block, cfq: kill ioc_gone
[linux-2.6.git] / block / blk-ioc.c
blobfb23965595da6a34f5965074004ba73887476561
1 /*
2 * Functions related to io context handling
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/slab.h>
12 #include "blk.h"
15 * For io context allocations
17 static struct kmem_cache *iocontext_cachep;
19 /**
20 * get_io_context - increment reference count to io_context
21 * @ioc: io_context to get
23 * Increment reference count to @ioc.
25 void get_io_context(struct io_context *ioc)
27 BUG_ON(atomic_long_read(&ioc->refcount) <= 0);
28 atomic_long_inc(&ioc->refcount);
30 EXPORT_SYMBOL(get_io_context);
33 * Releasing ioc may nest into another put_io_context() leading to nested
34 * fast path release. As the ioc's can't be the same, this is okay but
35 * makes lockdep whine. Keep track of nesting and use it as subclass.
37 #ifdef CONFIG_LOCKDEP
38 #define ioc_release_depth(q) ((q) ? (q)->ioc_release_depth : 0)
39 #define ioc_release_depth_inc(q) (q)->ioc_release_depth++
40 #define ioc_release_depth_dec(q) (q)->ioc_release_depth--
41 #else
42 #define ioc_release_depth(q) 0
43 #define ioc_release_depth_inc(q) do { } while (0)
44 #define ioc_release_depth_dec(q) do { } while (0)
45 #endif
48 * Slow path for ioc release in put_io_context(). Performs double-lock
49 * dancing to unlink all cic's and then frees ioc.
51 static void ioc_release_fn(struct work_struct *work)
53 struct io_context *ioc = container_of(work, struct io_context,
54 release_work);
55 struct request_queue *last_q = NULL;
57 spin_lock_irq(&ioc->lock);
59 while (!hlist_empty(&ioc->cic_list)) {
60 struct cfq_io_context *cic = hlist_entry(ioc->cic_list.first,
61 struct cfq_io_context,
62 cic_list);
63 struct request_queue *this_q = cic->q;
65 if (this_q != last_q) {
67 * Need to switch to @this_q. Once we release
68 * @ioc->lock, it can go away along with @cic.
69 * Hold on to it.
71 __blk_get_queue(this_q);
74 * blk_put_queue() might sleep thanks to kobject
75 * idiocy. Always release both locks, put and
76 * restart.
78 if (last_q) {
79 spin_unlock(last_q->queue_lock);
80 spin_unlock_irq(&ioc->lock);
81 blk_put_queue(last_q);
82 } else {
83 spin_unlock_irq(&ioc->lock);
86 last_q = this_q;
87 spin_lock_irq(this_q->queue_lock);
88 spin_lock(&ioc->lock);
89 continue;
91 ioc_release_depth_inc(this_q);
92 cic->exit(cic);
93 cic->release(cic);
94 ioc_release_depth_dec(this_q);
97 if (last_q) {
98 spin_unlock(last_q->queue_lock);
99 spin_unlock_irq(&ioc->lock);
100 blk_put_queue(last_q);
101 } else {
102 spin_unlock_irq(&ioc->lock);
105 kmem_cache_free(iocontext_cachep, ioc);
109 * put_io_context - put a reference of io_context
110 * @ioc: io_context to put
111 * @locked_q: request_queue the caller is holding queue_lock of (hint)
113 * Decrement reference count of @ioc and release it if the count reaches
114 * zero. If the caller is holding queue_lock of a queue, it can indicate
115 * that with @locked_q. This is an optimization hint and the caller is
116 * allowed to pass in %NULL even when it's holding a queue_lock.
118 void put_io_context(struct io_context *ioc, struct request_queue *locked_q)
120 struct request_queue *last_q = locked_q;
121 unsigned long flags;
123 if (ioc == NULL)
124 return;
126 BUG_ON(atomic_long_read(&ioc->refcount) <= 0);
127 if (locked_q)
128 lockdep_assert_held(locked_q->queue_lock);
130 if (!atomic_long_dec_and_test(&ioc->refcount))
131 return;
134 * Destroy @ioc. This is a bit messy because cic's are chained
135 * from both ioc and queue, and ioc->lock nests inside queue_lock.
136 * The inner ioc->lock should be held to walk our cic_list and then
137 * for each cic the outer matching queue_lock should be grabbed.
138 * ie. We need to do reverse-order double lock dancing.
140 * Another twist is that we are often called with one of the
141 * matching queue_locks held as indicated by @locked_q, which
142 * prevents performing double-lock dance for other queues.
144 * So, we do it in two stages. The fast path uses the queue_lock
145 * the caller is holding and, if other queues need to be accessed,
146 * uses trylock to avoid introducing locking dependency. This can
147 * handle most cases, especially if @ioc was performing IO on only
148 * single device.
150 * If trylock doesn't cut it, we defer to @ioc->release_work which
151 * can do all the double-locking dancing.
153 spin_lock_irqsave_nested(&ioc->lock, flags,
154 ioc_release_depth(locked_q));
156 while (!hlist_empty(&ioc->cic_list)) {
157 struct cfq_io_context *cic = hlist_entry(ioc->cic_list.first,
158 struct cfq_io_context,
159 cic_list);
160 struct request_queue *this_q = cic->q;
162 if (this_q != last_q) {
163 if (last_q && last_q != locked_q)
164 spin_unlock(last_q->queue_lock);
165 last_q = NULL;
167 if (!spin_trylock(this_q->queue_lock))
168 break;
169 last_q = this_q;
170 continue;
172 ioc_release_depth_inc(this_q);
173 cic->exit(cic);
174 cic->release(cic);
175 ioc_release_depth_dec(this_q);
178 if (last_q && last_q != locked_q)
179 spin_unlock(last_q->queue_lock);
181 spin_unlock_irqrestore(&ioc->lock, flags);
183 /* if no cic's left, we're done; otherwise, kick release_work */
184 if (hlist_empty(&ioc->cic_list))
185 kmem_cache_free(iocontext_cachep, ioc);
186 else
187 schedule_work(&ioc->release_work);
189 EXPORT_SYMBOL(put_io_context);
191 /* Called by the exiting task */
192 void exit_io_context(struct task_struct *task)
194 struct io_context *ioc;
196 /* PF_EXITING prevents new io_context from being attached to @task */
197 WARN_ON_ONCE(!(current->flags & PF_EXITING));
199 task_lock(task);
200 ioc = task->io_context;
201 task->io_context = NULL;
202 task_unlock(task);
204 atomic_dec(&ioc->nr_tasks);
205 put_io_context(ioc, NULL);
208 static struct io_context *create_task_io_context(struct task_struct *task,
209 gfp_t gfp_flags, int node,
210 bool take_ref)
212 struct io_context *ioc;
214 ioc = kmem_cache_alloc_node(iocontext_cachep, gfp_flags | __GFP_ZERO,
215 node);
216 if (unlikely(!ioc))
217 return NULL;
219 /* initialize */
220 atomic_long_set(&ioc->refcount, 1);
221 atomic_set(&ioc->nr_tasks, 1);
222 spin_lock_init(&ioc->lock);
223 INIT_RADIX_TREE(&ioc->radix_root, GFP_ATOMIC | __GFP_HIGH);
224 INIT_HLIST_HEAD(&ioc->cic_list);
225 INIT_WORK(&ioc->release_work, ioc_release_fn);
227 /* try to install, somebody might already have beaten us to it */
228 task_lock(task);
230 if (!task->io_context && !(task->flags & PF_EXITING)) {
231 task->io_context = ioc;
232 } else {
233 kmem_cache_free(iocontext_cachep, ioc);
234 ioc = task->io_context;
237 if (ioc && take_ref)
238 get_io_context(ioc);
240 task_unlock(task);
241 return ioc;
245 * current_io_context - get io_context of %current
246 * @gfp_flags: allocation flags, used if allocation is necessary
247 * @node: allocation node, used if allocation is necessary
249 * Return io_context of %current. If it doesn't exist, it is created with
250 * @gfp_flags and @node. The returned io_context does NOT have its
251 * reference count incremented. Because io_context is exited only on task
252 * exit, %current can be sure that the returned io_context is valid and
253 * alive as long as it is executing.
255 struct io_context *current_io_context(gfp_t gfp_flags, int node)
257 might_sleep_if(gfp_flags & __GFP_WAIT);
259 if (current->io_context)
260 return current->io_context;
262 return create_task_io_context(current, gfp_flags, node, false);
264 EXPORT_SYMBOL(current_io_context);
267 * get_task_io_context - get io_context of a task
268 * @task: task of interest
269 * @gfp_flags: allocation flags, used if allocation is necessary
270 * @node: allocation node, used if allocation is necessary
272 * Return io_context of @task. If it doesn't exist, it is created with
273 * @gfp_flags and @node. The returned io_context has its reference count
274 * incremented.
276 * This function always goes through task_lock() and it's better to use
277 * current_io_context() + get_io_context() for %current.
279 struct io_context *get_task_io_context(struct task_struct *task,
280 gfp_t gfp_flags, int node)
282 struct io_context *ioc;
284 might_sleep_if(gfp_flags & __GFP_WAIT);
286 task_lock(task);
287 ioc = task->io_context;
288 if (likely(ioc)) {
289 get_io_context(ioc);
290 task_unlock(task);
291 return ioc;
293 task_unlock(task);
295 return create_task_io_context(task, gfp_flags, node, true);
297 EXPORT_SYMBOL(get_task_io_context);
299 void ioc_set_changed(struct io_context *ioc, int which)
301 struct cfq_io_context *cic;
302 struct hlist_node *n;
304 hlist_for_each_entry(cic, n, &ioc->cic_list, cic_list)
305 set_bit(which, &cic->changed);
309 * ioc_ioprio_changed - notify ioprio change
310 * @ioc: io_context of interest
311 * @ioprio: new ioprio
313 * @ioc's ioprio has changed to @ioprio. Set %CIC_IOPRIO_CHANGED for all
314 * cic's. iosched is responsible for checking the bit and applying it on
315 * request issue path.
317 void ioc_ioprio_changed(struct io_context *ioc, int ioprio)
319 unsigned long flags;
321 spin_lock_irqsave(&ioc->lock, flags);
322 ioc->ioprio = ioprio;
323 ioc_set_changed(ioc, CIC_IOPRIO_CHANGED);
324 spin_unlock_irqrestore(&ioc->lock, flags);
328 * ioc_cgroup_changed - notify cgroup change
329 * @ioc: io_context of interest
331 * @ioc's cgroup has changed. Set %CIC_CGROUP_CHANGED for all cic's.
332 * iosched is responsible for checking the bit and applying it on request
333 * issue path.
335 void ioc_cgroup_changed(struct io_context *ioc)
337 unsigned long flags;
339 spin_lock_irqsave(&ioc->lock, flags);
340 ioc_set_changed(ioc, CIC_CGROUP_CHANGED);
341 spin_unlock_irqrestore(&ioc->lock, flags);
344 static int __init blk_ioc_init(void)
346 iocontext_cachep = kmem_cache_create("blkdev_ioc",
347 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
348 return 0;
350 subsys_initcall(blk_ioc_init);