st: use noop_llseek() instead of default_llseek()
[linux-2.6.git] / fs / btrfs / inode.c
blobd601629b85d171943ee7fa1421b630d7efc7fe35
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
95 int err;
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
232 if (compressed_size)
233 data_len = compressed_size;
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
256 return 0;
259 struct async_extent {
260 u64 start;
261 u64 ram_size;
262 u64 compressed_size;
263 struct page **pages;
264 unsigned long nr_pages;
265 struct list_head list;
268 struct async_cow {
269 struct inode *inode;
270 struct btrfs_root *root;
271 struct page *locked_page;
272 u64 start;
273 u64 end;
274 struct list_head extents;
275 struct btrfs_work work;
278 static noinline int add_async_extent(struct async_cow *cow,
279 u64 start, u64 ram_size,
280 u64 compressed_size,
281 struct page **pages,
282 unsigned long nr_pages)
284 struct async_extent *async_extent;
286 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
287 async_extent->start = start;
288 async_extent->ram_size = ram_size;
289 async_extent->compressed_size = compressed_size;
290 async_extent->pages = pages;
291 async_extent->nr_pages = nr_pages;
292 list_add_tail(&async_extent->list, &cow->extents);
293 return 0;
297 * we create compressed extents in two phases. The first
298 * phase compresses a range of pages that have already been
299 * locked (both pages and state bits are locked).
301 * This is done inside an ordered work queue, and the compression
302 * is spread across many cpus. The actual IO submission is step
303 * two, and the ordered work queue takes care of making sure that
304 * happens in the same order things were put onto the queue by
305 * writepages and friends.
307 * If this code finds it can't get good compression, it puts an
308 * entry onto the work queue to write the uncompressed bytes. This
309 * makes sure that both compressed inodes and uncompressed inodes
310 * are written in the same order that pdflush sent them down.
312 static noinline int compress_file_range(struct inode *inode,
313 struct page *locked_page,
314 u64 start, u64 end,
315 struct async_cow *async_cow,
316 int *num_added)
318 struct btrfs_root *root = BTRFS_I(inode)->root;
319 struct btrfs_trans_handle *trans;
320 u64 num_bytes;
321 u64 orig_start;
322 u64 disk_num_bytes;
323 u64 blocksize = root->sectorsize;
324 u64 actual_end;
325 u64 isize = i_size_read(inode);
326 int ret = 0;
327 struct page **pages = NULL;
328 unsigned long nr_pages;
329 unsigned long nr_pages_ret = 0;
330 unsigned long total_compressed = 0;
331 unsigned long total_in = 0;
332 unsigned long max_compressed = 128 * 1024;
333 unsigned long max_uncompressed = 128 * 1024;
334 int i;
335 int will_compress;
337 orig_start = start;
339 actual_end = min_t(u64, isize, end + 1);
340 again:
341 will_compress = 0;
342 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
343 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
346 * we don't want to send crud past the end of i_size through
347 * compression, that's just a waste of CPU time. So, if the
348 * end of the file is before the start of our current
349 * requested range of bytes, we bail out to the uncompressed
350 * cleanup code that can deal with all of this.
352 * It isn't really the fastest way to fix things, but this is a
353 * very uncommon corner.
355 if (actual_end <= start)
356 goto cleanup_and_bail_uncompressed;
358 total_compressed = actual_end - start;
360 /* we want to make sure that amount of ram required to uncompress
361 * an extent is reasonable, so we limit the total size in ram
362 * of a compressed extent to 128k. This is a crucial number
363 * because it also controls how easily we can spread reads across
364 * cpus for decompression.
366 * We also want to make sure the amount of IO required to do
367 * a random read is reasonably small, so we limit the size of
368 * a compressed extent to 128k.
370 total_compressed = min(total_compressed, max_uncompressed);
371 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
372 num_bytes = max(blocksize, num_bytes);
373 disk_num_bytes = num_bytes;
374 total_in = 0;
375 ret = 0;
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
385 WARN_ON(pages);
386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
389 total_compressed, pages,
390 nr_pages, &nr_pages_ret,
391 &total_in,
392 &total_compressed,
393 max_compressed);
395 if (!ret) {
396 unsigned long offset = total_compressed &
397 (PAGE_CACHE_SIZE - 1);
398 struct page *page = pages[nr_pages_ret - 1];
399 char *kaddr;
401 /* zero the tail end of the last page, we might be
402 * sending it down to disk
404 if (offset) {
405 kaddr = kmap_atomic(page, KM_USER0);
406 memset(kaddr + offset, 0,
407 PAGE_CACHE_SIZE - offset);
408 kunmap_atomic(kaddr, KM_USER0);
410 will_compress = 1;
413 if (start == 0) {
414 trans = btrfs_join_transaction(root, 1);
415 BUG_ON(!trans);
416 btrfs_set_trans_block_group(trans, inode);
418 /* lets try to make an inline extent */
419 if (ret || total_in < (actual_end - start)) {
420 /* we didn't compress the entire range, try
421 * to make an uncompressed inline extent.
423 ret = cow_file_range_inline(trans, root, inode,
424 start, end, 0, NULL);
425 } else {
426 /* try making a compressed inline extent */
427 ret = cow_file_range_inline(trans, root, inode,
428 start, end,
429 total_compressed, pages);
431 if (ret == 0) {
433 * inline extent creation worked, we don't need
434 * to create any more async work items. Unlock
435 * and free up our temp pages.
437 extent_clear_unlock_delalloc(inode,
438 &BTRFS_I(inode)->io_tree,
439 start, end, NULL,
440 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
441 EXTENT_CLEAR_DELALLOC |
442 EXTENT_CLEAR_ACCOUNTING |
443 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
445 btrfs_end_transaction(trans, root);
446 goto free_pages_out;
448 btrfs_end_transaction(trans, root);
451 if (will_compress) {
453 * we aren't doing an inline extent round the compressed size
454 * up to a block size boundary so the allocator does sane
455 * things
457 total_compressed = (total_compressed + blocksize - 1) &
458 ~(blocksize - 1);
461 * one last check to make sure the compression is really a
462 * win, compare the page count read with the blocks on disk
464 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
465 ~(PAGE_CACHE_SIZE - 1);
466 if (total_compressed >= total_in) {
467 will_compress = 0;
468 } else {
469 disk_num_bytes = total_compressed;
470 num_bytes = total_in;
473 if (!will_compress && pages) {
475 * the compression code ran but failed to make things smaller,
476 * free any pages it allocated and our page pointer array
478 for (i = 0; i < nr_pages_ret; i++) {
479 WARN_ON(pages[i]->mapping);
480 page_cache_release(pages[i]);
482 kfree(pages);
483 pages = NULL;
484 total_compressed = 0;
485 nr_pages_ret = 0;
487 /* flag the file so we don't compress in the future */
488 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
489 !(BTRFS_I(inode)->force_compress)) {
490 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
493 if (will_compress) {
494 *num_added += 1;
496 /* the async work queues will take care of doing actual
497 * allocation on disk for these compressed pages,
498 * and will submit them to the elevator.
500 add_async_extent(async_cow, start, num_bytes,
501 total_compressed, pages, nr_pages_ret);
503 if (start + num_bytes < end && start + num_bytes < actual_end) {
504 start += num_bytes;
505 pages = NULL;
506 cond_resched();
507 goto again;
509 } else {
510 cleanup_and_bail_uncompressed:
512 * No compression, but we still need to write the pages in
513 * the file we've been given so far. redirty the locked
514 * page if it corresponds to our extent and set things up
515 * for the async work queue to run cow_file_range to do
516 * the normal delalloc dance
518 if (page_offset(locked_page) >= start &&
519 page_offset(locked_page) <= end) {
520 __set_page_dirty_nobuffers(locked_page);
521 /* unlocked later on in the async handlers */
523 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
524 *num_added += 1;
527 out:
528 return 0;
530 free_pages_out:
531 for (i = 0; i < nr_pages_ret; i++) {
532 WARN_ON(pages[i]->mapping);
533 page_cache_release(pages[i]);
535 kfree(pages);
537 goto out;
541 * phase two of compressed writeback. This is the ordered portion
542 * of the code, which only gets called in the order the work was
543 * queued. We walk all the async extents created by compress_file_range
544 * and send them down to the disk.
546 static noinline int submit_compressed_extents(struct inode *inode,
547 struct async_cow *async_cow)
549 struct async_extent *async_extent;
550 u64 alloc_hint = 0;
551 struct btrfs_trans_handle *trans;
552 struct btrfs_key ins;
553 struct extent_map *em;
554 struct btrfs_root *root = BTRFS_I(inode)->root;
555 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
556 struct extent_io_tree *io_tree;
557 int ret = 0;
559 if (list_empty(&async_cow->extents))
560 return 0;
563 while (!list_empty(&async_cow->extents)) {
564 async_extent = list_entry(async_cow->extents.next,
565 struct async_extent, list);
566 list_del(&async_extent->list);
568 io_tree = &BTRFS_I(inode)->io_tree;
570 retry:
571 /* did the compression code fall back to uncompressed IO? */
572 if (!async_extent->pages) {
573 int page_started = 0;
574 unsigned long nr_written = 0;
576 lock_extent(io_tree, async_extent->start,
577 async_extent->start +
578 async_extent->ram_size - 1, GFP_NOFS);
580 /* allocate blocks */
581 ret = cow_file_range(inode, async_cow->locked_page,
582 async_extent->start,
583 async_extent->start +
584 async_extent->ram_size - 1,
585 &page_started, &nr_written, 0);
588 * if page_started, cow_file_range inserted an
589 * inline extent and took care of all the unlocking
590 * and IO for us. Otherwise, we need to submit
591 * all those pages down to the drive.
593 if (!page_started && !ret)
594 extent_write_locked_range(io_tree,
595 inode, async_extent->start,
596 async_extent->start +
597 async_extent->ram_size - 1,
598 btrfs_get_extent,
599 WB_SYNC_ALL);
600 kfree(async_extent);
601 cond_resched();
602 continue;
605 lock_extent(io_tree, async_extent->start,
606 async_extent->start + async_extent->ram_size - 1,
607 GFP_NOFS);
609 trans = btrfs_join_transaction(root, 1);
610 ret = btrfs_reserve_extent(trans, root,
611 async_extent->compressed_size,
612 async_extent->compressed_size,
613 0, alloc_hint,
614 (u64)-1, &ins, 1);
615 btrfs_end_transaction(trans, root);
617 if (ret) {
618 int i;
619 for (i = 0; i < async_extent->nr_pages; i++) {
620 WARN_ON(async_extent->pages[i]->mapping);
621 page_cache_release(async_extent->pages[i]);
623 kfree(async_extent->pages);
624 async_extent->nr_pages = 0;
625 async_extent->pages = NULL;
626 unlock_extent(io_tree, async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1, GFP_NOFS);
629 goto retry;
633 * here we're doing allocation and writeback of the
634 * compressed pages
636 btrfs_drop_extent_cache(inode, async_extent->start,
637 async_extent->start +
638 async_extent->ram_size - 1, 0);
640 em = alloc_extent_map(GFP_NOFS);
641 em->start = async_extent->start;
642 em->len = async_extent->ram_size;
643 em->orig_start = em->start;
645 em->block_start = ins.objectid;
646 em->block_len = ins.offset;
647 em->bdev = root->fs_info->fs_devices->latest_bdev;
648 set_bit(EXTENT_FLAG_PINNED, &em->flags);
649 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651 while (1) {
652 write_lock(&em_tree->lock);
653 ret = add_extent_mapping(em_tree, em);
654 write_unlock(&em_tree->lock);
655 if (ret != -EEXIST) {
656 free_extent_map(em);
657 break;
659 btrfs_drop_extent_cache(inode, async_extent->start,
660 async_extent->start +
661 async_extent->ram_size - 1, 0);
664 ret = btrfs_add_ordered_extent(inode, async_extent->start,
665 ins.objectid,
666 async_extent->ram_size,
667 ins.offset,
668 BTRFS_ORDERED_COMPRESSED);
669 BUG_ON(ret);
672 * clear dirty, set writeback and unlock the pages.
674 extent_clear_unlock_delalloc(inode,
675 &BTRFS_I(inode)->io_tree,
676 async_extent->start,
677 async_extent->start +
678 async_extent->ram_size - 1,
679 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
680 EXTENT_CLEAR_UNLOCK |
681 EXTENT_CLEAR_DELALLOC |
682 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
684 ret = btrfs_submit_compressed_write(inode,
685 async_extent->start,
686 async_extent->ram_size,
687 ins.objectid,
688 ins.offset, async_extent->pages,
689 async_extent->nr_pages);
691 BUG_ON(ret);
692 alloc_hint = ins.objectid + ins.offset;
693 kfree(async_extent);
694 cond_resched();
697 return 0;
701 * when extent_io.c finds a delayed allocation range in the file,
702 * the call backs end up in this code. The basic idea is to
703 * allocate extents on disk for the range, and create ordered data structs
704 * in ram to track those extents.
706 * locked_page is the page that writepage had locked already. We use
707 * it to make sure we don't do extra locks or unlocks.
709 * *page_started is set to one if we unlock locked_page and do everything
710 * required to start IO on it. It may be clean and already done with
711 * IO when we return.
713 static noinline int cow_file_range(struct inode *inode,
714 struct page *locked_page,
715 u64 start, u64 end, int *page_started,
716 unsigned long *nr_written,
717 int unlock)
719 struct btrfs_root *root = BTRFS_I(inode)->root;
720 struct btrfs_trans_handle *trans;
721 u64 alloc_hint = 0;
722 u64 num_bytes;
723 unsigned long ram_size;
724 u64 disk_num_bytes;
725 u64 cur_alloc_size;
726 u64 blocksize = root->sectorsize;
727 u64 actual_end;
728 u64 isize = i_size_read(inode);
729 struct btrfs_key ins;
730 struct extent_map *em;
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 int ret = 0;
734 trans = btrfs_join_transaction(root, 1);
735 BUG_ON(!trans);
736 btrfs_set_trans_block_group(trans, inode);
738 actual_end = min_t(u64, isize, end + 1);
740 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
741 num_bytes = max(blocksize, num_bytes);
742 disk_num_bytes = num_bytes;
743 ret = 0;
745 if (start == 0) {
746 /* lets try to make an inline extent */
747 ret = cow_file_range_inline(trans, root, inode,
748 start, end, 0, NULL);
749 if (ret == 0) {
750 extent_clear_unlock_delalloc(inode,
751 &BTRFS_I(inode)->io_tree,
752 start, end, NULL,
753 EXTENT_CLEAR_UNLOCK_PAGE |
754 EXTENT_CLEAR_UNLOCK |
755 EXTENT_CLEAR_DELALLOC |
756 EXTENT_CLEAR_ACCOUNTING |
757 EXTENT_CLEAR_DIRTY |
758 EXTENT_SET_WRITEBACK |
759 EXTENT_END_WRITEBACK);
761 *nr_written = *nr_written +
762 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
763 *page_started = 1;
764 ret = 0;
765 goto out;
769 BUG_ON(disk_num_bytes >
770 btrfs_super_total_bytes(&root->fs_info->super_copy));
773 read_lock(&BTRFS_I(inode)->extent_tree.lock);
774 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
775 start, num_bytes);
776 if (em) {
778 * if block start isn't an actual block number then find the
779 * first block in this inode and use that as a hint. If that
780 * block is also bogus then just don't worry about it.
782 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
783 free_extent_map(em);
784 em = search_extent_mapping(em_tree, 0, 0);
785 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
786 alloc_hint = em->block_start;
787 if (em)
788 free_extent_map(em);
789 } else {
790 alloc_hint = em->block_start;
791 free_extent_map(em);
794 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
795 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
797 while (disk_num_bytes > 0) {
798 unsigned long op;
800 cur_alloc_size = disk_num_bytes;
801 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
802 root->sectorsize, 0, alloc_hint,
803 (u64)-1, &ins, 1);
804 BUG_ON(ret);
806 em = alloc_extent_map(GFP_NOFS);
807 em->start = start;
808 em->orig_start = em->start;
809 ram_size = ins.offset;
810 em->len = ins.offset;
812 em->block_start = ins.objectid;
813 em->block_len = ins.offset;
814 em->bdev = root->fs_info->fs_devices->latest_bdev;
815 set_bit(EXTENT_FLAG_PINNED, &em->flags);
817 while (1) {
818 write_lock(&em_tree->lock);
819 ret = add_extent_mapping(em_tree, em);
820 write_unlock(&em_tree->lock);
821 if (ret != -EEXIST) {
822 free_extent_map(em);
823 break;
825 btrfs_drop_extent_cache(inode, start,
826 start + ram_size - 1, 0);
829 cur_alloc_size = ins.offset;
830 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
831 ram_size, cur_alloc_size, 0);
832 BUG_ON(ret);
834 if (root->root_key.objectid ==
835 BTRFS_DATA_RELOC_TREE_OBJECTID) {
836 ret = btrfs_reloc_clone_csums(inode, start,
837 cur_alloc_size);
838 BUG_ON(ret);
841 if (disk_num_bytes < cur_alloc_size)
842 break;
844 /* we're not doing compressed IO, don't unlock the first
845 * page (which the caller expects to stay locked), don't
846 * clear any dirty bits and don't set any writeback bits
848 * Do set the Private2 bit so we know this page was properly
849 * setup for writepage
851 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
852 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
853 EXTENT_SET_PRIVATE2;
855 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
856 start, start + ram_size - 1,
857 locked_page, op);
858 disk_num_bytes -= cur_alloc_size;
859 num_bytes -= cur_alloc_size;
860 alloc_hint = ins.objectid + ins.offset;
861 start += cur_alloc_size;
863 out:
864 ret = 0;
865 btrfs_end_transaction(trans, root);
867 return ret;
871 * work queue call back to started compression on a file and pages
873 static noinline void async_cow_start(struct btrfs_work *work)
875 struct async_cow *async_cow;
876 int num_added = 0;
877 async_cow = container_of(work, struct async_cow, work);
879 compress_file_range(async_cow->inode, async_cow->locked_page,
880 async_cow->start, async_cow->end, async_cow,
881 &num_added);
882 if (num_added == 0)
883 async_cow->inode = NULL;
887 * work queue call back to submit previously compressed pages
889 static noinline void async_cow_submit(struct btrfs_work *work)
891 struct async_cow *async_cow;
892 struct btrfs_root *root;
893 unsigned long nr_pages;
895 async_cow = container_of(work, struct async_cow, work);
897 root = async_cow->root;
898 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
899 PAGE_CACHE_SHIFT;
901 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
903 if (atomic_read(&root->fs_info->async_delalloc_pages) <
904 5 * 1042 * 1024 &&
905 waitqueue_active(&root->fs_info->async_submit_wait))
906 wake_up(&root->fs_info->async_submit_wait);
908 if (async_cow->inode)
909 submit_compressed_extents(async_cow->inode, async_cow);
912 static noinline void async_cow_free(struct btrfs_work *work)
914 struct async_cow *async_cow;
915 async_cow = container_of(work, struct async_cow, work);
916 kfree(async_cow);
919 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written)
923 struct async_cow *async_cow;
924 struct btrfs_root *root = BTRFS_I(inode)->root;
925 unsigned long nr_pages;
926 u64 cur_end;
927 int limit = 10 * 1024 * 1042;
929 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
930 1, 0, NULL, GFP_NOFS);
931 while (start < end) {
932 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
933 async_cow->inode = inode;
934 async_cow->root = root;
935 async_cow->locked_page = locked_page;
936 async_cow->start = start;
938 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
939 cur_end = end;
940 else
941 cur_end = min(end, start + 512 * 1024 - 1);
943 async_cow->end = cur_end;
944 INIT_LIST_HEAD(&async_cow->extents);
946 async_cow->work.func = async_cow_start;
947 async_cow->work.ordered_func = async_cow_submit;
948 async_cow->work.ordered_free = async_cow_free;
949 async_cow->work.flags = 0;
951 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
952 PAGE_CACHE_SHIFT;
953 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
955 btrfs_queue_worker(&root->fs_info->delalloc_workers,
956 &async_cow->work);
958 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
959 wait_event(root->fs_info->async_submit_wait,
960 (atomic_read(&root->fs_info->async_delalloc_pages) <
961 limit));
964 while (atomic_read(&root->fs_info->async_submit_draining) &&
965 atomic_read(&root->fs_info->async_delalloc_pages)) {
966 wait_event(root->fs_info->async_submit_wait,
967 (atomic_read(&root->fs_info->async_delalloc_pages) ==
968 0));
971 *nr_written += nr_pages;
972 start = cur_end + 1;
974 *page_started = 1;
975 return 0;
978 static noinline int csum_exist_in_range(struct btrfs_root *root,
979 u64 bytenr, u64 num_bytes)
981 int ret;
982 struct btrfs_ordered_sum *sums;
983 LIST_HEAD(list);
985 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
986 bytenr + num_bytes - 1, &list);
987 if (ret == 0 && list_empty(&list))
988 return 0;
990 while (!list_empty(&list)) {
991 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
992 list_del(&sums->list);
993 kfree(sums);
995 return 1;
999 * when nowcow writeback call back. This checks for snapshots or COW copies
1000 * of the extents that exist in the file, and COWs the file as required.
1002 * If no cow copies or snapshots exist, we write directly to the existing
1003 * blocks on disk
1005 static noinline int run_delalloc_nocow(struct inode *inode,
1006 struct page *locked_page,
1007 u64 start, u64 end, int *page_started, int force,
1008 unsigned long *nr_written)
1010 struct btrfs_root *root = BTRFS_I(inode)->root;
1011 struct btrfs_trans_handle *trans;
1012 struct extent_buffer *leaf;
1013 struct btrfs_path *path;
1014 struct btrfs_file_extent_item *fi;
1015 struct btrfs_key found_key;
1016 u64 cow_start;
1017 u64 cur_offset;
1018 u64 extent_end;
1019 u64 extent_offset;
1020 u64 disk_bytenr;
1021 u64 num_bytes;
1022 int extent_type;
1023 int ret;
1024 int type;
1025 int nocow;
1026 int check_prev = 1;
1028 path = btrfs_alloc_path();
1029 BUG_ON(!path);
1030 trans = btrfs_join_transaction(root, 1);
1031 BUG_ON(!trans);
1033 cow_start = (u64)-1;
1034 cur_offset = start;
1035 while (1) {
1036 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1037 cur_offset, 0);
1038 BUG_ON(ret < 0);
1039 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1040 leaf = path->nodes[0];
1041 btrfs_item_key_to_cpu(leaf, &found_key,
1042 path->slots[0] - 1);
1043 if (found_key.objectid == inode->i_ino &&
1044 found_key.type == BTRFS_EXTENT_DATA_KEY)
1045 path->slots[0]--;
1047 check_prev = 0;
1048 next_slot:
1049 leaf = path->nodes[0];
1050 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1051 ret = btrfs_next_leaf(root, path);
1052 if (ret < 0)
1053 BUG_ON(1);
1054 if (ret > 0)
1055 break;
1056 leaf = path->nodes[0];
1059 nocow = 0;
1060 disk_bytenr = 0;
1061 num_bytes = 0;
1062 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1064 if (found_key.objectid > inode->i_ino ||
1065 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1066 found_key.offset > end)
1067 break;
1069 if (found_key.offset > cur_offset) {
1070 extent_end = found_key.offset;
1071 extent_type = 0;
1072 goto out_check;
1075 fi = btrfs_item_ptr(leaf, path->slots[0],
1076 struct btrfs_file_extent_item);
1077 extent_type = btrfs_file_extent_type(leaf, fi);
1079 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1080 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1081 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1082 extent_offset = btrfs_file_extent_offset(leaf, fi);
1083 extent_end = found_key.offset +
1084 btrfs_file_extent_num_bytes(leaf, fi);
1085 if (extent_end <= start) {
1086 path->slots[0]++;
1087 goto next_slot;
1089 if (disk_bytenr == 0)
1090 goto out_check;
1091 if (btrfs_file_extent_compression(leaf, fi) ||
1092 btrfs_file_extent_encryption(leaf, fi) ||
1093 btrfs_file_extent_other_encoding(leaf, fi))
1094 goto out_check;
1095 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1096 goto out_check;
1097 if (btrfs_extent_readonly(root, disk_bytenr))
1098 goto out_check;
1099 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1100 found_key.offset -
1101 extent_offset, disk_bytenr))
1102 goto out_check;
1103 disk_bytenr += extent_offset;
1104 disk_bytenr += cur_offset - found_key.offset;
1105 num_bytes = min(end + 1, extent_end) - cur_offset;
1107 * force cow if csum exists in the range.
1108 * this ensure that csum for a given extent are
1109 * either valid or do not exist.
1111 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1112 goto out_check;
1113 nocow = 1;
1114 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1115 extent_end = found_key.offset +
1116 btrfs_file_extent_inline_len(leaf, fi);
1117 extent_end = ALIGN(extent_end, root->sectorsize);
1118 } else {
1119 BUG_ON(1);
1121 out_check:
1122 if (extent_end <= start) {
1123 path->slots[0]++;
1124 goto next_slot;
1126 if (!nocow) {
1127 if (cow_start == (u64)-1)
1128 cow_start = cur_offset;
1129 cur_offset = extent_end;
1130 if (cur_offset > end)
1131 break;
1132 path->slots[0]++;
1133 goto next_slot;
1136 btrfs_release_path(root, path);
1137 if (cow_start != (u64)-1) {
1138 ret = cow_file_range(inode, locked_page, cow_start,
1139 found_key.offset - 1, page_started,
1140 nr_written, 1);
1141 BUG_ON(ret);
1142 cow_start = (u64)-1;
1145 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1146 struct extent_map *em;
1147 struct extent_map_tree *em_tree;
1148 em_tree = &BTRFS_I(inode)->extent_tree;
1149 em = alloc_extent_map(GFP_NOFS);
1150 em->start = cur_offset;
1151 em->orig_start = em->start;
1152 em->len = num_bytes;
1153 em->block_len = num_bytes;
1154 em->block_start = disk_bytenr;
1155 em->bdev = root->fs_info->fs_devices->latest_bdev;
1156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1157 while (1) {
1158 write_lock(&em_tree->lock);
1159 ret = add_extent_mapping(em_tree, em);
1160 write_unlock(&em_tree->lock);
1161 if (ret != -EEXIST) {
1162 free_extent_map(em);
1163 break;
1165 btrfs_drop_extent_cache(inode, em->start,
1166 em->start + em->len - 1, 0);
1168 type = BTRFS_ORDERED_PREALLOC;
1169 } else {
1170 type = BTRFS_ORDERED_NOCOW;
1173 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1174 num_bytes, num_bytes, type);
1175 BUG_ON(ret);
1177 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1178 cur_offset, cur_offset + num_bytes - 1,
1179 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1181 EXTENT_SET_PRIVATE2);
1182 cur_offset = extent_end;
1183 if (cur_offset > end)
1184 break;
1186 btrfs_release_path(root, path);
1188 if (cur_offset <= end && cow_start == (u64)-1)
1189 cow_start = cur_offset;
1190 if (cow_start != (u64)-1) {
1191 ret = cow_file_range(inode, locked_page, cow_start, end,
1192 page_started, nr_written, 1);
1193 BUG_ON(ret);
1196 ret = btrfs_end_transaction(trans, root);
1197 BUG_ON(ret);
1198 btrfs_free_path(path);
1199 return 0;
1203 * extent_io.c call back to do delayed allocation processing
1205 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1206 u64 start, u64 end, int *page_started,
1207 unsigned long *nr_written)
1209 int ret;
1210 struct btrfs_root *root = BTRFS_I(inode)->root;
1212 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1213 ret = run_delalloc_nocow(inode, locked_page, start, end,
1214 page_started, 1, nr_written);
1215 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1216 ret = run_delalloc_nocow(inode, locked_page, start, end,
1217 page_started, 0, nr_written);
1218 else if (!btrfs_test_opt(root, COMPRESS) &&
1219 !(BTRFS_I(inode)->force_compress))
1220 ret = cow_file_range(inode, locked_page, start, end,
1221 page_started, nr_written, 1);
1222 else
1223 ret = cow_file_range_async(inode, locked_page, start, end,
1224 page_started, nr_written);
1225 return ret;
1228 static int btrfs_split_extent_hook(struct inode *inode,
1229 struct extent_state *orig, u64 split)
1231 if (!(orig->state & EXTENT_DELALLOC))
1232 return 0;
1234 spin_lock(&BTRFS_I(inode)->accounting_lock);
1235 BTRFS_I(inode)->outstanding_extents++;
1236 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1238 return 0;
1242 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1243 * extents so we can keep track of new extents that are just merged onto old
1244 * extents, such as when we are doing sequential writes, so we can properly
1245 * account for the metadata space we'll need.
1247 static int btrfs_merge_extent_hook(struct inode *inode,
1248 struct extent_state *new,
1249 struct extent_state *other)
1251 /* not delalloc, ignore it */
1252 if (!(other->state & EXTENT_DELALLOC))
1253 return 0;
1255 spin_lock(&BTRFS_I(inode)->accounting_lock);
1256 BTRFS_I(inode)->outstanding_extents--;
1257 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1259 return 0;
1263 * extent_io.c set_bit_hook, used to track delayed allocation
1264 * bytes in this file, and to maintain the list of inodes that
1265 * have pending delalloc work to be done.
1267 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1268 unsigned long old, unsigned long bits)
1272 * set_bit and clear bit hooks normally require _irqsave/restore
1273 * but in this case, we are only testeing for the DELALLOC
1274 * bit, which is only set or cleared with irqs on
1276 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1277 struct btrfs_root *root = BTRFS_I(inode)->root;
1279 spin_lock(&BTRFS_I(inode)->accounting_lock);
1280 BTRFS_I(inode)->outstanding_extents++;
1281 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1282 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1284 spin_lock(&root->fs_info->delalloc_lock);
1285 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1286 root->fs_info->delalloc_bytes += end - start + 1;
1287 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1288 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1289 &root->fs_info->delalloc_inodes);
1291 spin_unlock(&root->fs_info->delalloc_lock);
1293 return 0;
1297 * extent_io.c clear_bit_hook, see set_bit_hook for why
1299 static int btrfs_clear_bit_hook(struct inode *inode,
1300 struct extent_state *state, unsigned long bits)
1303 * set_bit and clear bit hooks normally require _irqsave/restore
1304 * but in this case, we are only testeing for the DELALLOC
1305 * bit, which is only set or cleared with irqs on
1307 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1308 struct btrfs_root *root = BTRFS_I(inode)->root;
1310 if (bits & EXTENT_DO_ACCOUNTING) {
1311 spin_lock(&BTRFS_I(inode)->accounting_lock);
1312 WARN_ON(!BTRFS_I(inode)->outstanding_extents);
1313 BTRFS_I(inode)->outstanding_extents--;
1314 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1315 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1318 spin_lock(&root->fs_info->delalloc_lock);
1319 if (state->end - state->start + 1 >
1320 root->fs_info->delalloc_bytes) {
1321 printk(KERN_INFO "btrfs warning: delalloc account "
1322 "%llu %llu\n",
1323 (unsigned long long)
1324 state->end - state->start + 1,
1325 (unsigned long long)
1326 root->fs_info->delalloc_bytes);
1327 btrfs_delalloc_free_space(root, inode, (u64)-1);
1328 root->fs_info->delalloc_bytes = 0;
1329 BTRFS_I(inode)->delalloc_bytes = 0;
1330 } else {
1331 btrfs_delalloc_free_space(root, inode,
1332 state->end -
1333 state->start + 1);
1334 root->fs_info->delalloc_bytes -= state->end -
1335 state->start + 1;
1336 BTRFS_I(inode)->delalloc_bytes -= state->end -
1337 state->start + 1;
1339 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1340 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1341 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343 spin_unlock(&root->fs_info->delalloc_lock);
1345 return 0;
1349 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1350 * we don't create bios that span stripes or chunks
1352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1353 size_t size, struct bio *bio,
1354 unsigned long bio_flags)
1356 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1357 struct btrfs_mapping_tree *map_tree;
1358 u64 logical = (u64)bio->bi_sector << 9;
1359 u64 length = 0;
1360 u64 map_length;
1361 int ret;
1363 if (bio_flags & EXTENT_BIO_COMPRESSED)
1364 return 0;
1366 length = bio->bi_size;
1367 map_tree = &root->fs_info->mapping_tree;
1368 map_length = length;
1369 ret = btrfs_map_block(map_tree, READ, logical,
1370 &map_length, NULL, 0);
1372 if (map_length < length + size)
1373 return 1;
1374 return 0;
1378 * in order to insert checksums into the metadata in large chunks,
1379 * we wait until bio submission time. All the pages in the bio are
1380 * checksummed and sums are attached onto the ordered extent record.
1382 * At IO completion time the cums attached on the ordered extent record
1383 * are inserted into the btree
1385 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1386 struct bio *bio, int mirror_num,
1387 unsigned long bio_flags)
1389 struct btrfs_root *root = BTRFS_I(inode)->root;
1390 int ret = 0;
1392 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1393 BUG_ON(ret);
1394 return 0;
1398 * in order to insert checksums into the metadata in large chunks,
1399 * we wait until bio submission time. All the pages in the bio are
1400 * checksummed and sums are attached onto the ordered extent record.
1402 * At IO completion time the cums attached on the ordered extent record
1403 * are inserted into the btree
1405 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1406 int mirror_num, unsigned long bio_flags)
1408 struct btrfs_root *root = BTRFS_I(inode)->root;
1409 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1413 * extent_io.c submission hook. This does the right thing for csum calculation
1414 * on write, or reading the csums from the tree before a read
1416 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1417 int mirror_num, unsigned long bio_flags)
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
1420 int ret = 0;
1421 int skip_sum;
1423 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1425 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1426 BUG_ON(ret);
1428 if (!(rw & (1 << BIO_RW))) {
1429 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1430 return btrfs_submit_compressed_read(inode, bio,
1431 mirror_num, bio_flags);
1432 } else if (!skip_sum)
1433 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1434 goto mapit;
1435 } else if (!skip_sum) {
1436 /* csum items have already been cloned */
1437 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1438 goto mapit;
1439 /* we're doing a write, do the async checksumming */
1440 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1441 inode, rw, bio, mirror_num,
1442 bio_flags, __btrfs_submit_bio_start,
1443 __btrfs_submit_bio_done);
1446 mapit:
1447 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1451 * given a list of ordered sums record them in the inode. This happens
1452 * at IO completion time based on sums calculated at bio submission time.
1454 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1455 struct inode *inode, u64 file_offset,
1456 struct list_head *list)
1458 struct btrfs_ordered_sum *sum;
1460 btrfs_set_trans_block_group(trans, inode);
1462 list_for_each_entry(sum, list, list) {
1463 btrfs_csum_file_blocks(trans,
1464 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1466 return 0;
1469 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1470 struct extent_state **cached_state)
1472 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1473 WARN_ON(1);
1474 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1475 cached_state, GFP_NOFS);
1478 /* see btrfs_writepage_start_hook for details on why this is required */
1479 struct btrfs_writepage_fixup {
1480 struct page *page;
1481 struct btrfs_work work;
1484 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1486 struct btrfs_writepage_fixup *fixup;
1487 struct btrfs_ordered_extent *ordered;
1488 struct extent_state *cached_state = NULL;
1489 struct page *page;
1490 struct inode *inode;
1491 u64 page_start;
1492 u64 page_end;
1494 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1495 page = fixup->page;
1496 again:
1497 lock_page(page);
1498 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1499 ClearPageChecked(page);
1500 goto out_page;
1503 inode = page->mapping->host;
1504 page_start = page_offset(page);
1505 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1507 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1508 &cached_state, GFP_NOFS);
1510 /* already ordered? We're done */
1511 if (PagePrivate2(page))
1512 goto out;
1514 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1515 if (ordered) {
1516 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1517 page_end, &cached_state, GFP_NOFS);
1518 unlock_page(page);
1519 btrfs_start_ordered_extent(inode, ordered, 1);
1520 goto again;
1523 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1524 ClearPageChecked(page);
1525 out:
1526 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1527 &cached_state, GFP_NOFS);
1528 out_page:
1529 unlock_page(page);
1530 page_cache_release(page);
1534 * There are a few paths in the higher layers of the kernel that directly
1535 * set the page dirty bit without asking the filesystem if it is a
1536 * good idea. This causes problems because we want to make sure COW
1537 * properly happens and the data=ordered rules are followed.
1539 * In our case any range that doesn't have the ORDERED bit set
1540 * hasn't been properly setup for IO. We kick off an async process
1541 * to fix it up. The async helper will wait for ordered extents, set
1542 * the delalloc bit and make it safe to write the page.
1544 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1546 struct inode *inode = page->mapping->host;
1547 struct btrfs_writepage_fixup *fixup;
1548 struct btrfs_root *root = BTRFS_I(inode)->root;
1550 /* this page is properly in the ordered list */
1551 if (TestClearPagePrivate2(page))
1552 return 0;
1554 if (PageChecked(page))
1555 return -EAGAIN;
1557 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1558 if (!fixup)
1559 return -EAGAIN;
1561 SetPageChecked(page);
1562 page_cache_get(page);
1563 fixup->work.func = btrfs_writepage_fixup_worker;
1564 fixup->page = page;
1565 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1566 return -EAGAIN;
1569 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1570 struct inode *inode, u64 file_pos,
1571 u64 disk_bytenr, u64 disk_num_bytes,
1572 u64 num_bytes, u64 ram_bytes,
1573 u8 compression, u8 encryption,
1574 u16 other_encoding, int extent_type)
1576 struct btrfs_root *root = BTRFS_I(inode)->root;
1577 struct btrfs_file_extent_item *fi;
1578 struct btrfs_path *path;
1579 struct extent_buffer *leaf;
1580 struct btrfs_key ins;
1581 u64 hint;
1582 int ret;
1584 path = btrfs_alloc_path();
1585 BUG_ON(!path);
1587 path->leave_spinning = 1;
1590 * we may be replacing one extent in the tree with another.
1591 * The new extent is pinned in the extent map, and we don't want
1592 * to drop it from the cache until it is completely in the btree.
1594 * So, tell btrfs_drop_extents to leave this extent in the cache.
1595 * the caller is expected to unpin it and allow it to be merged
1596 * with the others.
1598 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1599 &hint, 0);
1600 BUG_ON(ret);
1602 ins.objectid = inode->i_ino;
1603 ins.offset = file_pos;
1604 ins.type = BTRFS_EXTENT_DATA_KEY;
1605 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1606 BUG_ON(ret);
1607 leaf = path->nodes[0];
1608 fi = btrfs_item_ptr(leaf, path->slots[0],
1609 struct btrfs_file_extent_item);
1610 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1611 btrfs_set_file_extent_type(leaf, fi, extent_type);
1612 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1613 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1614 btrfs_set_file_extent_offset(leaf, fi, 0);
1615 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1616 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1617 btrfs_set_file_extent_compression(leaf, fi, compression);
1618 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1619 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1621 btrfs_unlock_up_safe(path, 1);
1622 btrfs_set_lock_blocking(leaf);
1624 btrfs_mark_buffer_dirty(leaf);
1626 inode_add_bytes(inode, num_bytes);
1628 ins.objectid = disk_bytenr;
1629 ins.offset = disk_num_bytes;
1630 ins.type = BTRFS_EXTENT_ITEM_KEY;
1631 ret = btrfs_alloc_reserved_file_extent(trans, root,
1632 root->root_key.objectid,
1633 inode->i_ino, file_pos, &ins);
1634 BUG_ON(ret);
1635 btrfs_free_path(path);
1637 return 0;
1641 * helper function for btrfs_finish_ordered_io, this
1642 * just reads in some of the csum leaves to prime them into ram
1643 * before we start the transaction. It limits the amount of btree
1644 * reads required while inside the transaction.
1646 /* as ordered data IO finishes, this gets called so we can finish
1647 * an ordered extent if the range of bytes in the file it covers are
1648 * fully written.
1650 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1652 struct btrfs_root *root = BTRFS_I(inode)->root;
1653 struct btrfs_trans_handle *trans;
1654 struct btrfs_ordered_extent *ordered_extent = NULL;
1655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1656 struct extent_state *cached_state = NULL;
1657 int compressed = 0;
1658 int ret;
1660 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1661 end - start + 1);
1662 if (!ret)
1663 return 0;
1664 BUG_ON(!ordered_extent);
1666 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1667 BUG_ON(!list_empty(&ordered_extent->list));
1668 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1669 if (!ret) {
1670 trans = btrfs_join_transaction(root, 1);
1671 ret = btrfs_update_inode(trans, root, inode);
1672 BUG_ON(ret);
1673 btrfs_end_transaction(trans, root);
1675 goto out;
1678 lock_extent_bits(io_tree, ordered_extent->file_offset,
1679 ordered_extent->file_offset + ordered_extent->len - 1,
1680 0, &cached_state, GFP_NOFS);
1682 trans = btrfs_join_transaction(root, 1);
1684 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1685 compressed = 1;
1686 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1687 BUG_ON(compressed);
1688 ret = btrfs_mark_extent_written(trans, inode,
1689 ordered_extent->file_offset,
1690 ordered_extent->file_offset +
1691 ordered_extent->len);
1692 BUG_ON(ret);
1693 } else {
1694 ret = insert_reserved_file_extent(trans, inode,
1695 ordered_extent->file_offset,
1696 ordered_extent->start,
1697 ordered_extent->disk_len,
1698 ordered_extent->len,
1699 ordered_extent->len,
1700 compressed, 0, 0,
1701 BTRFS_FILE_EXTENT_REG);
1702 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1703 ordered_extent->file_offset,
1704 ordered_extent->len);
1705 BUG_ON(ret);
1707 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1708 ordered_extent->file_offset +
1709 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1711 add_pending_csums(trans, inode, ordered_extent->file_offset,
1712 &ordered_extent->list);
1714 /* this also removes the ordered extent from the tree */
1715 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 ret = btrfs_update_inode(trans, root, inode);
1717 BUG_ON(ret);
1718 btrfs_end_transaction(trans, root);
1719 out:
1720 /* once for us */
1721 btrfs_put_ordered_extent(ordered_extent);
1722 /* once for the tree */
1723 btrfs_put_ordered_extent(ordered_extent);
1725 return 0;
1728 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1729 struct extent_state *state, int uptodate)
1731 ClearPagePrivate2(page);
1732 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1736 * When IO fails, either with EIO or csum verification fails, we
1737 * try other mirrors that might have a good copy of the data. This
1738 * io_failure_record is used to record state as we go through all the
1739 * mirrors. If another mirror has good data, the page is set up to date
1740 * and things continue. If a good mirror can't be found, the original
1741 * bio end_io callback is called to indicate things have failed.
1743 struct io_failure_record {
1744 struct page *page;
1745 u64 start;
1746 u64 len;
1747 u64 logical;
1748 unsigned long bio_flags;
1749 int last_mirror;
1752 static int btrfs_io_failed_hook(struct bio *failed_bio,
1753 struct page *page, u64 start, u64 end,
1754 struct extent_state *state)
1756 struct io_failure_record *failrec = NULL;
1757 u64 private;
1758 struct extent_map *em;
1759 struct inode *inode = page->mapping->host;
1760 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1761 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1762 struct bio *bio;
1763 int num_copies;
1764 int ret;
1765 int rw;
1766 u64 logical;
1768 ret = get_state_private(failure_tree, start, &private);
1769 if (ret) {
1770 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1771 if (!failrec)
1772 return -ENOMEM;
1773 failrec->start = start;
1774 failrec->len = end - start + 1;
1775 failrec->last_mirror = 0;
1776 failrec->bio_flags = 0;
1778 read_lock(&em_tree->lock);
1779 em = lookup_extent_mapping(em_tree, start, failrec->len);
1780 if (em->start > start || em->start + em->len < start) {
1781 free_extent_map(em);
1782 em = NULL;
1784 read_unlock(&em_tree->lock);
1786 if (!em || IS_ERR(em)) {
1787 kfree(failrec);
1788 return -EIO;
1790 logical = start - em->start;
1791 logical = em->block_start + logical;
1792 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1793 logical = em->block_start;
1794 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1796 failrec->logical = logical;
1797 free_extent_map(em);
1798 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1799 EXTENT_DIRTY, GFP_NOFS);
1800 set_state_private(failure_tree, start,
1801 (u64)(unsigned long)failrec);
1802 } else {
1803 failrec = (struct io_failure_record *)(unsigned long)private;
1805 num_copies = btrfs_num_copies(
1806 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1807 failrec->logical, failrec->len);
1808 failrec->last_mirror++;
1809 if (!state) {
1810 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1811 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1812 failrec->start,
1813 EXTENT_LOCKED);
1814 if (state && state->start != failrec->start)
1815 state = NULL;
1816 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1818 if (!state || failrec->last_mirror > num_copies) {
1819 set_state_private(failure_tree, failrec->start, 0);
1820 clear_extent_bits(failure_tree, failrec->start,
1821 failrec->start + failrec->len - 1,
1822 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1823 kfree(failrec);
1824 return -EIO;
1826 bio = bio_alloc(GFP_NOFS, 1);
1827 bio->bi_private = state;
1828 bio->bi_end_io = failed_bio->bi_end_io;
1829 bio->bi_sector = failrec->logical >> 9;
1830 bio->bi_bdev = failed_bio->bi_bdev;
1831 bio->bi_size = 0;
1833 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1834 if (failed_bio->bi_rw & (1 << BIO_RW))
1835 rw = WRITE;
1836 else
1837 rw = READ;
1839 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1840 failrec->last_mirror,
1841 failrec->bio_flags);
1842 return 0;
1846 * each time an IO finishes, we do a fast check in the IO failure tree
1847 * to see if we need to process or clean up an io_failure_record
1849 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1851 u64 private;
1852 u64 private_failure;
1853 struct io_failure_record *failure;
1854 int ret;
1856 private = 0;
1857 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1858 (u64)-1, 1, EXTENT_DIRTY)) {
1859 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1860 start, &private_failure);
1861 if (ret == 0) {
1862 failure = (struct io_failure_record *)(unsigned long)
1863 private_failure;
1864 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1865 failure->start, 0);
1866 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1867 failure->start,
1868 failure->start + failure->len - 1,
1869 EXTENT_DIRTY | EXTENT_LOCKED,
1870 GFP_NOFS);
1871 kfree(failure);
1874 return 0;
1878 * when reads are done, we need to check csums to verify the data is correct
1879 * if there's a match, we allow the bio to finish. If not, we go through
1880 * the io_failure_record routines to find good copies
1882 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1883 struct extent_state *state)
1885 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1886 struct inode *inode = page->mapping->host;
1887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1888 char *kaddr;
1889 u64 private = ~(u32)0;
1890 int ret;
1891 struct btrfs_root *root = BTRFS_I(inode)->root;
1892 u32 csum = ~(u32)0;
1894 if (PageChecked(page)) {
1895 ClearPageChecked(page);
1896 goto good;
1899 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1900 return 0;
1902 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1903 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1904 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1905 GFP_NOFS);
1906 return 0;
1909 if (state && state->start == start) {
1910 private = state->private;
1911 ret = 0;
1912 } else {
1913 ret = get_state_private(io_tree, start, &private);
1915 kaddr = kmap_atomic(page, KM_USER0);
1916 if (ret)
1917 goto zeroit;
1919 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1920 btrfs_csum_final(csum, (char *)&csum);
1921 if (csum != private)
1922 goto zeroit;
1924 kunmap_atomic(kaddr, KM_USER0);
1925 good:
1926 /* if the io failure tree for this inode is non-empty,
1927 * check to see if we've recovered from a failed IO
1929 btrfs_clean_io_failures(inode, start);
1930 return 0;
1932 zeroit:
1933 if (printk_ratelimit()) {
1934 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1935 "private %llu\n", page->mapping->host->i_ino,
1936 (unsigned long long)start, csum,
1937 (unsigned long long)private);
1939 memset(kaddr + offset, 1, end - start + 1);
1940 flush_dcache_page(page);
1941 kunmap_atomic(kaddr, KM_USER0);
1942 if (private == 0)
1943 return 0;
1944 return -EIO;
1947 struct delayed_iput {
1948 struct list_head list;
1949 struct inode *inode;
1952 void btrfs_add_delayed_iput(struct inode *inode)
1954 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1955 struct delayed_iput *delayed;
1957 if (atomic_add_unless(&inode->i_count, -1, 1))
1958 return;
1960 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1961 delayed->inode = inode;
1963 spin_lock(&fs_info->delayed_iput_lock);
1964 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1965 spin_unlock(&fs_info->delayed_iput_lock);
1968 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1970 LIST_HEAD(list);
1971 struct btrfs_fs_info *fs_info = root->fs_info;
1972 struct delayed_iput *delayed;
1973 int empty;
1975 spin_lock(&fs_info->delayed_iput_lock);
1976 empty = list_empty(&fs_info->delayed_iputs);
1977 spin_unlock(&fs_info->delayed_iput_lock);
1978 if (empty)
1979 return;
1981 down_read(&root->fs_info->cleanup_work_sem);
1982 spin_lock(&fs_info->delayed_iput_lock);
1983 list_splice_init(&fs_info->delayed_iputs, &list);
1984 spin_unlock(&fs_info->delayed_iput_lock);
1986 while (!list_empty(&list)) {
1987 delayed = list_entry(list.next, struct delayed_iput, list);
1988 list_del(&delayed->list);
1989 iput(delayed->inode);
1990 kfree(delayed);
1992 up_read(&root->fs_info->cleanup_work_sem);
1996 * This creates an orphan entry for the given inode in case something goes
1997 * wrong in the middle of an unlink/truncate.
1999 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2001 struct btrfs_root *root = BTRFS_I(inode)->root;
2002 int ret = 0;
2004 spin_lock(&root->list_lock);
2006 /* already on the orphan list, we're good */
2007 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2008 spin_unlock(&root->list_lock);
2009 return 0;
2012 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2014 spin_unlock(&root->list_lock);
2017 * insert an orphan item to track this unlinked/truncated file
2019 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2021 return ret;
2025 * We have done the truncate/delete so we can go ahead and remove the orphan
2026 * item for this particular inode.
2028 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2030 struct btrfs_root *root = BTRFS_I(inode)->root;
2031 int ret = 0;
2033 spin_lock(&root->list_lock);
2035 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2036 spin_unlock(&root->list_lock);
2037 return 0;
2040 list_del_init(&BTRFS_I(inode)->i_orphan);
2041 if (!trans) {
2042 spin_unlock(&root->list_lock);
2043 return 0;
2046 spin_unlock(&root->list_lock);
2048 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2050 return ret;
2054 * this cleans up any orphans that may be left on the list from the last use
2055 * of this root.
2057 void btrfs_orphan_cleanup(struct btrfs_root *root)
2059 struct btrfs_path *path;
2060 struct extent_buffer *leaf;
2061 struct btrfs_item *item;
2062 struct btrfs_key key, found_key;
2063 struct btrfs_trans_handle *trans;
2064 struct inode *inode;
2065 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2067 if (!xchg(&root->clean_orphans, 0))
2068 return;
2070 path = btrfs_alloc_path();
2071 BUG_ON(!path);
2072 path->reada = -1;
2074 key.objectid = BTRFS_ORPHAN_OBJECTID;
2075 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2076 key.offset = (u64)-1;
2078 while (1) {
2079 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2080 if (ret < 0) {
2081 printk(KERN_ERR "Error searching slot for orphan: %d"
2082 "\n", ret);
2083 break;
2087 * if ret == 0 means we found what we were searching for, which
2088 * is weird, but possible, so only screw with path if we didnt
2089 * find the key and see if we have stuff that matches
2091 if (ret > 0) {
2092 if (path->slots[0] == 0)
2093 break;
2094 path->slots[0]--;
2097 /* pull out the item */
2098 leaf = path->nodes[0];
2099 item = btrfs_item_nr(leaf, path->slots[0]);
2100 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2102 /* make sure the item matches what we want */
2103 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2104 break;
2105 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2106 break;
2108 /* release the path since we're done with it */
2109 btrfs_release_path(root, path);
2112 * this is where we are basically btrfs_lookup, without the
2113 * crossing root thing. we store the inode number in the
2114 * offset of the orphan item.
2116 found_key.objectid = found_key.offset;
2117 found_key.type = BTRFS_INODE_ITEM_KEY;
2118 found_key.offset = 0;
2119 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2120 if (IS_ERR(inode))
2121 break;
2124 * add this inode to the orphan list so btrfs_orphan_del does
2125 * the proper thing when we hit it
2127 spin_lock(&root->list_lock);
2128 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2129 spin_unlock(&root->list_lock);
2132 * if this is a bad inode, means we actually succeeded in
2133 * removing the inode, but not the orphan record, which means
2134 * we need to manually delete the orphan since iput will just
2135 * do a destroy_inode
2137 if (is_bad_inode(inode)) {
2138 trans = btrfs_start_transaction(root, 1);
2139 btrfs_orphan_del(trans, inode);
2140 btrfs_end_transaction(trans, root);
2141 iput(inode);
2142 continue;
2145 /* if we have links, this was a truncate, lets do that */
2146 if (inode->i_nlink) {
2147 nr_truncate++;
2148 btrfs_truncate(inode);
2149 } else {
2150 nr_unlink++;
2153 /* this will do delete_inode and everything for us */
2154 iput(inode);
2157 if (nr_unlink)
2158 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2159 if (nr_truncate)
2160 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2162 btrfs_free_path(path);
2166 * very simple check to peek ahead in the leaf looking for xattrs. If we
2167 * don't find any xattrs, we know there can't be any acls.
2169 * slot is the slot the inode is in, objectid is the objectid of the inode
2171 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2172 int slot, u64 objectid)
2174 u32 nritems = btrfs_header_nritems(leaf);
2175 struct btrfs_key found_key;
2176 int scanned = 0;
2178 slot++;
2179 while (slot < nritems) {
2180 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2182 /* we found a different objectid, there must not be acls */
2183 if (found_key.objectid != objectid)
2184 return 0;
2186 /* we found an xattr, assume we've got an acl */
2187 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2188 return 1;
2191 * we found a key greater than an xattr key, there can't
2192 * be any acls later on
2194 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2195 return 0;
2197 slot++;
2198 scanned++;
2201 * it goes inode, inode backrefs, xattrs, extents,
2202 * so if there are a ton of hard links to an inode there can
2203 * be a lot of backrefs. Don't waste time searching too hard,
2204 * this is just an optimization
2206 if (scanned >= 8)
2207 break;
2209 /* we hit the end of the leaf before we found an xattr or
2210 * something larger than an xattr. We have to assume the inode
2211 * has acls
2213 return 1;
2217 * read an inode from the btree into the in-memory inode
2219 static void btrfs_read_locked_inode(struct inode *inode)
2221 struct btrfs_path *path;
2222 struct extent_buffer *leaf;
2223 struct btrfs_inode_item *inode_item;
2224 struct btrfs_timespec *tspec;
2225 struct btrfs_root *root = BTRFS_I(inode)->root;
2226 struct btrfs_key location;
2227 int maybe_acls;
2228 u64 alloc_group_block;
2229 u32 rdev;
2230 int ret;
2232 path = btrfs_alloc_path();
2233 BUG_ON(!path);
2234 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2236 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2237 if (ret)
2238 goto make_bad;
2240 leaf = path->nodes[0];
2241 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2242 struct btrfs_inode_item);
2244 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2245 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2246 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2247 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2248 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2250 tspec = btrfs_inode_atime(inode_item);
2251 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2252 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2254 tspec = btrfs_inode_mtime(inode_item);
2255 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2256 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2258 tspec = btrfs_inode_ctime(inode_item);
2259 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2260 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2262 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2263 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2264 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2265 inode->i_generation = BTRFS_I(inode)->generation;
2266 inode->i_rdev = 0;
2267 rdev = btrfs_inode_rdev(leaf, inode_item);
2269 BTRFS_I(inode)->index_cnt = (u64)-1;
2270 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2272 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2275 * try to precache a NULL acl entry for files that don't have
2276 * any xattrs or acls
2278 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2279 if (!maybe_acls)
2280 cache_no_acl(inode);
2282 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2283 alloc_group_block, 0);
2284 btrfs_free_path(path);
2285 inode_item = NULL;
2287 switch (inode->i_mode & S_IFMT) {
2288 case S_IFREG:
2289 inode->i_mapping->a_ops = &btrfs_aops;
2290 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2291 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2292 inode->i_fop = &btrfs_file_operations;
2293 inode->i_op = &btrfs_file_inode_operations;
2294 break;
2295 case S_IFDIR:
2296 inode->i_fop = &btrfs_dir_file_operations;
2297 if (root == root->fs_info->tree_root)
2298 inode->i_op = &btrfs_dir_ro_inode_operations;
2299 else
2300 inode->i_op = &btrfs_dir_inode_operations;
2301 break;
2302 case S_IFLNK:
2303 inode->i_op = &btrfs_symlink_inode_operations;
2304 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2305 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2306 break;
2307 default:
2308 inode->i_op = &btrfs_special_inode_operations;
2309 init_special_inode(inode, inode->i_mode, rdev);
2310 break;
2313 btrfs_update_iflags(inode);
2314 return;
2316 make_bad:
2317 btrfs_free_path(path);
2318 make_bad_inode(inode);
2322 * given a leaf and an inode, copy the inode fields into the leaf
2324 static void fill_inode_item(struct btrfs_trans_handle *trans,
2325 struct extent_buffer *leaf,
2326 struct btrfs_inode_item *item,
2327 struct inode *inode)
2329 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2330 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2331 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2332 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2333 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2335 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2336 inode->i_atime.tv_sec);
2337 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2338 inode->i_atime.tv_nsec);
2340 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2341 inode->i_mtime.tv_sec);
2342 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2343 inode->i_mtime.tv_nsec);
2345 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2346 inode->i_ctime.tv_sec);
2347 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2348 inode->i_ctime.tv_nsec);
2350 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2351 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2352 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2353 btrfs_set_inode_transid(leaf, item, trans->transid);
2354 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2355 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2356 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2360 * copy everything in the in-memory inode into the btree.
2362 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2363 struct btrfs_root *root, struct inode *inode)
2365 struct btrfs_inode_item *inode_item;
2366 struct btrfs_path *path;
2367 struct extent_buffer *leaf;
2368 int ret;
2370 path = btrfs_alloc_path();
2371 BUG_ON(!path);
2372 path->leave_spinning = 1;
2373 ret = btrfs_lookup_inode(trans, root, path,
2374 &BTRFS_I(inode)->location, 1);
2375 if (ret) {
2376 if (ret > 0)
2377 ret = -ENOENT;
2378 goto failed;
2381 btrfs_unlock_up_safe(path, 1);
2382 leaf = path->nodes[0];
2383 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2384 struct btrfs_inode_item);
2386 fill_inode_item(trans, leaf, inode_item, inode);
2387 btrfs_mark_buffer_dirty(leaf);
2388 btrfs_set_inode_last_trans(trans, inode);
2389 ret = 0;
2390 failed:
2391 btrfs_free_path(path);
2392 return ret;
2397 * unlink helper that gets used here in inode.c and in the tree logging
2398 * recovery code. It remove a link in a directory with a given name, and
2399 * also drops the back refs in the inode to the directory
2401 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2402 struct btrfs_root *root,
2403 struct inode *dir, struct inode *inode,
2404 const char *name, int name_len)
2406 struct btrfs_path *path;
2407 int ret = 0;
2408 struct extent_buffer *leaf;
2409 struct btrfs_dir_item *di;
2410 struct btrfs_key key;
2411 u64 index;
2413 path = btrfs_alloc_path();
2414 if (!path) {
2415 ret = -ENOMEM;
2416 goto err;
2419 path->leave_spinning = 1;
2420 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2421 name, name_len, -1);
2422 if (IS_ERR(di)) {
2423 ret = PTR_ERR(di);
2424 goto err;
2426 if (!di) {
2427 ret = -ENOENT;
2428 goto err;
2430 leaf = path->nodes[0];
2431 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2432 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2433 if (ret)
2434 goto err;
2435 btrfs_release_path(root, path);
2437 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2438 inode->i_ino,
2439 dir->i_ino, &index);
2440 if (ret) {
2441 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2442 "inode %lu parent %lu\n", name_len, name,
2443 inode->i_ino, dir->i_ino);
2444 goto err;
2447 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2448 index, name, name_len, -1);
2449 if (IS_ERR(di)) {
2450 ret = PTR_ERR(di);
2451 goto err;
2453 if (!di) {
2454 ret = -ENOENT;
2455 goto err;
2457 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2458 btrfs_release_path(root, path);
2460 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2461 inode, dir->i_ino);
2462 BUG_ON(ret != 0 && ret != -ENOENT);
2464 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2465 dir, index);
2466 BUG_ON(ret);
2467 err:
2468 btrfs_free_path(path);
2469 if (ret)
2470 goto out;
2472 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2473 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2474 btrfs_update_inode(trans, root, dir);
2475 btrfs_drop_nlink(inode);
2476 ret = btrfs_update_inode(trans, root, inode);
2477 out:
2478 return ret;
2481 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2483 struct btrfs_root *root;
2484 struct btrfs_trans_handle *trans;
2485 struct inode *inode = dentry->d_inode;
2486 int ret;
2487 unsigned long nr = 0;
2489 root = BTRFS_I(dir)->root;
2492 * 5 items for unlink inode
2493 * 1 for orphan
2495 ret = btrfs_reserve_metadata_space(root, 6);
2496 if (ret)
2497 return ret;
2499 trans = btrfs_start_transaction(root, 1);
2500 if (IS_ERR(trans)) {
2501 btrfs_unreserve_metadata_space(root, 6);
2502 return PTR_ERR(trans);
2505 btrfs_set_trans_block_group(trans, dir);
2507 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2509 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2510 dentry->d_name.name, dentry->d_name.len);
2512 if (inode->i_nlink == 0)
2513 ret = btrfs_orphan_add(trans, inode);
2515 nr = trans->blocks_used;
2517 btrfs_end_transaction_throttle(trans, root);
2518 btrfs_unreserve_metadata_space(root, 6);
2519 btrfs_btree_balance_dirty(root, nr);
2520 return ret;
2523 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2524 struct btrfs_root *root,
2525 struct inode *dir, u64 objectid,
2526 const char *name, int name_len)
2528 struct btrfs_path *path;
2529 struct extent_buffer *leaf;
2530 struct btrfs_dir_item *di;
2531 struct btrfs_key key;
2532 u64 index;
2533 int ret;
2535 path = btrfs_alloc_path();
2536 if (!path)
2537 return -ENOMEM;
2539 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2540 name, name_len, -1);
2541 BUG_ON(!di || IS_ERR(di));
2543 leaf = path->nodes[0];
2544 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2545 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2546 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2547 BUG_ON(ret);
2548 btrfs_release_path(root, path);
2550 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2551 objectid, root->root_key.objectid,
2552 dir->i_ino, &index, name, name_len);
2553 if (ret < 0) {
2554 BUG_ON(ret != -ENOENT);
2555 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2556 name, name_len);
2557 BUG_ON(!di || IS_ERR(di));
2559 leaf = path->nodes[0];
2560 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2561 btrfs_release_path(root, path);
2562 index = key.offset;
2565 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2566 index, name, name_len, -1);
2567 BUG_ON(!di || IS_ERR(di));
2569 leaf = path->nodes[0];
2570 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2571 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2572 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2573 BUG_ON(ret);
2574 btrfs_release_path(root, path);
2576 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2577 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2578 ret = btrfs_update_inode(trans, root, dir);
2579 BUG_ON(ret);
2580 dir->i_sb->s_dirt = 1;
2582 btrfs_free_path(path);
2583 return 0;
2586 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2588 struct inode *inode = dentry->d_inode;
2589 int err = 0;
2590 int ret;
2591 struct btrfs_root *root = BTRFS_I(dir)->root;
2592 struct btrfs_trans_handle *trans;
2593 unsigned long nr = 0;
2595 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2596 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2597 return -ENOTEMPTY;
2599 ret = btrfs_reserve_metadata_space(root, 5);
2600 if (ret)
2601 return ret;
2603 trans = btrfs_start_transaction(root, 1);
2604 if (IS_ERR(trans)) {
2605 btrfs_unreserve_metadata_space(root, 5);
2606 return PTR_ERR(trans);
2609 btrfs_set_trans_block_group(trans, dir);
2611 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2612 err = btrfs_unlink_subvol(trans, root, dir,
2613 BTRFS_I(inode)->location.objectid,
2614 dentry->d_name.name,
2615 dentry->d_name.len);
2616 goto out;
2619 err = btrfs_orphan_add(trans, inode);
2620 if (err)
2621 goto out;
2623 /* now the directory is empty */
2624 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2625 dentry->d_name.name, dentry->d_name.len);
2626 if (!err)
2627 btrfs_i_size_write(inode, 0);
2628 out:
2629 nr = trans->blocks_used;
2630 ret = btrfs_end_transaction_throttle(trans, root);
2631 btrfs_unreserve_metadata_space(root, 5);
2632 btrfs_btree_balance_dirty(root, nr);
2634 if (ret && !err)
2635 err = ret;
2636 return err;
2639 #if 0
2641 * when truncating bytes in a file, it is possible to avoid reading
2642 * the leaves that contain only checksum items. This can be the
2643 * majority of the IO required to delete a large file, but it must
2644 * be done carefully.
2646 * The keys in the level just above the leaves are checked to make sure
2647 * the lowest key in a given leaf is a csum key, and starts at an offset
2648 * after the new size.
2650 * Then the key for the next leaf is checked to make sure it also has
2651 * a checksum item for the same file. If it does, we know our target leaf
2652 * contains only checksum items, and it can be safely freed without reading
2653 * it.
2655 * This is just an optimization targeted at large files. It may do
2656 * nothing. It will return 0 unless things went badly.
2658 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root,
2660 struct btrfs_path *path,
2661 struct inode *inode, u64 new_size)
2663 struct btrfs_key key;
2664 int ret;
2665 int nritems;
2666 struct btrfs_key found_key;
2667 struct btrfs_key other_key;
2668 struct btrfs_leaf_ref *ref;
2669 u64 leaf_gen;
2670 u64 leaf_start;
2672 path->lowest_level = 1;
2673 key.objectid = inode->i_ino;
2674 key.type = BTRFS_CSUM_ITEM_KEY;
2675 key.offset = new_size;
2676 again:
2677 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2678 if (ret < 0)
2679 goto out;
2681 if (path->nodes[1] == NULL) {
2682 ret = 0;
2683 goto out;
2685 ret = 0;
2686 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2687 nritems = btrfs_header_nritems(path->nodes[1]);
2689 if (!nritems)
2690 goto out;
2692 if (path->slots[1] >= nritems)
2693 goto next_node;
2695 /* did we find a key greater than anything we want to delete? */
2696 if (found_key.objectid > inode->i_ino ||
2697 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2698 goto out;
2700 /* we check the next key in the node to make sure the leave contains
2701 * only checksum items. This comparison doesn't work if our
2702 * leaf is the last one in the node
2704 if (path->slots[1] + 1 >= nritems) {
2705 next_node:
2706 /* search forward from the last key in the node, this
2707 * will bring us into the next node in the tree
2709 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2711 /* unlikely, but we inc below, so check to be safe */
2712 if (found_key.offset == (u64)-1)
2713 goto out;
2715 /* search_forward needs a path with locks held, do the
2716 * search again for the original key. It is possible
2717 * this will race with a balance and return a path that
2718 * we could modify, but this drop is just an optimization
2719 * and is allowed to miss some leaves.
2721 btrfs_release_path(root, path);
2722 found_key.offset++;
2724 /* setup a max key for search_forward */
2725 other_key.offset = (u64)-1;
2726 other_key.type = key.type;
2727 other_key.objectid = key.objectid;
2729 path->keep_locks = 1;
2730 ret = btrfs_search_forward(root, &found_key, &other_key,
2731 path, 0, 0);
2732 path->keep_locks = 0;
2733 if (ret || found_key.objectid != key.objectid ||
2734 found_key.type != key.type) {
2735 ret = 0;
2736 goto out;
2739 key.offset = found_key.offset;
2740 btrfs_release_path(root, path);
2741 cond_resched();
2742 goto again;
2745 /* we know there's one more slot after us in the tree,
2746 * read that key so we can verify it is also a checksum item
2748 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2750 if (found_key.objectid < inode->i_ino)
2751 goto next_key;
2753 if (found_key.type != key.type || found_key.offset < new_size)
2754 goto next_key;
2757 * if the key for the next leaf isn't a csum key from this objectid,
2758 * we can't be sure there aren't good items inside this leaf.
2759 * Bail out
2761 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2762 goto out;
2764 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2765 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2767 * it is safe to delete this leaf, it contains only
2768 * csum items from this inode at an offset >= new_size
2770 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2771 BUG_ON(ret);
2773 if (root->ref_cows && leaf_gen < trans->transid) {
2774 ref = btrfs_alloc_leaf_ref(root, 0);
2775 if (ref) {
2776 ref->root_gen = root->root_key.offset;
2777 ref->bytenr = leaf_start;
2778 ref->owner = 0;
2779 ref->generation = leaf_gen;
2780 ref->nritems = 0;
2782 btrfs_sort_leaf_ref(ref);
2784 ret = btrfs_add_leaf_ref(root, ref, 0);
2785 WARN_ON(ret);
2786 btrfs_free_leaf_ref(root, ref);
2787 } else {
2788 WARN_ON(1);
2791 next_key:
2792 btrfs_release_path(root, path);
2794 if (other_key.objectid == inode->i_ino &&
2795 other_key.type == key.type && other_key.offset > key.offset) {
2796 key.offset = other_key.offset;
2797 cond_resched();
2798 goto again;
2800 ret = 0;
2801 out:
2802 /* fixup any changes we've made to the path */
2803 path->lowest_level = 0;
2804 path->keep_locks = 0;
2805 btrfs_release_path(root, path);
2806 return ret;
2809 #endif
2812 * this can truncate away extent items, csum items and directory items.
2813 * It starts at a high offset and removes keys until it can't find
2814 * any higher than new_size
2816 * csum items that cross the new i_size are truncated to the new size
2817 * as well.
2819 * min_type is the minimum key type to truncate down to. If set to 0, this
2820 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2822 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2823 struct btrfs_root *root,
2824 struct inode *inode,
2825 u64 new_size, u32 min_type)
2827 struct btrfs_path *path;
2828 struct extent_buffer *leaf;
2829 struct btrfs_file_extent_item *fi;
2830 struct btrfs_key key;
2831 struct btrfs_key found_key;
2832 u64 extent_start = 0;
2833 u64 extent_num_bytes = 0;
2834 u64 extent_offset = 0;
2835 u64 item_end = 0;
2836 u64 mask = root->sectorsize - 1;
2837 u32 found_type = (u8)-1;
2838 int found_extent;
2839 int del_item;
2840 int pending_del_nr = 0;
2841 int pending_del_slot = 0;
2842 int extent_type = -1;
2843 int encoding;
2844 int ret;
2845 int err = 0;
2847 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2849 if (root->ref_cows)
2850 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2852 path = btrfs_alloc_path();
2853 BUG_ON(!path);
2854 path->reada = -1;
2856 key.objectid = inode->i_ino;
2857 key.offset = (u64)-1;
2858 key.type = (u8)-1;
2860 search_again:
2861 path->leave_spinning = 1;
2862 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2863 if (ret < 0) {
2864 err = ret;
2865 goto out;
2868 if (ret > 0) {
2869 /* there are no items in the tree for us to truncate, we're
2870 * done
2872 if (path->slots[0] == 0)
2873 goto out;
2874 path->slots[0]--;
2877 while (1) {
2878 fi = NULL;
2879 leaf = path->nodes[0];
2880 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2881 found_type = btrfs_key_type(&found_key);
2882 encoding = 0;
2884 if (found_key.objectid != inode->i_ino)
2885 break;
2887 if (found_type < min_type)
2888 break;
2890 item_end = found_key.offset;
2891 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2892 fi = btrfs_item_ptr(leaf, path->slots[0],
2893 struct btrfs_file_extent_item);
2894 extent_type = btrfs_file_extent_type(leaf, fi);
2895 encoding = btrfs_file_extent_compression(leaf, fi);
2896 encoding |= btrfs_file_extent_encryption(leaf, fi);
2897 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2899 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2900 item_end +=
2901 btrfs_file_extent_num_bytes(leaf, fi);
2902 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2903 item_end += btrfs_file_extent_inline_len(leaf,
2904 fi);
2906 item_end--;
2908 if (found_type > min_type) {
2909 del_item = 1;
2910 } else {
2911 if (item_end < new_size)
2912 break;
2913 if (found_key.offset >= new_size)
2914 del_item = 1;
2915 else
2916 del_item = 0;
2918 found_extent = 0;
2919 /* FIXME, shrink the extent if the ref count is only 1 */
2920 if (found_type != BTRFS_EXTENT_DATA_KEY)
2921 goto delete;
2923 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2924 u64 num_dec;
2925 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2926 if (!del_item && !encoding) {
2927 u64 orig_num_bytes =
2928 btrfs_file_extent_num_bytes(leaf, fi);
2929 extent_num_bytes = new_size -
2930 found_key.offset + root->sectorsize - 1;
2931 extent_num_bytes = extent_num_bytes &
2932 ~((u64)root->sectorsize - 1);
2933 btrfs_set_file_extent_num_bytes(leaf, fi,
2934 extent_num_bytes);
2935 num_dec = (orig_num_bytes -
2936 extent_num_bytes);
2937 if (root->ref_cows && extent_start != 0)
2938 inode_sub_bytes(inode, num_dec);
2939 btrfs_mark_buffer_dirty(leaf);
2940 } else {
2941 extent_num_bytes =
2942 btrfs_file_extent_disk_num_bytes(leaf,
2943 fi);
2944 extent_offset = found_key.offset -
2945 btrfs_file_extent_offset(leaf, fi);
2947 /* FIXME blocksize != 4096 */
2948 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2949 if (extent_start != 0) {
2950 found_extent = 1;
2951 if (root->ref_cows)
2952 inode_sub_bytes(inode, num_dec);
2955 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2957 * we can't truncate inline items that have had
2958 * special encodings
2960 if (!del_item &&
2961 btrfs_file_extent_compression(leaf, fi) == 0 &&
2962 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2963 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2964 u32 size = new_size - found_key.offset;
2966 if (root->ref_cows) {
2967 inode_sub_bytes(inode, item_end + 1 -
2968 new_size);
2970 size =
2971 btrfs_file_extent_calc_inline_size(size);
2972 ret = btrfs_truncate_item(trans, root, path,
2973 size, 1);
2974 BUG_ON(ret);
2975 } else if (root->ref_cows) {
2976 inode_sub_bytes(inode, item_end + 1 -
2977 found_key.offset);
2980 delete:
2981 if (del_item) {
2982 if (!pending_del_nr) {
2983 /* no pending yet, add ourselves */
2984 pending_del_slot = path->slots[0];
2985 pending_del_nr = 1;
2986 } else if (pending_del_nr &&
2987 path->slots[0] + 1 == pending_del_slot) {
2988 /* hop on the pending chunk */
2989 pending_del_nr++;
2990 pending_del_slot = path->slots[0];
2991 } else {
2992 BUG();
2994 } else {
2995 break;
2997 if (found_extent && root->ref_cows) {
2998 btrfs_set_path_blocking(path);
2999 ret = btrfs_free_extent(trans, root, extent_start,
3000 extent_num_bytes, 0,
3001 btrfs_header_owner(leaf),
3002 inode->i_ino, extent_offset);
3003 BUG_ON(ret);
3006 if (found_type == BTRFS_INODE_ITEM_KEY)
3007 break;
3009 if (path->slots[0] == 0 ||
3010 path->slots[0] != pending_del_slot) {
3011 if (root->ref_cows) {
3012 err = -EAGAIN;
3013 goto out;
3015 if (pending_del_nr) {
3016 ret = btrfs_del_items(trans, root, path,
3017 pending_del_slot,
3018 pending_del_nr);
3019 BUG_ON(ret);
3020 pending_del_nr = 0;
3022 btrfs_release_path(root, path);
3023 goto search_again;
3024 } else {
3025 path->slots[0]--;
3028 out:
3029 if (pending_del_nr) {
3030 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3031 pending_del_nr);
3033 btrfs_free_path(path);
3034 return err;
3038 * taken from block_truncate_page, but does cow as it zeros out
3039 * any bytes left in the last page in the file.
3041 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3043 struct inode *inode = mapping->host;
3044 struct btrfs_root *root = BTRFS_I(inode)->root;
3045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3046 struct btrfs_ordered_extent *ordered;
3047 struct extent_state *cached_state = NULL;
3048 char *kaddr;
3049 u32 blocksize = root->sectorsize;
3050 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3051 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3052 struct page *page;
3053 int ret = 0;
3054 u64 page_start;
3055 u64 page_end;
3057 if ((offset & (blocksize - 1)) == 0)
3058 goto out;
3059 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3060 if (ret)
3061 goto out;
3063 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3064 if (ret)
3065 goto out;
3067 ret = -ENOMEM;
3068 again:
3069 page = grab_cache_page(mapping, index);
3070 if (!page) {
3071 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3072 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3073 goto out;
3076 page_start = page_offset(page);
3077 page_end = page_start + PAGE_CACHE_SIZE - 1;
3079 if (!PageUptodate(page)) {
3080 ret = btrfs_readpage(NULL, page);
3081 lock_page(page);
3082 if (page->mapping != mapping) {
3083 unlock_page(page);
3084 page_cache_release(page);
3085 goto again;
3087 if (!PageUptodate(page)) {
3088 ret = -EIO;
3089 goto out_unlock;
3092 wait_on_page_writeback(page);
3094 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3095 GFP_NOFS);
3096 set_page_extent_mapped(page);
3098 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3099 if (ordered) {
3100 unlock_extent_cached(io_tree, page_start, page_end,
3101 &cached_state, GFP_NOFS);
3102 unlock_page(page);
3103 page_cache_release(page);
3104 btrfs_start_ordered_extent(inode, ordered, 1);
3105 btrfs_put_ordered_extent(ordered);
3106 goto again;
3109 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3110 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3111 0, 0, &cached_state, GFP_NOFS);
3113 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3114 &cached_state);
3115 if (ret) {
3116 unlock_extent_cached(io_tree, page_start, page_end,
3117 &cached_state, GFP_NOFS);
3118 goto out_unlock;
3121 ret = 0;
3122 if (offset != PAGE_CACHE_SIZE) {
3123 kaddr = kmap(page);
3124 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3125 flush_dcache_page(page);
3126 kunmap(page);
3128 ClearPageChecked(page);
3129 set_page_dirty(page);
3130 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3131 GFP_NOFS);
3133 out_unlock:
3134 if (ret)
3135 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3136 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3137 unlock_page(page);
3138 page_cache_release(page);
3139 out:
3140 return ret;
3143 int btrfs_cont_expand(struct inode *inode, loff_t size)
3145 struct btrfs_trans_handle *trans;
3146 struct btrfs_root *root = BTRFS_I(inode)->root;
3147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3148 struct extent_map *em;
3149 struct extent_state *cached_state = NULL;
3150 u64 mask = root->sectorsize - 1;
3151 u64 hole_start = (inode->i_size + mask) & ~mask;
3152 u64 block_end = (size + mask) & ~mask;
3153 u64 last_byte;
3154 u64 cur_offset;
3155 u64 hole_size;
3156 int err = 0;
3158 if (size <= hole_start)
3159 return 0;
3161 while (1) {
3162 struct btrfs_ordered_extent *ordered;
3163 btrfs_wait_ordered_range(inode, hole_start,
3164 block_end - hole_start);
3165 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3166 &cached_state, GFP_NOFS);
3167 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3168 if (!ordered)
3169 break;
3170 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3171 &cached_state, GFP_NOFS);
3172 btrfs_put_ordered_extent(ordered);
3175 cur_offset = hole_start;
3176 while (1) {
3177 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3178 block_end - cur_offset, 0);
3179 BUG_ON(IS_ERR(em) || !em);
3180 last_byte = min(extent_map_end(em), block_end);
3181 last_byte = (last_byte + mask) & ~mask;
3182 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3183 u64 hint_byte = 0;
3184 hole_size = last_byte - cur_offset;
3186 err = btrfs_reserve_metadata_space(root, 2);
3187 if (err)
3188 break;
3190 trans = btrfs_start_transaction(root, 1);
3191 btrfs_set_trans_block_group(trans, inode);
3193 err = btrfs_drop_extents(trans, inode, cur_offset,
3194 cur_offset + hole_size,
3195 &hint_byte, 1);
3196 BUG_ON(err);
3198 err = btrfs_insert_file_extent(trans, root,
3199 inode->i_ino, cur_offset, 0,
3200 0, hole_size, 0, hole_size,
3201 0, 0, 0);
3202 BUG_ON(err);
3204 btrfs_drop_extent_cache(inode, hole_start,
3205 last_byte - 1, 0);
3207 btrfs_end_transaction(trans, root);
3208 btrfs_unreserve_metadata_space(root, 2);
3210 free_extent_map(em);
3211 cur_offset = last_byte;
3212 if (cur_offset >= block_end)
3213 break;
3216 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3217 GFP_NOFS);
3218 return err;
3221 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3223 struct btrfs_root *root = BTRFS_I(inode)->root;
3224 struct btrfs_trans_handle *trans;
3225 unsigned long nr;
3226 int ret;
3228 if (attr->ia_size == inode->i_size)
3229 return 0;
3231 if (attr->ia_size > inode->i_size) {
3232 unsigned long limit;
3233 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3234 if (attr->ia_size > inode->i_sb->s_maxbytes)
3235 return -EFBIG;
3236 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3237 send_sig(SIGXFSZ, current, 0);
3238 return -EFBIG;
3242 ret = btrfs_reserve_metadata_space(root, 1);
3243 if (ret)
3244 return ret;
3246 trans = btrfs_start_transaction(root, 1);
3247 btrfs_set_trans_block_group(trans, inode);
3249 ret = btrfs_orphan_add(trans, inode);
3250 BUG_ON(ret);
3252 nr = trans->blocks_used;
3253 btrfs_end_transaction(trans, root);
3254 btrfs_unreserve_metadata_space(root, 1);
3255 btrfs_btree_balance_dirty(root, nr);
3257 if (attr->ia_size > inode->i_size) {
3258 ret = btrfs_cont_expand(inode, attr->ia_size);
3259 if (ret) {
3260 btrfs_truncate(inode);
3261 return ret;
3264 i_size_write(inode, attr->ia_size);
3265 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3267 trans = btrfs_start_transaction(root, 1);
3268 btrfs_set_trans_block_group(trans, inode);
3270 ret = btrfs_update_inode(trans, root, inode);
3271 BUG_ON(ret);
3272 if (inode->i_nlink > 0) {
3273 ret = btrfs_orphan_del(trans, inode);
3274 BUG_ON(ret);
3276 nr = trans->blocks_used;
3277 btrfs_end_transaction(trans, root);
3278 btrfs_btree_balance_dirty(root, nr);
3279 return 0;
3283 * We're truncating a file that used to have good data down to
3284 * zero. Make sure it gets into the ordered flush list so that
3285 * any new writes get down to disk quickly.
3287 if (attr->ia_size == 0)
3288 BTRFS_I(inode)->ordered_data_close = 1;
3290 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3291 ret = vmtruncate(inode, attr->ia_size);
3292 BUG_ON(ret);
3294 return 0;
3297 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3299 struct inode *inode = dentry->d_inode;
3300 int err;
3302 err = inode_change_ok(inode, attr);
3303 if (err)
3304 return err;
3306 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3307 err = btrfs_setattr_size(inode, attr);
3308 if (err)
3309 return err;
3311 attr->ia_valid &= ~ATTR_SIZE;
3313 if (attr->ia_valid)
3314 err = inode_setattr(inode, attr);
3316 if (!err && ((attr->ia_valid & ATTR_MODE)))
3317 err = btrfs_acl_chmod(inode);
3318 return err;
3321 void btrfs_delete_inode(struct inode *inode)
3323 struct btrfs_trans_handle *trans;
3324 struct btrfs_root *root = BTRFS_I(inode)->root;
3325 unsigned long nr;
3326 int ret;
3328 truncate_inode_pages(&inode->i_data, 0);
3329 if (is_bad_inode(inode)) {
3330 btrfs_orphan_del(NULL, inode);
3331 goto no_delete;
3333 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3335 if (root->fs_info->log_root_recovering) {
3336 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3337 goto no_delete;
3340 if (inode->i_nlink > 0) {
3341 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3342 goto no_delete;
3345 btrfs_i_size_write(inode, 0);
3347 while (1) {
3348 trans = btrfs_start_transaction(root, 1);
3349 btrfs_set_trans_block_group(trans, inode);
3350 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3352 if (ret != -EAGAIN)
3353 break;
3355 nr = trans->blocks_used;
3356 btrfs_end_transaction(trans, root);
3357 trans = NULL;
3358 btrfs_btree_balance_dirty(root, nr);
3361 if (ret == 0) {
3362 ret = btrfs_orphan_del(trans, inode);
3363 BUG_ON(ret);
3366 nr = trans->blocks_used;
3367 btrfs_end_transaction(trans, root);
3368 btrfs_btree_balance_dirty(root, nr);
3369 no_delete:
3370 clear_inode(inode);
3371 return;
3375 * this returns the key found in the dir entry in the location pointer.
3376 * If no dir entries were found, location->objectid is 0.
3378 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3379 struct btrfs_key *location)
3381 const char *name = dentry->d_name.name;
3382 int namelen = dentry->d_name.len;
3383 struct btrfs_dir_item *di;
3384 struct btrfs_path *path;
3385 struct btrfs_root *root = BTRFS_I(dir)->root;
3386 int ret = 0;
3388 path = btrfs_alloc_path();
3389 BUG_ON(!path);
3391 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3392 namelen, 0);
3393 if (IS_ERR(di))
3394 ret = PTR_ERR(di);
3396 if (!di || IS_ERR(di))
3397 goto out_err;
3399 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3400 out:
3401 btrfs_free_path(path);
3402 return ret;
3403 out_err:
3404 location->objectid = 0;
3405 goto out;
3409 * when we hit a tree root in a directory, the btrfs part of the inode
3410 * needs to be changed to reflect the root directory of the tree root. This
3411 * is kind of like crossing a mount point.
3413 static int fixup_tree_root_location(struct btrfs_root *root,
3414 struct inode *dir,
3415 struct dentry *dentry,
3416 struct btrfs_key *location,
3417 struct btrfs_root **sub_root)
3419 struct btrfs_path *path;
3420 struct btrfs_root *new_root;
3421 struct btrfs_root_ref *ref;
3422 struct extent_buffer *leaf;
3423 int ret;
3424 int err = 0;
3426 path = btrfs_alloc_path();
3427 if (!path) {
3428 err = -ENOMEM;
3429 goto out;
3432 err = -ENOENT;
3433 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3434 BTRFS_I(dir)->root->root_key.objectid,
3435 location->objectid);
3436 if (ret) {
3437 if (ret < 0)
3438 err = ret;
3439 goto out;
3442 leaf = path->nodes[0];
3443 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3444 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3445 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3446 goto out;
3448 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3449 (unsigned long)(ref + 1),
3450 dentry->d_name.len);
3451 if (ret)
3452 goto out;
3454 btrfs_release_path(root->fs_info->tree_root, path);
3456 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3457 if (IS_ERR(new_root)) {
3458 err = PTR_ERR(new_root);
3459 goto out;
3462 if (btrfs_root_refs(&new_root->root_item) == 0) {
3463 err = -ENOENT;
3464 goto out;
3467 *sub_root = new_root;
3468 location->objectid = btrfs_root_dirid(&new_root->root_item);
3469 location->type = BTRFS_INODE_ITEM_KEY;
3470 location->offset = 0;
3471 err = 0;
3472 out:
3473 btrfs_free_path(path);
3474 return err;
3477 static void inode_tree_add(struct inode *inode)
3479 struct btrfs_root *root = BTRFS_I(inode)->root;
3480 struct btrfs_inode *entry;
3481 struct rb_node **p;
3482 struct rb_node *parent;
3483 again:
3484 p = &root->inode_tree.rb_node;
3485 parent = NULL;
3487 if (hlist_unhashed(&inode->i_hash))
3488 return;
3490 spin_lock(&root->inode_lock);
3491 while (*p) {
3492 parent = *p;
3493 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3495 if (inode->i_ino < entry->vfs_inode.i_ino)
3496 p = &parent->rb_left;
3497 else if (inode->i_ino > entry->vfs_inode.i_ino)
3498 p = &parent->rb_right;
3499 else {
3500 WARN_ON(!(entry->vfs_inode.i_state &
3501 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3502 rb_erase(parent, &root->inode_tree);
3503 RB_CLEAR_NODE(parent);
3504 spin_unlock(&root->inode_lock);
3505 goto again;
3508 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3509 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3510 spin_unlock(&root->inode_lock);
3513 static void inode_tree_del(struct inode *inode)
3515 struct btrfs_root *root = BTRFS_I(inode)->root;
3516 int empty = 0;
3518 spin_lock(&root->inode_lock);
3519 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3520 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3521 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3522 empty = RB_EMPTY_ROOT(&root->inode_tree);
3524 spin_unlock(&root->inode_lock);
3526 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3527 synchronize_srcu(&root->fs_info->subvol_srcu);
3528 spin_lock(&root->inode_lock);
3529 empty = RB_EMPTY_ROOT(&root->inode_tree);
3530 spin_unlock(&root->inode_lock);
3531 if (empty)
3532 btrfs_add_dead_root(root);
3536 int btrfs_invalidate_inodes(struct btrfs_root *root)
3538 struct rb_node *node;
3539 struct rb_node *prev;
3540 struct btrfs_inode *entry;
3541 struct inode *inode;
3542 u64 objectid = 0;
3544 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3546 spin_lock(&root->inode_lock);
3547 again:
3548 node = root->inode_tree.rb_node;
3549 prev = NULL;
3550 while (node) {
3551 prev = node;
3552 entry = rb_entry(node, struct btrfs_inode, rb_node);
3554 if (objectid < entry->vfs_inode.i_ino)
3555 node = node->rb_left;
3556 else if (objectid > entry->vfs_inode.i_ino)
3557 node = node->rb_right;
3558 else
3559 break;
3561 if (!node) {
3562 while (prev) {
3563 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3564 if (objectid <= entry->vfs_inode.i_ino) {
3565 node = prev;
3566 break;
3568 prev = rb_next(prev);
3571 while (node) {
3572 entry = rb_entry(node, struct btrfs_inode, rb_node);
3573 objectid = entry->vfs_inode.i_ino + 1;
3574 inode = igrab(&entry->vfs_inode);
3575 if (inode) {
3576 spin_unlock(&root->inode_lock);
3577 if (atomic_read(&inode->i_count) > 1)
3578 d_prune_aliases(inode);
3580 * btrfs_drop_inode will remove it from
3581 * the inode cache when its usage count
3582 * hits zero.
3584 iput(inode);
3585 cond_resched();
3586 spin_lock(&root->inode_lock);
3587 goto again;
3590 if (cond_resched_lock(&root->inode_lock))
3591 goto again;
3593 node = rb_next(node);
3595 spin_unlock(&root->inode_lock);
3596 return 0;
3599 static noinline void init_btrfs_i(struct inode *inode)
3601 struct btrfs_inode *bi = BTRFS_I(inode);
3603 bi->generation = 0;
3604 bi->sequence = 0;
3605 bi->last_trans = 0;
3606 bi->last_sub_trans = 0;
3607 bi->logged_trans = 0;
3608 bi->delalloc_bytes = 0;
3609 bi->reserved_bytes = 0;
3610 bi->disk_i_size = 0;
3611 bi->flags = 0;
3612 bi->index_cnt = (u64)-1;
3613 bi->last_unlink_trans = 0;
3614 bi->ordered_data_close = 0;
3615 bi->force_compress = 0;
3616 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3617 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3618 inode->i_mapping, GFP_NOFS);
3619 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3620 inode->i_mapping, GFP_NOFS);
3621 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3622 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3623 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3624 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3625 mutex_init(&BTRFS_I(inode)->log_mutex);
3628 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3630 struct btrfs_iget_args *args = p;
3631 inode->i_ino = args->ino;
3632 init_btrfs_i(inode);
3633 BTRFS_I(inode)->root = args->root;
3634 btrfs_set_inode_space_info(args->root, inode);
3635 return 0;
3638 static int btrfs_find_actor(struct inode *inode, void *opaque)
3640 struct btrfs_iget_args *args = opaque;
3641 return args->ino == inode->i_ino &&
3642 args->root == BTRFS_I(inode)->root;
3645 static struct inode *btrfs_iget_locked(struct super_block *s,
3646 u64 objectid,
3647 struct btrfs_root *root)
3649 struct inode *inode;
3650 struct btrfs_iget_args args;
3651 args.ino = objectid;
3652 args.root = root;
3654 inode = iget5_locked(s, objectid, btrfs_find_actor,
3655 btrfs_init_locked_inode,
3656 (void *)&args);
3657 return inode;
3660 /* Get an inode object given its location and corresponding root.
3661 * Returns in *is_new if the inode was read from disk
3663 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3664 struct btrfs_root *root, int *new)
3666 struct inode *inode;
3668 inode = btrfs_iget_locked(s, location->objectid, root);
3669 if (!inode)
3670 return ERR_PTR(-ENOMEM);
3672 if (inode->i_state & I_NEW) {
3673 BTRFS_I(inode)->root = root;
3674 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3675 btrfs_read_locked_inode(inode);
3677 inode_tree_add(inode);
3678 unlock_new_inode(inode);
3679 if (new)
3680 *new = 1;
3683 return inode;
3686 static struct inode *new_simple_dir(struct super_block *s,
3687 struct btrfs_key *key,
3688 struct btrfs_root *root)
3690 struct inode *inode = new_inode(s);
3692 if (!inode)
3693 return ERR_PTR(-ENOMEM);
3695 init_btrfs_i(inode);
3697 BTRFS_I(inode)->root = root;
3698 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3699 BTRFS_I(inode)->dummy_inode = 1;
3701 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3702 inode->i_op = &simple_dir_inode_operations;
3703 inode->i_fop = &simple_dir_operations;
3704 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3705 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3707 return inode;
3710 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3712 struct inode *inode;
3713 struct btrfs_root *root = BTRFS_I(dir)->root;
3714 struct btrfs_root *sub_root = root;
3715 struct btrfs_key location;
3716 int index;
3717 int ret;
3719 dentry->d_op = &btrfs_dentry_operations;
3721 if (dentry->d_name.len > BTRFS_NAME_LEN)
3722 return ERR_PTR(-ENAMETOOLONG);
3724 ret = btrfs_inode_by_name(dir, dentry, &location);
3726 if (ret < 0)
3727 return ERR_PTR(ret);
3729 if (location.objectid == 0)
3730 return NULL;
3732 if (location.type == BTRFS_INODE_ITEM_KEY) {
3733 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3734 return inode;
3737 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3739 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3740 ret = fixup_tree_root_location(root, dir, dentry,
3741 &location, &sub_root);
3742 if (ret < 0) {
3743 if (ret != -ENOENT)
3744 inode = ERR_PTR(ret);
3745 else
3746 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3747 } else {
3748 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3750 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3752 if (root != sub_root) {
3753 down_read(&root->fs_info->cleanup_work_sem);
3754 if (!(inode->i_sb->s_flags & MS_RDONLY))
3755 btrfs_orphan_cleanup(sub_root);
3756 up_read(&root->fs_info->cleanup_work_sem);
3759 return inode;
3762 static int btrfs_dentry_delete(struct dentry *dentry)
3764 struct btrfs_root *root;
3766 if (!dentry->d_inode && !IS_ROOT(dentry))
3767 dentry = dentry->d_parent;
3769 if (dentry->d_inode) {
3770 root = BTRFS_I(dentry->d_inode)->root;
3771 if (btrfs_root_refs(&root->root_item) == 0)
3772 return 1;
3774 return 0;
3777 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3778 struct nameidata *nd)
3780 struct inode *inode;
3782 inode = btrfs_lookup_dentry(dir, dentry);
3783 if (IS_ERR(inode))
3784 return ERR_CAST(inode);
3786 return d_splice_alias(inode, dentry);
3789 static unsigned char btrfs_filetype_table[] = {
3790 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3793 static int btrfs_real_readdir(struct file *filp, void *dirent,
3794 filldir_t filldir)
3796 struct inode *inode = filp->f_dentry->d_inode;
3797 struct btrfs_root *root = BTRFS_I(inode)->root;
3798 struct btrfs_item *item;
3799 struct btrfs_dir_item *di;
3800 struct btrfs_key key;
3801 struct btrfs_key found_key;
3802 struct btrfs_path *path;
3803 int ret;
3804 u32 nritems;
3805 struct extent_buffer *leaf;
3806 int slot;
3807 int advance;
3808 unsigned char d_type;
3809 int over = 0;
3810 u32 di_cur;
3811 u32 di_total;
3812 u32 di_len;
3813 int key_type = BTRFS_DIR_INDEX_KEY;
3814 char tmp_name[32];
3815 char *name_ptr;
3816 int name_len;
3818 /* FIXME, use a real flag for deciding about the key type */
3819 if (root->fs_info->tree_root == root)
3820 key_type = BTRFS_DIR_ITEM_KEY;
3822 /* special case for "." */
3823 if (filp->f_pos == 0) {
3824 over = filldir(dirent, ".", 1,
3825 1, inode->i_ino,
3826 DT_DIR);
3827 if (over)
3828 return 0;
3829 filp->f_pos = 1;
3831 /* special case for .., just use the back ref */
3832 if (filp->f_pos == 1) {
3833 u64 pino = parent_ino(filp->f_path.dentry);
3834 over = filldir(dirent, "..", 2,
3835 2, pino, DT_DIR);
3836 if (over)
3837 return 0;
3838 filp->f_pos = 2;
3840 path = btrfs_alloc_path();
3841 path->reada = 2;
3843 btrfs_set_key_type(&key, key_type);
3844 key.offset = filp->f_pos;
3845 key.objectid = inode->i_ino;
3847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3848 if (ret < 0)
3849 goto err;
3850 advance = 0;
3852 while (1) {
3853 leaf = path->nodes[0];
3854 nritems = btrfs_header_nritems(leaf);
3855 slot = path->slots[0];
3856 if (advance || slot >= nritems) {
3857 if (slot >= nritems - 1) {
3858 ret = btrfs_next_leaf(root, path);
3859 if (ret)
3860 break;
3861 leaf = path->nodes[0];
3862 nritems = btrfs_header_nritems(leaf);
3863 slot = path->slots[0];
3864 } else {
3865 slot++;
3866 path->slots[0]++;
3870 advance = 1;
3871 item = btrfs_item_nr(leaf, slot);
3872 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3874 if (found_key.objectid != key.objectid)
3875 break;
3876 if (btrfs_key_type(&found_key) != key_type)
3877 break;
3878 if (found_key.offset < filp->f_pos)
3879 continue;
3881 filp->f_pos = found_key.offset;
3883 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3884 di_cur = 0;
3885 di_total = btrfs_item_size(leaf, item);
3887 while (di_cur < di_total) {
3888 struct btrfs_key location;
3890 name_len = btrfs_dir_name_len(leaf, di);
3891 if (name_len <= sizeof(tmp_name)) {
3892 name_ptr = tmp_name;
3893 } else {
3894 name_ptr = kmalloc(name_len, GFP_NOFS);
3895 if (!name_ptr) {
3896 ret = -ENOMEM;
3897 goto err;
3900 read_extent_buffer(leaf, name_ptr,
3901 (unsigned long)(di + 1), name_len);
3903 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3904 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3906 /* is this a reference to our own snapshot? If so
3907 * skip it
3909 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3910 location.objectid == root->root_key.objectid) {
3911 over = 0;
3912 goto skip;
3914 over = filldir(dirent, name_ptr, name_len,
3915 found_key.offset, location.objectid,
3916 d_type);
3918 skip:
3919 if (name_ptr != tmp_name)
3920 kfree(name_ptr);
3922 if (over)
3923 goto nopos;
3924 di_len = btrfs_dir_name_len(leaf, di) +
3925 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3926 di_cur += di_len;
3927 di = (struct btrfs_dir_item *)((char *)di + di_len);
3931 /* Reached end of directory/root. Bump pos past the last item. */
3932 if (key_type == BTRFS_DIR_INDEX_KEY)
3934 * 32-bit glibc will use getdents64, but then strtol -
3935 * so the last number we can serve is this.
3937 filp->f_pos = 0x7fffffff;
3938 else
3939 filp->f_pos++;
3940 nopos:
3941 ret = 0;
3942 err:
3943 btrfs_free_path(path);
3944 return ret;
3947 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
3949 struct btrfs_root *root = BTRFS_I(inode)->root;
3950 struct btrfs_trans_handle *trans;
3951 int ret = 0;
3953 if (root->fs_info->btree_inode == inode)
3954 return 0;
3956 if (wbc->sync_mode == WB_SYNC_ALL) {
3957 trans = btrfs_join_transaction(root, 1);
3958 btrfs_set_trans_block_group(trans, inode);
3959 ret = btrfs_commit_transaction(trans, root);
3961 return ret;
3965 * This is somewhat expensive, updating the tree every time the
3966 * inode changes. But, it is most likely to find the inode in cache.
3967 * FIXME, needs more benchmarking...there are no reasons other than performance
3968 * to keep or drop this code.
3970 void btrfs_dirty_inode(struct inode *inode)
3972 struct btrfs_root *root = BTRFS_I(inode)->root;
3973 struct btrfs_trans_handle *trans;
3975 trans = btrfs_join_transaction(root, 1);
3976 btrfs_set_trans_block_group(trans, inode);
3977 btrfs_update_inode(trans, root, inode);
3978 btrfs_end_transaction(trans, root);
3982 * find the highest existing sequence number in a directory
3983 * and then set the in-memory index_cnt variable to reflect
3984 * free sequence numbers
3986 static int btrfs_set_inode_index_count(struct inode *inode)
3988 struct btrfs_root *root = BTRFS_I(inode)->root;
3989 struct btrfs_key key, found_key;
3990 struct btrfs_path *path;
3991 struct extent_buffer *leaf;
3992 int ret;
3994 key.objectid = inode->i_ino;
3995 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3996 key.offset = (u64)-1;
3998 path = btrfs_alloc_path();
3999 if (!path)
4000 return -ENOMEM;
4002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4003 if (ret < 0)
4004 goto out;
4005 /* FIXME: we should be able to handle this */
4006 if (ret == 0)
4007 goto out;
4008 ret = 0;
4011 * MAGIC NUMBER EXPLANATION:
4012 * since we search a directory based on f_pos we have to start at 2
4013 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4014 * else has to start at 2
4016 if (path->slots[0] == 0) {
4017 BTRFS_I(inode)->index_cnt = 2;
4018 goto out;
4021 path->slots[0]--;
4023 leaf = path->nodes[0];
4024 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4026 if (found_key.objectid != inode->i_ino ||
4027 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4028 BTRFS_I(inode)->index_cnt = 2;
4029 goto out;
4032 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4033 out:
4034 btrfs_free_path(path);
4035 return ret;
4039 * helper to find a free sequence number in a given directory. This current
4040 * code is very simple, later versions will do smarter things in the btree
4042 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4044 int ret = 0;
4046 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4047 ret = btrfs_set_inode_index_count(dir);
4048 if (ret)
4049 return ret;
4052 *index = BTRFS_I(dir)->index_cnt;
4053 BTRFS_I(dir)->index_cnt++;
4055 return ret;
4058 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4059 struct btrfs_root *root,
4060 struct inode *dir,
4061 const char *name, int name_len,
4062 u64 ref_objectid, u64 objectid,
4063 u64 alloc_hint, int mode, u64 *index)
4065 struct inode *inode;
4066 struct btrfs_inode_item *inode_item;
4067 struct btrfs_key *location;
4068 struct btrfs_path *path;
4069 struct btrfs_inode_ref *ref;
4070 struct btrfs_key key[2];
4071 u32 sizes[2];
4072 unsigned long ptr;
4073 int ret;
4074 int owner;
4076 path = btrfs_alloc_path();
4077 BUG_ON(!path);
4079 inode = new_inode(root->fs_info->sb);
4080 if (!inode)
4081 return ERR_PTR(-ENOMEM);
4083 if (dir) {
4084 ret = btrfs_set_inode_index(dir, index);
4085 if (ret) {
4086 iput(inode);
4087 return ERR_PTR(ret);
4091 * index_cnt is ignored for everything but a dir,
4092 * btrfs_get_inode_index_count has an explanation for the magic
4093 * number
4095 init_btrfs_i(inode);
4096 BTRFS_I(inode)->index_cnt = 2;
4097 BTRFS_I(inode)->root = root;
4098 BTRFS_I(inode)->generation = trans->transid;
4099 btrfs_set_inode_space_info(root, inode);
4101 if (mode & S_IFDIR)
4102 owner = 0;
4103 else
4104 owner = 1;
4105 BTRFS_I(inode)->block_group =
4106 btrfs_find_block_group(root, 0, alloc_hint, owner);
4108 key[0].objectid = objectid;
4109 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4110 key[0].offset = 0;
4112 key[1].objectid = objectid;
4113 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4114 key[1].offset = ref_objectid;
4116 sizes[0] = sizeof(struct btrfs_inode_item);
4117 sizes[1] = name_len + sizeof(*ref);
4119 path->leave_spinning = 1;
4120 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4121 if (ret != 0)
4122 goto fail;
4124 inode_init_owner(inode, dir, mode);
4125 inode->i_ino = objectid;
4126 inode_set_bytes(inode, 0);
4127 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4128 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4129 struct btrfs_inode_item);
4130 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4132 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4133 struct btrfs_inode_ref);
4134 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4135 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4136 ptr = (unsigned long)(ref + 1);
4137 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4139 btrfs_mark_buffer_dirty(path->nodes[0]);
4140 btrfs_free_path(path);
4142 location = &BTRFS_I(inode)->location;
4143 location->objectid = objectid;
4144 location->offset = 0;
4145 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4147 btrfs_inherit_iflags(inode, dir);
4149 if ((mode & S_IFREG)) {
4150 if (btrfs_test_opt(root, NODATASUM))
4151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4152 if (btrfs_test_opt(root, NODATACOW))
4153 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4156 insert_inode_hash(inode);
4157 inode_tree_add(inode);
4158 return inode;
4159 fail:
4160 if (dir)
4161 BTRFS_I(dir)->index_cnt--;
4162 btrfs_free_path(path);
4163 iput(inode);
4164 return ERR_PTR(ret);
4167 static inline u8 btrfs_inode_type(struct inode *inode)
4169 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4173 * utility function to add 'inode' into 'parent_inode' with
4174 * a give name and a given sequence number.
4175 * if 'add_backref' is true, also insert a backref from the
4176 * inode to the parent directory.
4178 int btrfs_add_link(struct btrfs_trans_handle *trans,
4179 struct inode *parent_inode, struct inode *inode,
4180 const char *name, int name_len, int add_backref, u64 index)
4182 int ret = 0;
4183 struct btrfs_key key;
4184 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4186 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4187 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4188 } else {
4189 key.objectid = inode->i_ino;
4190 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4191 key.offset = 0;
4194 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4195 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4196 key.objectid, root->root_key.objectid,
4197 parent_inode->i_ino,
4198 index, name, name_len);
4199 } else if (add_backref) {
4200 ret = btrfs_insert_inode_ref(trans, root,
4201 name, name_len, inode->i_ino,
4202 parent_inode->i_ino, index);
4205 if (ret == 0) {
4206 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4207 parent_inode->i_ino, &key,
4208 btrfs_inode_type(inode), index);
4209 BUG_ON(ret);
4211 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4212 name_len * 2);
4213 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4214 ret = btrfs_update_inode(trans, root, parent_inode);
4216 return ret;
4219 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4220 struct dentry *dentry, struct inode *inode,
4221 int backref, u64 index)
4223 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4224 inode, dentry->d_name.name,
4225 dentry->d_name.len, backref, index);
4226 if (!err) {
4227 d_instantiate(dentry, inode);
4228 return 0;
4230 if (err > 0)
4231 err = -EEXIST;
4232 return err;
4235 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4236 int mode, dev_t rdev)
4238 struct btrfs_trans_handle *trans;
4239 struct btrfs_root *root = BTRFS_I(dir)->root;
4240 struct inode *inode = NULL;
4241 int err;
4242 int drop_inode = 0;
4243 u64 objectid;
4244 unsigned long nr = 0;
4245 u64 index = 0;
4247 if (!new_valid_dev(rdev))
4248 return -EINVAL;
4251 * 2 for inode item and ref
4252 * 2 for dir items
4253 * 1 for xattr if selinux is on
4255 err = btrfs_reserve_metadata_space(root, 5);
4256 if (err)
4257 return err;
4259 trans = btrfs_start_transaction(root, 1);
4260 if (!trans)
4261 goto fail;
4262 btrfs_set_trans_block_group(trans, dir);
4264 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4265 if (err) {
4266 err = -ENOSPC;
4267 goto out_unlock;
4270 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4271 dentry->d_name.len,
4272 dentry->d_parent->d_inode->i_ino, objectid,
4273 BTRFS_I(dir)->block_group, mode, &index);
4274 err = PTR_ERR(inode);
4275 if (IS_ERR(inode))
4276 goto out_unlock;
4278 err = btrfs_init_inode_security(trans, inode, dir);
4279 if (err) {
4280 drop_inode = 1;
4281 goto out_unlock;
4284 btrfs_set_trans_block_group(trans, inode);
4285 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4286 if (err)
4287 drop_inode = 1;
4288 else {
4289 inode->i_op = &btrfs_special_inode_operations;
4290 init_special_inode(inode, inode->i_mode, rdev);
4291 btrfs_update_inode(trans, root, inode);
4293 btrfs_update_inode_block_group(trans, inode);
4294 btrfs_update_inode_block_group(trans, dir);
4295 out_unlock:
4296 nr = trans->blocks_used;
4297 btrfs_end_transaction_throttle(trans, root);
4298 fail:
4299 btrfs_unreserve_metadata_space(root, 5);
4300 if (drop_inode) {
4301 inode_dec_link_count(inode);
4302 iput(inode);
4304 btrfs_btree_balance_dirty(root, nr);
4305 return err;
4308 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4309 int mode, struct nameidata *nd)
4311 struct btrfs_trans_handle *trans;
4312 struct btrfs_root *root = BTRFS_I(dir)->root;
4313 struct inode *inode = NULL;
4314 int err;
4315 int drop_inode = 0;
4316 unsigned long nr = 0;
4317 u64 objectid;
4318 u64 index = 0;
4321 * 2 for inode item and ref
4322 * 2 for dir items
4323 * 1 for xattr if selinux is on
4325 err = btrfs_reserve_metadata_space(root, 5);
4326 if (err)
4327 return err;
4329 trans = btrfs_start_transaction(root, 1);
4330 if (!trans)
4331 goto fail;
4332 btrfs_set_trans_block_group(trans, dir);
4334 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4335 if (err) {
4336 err = -ENOSPC;
4337 goto out_unlock;
4340 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4341 dentry->d_name.len,
4342 dentry->d_parent->d_inode->i_ino,
4343 objectid, BTRFS_I(dir)->block_group, mode,
4344 &index);
4345 err = PTR_ERR(inode);
4346 if (IS_ERR(inode))
4347 goto out_unlock;
4349 err = btrfs_init_inode_security(trans, inode, dir);
4350 if (err) {
4351 drop_inode = 1;
4352 goto out_unlock;
4355 btrfs_set_trans_block_group(trans, inode);
4356 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4357 if (err)
4358 drop_inode = 1;
4359 else {
4360 inode->i_mapping->a_ops = &btrfs_aops;
4361 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4362 inode->i_fop = &btrfs_file_operations;
4363 inode->i_op = &btrfs_file_inode_operations;
4364 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4366 btrfs_update_inode_block_group(trans, inode);
4367 btrfs_update_inode_block_group(trans, dir);
4368 out_unlock:
4369 nr = trans->blocks_used;
4370 btrfs_end_transaction_throttle(trans, root);
4371 fail:
4372 btrfs_unreserve_metadata_space(root, 5);
4373 if (drop_inode) {
4374 inode_dec_link_count(inode);
4375 iput(inode);
4377 btrfs_btree_balance_dirty(root, nr);
4378 return err;
4381 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4382 struct dentry *dentry)
4384 struct btrfs_trans_handle *trans;
4385 struct btrfs_root *root = BTRFS_I(dir)->root;
4386 struct inode *inode = old_dentry->d_inode;
4387 u64 index;
4388 unsigned long nr = 0;
4389 int err;
4390 int drop_inode = 0;
4392 if (inode->i_nlink == 0)
4393 return -ENOENT;
4395 /* do not allow sys_link's with other subvols of the same device */
4396 if (root->objectid != BTRFS_I(inode)->root->objectid)
4397 return -EPERM;
4400 * 1 item for inode ref
4401 * 2 items for dir items
4403 err = btrfs_reserve_metadata_space(root, 3);
4404 if (err)
4405 return err;
4407 btrfs_inc_nlink(inode);
4409 err = btrfs_set_inode_index(dir, &index);
4410 if (err)
4411 goto fail;
4413 trans = btrfs_start_transaction(root, 1);
4415 btrfs_set_trans_block_group(trans, dir);
4416 atomic_inc(&inode->i_count);
4418 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4420 if (err) {
4421 drop_inode = 1;
4422 } else {
4423 btrfs_update_inode_block_group(trans, dir);
4424 err = btrfs_update_inode(trans, root, inode);
4425 BUG_ON(err);
4426 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4429 nr = trans->blocks_used;
4430 btrfs_end_transaction_throttle(trans, root);
4431 fail:
4432 btrfs_unreserve_metadata_space(root, 3);
4433 if (drop_inode) {
4434 inode_dec_link_count(inode);
4435 iput(inode);
4437 btrfs_btree_balance_dirty(root, nr);
4438 return err;
4441 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4443 struct inode *inode = NULL;
4444 struct btrfs_trans_handle *trans;
4445 struct btrfs_root *root = BTRFS_I(dir)->root;
4446 int err = 0;
4447 int drop_on_err = 0;
4448 u64 objectid = 0;
4449 u64 index = 0;
4450 unsigned long nr = 1;
4453 * 2 items for inode and ref
4454 * 2 items for dir items
4455 * 1 for xattr if selinux is on
4457 err = btrfs_reserve_metadata_space(root, 5);
4458 if (err)
4459 return err;
4461 trans = btrfs_start_transaction(root, 1);
4462 if (!trans) {
4463 err = -ENOMEM;
4464 goto out_unlock;
4466 btrfs_set_trans_block_group(trans, dir);
4468 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4469 if (err) {
4470 err = -ENOSPC;
4471 goto out_fail;
4474 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4475 dentry->d_name.len,
4476 dentry->d_parent->d_inode->i_ino, objectid,
4477 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4478 &index);
4479 if (IS_ERR(inode)) {
4480 err = PTR_ERR(inode);
4481 goto out_fail;
4484 drop_on_err = 1;
4486 err = btrfs_init_inode_security(trans, inode, dir);
4487 if (err)
4488 goto out_fail;
4490 inode->i_op = &btrfs_dir_inode_operations;
4491 inode->i_fop = &btrfs_dir_file_operations;
4492 btrfs_set_trans_block_group(trans, inode);
4494 btrfs_i_size_write(inode, 0);
4495 err = btrfs_update_inode(trans, root, inode);
4496 if (err)
4497 goto out_fail;
4499 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4500 inode, dentry->d_name.name,
4501 dentry->d_name.len, 0, index);
4502 if (err)
4503 goto out_fail;
4505 d_instantiate(dentry, inode);
4506 drop_on_err = 0;
4507 btrfs_update_inode_block_group(trans, inode);
4508 btrfs_update_inode_block_group(trans, dir);
4510 out_fail:
4511 nr = trans->blocks_used;
4512 btrfs_end_transaction_throttle(trans, root);
4514 out_unlock:
4515 btrfs_unreserve_metadata_space(root, 5);
4516 if (drop_on_err)
4517 iput(inode);
4518 btrfs_btree_balance_dirty(root, nr);
4519 return err;
4522 /* helper for btfs_get_extent. Given an existing extent in the tree,
4523 * and an extent that you want to insert, deal with overlap and insert
4524 * the new extent into the tree.
4526 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4527 struct extent_map *existing,
4528 struct extent_map *em,
4529 u64 map_start, u64 map_len)
4531 u64 start_diff;
4533 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4534 start_diff = map_start - em->start;
4535 em->start = map_start;
4536 em->len = map_len;
4537 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4538 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4539 em->block_start += start_diff;
4540 em->block_len -= start_diff;
4542 return add_extent_mapping(em_tree, em);
4545 static noinline int uncompress_inline(struct btrfs_path *path,
4546 struct inode *inode, struct page *page,
4547 size_t pg_offset, u64 extent_offset,
4548 struct btrfs_file_extent_item *item)
4550 int ret;
4551 struct extent_buffer *leaf = path->nodes[0];
4552 char *tmp;
4553 size_t max_size;
4554 unsigned long inline_size;
4555 unsigned long ptr;
4557 WARN_ON(pg_offset != 0);
4558 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4559 inline_size = btrfs_file_extent_inline_item_len(leaf,
4560 btrfs_item_nr(leaf, path->slots[0]));
4561 tmp = kmalloc(inline_size, GFP_NOFS);
4562 ptr = btrfs_file_extent_inline_start(item);
4564 read_extent_buffer(leaf, tmp, ptr, inline_size);
4566 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4567 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4568 inline_size, max_size);
4569 if (ret) {
4570 char *kaddr = kmap_atomic(page, KM_USER0);
4571 unsigned long copy_size = min_t(u64,
4572 PAGE_CACHE_SIZE - pg_offset,
4573 max_size - extent_offset);
4574 memset(kaddr + pg_offset, 0, copy_size);
4575 kunmap_atomic(kaddr, KM_USER0);
4577 kfree(tmp);
4578 return 0;
4582 * a bit scary, this does extent mapping from logical file offset to the disk.
4583 * the ugly parts come from merging extents from the disk with the in-ram
4584 * representation. This gets more complex because of the data=ordered code,
4585 * where the in-ram extents might be locked pending data=ordered completion.
4587 * This also copies inline extents directly into the page.
4590 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4591 size_t pg_offset, u64 start, u64 len,
4592 int create)
4594 int ret;
4595 int err = 0;
4596 u64 bytenr;
4597 u64 extent_start = 0;
4598 u64 extent_end = 0;
4599 u64 objectid = inode->i_ino;
4600 u32 found_type;
4601 struct btrfs_path *path = NULL;
4602 struct btrfs_root *root = BTRFS_I(inode)->root;
4603 struct btrfs_file_extent_item *item;
4604 struct extent_buffer *leaf;
4605 struct btrfs_key found_key;
4606 struct extent_map *em = NULL;
4607 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4608 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4609 struct btrfs_trans_handle *trans = NULL;
4610 int compressed;
4612 again:
4613 read_lock(&em_tree->lock);
4614 em = lookup_extent_mapping(em_tree, start, len);
4615 if (em)
4616 em->bdev = root->fs_info->fs_devices->latest_bdev;
4617 read_unlock(&em_tree->lock);
4619 if (em) {
4620 if (em->start > start || em->start + em->len <= start)
4621 free_extent_map(em);
4622 else if (em->block_start == EXTENT_MAP_INLINE && page)
4623 free_extent_map(em);
4624 else
4625 goto out;
4627 em = alloc_extent_map(GFP_NOFS);
4628 if (!em) {
4629 err = -ENOMEM;
4630 goto out;
4632 em->bdev = root->fs_info->fs_devices->latest_bdev;
4633 em->start = EXTENT_MAP_HOLE;
4634 em->orig_start = EXTENT_MAP_HOLE;
4635 em->len = (u64)-1;
4636 em->block_len = (u64)-1;
4638 if (!path) {
4639 path = btrfs_alloc_path();
4640 BUG_ON(!path);
4643 ret = btrfs_lookup_file_extent(trans, root, path,
4644 objectid, start, trans != NULL);
4645 if (ret < 0) {
4646 err = ret;
4647 goto out;
4650 if (ret != 0) {
4651 if (path->slots[0] == 0)
4652 goto not_found;
4653 path->slots[0]--;
4656 leaf = path->nodes[0];
4657 item = btrfs_item_ptr(leaf, path->slots[0],
4658 struct btrfs_file_extent_item);
4659 /* are we inside the extent that was found? */
4660 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4661 found_type = btrfs_key_type(&found_key);
4662 if (found_key.objectid != objectid ||
4663 found_type != BTRFS_EXTENT_DATA_KEY) {
4664 goto not_found;
4667 found_type = btrfs_file_extent_type(leaf, item);
4668 extent_start = found_key.offset;
4669 compressed = btrfs_file_extent_compression(leaf, item);
4670 if (found_type == BTRFS_FILE_EXTENT_REG ||
4671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4672 extent_end = extent_start +
4673 btrfs_file_extent_num_bytes(leaf, item);
4674 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4675 size_t size;
4676 size = btrfs_file_extent_inline_len(leaf, item);
4677 extent_end = (extent_start + size + root->sectorsize - 1) &
4678 ~((u64)root->sectorsize - 1);
4681 if (start >= extent_end) {
4682 path->slots[0]++;
4683 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4684 ret = btrfs_next_leaf(root, path);
4685 if (ret < 0) {
4686 err = ret;
4687 goto out;
4689 if (ret > 0)
4690 goto not_found;
4691 leaf = path->nodes[0];
4693 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4694 if (found_key.objectid != objectid ||
4695 found_key.type != BTRFS_EXTENT_DATA_KEY)
4696 goto not_found;
4697 if (start + len <= found_key.offset)
4698 goto not_found;
4699 em->start = start;
4700 em->len = found_key.offset - start;
4701 goto not_found_em;
4704 if (found_type == BTRFS_FILE_EXTENT_REG ||
4705 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4706 em->start = extent_start;
4707 em->len = extent_end - extent_start;
4708 em->orig_start = extent_start -
4709 btrfs_file_extent_offset(leaf, item);
4710 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4711 if (bytenr == 0) {
4712 em->block_start = EXTENT_MAP_HOLE;
4713 goto insert;
4715 if (compressed) {
4716 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4717 em->block_start = bytenr;
4718 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4719 item);
4720 } else {
4721 bytenr += btrfs_file_extent_offset(leaf, item);
4722 em->block_start = bytenr;
4723 em->block_len = em->len;
4724 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4725 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4727 goto insert;
4728 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4729 unsigned long ptr;
4730 char *map;
4731 size_t size;
4732 size_t extent_offset;
4733 size_t copy_size;
4735 em->block_start = EXTENT_MAP_INLINE;
4736 if (!page || create) {
4737 em->start = extent_start;
4738 em->len = extent_end - extent_start;
4739 goto out;
4742 size = btrfs_file_extent_inline_len(leaf, item);
4743 extent_offset = page_offset(page) + pg_offset - extent_start;
4744 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4745 size - extent_offset);
4746 em->start = extent_start + extent_offset;
4747 em->len = (copy_size + root->sectorsize - 1) &
4748 ~((u64)root->sectorsize - 1);
4749 em->orig_start = EXTENT_MAP_INLINE;
4750 if (compressed)
4751 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4752 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4753 if (create == 0 && !PageUptodate(page)) {
4754 if (btrfs_file_extent_compression(leaf, item) ==
4755 BTRFS_COMPRESS_ZLIB) {
4756 ret = uncompress_inline(path, inode, page,
4757 pg_offset,
4758 extent_offset, item);
4759 BUG_ON(ret);
4760 } else {
4761 map = kmap(page);
4762 read_extent_buffer(leaf, map + pg_offset, ptr,
4763 copy_size);
4764 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4765 memset(map + pg_offset + copy_size, 0,
4766 PAGE_CACHE_SIZE - pg_offset -
4767 copy_size);
4769 kunmap(page);
4771 flush_dcache_page(page);
4772 } else if (create && PageUptodate(page)) {
4773 if (!trans) {
4774 kunmap(page);
4775 free_extent_map(em);
4776 em = NULL;
4777 btrfs_release_path(root, path);
4778 trans = btrfs_join_transaction(root, 1);
4779 goto again;
4781 map = kmap(page);
4782 write_extent_buffer(leaf, map + pg_offset, ptr,
4783 copy_size);
4784 kunmap(page);
4785 btrfs_mark_buffer_dirty(leaf);
4787 set_extent_uptodate(io_tree, em->start,
4788 extent_map_end(em) - 1, GFP_NOFS);
4789 goto insert;
4790 } else {
4791 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4792 WARN_ON(1);
4794 not_found:
4795 em->start = start;
4796 em->len = len;
4797 not_found_em:
4798 em->block_start = EXTENT_MAP_HOLE;
4799 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4800 insert:
4801 btrfs_release_path(root, path);
4802 if (em->start > start || extent_map_end(em) <= start) {
4803 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4804 "[%llu %llu]\n", (unsigned long long)em->start,
4805 (unsigned long long)em->len,
4806 (unsigned long long)start,
4807 (unsigned long long)len);
4808 err = -EIO;
4809 goto out;
4812 err = 0;
4813 write_lock(&em_tree->lock);
4814 ret = add_extent_mapping(em_tree, em);
4815 /* it is possible that someone inserted the extent into the tree
4816 * while we had the lock dropped. It is also possible that
4817 * an overlapping map exists in the tree
4819 if (ret == -EEXIST) {
4820 struct extent_map *existing;
4822 ret = 0;
4824 existing = lookup_extent_mapping(em_tree, start, len);
4825 if (existing && (existing->start > start ||
4826 existing->start + existing->len <= start)) {
4827 free_extent_map(existing);
4828 existing = NULL;
4830 if (!existing) {
4831 existing = lookup_extent_mapping(em_tree, em->start,
4832 em->len);
4833 if (existing) {
4834 err = merge_extent_mapping(em_tree, existing,
4835 em, start,
4836 root->sectorsize);
4837 free_extent_map(existing);
4838 if (err) {
4839 free_extent_map(em);
4840 em = NULL;
4842 } else {
4843 err = -EIO;
4844 free_extent_map(em);
4845 em = NULL;
4847 } else {
4848 free_extent_map(em);
4849 em = existing;
4850 err = 0;
4853 write_unlock(&em_tree->lock);
4854 out:
4855 if (path)
4856 btrfs_free_path(path);
4857 if (trans) {
4858 ret = btrfs_end_transaction(trans, root);
4859 if (!err)
4860 err = ret;
4862 if (err) {
4863 free_extent_map(em);
4864 return ERR_PTR(err);
4866 return em;
4869 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4870 const struct iovec *iov, loff_t offset,
4871 unsigned long nr_segs)
4873 return -EINVAL;
4876 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4877 __u64 start, __u64 len)
4879 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4882 int btrfs_readpage(struct file *file, struct page *page)
4884 struct extent_io_tree *tree;
4885 tree = &BTRFS_I(page->mapping->host)->io_tree;
4886 return extent_read_full_page(tree, page, btrfs_get_extent);
4889 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4891 struct extent_io_tree *tree;
4894 if (current->flags & PF_MEMALLOC) {
4895 redirty_page_for_writepage(wbc, page);
4896 unlock_page(page);
4897 return 0;
4899 tree = &BTRFS_I(page->mapping->host)->io_tree;
4900 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4903 int btrfs_writepages(struct address_space *mapping,
4904 struct writeback_control *wbc)
4906 struct extent_io_tree *tree;
4908 tree = &BTRFS_I(mapping->host)->io_tree;
4909 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4912 static int
4913 btrfs_readpages(struct file *file, struct address_space *mapping,
4914 struct list_head *pages, unsigned nr_pages)
4916 struct extent_io_tree *tree;
4917 tree = &BTRFS_I(mapping->host)->io_tree;
4918 return extent_readpages(tree, mapping, pages, nr_pages,
4919 btrfs_get_extent);
4921 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4923 struct extent_io_tree *tree;
4924 struct extent_map_tree *map;
4925 int ret;
4927 tree = &BTRFS_I(page->mapping->host)->io_tree;
4928 map = &BTRFS_I(page->mapping->host)->extent_tree;
4929 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4930 if (ret == 1) {
4931 ClearPagePrivate(page);
4932 set_page_private(page, 0);
4933 page_cache_release(page);
4935 return ret;
4938 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4940 if (PageWriteback(page) || PageDirty(page))
4941 return 0;
4942 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4945 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4947 struct extent_io_tree *tree;
4948 struct btrfs_ordered_extent *ordered;
4949 struct extent_state *cached_state = NULL;
4950 u64 page_start = page_offset(page);
4951 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4955 * we have the page locked, so new writeback can't start,
4956 * and the dirty bit won't be cleared while we are here.
4958 * Wait for IO on this page so that we can safely clear
4959 * the PagePrivate2 bit and do ordered accounting
4961 wait_on_page_writeback(page);
4963 tree = &BTRFS_I(page->mapping->host)->io_tree;
4964 if (offset) {
4965 btrfs_releasepage(page, GFP_NOFS);
4966 return;
4968 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
4969 GFP_NOFS);
4970 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4971 page_offset(page));
4972 if (ordered) {
4974 * IO on this page will never be started, so we need
4975 * to account for any ordered extents now
4977 clear_extent_bit(tree, page_start, page_end,
4978 EXTENT_DIRTY | EXTENT_DELALLOC |
4979 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4980 &cached_state, GFP_NOFS);
4982 * whoever cleared the private bit is responsible
4983 * for the finish_ordered_io
4985 if (TestClearPagePrivate2(page)) {
4986 btrfs_finish_ordered_io(page->mapping->host,
4987 page_start, page_end);
4989 btrfs_put_ordered_extent(ordered);
4990 cached_state = NULL;
4991 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
4992 GFP_NOFS);
4994 clear_extent_bit(tree, page_start, page_end,
4995 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4996 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
4997 __btrfs_releasepage(page, GFP_NOFS);
4999 ClearPageChecked(page);
5000 if (PagePrivate(page)) {
5001 ClearPagePrivate(page);
5002 set_page_private(page, 0);
5003 page_cache_release(page);
5008 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5009 * called from a page fault handler when a page is first dirtied. Hence we must
5010 * be careful to check for EOF conditions here. We set the page up correctly
5011 * for a written page which means we get ENOSPC checking when writing into
5012 * holes and correct delalloc and unwritten extent mapping on filesystems that
5013 * support these features.
5015 * We are not allowed to take the i_mutex here so we have to play games to
5016 * protect against truncate races as the page could now be beyond EOF. Because
5017 * vmtruncate() writes the inode size before removing pages, once we have the
5018 * page lock we can determine safely if the page is beyond EOF. If it is not
5019 * beyond EOF, then the page is guaranteed safe against truncation until we
5020 * unlock the page.
5022 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5024 struct page *page = vmf->page;
5025 struct inode *inode = fdentry(vma->vm_file)->d_inode;
5026 struct btrfs_root *root = BTRFS_I(inode)->root;
5027 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5028 struct btrfs_ordered_extent *ordered;
5029 struct extent_state *cached_state = NULL;
5030 char *kaddr;
5031 unsigned long zero_start;
5032 loff_t size;
5033 int ret;
5034 u64 page_start;
5035 u64 page_end;
5037 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5038 if (ret) {
5039 if (ret == -ENOMEM)
5040 ret = VM_FAULT_OOM;
5041 else /* -ENOSPC, -EIO, etc */
5042 ret = VM_FAULT_SIGBUS;
5043 goto out;
5046 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5047 if (ret) {
5048 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5049 ret = VM_FAULT_SIGBUS;
5050 goto out;
5053 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5054 again:
5055 lock_page(page);
5056 size = i_size_read(inode);
5057 page_start = page_offset(page);
5058 page_end = page_start + PAGE_CACHE_SIZE - 1;
5060 if ((page->mapping != inode->i_mapping) ||
5061 (page_start >= size)) {
5062 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5063 /* page got truncated out from underneath us */
5064 goto out_unlock;
5066 wait_on_page_writeback(page);
5068 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5069 GFP_NOFS);
5070 set_page_extent_mapped(page);
5073 * we can't set the delalloc bits if there are pending ordered
5074 * extents. Drop our locks and wait for them to finish
5076 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5077 if (ordered) {
5078 unlock_extent_cached(io_tree, page_start, page_end,
5079 &cached_state, GFP_NOFS);
5080 unlock_page(page);
5081 btrfs_start_ordered_extent(inode, ordered, 1);
5082 btrfs_put_ordered_extent(ordered);
5083 goto again;
5087 * XXX - page_mkwrite gets called every time the page is dirtied, even
5088 * if it was already dirty, so for space accounting reasons we need to
5089 * clear any delalloc bits for the range we are fixing to save. There
5090 * is probably a better way to do this, but for now keep consistent with
5091 * prepare_pages in the normal write path.
5093 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5094 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5095 0, 0, &cached_state, GFP_NOFS);
5097 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5098 &cached_state);
5099 if (ret) {
5100 unlock_extent_cached(io_tree, page_start, page_end,
5101 &cached_state, GFP_NOFS);
5102 ret = VM_FAULT_SIGBUS;
5103 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5104 goto out_unlock;
5106 ret = 0;
5108 /* page is wholly or partially inside EOF */
5109 if (page_start + PAGE_CACHE_SIZE > size)
5110 zero_start = size & ~PAGE_CACHE_MASK;
5111 else
5112 zero_start = PAGE_CACHE_SIZE;
5114 if (zero_start != PAGE_CACHE_SIZE) {
5115 kaddr = kmap(page);
5116 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5117 flush_dcache_page(page);
5118 kunmap(page);
5120 ClearPageChecked(page);
5121 set_page_dirty(page);
5122 SetPageUptodate(page);
5124 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5125 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5127 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
5129 out_unlock:
5130 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5131 if (!ret)
5132 return VM_FAULT_LOCKED;
5133 unlock_page(page);
5134 out:
5135 return ret;
5138 static void btrfs_truncate(struct inode *inode)
5140 struct btrfs_root *root = BTRFS_I(inode)->root;
5141 int ret;
5142 struct btrfs_trans_handle *trans;
5143 unsigned long nr;
5144 u64 mask = root->sectorsize - 1;
5146 if (!S_ISREG(inode->i_mode)) {
5147 WARN_ON(1);
5148 return;
5151 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5152 if (ret)
5153 return;
5155 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5156 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5158 trans = btrfs_start_transaction(root, 1);
5159 btrfs_set_trans_block_group(trans, inode);
5162 * setattr is responsible for setting the ordered_data_close flag,
5163 * but that is only tested during the last file release. That
5164 * could happen well after the next commit, leaving a great big
5165 * window where new writes may get lost if someone chooses to write
5166 * to this file after truncating to zero
5168 * The inode doesn't have any dirty data here, and so if we commit
5169 * this is a noop. If someone immediately starts writing to the inode
5170 * it is very likely we'll catch some of their writes in this
5171 * transaction, and the commit will find this file on the ordered
5172 * data list with good things to send down.
5174 * This is a best effort solution, there is still a window where
5175 * using truncate to replace the contents of the file will
5176 * end up with a zero length file after a crash.
5178 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5179 btrfs_add_ordered_operation(trans, root, inode);
5181 while (1) {
5182 ret = btrfs_truncate_inode_items(trans, root, inode,
5183 inode->i_size,
5184 BTRFS_EXTENT_DATA_KEY);
5185 if (ret != -EAGAIN)
5186 break;
5188 ret = btrfs_update_inode(trans, root, inode);
5189 BUG_ON(ret);
5191 nr = trans->blocks_used;
5192 btrfs_end_transaction(trans, root);
5193 btrfs_btree_balance_dirty(root, nr);
5195 trans = btrfs_start_transaction(root, 1);
5196 btrfs_set_trans_block_group(trans, inode);
5199 if (ret == 0 && inode->i_nlink > 0) {
5200 ret = btrfs_orphan_del(trans, inode);
5201 BUG_ON(ret);
5204 ret = btrfs_update_inode(trans, root, inode);
5205 BUG_ON(ret);
5207 nr = trans->blocks_used;
5208 ret = btrfs_end_transaction_throttle(trans, root);
5209 BUG_ON(ret);
5210 btrfs_btree_balance_dirty(root, nr);
5214 * create a new subvolume directory/inode (helper for the ioctl).
5216 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5217 struct btrfs_root *new_root,
5218 u64 new_dirid, u64 alloc_hint)
5220 struct inode *inode;
5221 int err;
5222 u64 index = 0;
5224 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5225 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5226 if (IS_ERR(inode))
5227 return PTR_ERR(inode);
5228 inode->i_op = &btrfs_dir_inode_operations;
5229 inode->i_fop = &btrfs_dir_file_operations;
5231 inode->i_nlink = 1;
5232 btrfs_i_size_write(inode, 0);
5234 err = btrfs_update_inode(trans, new_root, inode);
5235 BUG_ON(err);
5237 iput(inode);
5238 return 0;
5241 /* helper function for file defrag and space balancing. This
5242 * forces readahead on a given range of bytes in an inode
5244 unsigned long btrfs_force_ra(struct address_space *mapping,
5245 struct file_ra_state *ra, struct file *file,
5246 pgoff_t offset, pgoff_t last_index)
5248 pgoff_t req_size = last_index - offset + 1;
5250 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5251 return offset + req_size;
5254 struct inode *btrfs_alloc_inode(struct super_block *sb)
5256 struct btrfs_inode *ei;
5258 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5259 if (!ei)
5260 return NULL;
5261 ei->last_trans = 0;
5262 ei->last_sub_trans = 0;
5263 ei->logged_trans = 0;
5264 ei->outstanding_extents = 0;
5265 ei->reserved_extents = 0;
5266 ei->root = NULL;
5267 spin_lock_init(&ei->accounting_lock);
5268 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5269 INIT_LIST_HEAD(&ei->i_orphan);
5270 INIT_LIST_HEAD(&ei->ordered_operations);
5271 return &ei->vfs_inode;
5274 void btrfs_destroy_inode(struct inode *inode)
5276 struct btrfs_ordered_extent *ordered;
5277 struct btrfs_root *root = BTRFS_I(inode)->root;
5279 WARN_ON(!list_empty(&inode->i_dentry));
5280 WARN_ON(inode->i_data.nrpages);
5283 * This can happen where we create an inode, but somebody else also
5284 * created the same inode and we need to destroy the one we already
5285 * created.
5287 if (!root)
5288 goto free;
5291 * Make sure we're properly removed from the ordered operation
5292 * lists.
5294 smp_mb();
5295 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5296 spin_lock(&root->fs_info->ordered_extent_lock);
5297 list_del_init(&BTRFS_I(inode)->ordered_operations);
5298 spin_unlock(&root->fs_info->ordered_extent_lock);
5301 spin_lock(&root->list_lock);
5302 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5303 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5304 inode->i_ino);
5305 list_del_init(&BTRFS_I(inode)->i_orphan);
5307 spin_unlock(&root->list_lock);
5309 while (1) {
5310 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5311 if (!ordered)
5312 break;
5313 else {
5314 printk(KERN_ERR "btrfs found ordered "
5315 "extent %llu %llu on inode cleanup\n",
5316 (unsigned long long)ordered->file_offset,
5317 (unsigned long long)ordered->len);
5318 btrfs_remove_ordered_extent(inode, ordered);
5319 btrfs_put_ordered_extent(ordered);
5320 btrfs_put_ordered_extent(ordered);
5323 inode_tree_del(inode);
5324 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5325 free:
5326 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5329 void btrfs_drop_inode(struct inode *inode)
5331 struct btrfs_root *root = BTRFS_I(inode)->root;
5332 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5333 generic_delete_inode(inode);
5334 else
5335 generic_drop_inode(inode);
5338 static void init_once(void *foo)
5340 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5342 inode_init_once(&ei->vfs_inode);
5345 void btrfs_destroy_cachep(void)
5347 if (btrfs_inode_cachep)
5348 kmem_cache_destroy(btrfs_inode_cachep);
5349 if (btrfs_trans_handle_cachep)
5350 kmem_cache_destroy(btrfs_trans_handle_cachep);
5351 if (btrfs_transaction_cachep)
5352 kmem_cache_destroy(btrfs_transaction_cachep);
5353 if (btrfs_path_cachep)
5354 kmem_cache_destroy(btrfs_path_cachep);
5357 int btrfs_init_cachep(void)
5359 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5360 sizeof(struct btrfs_inode), 0,
5361 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5362 if (!btrfs_inode_cachep)
5363 goto fail;
5365 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5366 sizeof(struct btrfs_trans_handle), 0,
5367 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5368 if (!btrfs_trans_handle_cachep)
5369 goto fail;
5371 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5372 sizeof(struct btrfs_transaction), 0,
5373 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5374 if (!btrfs_transaction_cachep)
5375 goto fail;
5377 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5378 sizeof(struct btrfs_path), 0,
5379 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5380 if (!btrfs_path_cachep)
5381 goto fail;
5383 return 0;
5384 fail:
5385 btrfs_destroy_cachep();
5386 return -ENOMEM;
5389 static int btrfs_getattr(struct vfsmount *mnt,
5390 struct dentry *dentry, struct kstat *stat)
5392 struct inode *inode = dentry->d_inode;
5393 generic_fillattr(inode, stat);
5394 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5395 stat->blksize = PAGE_CACHE_SIZE;
5396 stat->blocks = (inode_get_bytes(inode) +
5397 BTRFS_I(inode)->delalloc_bytes) >> 9;
5398 return 0;
5401 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5402 struct inode *new_dir, struct dentry *new_dentry)
5404 struct btrfs_trans_handle *trans;
5405 struct btrfs_root *root = BTRFS_I(old_dir)->root;
5406 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5407 struct inode *new_inode = new_dentry->d_inode;
5408 struct inode *old_inode = old_dentry->d_inode;
5409 struct timespec ctime = CURRENT_TIME;
5410 u64 index = 0;
5411 u64 root_objectid;
5412 int ret;
5414 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5415 return -EPERM;
5417 /* we only allow rename subvolume link between subvolumes */
5418 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5419 return -EXDEV;
5421 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5422 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5423 return -ENOTEMPTY;
5425 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5426 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5427 return -ENOTEMPTY;
5430 * We want to reserve the absolute worst case amount of items. So if
5431 * both inodes are subvols and we need to unlink them then that would
5432 * require 4 item modifications, but if they are both normal inodes it
5433 * would require 5 item modifications, so we'll assume their normal
5434 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5435 * should cover the worst case number of items we'll modify.
5437 ret = btrfs_reserve_metadata_space(root, 11);
5438 if (ret)
5439 return ret;
5442 * we're using rename to replace one file with another.
5443 * and the replacement file is large. Start IO on it now so
5444 * we don't add too much work to the end of the transaction
5446 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5447 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5448 filemap_flush(old_inode->i_mapping);
5450 /* close the racy window with snapshot create/destroy ioctl */
5451 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5452 down_read(&root->fs_info->subvol_sem);
5454 trans = btrfs_start_transaction(root, 1);
5455 btrfs_set_trans_block_group(trans, new_dir);
5457 if (dest != root)
5458 btrfs_record_root_in_trans(trans, dest);
5460 ret = btrfs_set_inode_index(new_dir, &index);
5461 if (ret)
5462 goto out_fail;
5464 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5465 /* force full log commit if subvolume involved. */
5466 root->fs_info->last_trans_log_full_commit = trans->transid;
5467 } else {
5468 ret = btrfs_insert_inode_ref(trans, dest,
5469 new_dentry->d_name.name,
5470 new_dentry->d_name.len,
5471 old_inode->i_ino,
5472 new_dir->i_ino, index);
5473 if (ret)
5474 goto out_fail;
5476 * this is an ugly little race, but the rename is required
5477 * to make sure that if we crash, the inode is either at the
5478 * old name or the new one. pinning the log transaction lets
5479 * us make sure we don't allow a log commit to come in after
5480 * we unlink the name but before we add the new name back in.
5482 btrfs_pin_log_trans(root);
5485 * make sure the inode gets flushed if it is replacing
5486 * something.
5488 if (new_inode && new_inode->i_size &&
5489 old_inode && S_ISREG(old_inode->i_mode)) {
5490 btrfs_add_ordered_operation(trans, root, old_inode);
5493 old_dir->i_ctime = old_dir->i_mtime = ctime;
5494 new_dir->i_ctime = new_dir->i_mtime = ctime;
5495 old_inode->i_ctime = ctime;
5497 if (old_dentry->d_parent != new_dentry->d_parent)
5498 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5500 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5501 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5502 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5503 old_dentry->d_name.name,
5504 old_dentry->d_name.len);
5505 } else {
5506 btrfs_inc_nlink(old_dentry->d_inode);
5507 ret = btrfs_unlink_inode(trans, root, old_dir,
5508 old_dentry->d_inode,
5509 old_dentry->d_name.name,
5510 old_dentry->d_name.len);
5512 BUG_ON(ret);
5514 if (new_inode) {
5515 new_inode->i_ctime = CURRENT_TIME;
5516 if (unlikely(new_inode->i_ino ==
5517 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5518 root_objectid = BTRFS_I(new_inode)->location.objectid;
5519 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5520 root_objectid,
5521 new_dentry->d_name.name,
5522 new_dentry->d_name.len);
5523 BUG_ON(new_inode->i_nlink == 0);
5524 } else {
5525 ret = btrfs_unlink_inode(trans, dest, new_dir,
5526 new_dentry->d_inode,
5527 new_dentry->d_name.name,
5528 new_dentry->d_name.len);
5530 BUG_ON(ret);
5531 if (new_inode->i_nlink == 0) {
5532 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5533 BUG_ON(ret);
5537 ret = btrfs_add_link(trans, new_dir, old_inode,
5538 new_dentry->d_name.name,
5539 new_dentry->d_name.len, 0, index);
5540 BUG_ON(ret);
5542 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5543 btrfs_log_new_name(trans, old_inode, old_dir,
5544 new_dentry->d_parent);
5545 btrfs_end_log_trans(root);
5547 out_fail:
5548 btrfs_end_transaction_throttle(trans, root);
5550 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5551 up_read(&root->fs_info->subvol_sem);
5553 btrfs_unreserve_metadata_space(root, 11);
5554 return ret;
5558 * some fairly slow code that needs optimization. This walks the list
5559 * of all the inodes with pending delalloc and forces them to disk.
5561 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5563 struct list_head *head = &root->fs_info->delalloc_inodes;
5564 struct btrfs_inode *binode;
5565 struct inode *inode;
5567 if (root->fs_info->sb->s_flags & MS_RDONLY)
5568 return -EROFS;
5570 spin_lock(&root->fs_info->delalloc_lock);
5571 while (!list_empty(head)) {
5572 binode = list_entry(head->next, struct btrfs_inode,
5573 delalloc_inodes);
5574 inode = igrab(&binode->vfs_inode);
5575 if (!inode)
5576 list_del_init(&binode->delalloc_inodes);
5577 spin_unlock(&root->fs_info->delalloc_lock);
5578 if (inode) {
5579 filemap_flush(inode->i_mapping);
5580 if (delay_iput)
5581 btrfs_add_delayed_iput(inode);
5582 else
5583 iput(inode);
5585 cond_resched();
5586 spin_lock(&root->fs_info->delalloc_lock);
5588 spin_unlock(&root->fs_info->delalloc_lock);
5590 /* the filemap_flush will queue IO into the worker threads, but
5591 * we have to make sure the IO is actually started and that
5592 * ordered extents get created before we return
5594 atomic_inc(&root->fs_info->async_submit_draining);
5595 while (atomic_read(&root->fs_info->nr_async_submits) ||
5596 atomic_read(&root->fs_info->async_delalloc_pages)) {
5597 wait_event(root->fs_info->async_submit_wait,
5598 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5599 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5601 atomic_dec(&root->fs_info->async_submit_draining);
5602 return 0;
5605 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5606 const char *symname)
5608 struct btrfs_trans_handle *trans;
5609 struct btrfs_root *root = BTRFS_I(dir)->root;
5610 struct btrfs_path *path;
5611 struct btrfs_key key;
5612 struct inode *inode = NULL;
5613 int err;
5614 int drop_inode = 0;
5615 u64 objectid;
5616 u64 index = 0 ;
5617 int name_len;
5618 int datasize;
5619 unsigned long ptr;
5620 struct btrfs_file_extent_item *ei;
5621 struct extent_buffer *leaf;
5622 unsigned long nr = 0;
5624 name_len = strlen(symname) + 1;
5625 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5626 return -ENAMETOOLONG;
5629 * 2 items for inode item and ref
5630 * 2 items for dir items
5631 * 1 item for xattr if selinux is on
5633 err = btrfs_reserve_metadata_space(root, 5);
5634 if (err)
5635 return err;
5637 trans = btrfs_start_transaction(root, 1);
5638 if (!trans)
5639 goto out_fail;
5640 btrfs_set_trans_block_group(trans, dir);
5642 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5643 if (err) {
5644 err = -ENOSPC;
5645 goto out_unlock;
5648 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5649 dentry->d_name.len,
5650 dentry->d_parent->d_inode->i_ino, objectid,
5651 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5652 &index);
5653 err = PTR_ERR(inode);
5654 if (IS_ERR(inode))
5655 goto out_unlock;
5657 err = btrfs_init_inode_security(trans, inode, dir);
5658 if (err) {
5659 drop_inode = 1;
5660 goto out_unlock;
5663 btrfs_set_trans_block_group(trans, inode);
5664 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5665 if (err)
5666 drop_inode = 1;
5667 else {
5668 inode->i_mapping->a_ops = &btrfs_aops;
5669 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5670 inode->i_fop = &btrfs_file_operations;
5671 inode->i_op = &btrfs_file_inode_operations;
5672 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5674 btrfs_update_inode_block_group(trans, inode);
5675 btrfs_update_inode_block_group(trans, dir);
5676 if (drop_inode)
5677 goto out_unlock;
5679 path = btrfs_alloc_path();
5680 BUG_ON(!path);
5681 key.objectid = inode->i_ino;
5682 key.offset = 0;
5683 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5684 datasize = btrfs_file_extent_calc_inline_size(name_len);
5685 err = btrfs_insert_empty_item(trans, root, path, &key,
5686 datasize);
5687 if (err) {
5688 drop_inode = 1;
5689 goto out_unlock;
5691 leaf = path->nodes[0];
5692 ei = btrfs_item_ptr(leaf, path->slots[0],
5693 struct btrfs_file_extent_item);
5694 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5695 btrfs_set_file_extent_type(leaf, ei,
5696 BTRFS_FILE_EXTENT_INLINE);
5697 btrfs_set_file_extent_encryption(leaf, ei, 0);
5698 btrfs_set_file_extent_compression(leaf, ei, 0);
5699 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5700 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5702 ptr = btrfs_file_extent_inline_start(ei);
5703 write_extent_buffer(leaf, symname, ptr, name_len);
5704 btrfs_mark_buffer_dirty(leaf);
5705 btrfs_free_path(path);
5707 inode->i_op = &btrfs_symlink_inode_operations;
5708 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5709 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5710 inode_set_bytes(inode, name_len);
5711 btrfs_i_size_write(inode, name_len - 1);
5712 err = btrfs_update_inode(trans, root, inode);
5713 if (err)
5714 drop_inode = 1;
5716 out_unlock:
5717 nr = trans->blocks_used;
5718 btrfs_end_transaction_throttle(trans, root);
5719 out_fail:
5720 btrfs_unreserve_metadata_space(root, 5);
5721 if (drop_inode) {
5722 inode_dec_link_count(inode);
5723 iput(inode);
5725 btrfs_btree_balance_dirty(root, nr);
5726 return err;
5729 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5730 u64 alloc_hint, int mode, loff_t actual_len)
5732 struct btrfs_trans_handle *trans;
5733 struct btrfs_root *root = BTRFS_I(inode)->root;
5734 struct btrfs_key ins;
5735 u64 cur_offset = start;
5736 u64 num_bytes = end - start;
5737 int ret = 0;
5738 u64 i_size;
5740 while (num_bytes > 0) {
5741 trans = btrfs_start_transaction(root, 1);
5743 ret = btrfs_reserve_extent(trans, root, num_bytes,
5744 root->sectorsize, 0, alloc_hint,
5745 (u64)-1, &ins, 1);
5746 if (ret) {
5747 WARN_ON(1);
5748 goto stop_trans;
5751 ret = btrfs_reserve_metadata_space(root, 3);
5752 if (ret) {
5753 btrfs_free_reserved_extent(root, ins.objectid,
5754 ins.offset);
5755 goto stop_trans;
5758 ret = insert_reserved_file_extent(trans, inode,
5759 cur_offset, ins.objectid,
5760 ins.offset, ins.offset,
5761 ins.offset, 0, 0, 0,
5762 BTRFS_FILE_EXTENT_PREALLOC);
5763 BUG_ON(ret);
5764 btrfs_drop_extent_cache(inode, cur_offset,
5765 cur_offset + ins.offset -1, 0);
5767 num_bytes -= ins.offset;
5768 cur_offset += ins.offset;
5769 alloc_hint = ins.objectid + ins.offset;
5771 inode->i_ctime = CURRENT_TIME;
5772 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5773 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5774 (actual_len > inode->i_size) &&
5775 (cur_offset > inode->i_size)) {
5777 if (cur_offset > actual_len)
5778 i_size = actual_len;
5779 else
5780 i_size = cur_offset;
5781 i_size_write(inode, i_size);
5782 btrfs_ordered_update_i_size(inode, i_size, NULL);
5785 ret = btrfs_update_inode(trans, root, inode);
5786 BUG_ON(ret);
5788 btrfs_end_transaction(trans, root);
5789 btrfs_unreserve_metadata_space(root, 3);
5791 return ret;
5793 stop_trans:
5794 btrfs_end_transaction(trans, root);
5795 return ret;
5799 static long btrfs_fallocate(struct inode *inode, int mode,
5800 loff_t offset, loff_t len)
5802 struct extent_state *cached_state = NULL;
5803 u64 cur_offset;
5804 u64 last_byte;
5805 u64 alloc_start;
5806 u64 alloc_end;
5807 u64 alloc_hint = 0;
5808 u64 locked_end;
5809 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5810 struct extent_map *em;
5811 int ret;
5813 alloc_start = offset & ~mask;
5814 alloc_end = (offset + len + mask) & ~mask;
5817 * wait for ordered IO before we have any locks. We'll loop again
5818 * below with the locks held.
5820 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5822 mutex_lock(&inode->i_mutex);
5823 if (alloc_start > inode->i_size) {
5824 ret = btrfs_cont_expand(inode, alloc_start);
5825 if (ret)
5826 goto out;
5829 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5830 alloc_end - alloc_start);
5831 if (ret)
5832 goto out;
5834 locked_end = alloc_end - 1;
5835 while (1) {
5836 struct btrfs_ordered_extent *ordered;
5838 /* the extent lock is ordered inside the running
5839 * transaction
5841 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
5842 locked_end, 0, &cached_state, GFP_NOFS);
5843 ordered = btrfs_lookup_first_ordered_extent(inode,
5844 alloc_end - 1);
5845 if (ordered &&
5846 ordered->file_offset + ordered->len > alloc_start &&
5847 ordered->file_offset < alloc_end) {
5848 btrfs_put_ordered_extent(ordered);
5849 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
5850 alloc_start, locked_end,
5851 &cached_state, GFP_NOFS);
5853 * we can't wait on the range with the transaction
5854 * running or with the extent lock held
5856 btrfs_wait_ordered_range(inode, alloc_start,
5857 alloc_end - alloc_start);
5858 } else {
5859 if (ordered)
5860 btrfs_put_ordered_extent(ordered);
5861 break;
5865 cur_offset = alloc_start;
5866 while (1) {
5867 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5868 alloc_end - cur_offset, 0);
5869 BUG_ON(IS_ERR(em) || !em);
5870 last_byte = min(extent_map_end(em), alloc_end);
5871 last_byte = (last_byte + mask) & ~mask;
5872 if (em->block_start == EXTENT_MAP_HOLE ||
5873 (cur_offset >= inode->i_size &&
5874 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5875 ret = prealloc_file_range(inode,
5876 cur_offset, last_byte,
5877 alloc_hint, mode, offset+len);
5878 if (ret < 0) {
5879 free_extent_map(em);
5880 break;
5883 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5884 alloc_hint = em->block_start;
5885 free_extent_map(em);
5887 cur_offset = last_byte;
5888 if (cur_offset >= alloc_end) {
5889 ret = 0;
5890 break;
5893 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5894 &cached_state, GFP_NOFS);
5896 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5897 alloc_end - alloc_start);
5898 out:
5899 mutex_unlock(&inode->i_mutex);
5900 return ret;
5903 static int btrfs_set_page_dirty(struct page *page)
5905 return __set_page_dirty_nobuffers(page);
5908 static int btrfs_permission(struct inode *inode, int mask)
5910 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5911 return -EACCES;
5912 return generic_permission(inode, mask, btrfs_check_acl);
5915 static const struct inode_operations btrfs_dir_inode_operations = {
5916 .getattr = btrfs_getattr,
5917 .lookup = btrfs_lookup,
5918 .create = btrfs_create,
5919 .unlink = btrfs_unlink,
5920 .link = btrfs_link,
5921 .mkdir = btrfs_mkdir,
5922 .rmdir = btrfs_rmdir,
5923 .rename = btrfs_rename,
5924 .symlink = btrfs_symlink,
5925 .setattr = btrfs_setattr,
5926 .mknod = btrfs_mknod,
5927 .setxattr = btrfs_setxattr,
5928 .getxattr = btrfs_getxattr,
5929 .listxattr = btrfs_listxattr,
5930 .removexattr = btrfs_removexattr,
5931 .permission = btrfs_permission,
5933 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5934 .lookup = btrfs_lookup,
5935 .permission = btrfs_permission,
5938 static const struct file_operations btrfs_dir_file_operations = {
5939 .llseek = generic_file_llseek,
5940 .read = generic_read_dir,
5941 .readdir = btrfs_real_readdir,
5942 .unlocked_ioctl = btrfs_ioctl,
5943 #ifdef CONFIG_COMPAT
5944 .compat_ioctl = btrfs_ioctl,
5945 #endif
5946 .release = btrfs_release_file,
5947 .fsync = btrfs_sync_file,
5950 static struct extent_io_ops btrfs_extent_io_ops = {
5951 .fill_delalloc = run_delalloc_range,
5952 .submit_bio_hook = btrfs_submit_bio_hook,
5953 .merge_bio_hook = btrfs_merge_bio_hook,
5954 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5955 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5956 .writepage_start_hook = btrfs_writepage_start_hook,
5957 .readpage_io_failed_hook = btrfs_io_failed_hook,
5958 .set_bit_hook = btrfs_set_bit_hook,
5959 .clear_bit_hook = btrfs_clear_bit_hook,
5960 .merge_extent_hook = btrfs_merge_extent_hook,
5961 .split_extent_hook = btrfs_split_extent_hook,
5965 * btrfs doesn't support the bmap operation because swapfiles
5966 * use bmap to make a mapping of extents in the file. They assume
5967 * these extents won't change over the life of the file and they
5968 * use the bmap result to do IO directly to the drive.
5970 * the btrfs bmap call would return logical addresses that aren't
5971 * suitable for IO and they also will change frequently as COW
5972 * operations happen. So, swapfile + btrfs == corruption.
5974 * For now we're avoiding this by dropping bmap.
5976 static const struct address_space_operations btrfs_aops = {
5977 .readpage = btrfs_readpage,
5978 .writepage = btrfs_writepage,
5979 .writepages = btrfs_writepages,
5980 .readpages = btrfs_readpages,
5981 .sync_page = block_sync_page,
5982 .direct_IO = btrfs_direct_IO,
5983 .invalidatepage = btrfs_invalidatepage,
5984 .releasepage = btrfs_releasepage,
5985 .set_page_dirty = btrfs_set_page_dirty,
5986 .error_remove_page = generic_error_remove_page,
5989 static const struct address_space_operations btrfs_symlink_aops = {
5990 .readpage = btrfs_readpage,
5991 .writepage = btrfs_writepage,
5992 .invalidatepage = btrfs_invalidatepage,
5993 .releasepage = btrfs_releasepage,
5996 static const struct inode_operations btrfs_file_inode_operations = {
5997 .truncate = btrfs_truncate,
5998 .getattr = btrfs_getattr,
5999 .setattr = btrfs_setattr,
6000 .setxattr = btrfs_setxattr,
6001 .getxattr = btrfs_getxattr,
6002 .listxattr = btrfs_listxattr,
6003 .removexattr = btrfs_removexattr,
6004 .permission = btrfs_permission,
6005 .fallocate = btrfs_fallocate,
6006 .fiemap = btrfs_fiemap,
6008 static const struct inode_operations btrfs_special_inode_operations = {
6009 .getattr = btrfs_getattr,
6010 .setattr = btrfs_setattr,
6011 .permission = btrfs_permission,
6012 .setxattr = btrfs_setxattr,
6013 .getxattr = btrfs_getxattr,
6014 .listxattr = btrfs_listxattr,
6015 .removexattr = btrfs_removexattr,
6017 static const struct inode_operations btrfs_symlink_inode_operations = {
6018 .readlink = generic_readlink,
6019 .follow_link = page_follow_link_light,
6020 .put_link = page_put_link,
6021 .permission = btrfs_permission,
6022 .setxattr = btrfs_setxattr,
6023 .getxattr = btrfs_getxattr,
6024 .listxattr = btrfs_listxattr,
6025 .removexattr = btrfs_removexattr,
6028 const struct dentry_operations btrfs_dentry_operations = {
6029 .d_delete = btrfs_dentry_delete,