2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
53 * Management arrays for POSIX timers. Timers are now kept in static hash table
55 * Timer ids are allocated by local routine, which selects proper hash head by
56 * key, constructed from current->signal address and per signal struct counter.
57 * This keeps timer ids unique per process, but now they can intersect between
62 * Lets keep our timers in a slab cache :-)
64 static struct kmem_cache
*posix_timers_cache
;
66 static DEFINE_HASHTABLE(posix_timers_hashtable
, 9);
67 static DEFINE_SPINLOCK(hash_lock
);
70 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
71 * SIGEV values. Here we put out an error if this assumption fails.
73 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
74 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
75 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
79 * parisc wants ENOTSUP instead of EOPNOTSUPP
82 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
84 # define ENANOSLEEP_NOTSUP ENOTSUP
88 * The timer ID is turned into a timer address by idr_find().
89 * Verifying a valid ID consists of:
91 * a) checking that idr_find() returns other than -1.
92 * b) checking that the timer id matches the one in the timer itself.
93 * c) that the timer owner is in the callers thread group.
97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98 * to implement others. This structure defines the various
101 * RESOLUTION: Clock resolution is used to round up timer and interval
102 * times, NOT to report clock times, which are reported with as
103 * much resolution as the system can muster. In some cases this
104 * resolution may depend on the underlying clock hardware and
105 * may not be quantifiable until run time, and only then is the
106 * necessary code is written. The standard says we should say
107 * something about this issue in the documentation...
109 * FUNCTIONS: The CLOCKs structure defines possible functions to
110 * handle various clock functions.
112 * The standard POSIX timer management code assumes the
113 * following: 1.) The k_itimer struct (sched.h) is used for
114 * the timer. 2.) The list, it_lock, it_clock, it_id and
115 * it_pid fields are not modified by timer code.
117 * Permissions: It is assumed that the clock_settime() function defined
118 * for each clock will take care of permission checks. Some
119 * clocks may be set able by any user (i.e. local process
120 * clocks) others not. Currently the only set able clock we
121 * have is CLOCK_REALTIME and its high res counter part, both of
122 * which we beg off on and pass to do_sys_settimeofday().
125 static struct k_clock posix_clocks
[MAX_CLOCKS
];
128 * These ones are defined below.
130 static int common_nsleep(const clockid_t
, int flags
, struct timespec
*t
,
131 struct timespec __user
*rmtp
);
132 static int common_timer_create(struct k_itimer
*new_timer
);
133 static void common_timer_get(struct k_itimer
*, struct itimerspec
*);
134 static int common_timer_set(struct k_itimer
*, int,
135 struct itimerspec
*, struct itimerspec
*);
136 static int common_timer_del(struct k_itimer
*timer
);
138 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*data
);
140 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
);
142 #define lock_timer(tid, flags) \
143 ({ struct k_itimer *__timr; \
144 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
148 static int hash(struct signal_struct
*sig
, unsigned int nr
)
150 return hash_32(hash32_ptr(sig
) ^ nr
, HASH_BITS(posix_timers_hashtable
));
153 static struct k_itimer
*__posix_timers_find(struct hlist_head
*head
,
154 struct signal_struct
*sig
,
157 struct k_itimer
*timer
;
159 hlist_for_each_entry_rcu(timer
, head
, t_hash
) {
160 if ((timer
->it_signal
== sig
) && (timer
->it_id
== id
))
166 static struct k_itimer
*posix_timer_by_id(timer_t id
)
168 struct signal_struct
*sig
= current
->signal
;
169 struct hlist_head
*head
= &posix_timers_hashtable
[hash(sig
, id
)];
171 return __posix_timers_find(head
, sig
, id
);
174 static int posix_timer_add(struct k_itimer
*timer
)
176 struct signal_struct
*sig
= current
->signal
;
177 int first_free_id
= sig
->posix_timer_id
;
178 struct hlist_head
*head
;
182 spin_lock(&hash_lock
);
183 head
= &posix_timers_hashtable
[hash(sig
, sig
->posix_timer_id
)];
184 if (!__posix_timers_find(head
, sig
, sig
->posix_timer_id
)) {
185 hlist_add_head_rcu(&timer
->t_hash
, head
);
186 ret
= sig
->posix_timer_id
;
188 if (++sig
->posix_timer_id
< 0)
189 sig
->posix_timer_id
= 0;
190 if ((sig
->posix_timer_id
== first_free_id
) && (ret
== -ENOENT
))
191 /* Loop over all possible ids completed */
193 spin_unlock(&hash_lock
);
194 } while (ret
== -ENOENT
);
198 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
200 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
203 /* Get clock_realtime */
204 static int posix_clock_realtime_get(clockid_t which_clock
, struct timespec
*tp
)
206 ktime_get_real_ts(tp
);
210 /* Set clock_realtime */
211 static int posix_clock_realtime_set(const clockid_t which_clock
,
212 const struct timespec
*tp
)
214 return do_sys_settimeofday(tp
, NULL
);
217 static int posix_clock_realtime_adj(const clockid_t which_clock
,
220 return do_adjtimex(t
);
224 * Get monotonic time for posix timers
226 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec
*tp
)
233 * Get monotonic-raw time for posix timers
235 static int posix_get_monotonic_raw(clockid_t which_clock
, struct timespec
*tp
)
242 static int posix_get_realtime_coarse(clockid_t which_clock
, struct timespec
*tp
)
244 *tp
= current_kernel_time();
248 static int posix_get_monotonic_coarse(clockid_t which_clock
,
251 *tp
= get_monotonic_coarse();
255 static int posix_get_coarse_res(const clockid_t which_clock
, struct timespec
*tp
)
257 *tp
= ktime_to_timespec(KTIME_LOW_RES
);
261 static int posix_get_boottime(const clockid_t which_clock
, struct timespec
*tp
)
263 get_monotonic_boottime(tp
);
267 static int posix_get_tai(clockid_t which_clock
, struct timespec
*tp
)
269 timekeeping_clocktai(tp
);
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
276 static __init
int init_posix_timers(void)
278 struct k_clock clock_realtime
= {
279 .clock_getres
= hrtimer_get_res
,
280 .clock_get
= posix_clock_realtime_get
,
281 .clock_set
= posix_clock_realtime_set
,
282 .clock_adj
= posix_clock_realtime_adj
,
283 .nsleep
= common_nsleep
,
284 .nsleep_restart
= hrtimer_nanosleep_restart
,
285 .timer_create
= common_timer_create
,
286 .timer_set
= common_timer_set
,
287 .timer_get
= common_timer_get
,
288 .timer_del
= common_timer_del
,
290 struct k_clock clock_monotonic
= {
291 .clock_getres
= hrtimer_get_res
,
292 .clock_get
= posix_ktime_get_ts
,
293 .nsleep
= common_nsleep
,
294 .nsleep_restart
= hrtimer_nanosleep_restart
,
295 .timer_create
= common_timer_create
,
296 .timer_set
= common_timer_set
,
297 .timer_get
= common_timer_get
,
298 .timer_del
= common_timer_del
,
300 struct k_clock clock_monotonic_raw
= {
301 .clock_getres
= hrtimer_get_res
,
302 .clock_get
= posix_get_monotonic_raw
,
304 struct k_clock clock_realtime_coarse
= {
305 .clock_getres
= posix_get_coarse_res
,
306 .clock_get
= posix_get_realtime_coarse
,
308 struct k_clock clock_monotonic_coarse
= {
309 .clock_getres
= posix_get_coarse_res
,
310 .clock_get
= posix_get_monotonic_coarse
,
312 struct k_clock clock_tai
= {
313 .clock_getres
= hrtimer_get_res
,
314 .clock_get
= posix_get_tai
,
315 .nsleep
= common_nsleep
,
316 .nsleep_restart
= hrtimer_nanosleep_restart
,
317 .timer_create
= common_timer_create
,
318 .timer_set
= common_timer_set
,
319 .timer_get
= common_timer_get
,
320 .timer_del
= common_timer_del
,
322 struct k_clock clock_boottime
= {
323 .clock_getres
= hrtimer_get_res
,
324 .clock_get
= posix_get_boottime
,
325 .nsleep
= common_nsleep
,
326 .nsleep_restart
= hrtimer_nanosleep_restart
,
327 .timer_create
= common_timer_create
,
328 .timer_set
= common_timer_set
,
329 .timer_get
= common_timer_get
,
330 .timer_del
= common_timer_del
,
333 posix_timers_register_clock(CLOCK_REALTIME
, &clock_realtime
);
334 posix_timers_register_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
335 posix_timers_register_clock(CLOCK_MONOTONIC_RAW
, &clock_monotonic_raw
);
336 posix_timers_register_clock(CLOCK_REALTIME_COARSE
, &clock_realtime_coarse
);
337 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE
, &clock_monotonic_coarse
);
338 posix_timers_register_clock(CLOCK_BOOTTIME
, &clock_boottime
);
339 posix_timers_register_clock(CLOCK_TAI
, &clock_tai
);
341 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
342 sizeof (struct k_itimer
), 0, SLAB_PANIC
,
347 __initcall(init_posix_timers
);
349 static void schedule_next_timer(struct k_itimer
*timr
)
351 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
353 if (timr
->it
.real
.interval
.tv64
== 0)
356 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
,
357 timer
->base
->get_time(),
358 timr
->it
.real
.interval
);
360 timr
->it_overrun_last
= timr
->it_overrun
;
361 timr
->it_overrun
= -1;
362 ++timr
->it_requeue_pending
;
363 hrtimer_restart(timer
);
367 * This function is exported for use by the signal deliver code. It is
368 * called just prior to the info block being released and passes that
369 * block to us. It's function is to update the overrun entry AND to
370 * restart the timer. It should only be called if the timer is to be
371 * restarted (i.e. we have flagged this in the sys_private entry of the
374 * To protect against the timer going away while the interrupt is queued,
375 * we require that the it_requeue_pending flag be set.
377 void do_schedule_next_timer(struct siginfo
*info
)
379 struct k_itimer
*timr
;
382 timr
= lock_timer(info
->si_tid
, &flags
);
384 if (timr
&& timr
->it_requeue_pending
== info
->si_sys_private
) {
385 if (timr
->it_clock
< 0)
386 posix_cpu_timer_schedule(timr
);
388 schedule_next_timer(timr
);
390 info
->si_overrun
+= timr
->it_overrun_last
;
394 unlock_timer(timr
, flags
);
397 int posix_timer_event(struct k_itimer
*timr
, int si_private
)
399 struct task_struct
*task
;
400 int shared
, ret
= -1;
402 * FIXME: if ->sigq is queued we can race with
403 * dequeue_signal()->do_schedule_next_timer().
405 * If dequeue_signal() sees the "right" value of
406 * si_sys_private it calls do_schedule_next_timer().
407 * We re-queue ->sigq and drop ->it_lock().
408 * do_schedule_next_timer() locks the timer
409 * and re-schedules it while ->sigq is pending.
410 * Not really bad, but not that we want.
412 timr
->sigq
->info
.si_sys_private
= si_private
;
415 task
= pid_task(timr
->it_pid
, PIDTYPE_PID
);
417 shared
= !(timr
->it_sigev_notify
& SIGEV_THREAD_ID
);
418 ret
= send_sigqueue(timr
->sigq
, task
, shared
);
421 /* If we failed to send the signal the timer stops. */
424 EXPORT_SYMBOL_GPL(posix_timer_event
);
427 * This function gets called when a POSIX.1b interval timer expires. It
428 * is used as a callback from the kernel internal timer. The
429 * run_timer_list code ALWAYS calls with interrupts on.
431 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
433 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*timer
)
435 struct k_itimer
*timr
;
438 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
440 timr
= container_of(timer
, struct k_itimer
, it
.real
.timer
);
441 spin_lock_irqsave(&timr
->it_lock
, flags
);
443 if (timr
->it
.real
.interval
.tv64
!= 0)
444 si_private
= ++timr
->it_requeue_pending
;
446 if (posix_timer_event(timr
, si_private
)) {
448 * signal was not sent because of sig_ignor
449 * we will not get a call back to restart it AND
450 * it should be restarted.
452 if (timr
->it
.real
.interval
.tv64
!= 0) {
453 ktime_t now
= hrtimer_cb_get_time(timer
);
456 * FIXME: What we really want, is to stop this
457 * timer completely and restart it in case the
458 * SIG_IGN is removed. This is a non trivial
459 * change which involves sighand locking
460 * (sigh !), which we don't want to do late in
463 * For now we just let timers with an interval
464 * less than a jiffie expire every jiffie to
465 * avoid softirq starvation in case of SIG_IGN
466 * and a very small interval, which would put
467 * the timer right back on the softirq pending
468 * list. By moving now ahead of time we trick
469 * hrtimer_forward() to expire the timer
470 * later, while we still maintain the overrun
471 * accuracy, but have some inconsistency in
472 * the timer_gettime() case. This is at least
473 * better than a starved softirq. A more
474 * complex fix which solves also another related
475 * inconsistency is already in the pipeline.
477 #ifdef CONFIG_HIGH_RES_TIMERS
479 ktime_t kj
= ktime_set(0, NSEC_PER_SEC
/ HZ
);
481 if (timr
->it
.real
.interval
.tv64
< kj
.tv64
)
482 now
= ktime_add(now
, kj
);
485 timr
->it_overrun
+= (unsigned int)
486 hrtimer_forward(timer
, now
,
487 timr
->it
.real
.interval
);
488 ret
= HRTIMER_RESTART
;
489 ++timr
->it_requeue_pending
;
493 unlock_timer(timr
, flags
);
497 static struct pid
*good_sigevent(sigevent_t
* event
)
499 struct task_struct
*rtn
= current
->group_leader
;
501 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
502 (!(rtn
= find_task_by_vpid(event
->sigev_notify_thread_id
)) ||
503 !same_thread_group(rtn
, current
) ||
504 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
507 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
508 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
511 return task_pid(rtn
);
514 void posix_timers_register_clock(const clockid_t clock_id
,
515 struct k_clock
*new_clock
)
517 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
518 printk(KERN_WARNING
"POSIX clock register failed for clock_id %d\n",
523 if (!new_clock
->clock_get
) {
524 printk(KERN_WARNING
"POSIX clock id %d lacks clock_get()\n",
528 if (!new_clock
->clock_getres
) {
529 printk(KERN_WARNING
"POSIX clock id %d lacks clock_getres()\n",
534 posix_clocks
[clock_id
] = *new_clock
;
536 EXPORT_SYMBOL_GPL(posix_timers_register_clock
);
538 static struct k_itimer
* alloc_posix_timer(void)
540 struct k_itimer
*tmr
;
541 tmr
= kmem_cache_zalloc(posix_timers_cache
, GFP_KERNEL
);
544 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
545 kmem_cache_free(posix_timers_cache
, tmr
);
548 memset(&tmr
->sigq
->info
, 0, sizeof(siginfo_t
));
552 static void k_itimer_rcu_free(struct rcu_head
*head
)
554 struct k_itimer
*tmr
= container_of(head
, struct k_itimer
, it
.rcu
);
556 kmem_cache_free(posix_timers_cache
, tmr
);
560 #define IT_ID_NOT_SET 0
561 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
565 spin_lock_irqsave(&hash_lock
, flags
);
566 hlist_del_rcu(&tmr
->t_hash
);
567 spin_unlock_irqrestore(&hash_lock
, flags
);
569 put_pid(tmr
->it_pid
);
570 sigqueue_free(tmr
->sigq
);
571 call_rcu(&tmr
->it
.rcu
, k_itimer_rcu_free
);
574 static struct k_clock
*clockid_to_kclock(const clockid_t id
)
577 return (id
& CLOCKFD_MASK
) == CLOCKFD
?
578 &clock_posix_dynamic
: &clock_posix_cpu
;
580 if (id
>= MAX_CLOCKS
|| !posix_clocks
[id
].clock_getres
)
582 return &posix_clocks
[id
];
585 static int common_timer_create(struct k_itimer
*new_timer
)
587 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
591 /* Create a POSIX.1b interval timer. */
593 SYSCALL_DEFINE3(timer_create
, const clockid_t
, which_clock
,
594 struct sigevent __user
*, timer_event_spec
,
595 timer_t __user
*, created_timer_id
)
597 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
598 struct k_itimer
*new_timer
;
599 int error
, new_timer_id
;
601 int it_id_set
= IT_ID_NOT_SET
;
605 if (!kc
->timer_create
)
608 new_timer
= alloc_posix_timer();
609 if (unlikely(!new_timer
))
612 spin_lock_init(&new_timer
->it_lock
);
613 new_timer_id
= posix_timer_add(new_timer
);
614 if (new_timer_id
< 0) {
615 error
= new_timer_id
;
619 it_id_set
= IT_ID_SET
;
620 new_timer
->it_id
= (timer_t
) new_timer_id
;
621 new_timer
->it_clock
= which_clock
;
622 new_timer
->it_overrun
= -1;
624 if (timer_event_spec
) {
625 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
630 new_timer
->it_pid
= get_pid(good_sigevent(&event
));
632 if (!new_timer
->it_pid
) {
637 event
.sigev_notify
= SIGEV_SIGNAL
;
638 event
.sigev_signo
= SIGALRM
;
639 event
.sigev_value
.sival_int
= new_timer
->it_id
;
640 new_timer
->it_pid
= get_pid(task_tgid(current
));
643 new_timer
->it_sigev_notify
= event
.sigev_notify
;
644 new_timer
->sigq
->info
.si_signo
= event
.sigev_signo
;
645 new_timer
->sigq
->info
.si_value
= event
.sigev_value
;
646 new_timer
->sigq
->info
.si_tid
= new_timer
->it_id
;
647 new_timer
->sigq
->info
.si_code
= SI_TIMER
;
649 if (copy_to_user(created_timer_id
,
650 &new_timer_id
, sizeof (new_timer_id
))) {
655 error
= kc
->timer_create(new_timer
);
659 spin_lock_irq(¤t
->sighand
->siglock
);
660 new_timer
->it_signal
= current
->signal
;
661 list_add(&new_timer
->list
, ¤t
->signal
->posix_timers
);
662 spin_unlock_irq(¤t
->sighand
->siglock
);
666 * In the case of the timer belonging to another task, after
667 * the task is unlocked, the timer is owned by the other task
668 * and may cease to exist at any time. Don't use or modify
669 * new_timer after the unlock call.
672 release_posix_timer(new_timer
, it_id_set
);
677 * Locking issues: We need to protect the result of the id look up until
678 * we get the timer locked down so it is not deleted under us. The
679 * removal is done under the idr spinlock so we use that here to bridge
680 * the find to the timer lock. To avoid a dead lock, the timer id MUST
681 * be release with out holding the timer lock.
683 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
)
685 struct k_itimer
*timr
;
688 * timer_t could be any type >= int and we want to make sure any
689 * @timer_id outside positive int range fails lookup.
691 if ((unsigned long long)timer_id
> INT_MAX
)
695 timr
= posix_timer_by_id(timer_id
);
697 spin_lock_irqsave(&timr
->it_lock
, *flags
);
698 if (timr
->it_signal
== current
->signal
) {
702 spin_unlock_irqrestore(&timr
->it_lock
, *flags
);
710 * Get the time remaining on a POSIX.1b interval timer. This function
711 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
714 * We have a couple of messes to clean up here. First there is the case
715 * of a timer that has a requeue pending. These timers should appear to
716 * be in the timer list with an expiry as if we were to requeue them
719 * The second issue is the SIGEV_NONE timer which may be active but is
720 * not really ever put in the timer list (to save system resources).
721 * This timer may be expired, and if so, we will do it here. Otherwise
722 * it is the same as a requeue pending timer WRT to what we should
726 common_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
728 ktime_t now
, remaining
, iv
;
729 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
731 memset(cur_setting
, 0, sizeof(struct itimerspec
));
733 iv
= timr
->it
.real
.interval
;
735 /* interval timer ? */
737 cur_setting
->it_interval
= ktime_to_timespec(iv
);
738 else if (!hrtimer_active(timer
) &&
739 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
)
742 now
= timer
->base
->get_time();
745 * When a requeue is pending or this is a SIGEV_NONE
746 * timer move the expiry time forward by intervals, so
749 if (iv
.tv64
&& (timr
->it_requeue_pending
& REQUEUE_PENDING
||
750 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
))
751 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
, now
, iv
);
753 remaining
= ktime_sub(hrtimer_get_expires(timer
), now
);
754 /* Return 0 only, when the timer is expired and not pending */
755 if (remaining
.tv64
<= 0) {
757 * A single shot SIGEV_NONE timer must return 0, when
760 if ((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
)
761 cur_setting
->it_value
.tv_nsec
= 1;
763 cur_setting
->it_value
= ktime_to_timespec(remaining
);
766 /* Get the time remaining on a POSIX.1b interval timer. */
767 SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
768 struct itimerspec __user
*, setting
)
770 struct itimerspec cur_setting
;
771 struct k_itimer
*timr
;
776 timr
= lock_timer(timer_id
, &flags
);
780 kc
= clockid_to_kclock(timr
->it_clock
);
781 if (WARN_ON_ONCE(!kc
|| !kc
->timer_get
))
784 kc
->timer_get(timr
, &cur_setting
);
786 unlock_timer(timr
, flags
);
788 if (!ret
&& copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
795 * Get the number of overruns of a POSIX.1b interval timer. This is to
796 * be the overrun of the timer last delivered. At the same time we are
797 * accumulating overruns on the next timer. The overrun is frozen when
798 * the signal is delivered, either at the notify time (if the info block
799 * is not queued) or at the actual delivery time (as we are informed by
800 * the call back to do_schedule_next_timer(). So all we need to do is
801 * to pick up the frozen overrun.
803 SYSCALL_DEFINE1(timer_getoverrun
, timer_t
, timer_id
)
805 struct k_itimer
*timr
;
809 timr
= lock_timer(timer_id
, &flags
);
813 overrun
= timr
->it_overrun_last
;
814 unlock_timer(timr
, flags
);
819 /* Set a POSIX.1b interval timer. */
820 /* timr->it_lock is taken. */
822 common_timer_set(struct k_itimer
*timr
, int flags
,
823 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
825 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
826 enum hrtimer_mode mode
;
829 common_timer_get(timr
, old_setting
);
831 /* disable the timer */
832 timr
->it
.real
.interval
.tv64
= 0;
834 * careful here. If smp we could be in the "fire" routine which will
835 * be spinning as we hold the lock. But this is ONLY an SMP issue.
837 if (hrtimer_try_to_cancel(timer
) < 0)
840 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
842 timr
->it_overrun_last
= 0;
844 /* switch off the timer when it_value is zero */
845 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
848 mode
= flags
& TIMER_ABSTIME
? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
849 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
850 timr
->it
.real
.timer
.function
= posix_timer_fn
;
852 hrtimer_set_expires(timer
, timespec_to_ktime(new_setting
->it_value
));
854 /* Convert interval */
855 timr
->it
.real
.interval
= timespec_to_ktime(new_setting
->it_interval
);
857 /* SIGEV_NONE timers are not queued ! See common_timer_get */
858 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
)) {
859 /* Setup correct expiry time for relative timers */
860 if (mode
== HRTIMER_MODE_REL
) {
861 hrtimer_add_expires(timer
, timer
->base
->get_time());
866 hrtimer_start_expires(timer
, mode
);
870 /* Set a POSIX.1b interval timer */
871 SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
872 const struct itimerspec __user
*, new_setting
,
873 struct itimerspec __user
*, old_setting
)
875 struct k_itimer
*timr
;
876 struct itimerspec new_spec
, old_spec
;
879 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
885 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
888 if (!timespec_valid(&new_spec
.it_interval
) ||
889 !timespec_valid(&new_spec
.it_value
))
892 timr
= lock_timer(timer_id
, &flag
);
896 kc
= clockid_to_kclock(timr
->it_clock
);
897 if (WARN_ON_ONCE(!kc
|| !kc
->timer_set
))
900 error
= kc
->timer_set(timr
, flags
, &new_spec
, rtn
);
902 unlock_timer(timr
, flag
);
903 if (error
== TIMER_RETRY
) {
904 rtn
= NULL
; // We already got the old time...
908 if (old_setting
&& !error
&&
909 copy_to_user(old_setting
, &old_spec
, sizeof (old_spec
)))
915 static int common_timer_del(struct k_itimer
*timer
)
917 timer
->it
.real
.interval
.tv64
= 0;
919 if (hrtimer_try_to_cancel(&timer
->it
.real
.timer
) < 0)
924 static inline int timer_delete_hook(struct k_itimer
*timer
)
926 struct k_clock
*kc
= clockid_to_kclock(timer
->it_clock
);
928 if (WARN_ON_ONCE(!kc
|| !kc
->timer_del
))
930 return kc
->timer_del(timer
);
933 /* Delete a POSIX.1b interval timer. */
934 SYSCALL_DEFINE1(timer_delete
, timer_t
, timer_id
)
936 struct k_itimer
*timer
;
940 timer
= lock_timer(timer_id
, &flags
);
944 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
945 unlock_timer(timer
, flags
);
949 spin_lock(¤t
->sighand
->siglock
);
950 list_del(&timer
->list
);
951 spin_unlock(¤t
->sighand
->siglock
);
953 * This keeps any tasks waiting on the spin lock from thinking
954 * they got something (see the lock code above).
956 timer
->it_signal
= NULL
;
958 unlock_timer(timer
, flags
);
959 release_posix_timer(timer
, IT_ID_SET
);
964 * return timer owned by the process, used by exit_itimers
966 static void itimer_delete(struct k_itimer
*timer
)
971 spin_lock_irqsave(&timer
->it_lock
, flags
);
973 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
974 unlock_timer(timer
, flags
);
977 list_del(&timer
->list
);
979 * This keeps any tasks waiting on the spin lock from thinking
980 * they got something (see the lock code above).
982 timer
->it_signal
= NULL
;
984 unlock_timer(timer
, flags
);
985 release_posix_timer(timer
, IT_ID_SET
);
989 * This is called by do_exit or de_thread, only when there are no more
990 * references to the shared signal_struct.
992 void exit_itimers(struct signal_struct
*sig
)
994 struct k_itimer
*tmr
;
996 while (!list_empty(&sig
->posix_timers
)) {
997 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1002 SYSCALL_DEFINE2(clock_settime
, const clockid_t
, which_clock
,
1003 const struct timespec __user
*, tp
)
1005 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1006 struct timespec new_tp
;
1008 if (!kc
|| !kc
->clock_set
)
1011 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
1014 return kc
->clock_set(which_clock
, &new_tp
);
1017 SYSCALL_DEFINE2(clock_gettime
, const clockid_t
, which_clock
,
1018 struct timespec __user
*,tp
)
1020 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1021 struct timespec kernel_tp
;
1027 error
= kc
->clock_get(which_clock
, &kernel_tp
);
1029 if (!error
&& copy_to_user(tp
, &kernel_tp
, sizeof (kernel_tp
)))
1035 SYSCALL_DEFINE2(clock_adjtime
, const clockid_t
, which_clock
,
1036 struct timex __user
*, utx
)
1038 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1047 if (copy_from_user(&ktx
, utx
, sizeof(ktx
)))
1050 err
= kc
->clock_adj(which_clock
, &ktx
);
1052 if (err
>= 0 && copy_to_user(utx
, &ktx
, sizeof(ktx
)))
1058 SYSCALL_DEFINE2(clock_getres
, const clockid_t
, which_clock
,
1059 struct timespec __user
*, tp
)
1061 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1062 struct timespec rtn_tp
;
1068 error
= kc
->clock_getres(which_clock
, &rtn_tp
);
1070 if (!error
&& tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
)))
1077 * nanosleep for monotonic and realtime clocks
1079 static int common_nsleep(const clockid_t which_clock
, int flags
,
1080 struct timespec
*tsave
, struct timespec __user
*rmtp
)
1082 return hrtimer_nanosleep(tsave
, rmtp
, flags
& TIMER_ABSTIME
?
1083 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
1087 SYSCALL_DEFINE4(clock_nanosleep
, const clockid_t
, which_clock
, int, flags
,
1088 const struct timespec __user
*, rqtp
,
1089 struct timespec __user
*, rmtp
)
1091 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1097 return -ENANOSLEEP_NOTSUP
;
1099 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
1102 if (!timespec_valid(&t
))
1105 return kc
->nsleep(which_clock
, flags
, &t
, rmtp
);
1109 * This will restart clock_nanosleep. This is required only by
1110 * compat_clock_nanosleep_restart for now.
1112 long clock_nanosleep_restart(struct restart_block
*restart_block
)
1114 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1115 struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1117 if (WARN_ON_ONCE(!kc
|| !kc
->nsleep_restart
))
1120 return kc
->nsleep_restart(restart_block
);