and is of higher priority or
3367 * this new queue is RT and the current one is BE
3369 cfq_preempt_queue(cfqd, cfqq);
3370 __blk_run_queue(cfqd->queue);
3374 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3376 struct cfq_data *cfqd = q->elevator->elevator_data;
3377 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3379 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3380 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3382 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3383 list_add_tail(&rq->queuelist, &cfqq->fifo);
3384 cfq_add_rq_rb(rq);
3385 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3386 &cfqd->serving_group->blkg, rq_data_dir(rq),
3387 rq_is_sync(rq));
3388 cfq_rq_enqueued(cfqd, cfqq, rq);
3392 * Update hw_tag based on peak queue depth over 50 samples under
3393 * sufficient load.
3395 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3397 struct cfq_queue *cfqq = cfqd->active_queue;
3399 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3400 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3402 if (cfqd->hw_tag == 1)
3403 return;
3405 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3406 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3407 return;
3410 * If active queue hasn't enough requests and can idle, cfq might not
3411 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3412 * case
3414 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3415 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3416 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3417 return;
3419 if (cfqd->hw_tag_samples++ < 50)
3420 return;
3422 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3423 cfqd->hw_tag = 1;
3424 else
3425 cfqd->hw_tag = 0;
3428 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3430 struct cfq_io_context *cic = cfqd->active_cic;
3432 /* If the queue already has requests, don't wait */
3433 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3434 return false;
3436 /* If there are other queues in the group, don't wait */
3437 if (cfqq->cfqg->nr_cfqq > 1)
3438 return false;
3440 /* the only queue in the group, but think time is big */
3441 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3442 return false;
3444 if (cfq_slice_used(cfqq))
3445 return true;
3447 /* if slice left is less than think time, wait busy */
3448 if (cic && sample_valid(cic->ttime.ttime_samples)
3449 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3450 return true;
3453 * If think times is less than a jiffy than ttime_mean=0 and above
3454 * will not be true. It might happen that slice has not expired yet
3455 * but will expire soon (4-5 ns) during select_queue(). To cover the
3456 * case where think time is less than a jiffy, mark the queue wait
3457 * busy if only 1 jiffy is left in the slice.
3459 if (cfqq->slice_end - jiffies == 1)
3460 return true;
3462 return false;
3465 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3467 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3468 struct cfq_data *cfqd = cfqq->cfqd;
3469 const int sync = rq_is_sync(rq);
3470 unsigned long now;
3472 now = jiffies;
3473 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3474 !!(rq->cmd_flags & REQ_NOIDLE));
3476 cfq_update_hw_tag(cfqd);
3478 WARN_ON(!cfqd->rq_in_driver);
3479 WARN_ON(!cfqq->dispatched);
3480 cfqd->rq_in_driver--;
3481 cfqq->dispatched--;
3482 (RQ_CFQG(rq))->dispatched--;
3483 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3484 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3485 rq_data_dir(rq), rq_is_sync(rq));
3487 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3489 if (sync) {
3490 struct cfq_rb_root *service_tree;
3492 RQ_CIC(rq)->ttime.last_end_request = now;
3494 if (cfq_cfqq_on_rr(cfqq))
3495 service_tree = cfqq->service_tree;
3496 else
3497 service_tree = service_tree_for(cfqq->cfqg,
3498 cfqq_prio(cfqq), cfqq_type(cfqq));
3499 service_tree->ttime.last_end_request = now;
3500 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3501 cfqd->last_delayed_sync = now;
3504 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3505 cfqq->cfqg->ttime.last_end_request = now;
3506 #endif
3509 * If this is the active queue, check if it needs to be expired,
3510 * or if we want to idle in case it has no pending requests.
3512 if (cfqd->active_queue == cfqq) {
3513 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3515 if (cfq_cfqq_slice_new(cfqq)) {
3516 cfq_set_prio_slice(cfqd, cfqq);
3517 cfq_clear_cfqq_slice_new(cfqq);
3521 * Should we wait for next request to come in before we expire
3522 * the queue.
3524 if (cfq_should_wait_busy(cfqd, cfqq)) {
3525 unsigned long extend_sl = cfqd->cfq_slice_idle;
3526 if (!cfqd->cfq_slice_idle)
3527 extend_sl = cfqd->cfq_group_idle;
3528 cfqq->slice_end = jiffies + extend_sl;
3529 cfq_mark_cfqq_wait_busy(cfqq);
3530 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3534 * Idling is not enabled on:
3535 * - expired queues
3536 * - idle-priority queues
3537 * - async queues
3538 * - queues with still some requests queued
3539 * - when there is a close cooperator
3541 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3542 cfq_slice_expired(cfqd, 1);
3543 else if (sync && cfqq_empty &&
3544 !cfq_close_cooperator(cfqd, cfqq)) {
3545 cfq_arm_slice_timer(cfqd);
3549 if (!cfqd->rq_in_driver)
3550 cfq_schedule_dispatch(cfqd);
3553 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3555 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3556 cfq_mark_cfqq_must_alloc_slice(cfqq);
3557 return ELV_MQUEUE_MUST;
3560 return ELV_MQUEUE_MAY;
3563 static int cfq_may_queue(struct request_queue *q, int rw)
3565 struct cfq_data *cfqd = q->elevator->elevator_data;
3566 struct task_struct *tsk = current;
3567 struct cfq_io_context *cic;
3568 struct cfq_queue *cfqq;
3571 * don't force setup of a queue from here, as a call to may_queue
3572 * does not necessarily imply that a request actually will be queued.
3573 * so just lookup a possibly existing queue, or return 'may queue'
3574 * if that fails
3576 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3577 if (!cic)
3578 return ELV_MQUEUE_MAY;
3580 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3581 if (cfqq) {
3582 cfq_init_prio_data(cfqq, cic->ioc);
3584 return __cfq_may_queue(cfqq);
3587 return ELV_MQUEUE_MAY;
3591 * queue lock held here
3593 static void cfq_put_request(struct request *rq)
3595 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3597 if (cfqq) {
3598 const int rw = rq_data_dir(rq);
3600 BUG_ON(!cfqq->allocated[rw]);
3601 cfqq->allocated[rw]--;
3603 put_io_context(RQ_CIC(rq)->ioc, cfqq->cfqd->queue);
3605 rq->elevator_private[0] = NULL;
3606 rq->elevator_private[1] = NULL;
3608 /* Put down rq reference on cfqg */
3609 cfq_put_cfqg(RQ_CFQG(rq));
3610 rq->elevator_private[2] = NULL;
3612 cfq_put_queue(cfqq);
3616 static struct cfq_queue *
3617 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3618 struct cfq_queue *cfqq)
3620 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3621 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3622 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3623 cfq_put_queue(cfqq);
3624 return cic_to_cfqq(cic, 1);
3628 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3629 * was the last process referring to said cfqq.
3631 static struct cfq_queue *
3632 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3634 if (cfqq_process_refs(cfqq) == 1) {
3635 cfqq->pid = current->pid;
3636 cfq_clear_cfqq_coop(cfqq);
3637 cfq_clear_cfqq_split_coop(cfqq);
3638 return cfqq;
3641 cic_set_cfqq(cic, NULL, 1);
3643 cfq_put_cooperator(cfqq);
3645 cfq_put_queue(cfqq);
3646 return NULL;
3649 * Allocate cfq data structures associated with this request.
3651 static int
3652 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3654 struct cfq_data *cfqd = q->elevator->elevator_data;
3655 struct cfq_io_context *cic;
3656 const int rw = rq_data_dir(rq);
3657 const bool is_sync = rq_is_sync(rq);
3658 struct cfq_queue *cfqq;
3660 might_sleep_if(gfp_mask & __GFP_WAIT);
3662 spin_lock_irq(q->queue_lock);
3663 cic = cfq_get_io_context(cfqd, gfp_mask);
3664 if (!cic)
3665 goto queue_fail;
3667 new_queue:
3668 cfqq = cic_to_cfqq(cic, is_sync);
3669 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3670 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3671 cic_set_cfqq(cic, cfqq, is_sync);
3672 } else {
3674 * If the queue was seeky for too long, break it apart.
3676 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3677 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3678 cfqq = split_cfqq(cic, cfqq);
3679 if (!cfqq)
3680 goto new_queue;
3684 * Check to see if this queue is scheduled to merge with
3685 * another, closely cooperating queue. The merging of
3686 * queues happens here as it must be done in process context.
3687 * The reference on new_cfqq was taken in merge_cfqqs.
3689 if (cfqq->new_cfqq)
3690 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3693 cfqq->allocated[rw]++;
3695 cfqq->ref++;
3696 rq->elevator_private[0] = cic;
3697 rq->elevator_private[1] = cfqq;
3698 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3699 spin_unlock_irq(q->queue_lock);
3700 return 0;
3702 queue_fail:
3703 cfq_schedule_dispatch(cfqd);
3704 spin_unlock_irq(q->queue_lock);
3705 cfq_log(cfqd, "set_request fail");
3706 return 1;
3709 static void cfq_kick_queue(struct work_struct *work)
3711 struct cfq_data *cfqd =
3712 container_of(work, struct cfq_data, unplug_work);
3713 struct request_queue *q = cfqd->queue;
3715 spin_lock_irq(q->queue_lock);
3716 __blk_run_queue(cfqd->queue);
3717 spin_unlock_irq(q->queue_lock);
3721 * Timer running if the active_queue is currently idling inside its time slice
3723 static void cfq_idle_slice_timer(unsigned long data)
3725 struct cfq_data *cfqd = (struct cfq_data *) data;
3726 struct cfq_queue *cfqq;
3727 unsigned long flags;
3728 int timed_out = 1;
3730 cfq_log(cfqd, "idle timer fired");
3732 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3734 cfqq = cfqd->active_queue;
3735 if (cfqq) {
3736 timed_out = 0;
3739 * We saw a request before the queue expired, let it through
3741 if (cfq_cfqq_must_dispatch(cfqq))
3742 goto out_kick;
3745 * expired
3747 if (cfq_slice_used(cfqq))
3748 goto expire;
3751 * only expire and reinvoke request handler, if there are
3752 * other queues with pending requests
3754 if (!cfqd->busy_queues)
3755 goto out_cont;
3758 * not expired and it has a request pending, let it dispatch
3760 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3761 goto out_kick;
3764 * Queue depth flag is reset only when the idle didn't succeed
3766 cfq_clear_cfqq_deep(cfqq);
3768 expire:
3769 cfq_slice_expired(cfqd, timed_out);
3770 out_kick:
3771 cfq_schedule_dispatch(cfqd);
3772 out_cont:
3773 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3776 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3778 del_timer_sync(&cfqd->idle_slice_timer);
3779 cancel_work_sync(&cfqd->unplug_work);
3782 static void cfq_put_async_queues(struct cfq_data *cfqd)
3784 int i;
3786 for (i = 0; i < IOPRIO_BE_NR; i++) {
3787 if (cfqd->async_cfqq[0][i])
3788 cfq_put_queue(cfqd->async_cfqq[0][i]);
3789 if (cfqd->async_cfqq[1][i])
3790 cfq_put_queue(cfqd->async_cfqq[1][i]);
3793 if (cfqd->async_idle_cfqq)
3794 cfq_put_queue(cfqd->async_idle_cfqq);
3797 static void cfq_exit_queue(struct elevator_queue *e)
3799 struct cfq_data *cfqd = e->elevator_data;
3800 struct request_queue *q = cfqd->queue;
3801 bool wait = false;
3803 cfq_shutdown_timer_wq(cfqd);
3805 spin_lock_irq(q->queue_lock);
3807 if (cfqd->active_queue)
3808 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3810 while (!list_empty(&cfqd->cic_list)) {
3811 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3812 struct cfq_io_context,
3813 queue_list);
3814 struct io_context *ioc = cic->ioc;
3816 spin_lock(&ioc->lock);
3817 cfq_exit_cic(cic);
3818 cfq_release_cic(cic);
3819 spin_unlock(&ioc->lock);
3822 cfq_put_async_queues(cfqd);
3823 cfq_release_cfq_groups(cfqd);
3826 * If there are groups which we could not unlink from blkcg list,
3827 * wait for a rcu period for them to be freed.
3829 if (cfqd->nr_blkcg_linked_grps)
3830 wait = true;
3832 spin_unlock_irq(q->queue_lock);
3834 cfq_shutdown_timer_wq(cfqd);
3837 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3838 * Do this wait only if there are other unlinked groups out
3839 * there. This can happen if cgroup deletion path claimed the
3840 * responsibility of cleaning up a group before queue cleanup code
3841 * get to the group.
3843 * Do not call synchronize_rcu() unconditionally as there are drivers
3844 * which create/delete request queue hundreds of times during scan/boot
3845 * and synchronize_rcu() can take significant time and slow down boot.
3847 if (wait)
3848 synchronize_rcu();
3850 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3851 /* Free up per cpu stats for root group */
3852 free_percpu(cfqd->root_group.blkg.stats_cpu);
3853 #endif
3854 kfree(cfqd);
3857 static void *cfq_init_queue(struct request_queue *q)
3859 struct cfq_data *cfqd;
3860 int i, j;
3861 struct cfq_group *cfqg;
3862 struct cfq_rb_root *st;
3864 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3865 if (!cfqd)
3866 return NULL;
3868 /* Init root service tree */
3869 cfqd->grp_service_tree = CFQ_RB_ROOT;
3871 /* Init root group */
3872 cfqg = &cfqd->root_group;
3873 for_each_cfqg_st(cfqg, i, j, st)
3874 *st = CFQ_RB_ROOT;
3875 RB_CLEAR_NODE(&cfqg->rb_node);
3877 /* Give preference to root group over other groups */
3878 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3880 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3882 * Set root group reference to 2. One reference will be dropped when
3883 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3884 * Other reference will remain there as we don't want to delete this
3885 * group as it is statically allocated and gets destroyed when
3886 * throtl_data goes away.
3888 cfqg->ref = 2;
3890 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3891 kfree(cfqg);
3892 kfree(cfqd);
3893 return NULL;
3896 rcu_read_lock();
3898 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3899 (void *)cfqd, 0);
3900 rcu_read_unlock();
3901 cfqd->nr_blkcg_linked_grps++;
3903 /* Add group on cfqd->cfqg_list */
3904 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3905 #endif
3907 * Not strictly needed (since RB_ROOT just clears the node and we
3908 * zeroed cfqd on alloc), but better be safe in case someone decides
3909 * to add magic to the rb code
3911 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3912 cfqd->prio_trees[i] = RB_ROOT;
3915 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3916 * Grab a permanent reference to it, so that the normal code flow
3917 * will not attempt to free it.
3919 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3920 cfqd->oom_cfqq.ref++;
3921 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3923 INIT_LIST_HEAD(&cfqd->cic_list);
3925 cfqd->queue = q;
3927 init_timer(&cfqd->idle_slice_timer);
3928 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3929 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3931 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3933 cfqd->cfq_quantum = cfq_quantum;
3934 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3935 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3936 cfqd->cfq_back_max = cfq_back_max;
3937 cfqd->cfq_back_penalty = cfq_back_penalty;
3938 cfqd->cfq_slice[0] = cfq_slice_async;
3939 cfqd->cfq_slice[1] = cfq_slice_sync;
3940 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3941 cfqd->cfq_slice_idle = cfq_slice_idle;
3942 cfqd->cfq_group_idle = cfq_group_idle;
3943 cfqd->cfq_latency = 1;
3944 cfqd->hw_tag = -1;
3946 * we optimistically start assuming sync ops weren't delayed in last
3947 * second, in order to have larger depth for async operations.
3949 cfqd->last_delayed_sync = jiffies - HZ;
3950 return cfqd;
3953 static void cfq_slab_kill(void)
3956 * Caller already ensured that pending RCU callbacks are completed,
3957 * so we should have no busy allocations at this point.
3959 if (cfq_pool)
3960 kmem_cache_destroy(cfq_pool);
3961 if (cfq_ioc_pool)
3962 kmem_cache_destroy(cfq_ioc_pool);
3965 static int __init cfq_slab_setup(void)
3967 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3968 if (!cfq_pool)
3969 goto fail;
3971 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3972 if (!cfq_ioc_pool)
3973 goto fail;
3975 return 0;
3976 fail:
3977 cfq_slab_kill();
3978 return -ENOMEM;
3982 * sysfs parts below -->
3984 static ssize_t
3985 cfq_var_show(unsigned int var, char *page)
3987 return sprintf(page, "%d\n", var);
3990 static ssize_t
3991 cfq_var_store(unsigned int *var, const char *page, size_t count)
3993 char *p = (char *) page;
3995 *var = simple_strtoul(p, &p, 10);
3996 return count;
3999 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4000 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4002 struct cfq_data *cfqd = e->elevator_data; \
4003 unsigned int __data = __VAR; \
4004 if (__CONV) \
4005 __data = jiffies_to_msecs(__data); \
4006 return cfq_var_show(__data, (page)); \
4008 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4009 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4010 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4011 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4012 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4013 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4014 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4015 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4016 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4017 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4018 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4019 #undef SHOW_FUNCTION
4021 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4022 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4024 struct cfq_data *cfqd = e->elevator_data; \
4025 unsigned int __data; \
4026 int ret = cfq_var_store(&__data, (page), count); \
4027 if (__data < (MIN)) \
4028 __data = (MIN); \
4029 else if (__data > (MAX)) \
4030 __data = (MAX); \
4031 if (__CONV) \
4032 *(__PTR) = msecs_to_jiffies(__data); \
4033 else \
4034 *(__PTR) = __data; \
4035 return ret; \
4037 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4038 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4039 UINT_MAX, 1);
4040 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4041 UINT_MAX, 1);
4042 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4043 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4044 UINT_MAX, 0);
4045 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4046 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4047 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4048 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4049 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4050 UINT_MAX, 0);
4051 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4052 #undef STORE_FUNCTION
4054 #define CFQ_ATTR(name) \
4055 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4057 static struct elv_fs_entry cfq_attrs[] = {
4058 CFQ_ATTR(quantum),
4059 CFQ_ATTR(fifo_expire_sync),
4060 CFQ_ATTR(fifo_expire_async),
4061 CFQ_ATTR(back_seek_max),
4062 CFQ_ATTR(back_seek_penalty),
4063 CFQ_ATTR(slice_sync),
4064 CFQ_ATTR(slice_async),
4065 CFQ_ATTR(slice_async_rq),
4066 CFQ_ATTR(slice_idle),
4067 CFQ_ATTR(group_idle),
4068 CFQ_ATTR(low_latency),
4069 __ATTR_NULL
4072 static struct elevator_type iosched_cfq = {
4073 .ops = {
4074 .elevator_merge_fn = cfq_merge,
4075 .elevator_merged_fn = cfq_merged_request,
4076 .elevator_merge_req_fn = cfq_merged_requests,
4077 .elevator_allow_merge_fn = cfq_allow_merge,
4078 .elevator_bio_merged_fn = cfq_bio_merged,
4079 .elevator_dispatch_fn = cfq_dispatch_requests,
4080 .elevator_add_req_fn = cfq_insert_request,
4081 .elevator_activate_req_fn = cfq_activate_request,
4082 .elevator_deactivate_req_fn = cfq_deactivate_request,
4083 .elevator_completed_req_fn = cfq_completed_request,
4084 .elevator_former_req_fn = elv_rb_former_request,
4085 .elevator_latter_req_fn = elv_rb_latter_request,
4086 .elevator_set_req_fn = cfq_set_request,
4087 .elevator_put_req_fn = cfq_put_request,
4088 .elevator_may_queue_fn = cfq_may_queue,
4089 .elevator_init_fn = cfq_init_queue,
4090 .elevator_exit_fn = cfq_exit_queue,
4092 .elevator_attrs = cfq_attrs,
4093 .elevator_name = "cfq",
4094 .elevator_owner = THIS_MODULE,
4097 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4098 static struct blkio_policy_type blkio_policy_cfq = {
4099 .ops = {
4100 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4101 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4103 .plid = BLKIO_POLICY_PROP,
4105 #else
4106 static struct blkio_policy_type blkio_policy_cfq;
4107 #endif
4109 static int __init cfq_init(void)
4112 * could be 0 on HZ < 1000 setups
4114 if (!cfq_slice_async)
4115 cfq_slice_async = 1;
4116 if (!cfq_slice_idle)
4117 cfq_slice_idle = 1;
4119 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4120 if (!cfq_group_idle)
4121 cfq_group_idle = 1;
4122 #else
4123 cfq_group_idle = 0;
4124 #endif
4125 if (cfq_slab_setup())
4126 return -ENOMEM;
4128 elv_register(&iosched_cfq);
4129 blkio_policy_register(&blkio_policy_cfq);
4131 return 0;
4134 static void __exit cfq_exit(void)
4136 blkio_policy_unregister(&blkio_policy_cfq);
4137 elv_unregister(&iosched_cfq);
4138 rcu_barrier(); /* make sure all cic RCU frees are complete */
4139 cfq_slab_kill();
4142 module_init(cfq_init);
4143 module_exit(cfq_exit);
4145 MODULE_AUTHOR("Jens Axboe");
4146 MODULE_LICENSE("GPL");
4147 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");