4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
18 * Also see Documentation/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
30 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
31 * which forces all calls into the slowpath:
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 # include <asm-generic/mutex-null.h>
38 # include <asm/mutex.h>
42 * A negative mutex count indicates that waiters are sleeping waiting for the
45 #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
48 __mutex_init(struct mutex
*lock
, const char *name
, struct lock_class_key
*key
)
50 atomic_set(&lock
->count
, 1);
51 spin_lock_init(&lock
->wait_lock
);
52 INIT_LIST_HEAD(&lock
->wait_list
);
53 mutex_clear_owner(lock
);
54 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
55 lock
->spin_mlock
= NULL
;
58 debug_mutex_init(lock
, name
, key
);
61 EXPORT_SYMBOL(__mutex_init
);
63 #ifndef CONFIG_DEBUG_LOCK_ALLOC
65 * We split the mutex lock/unlock logic into separate fastpath and
66 * slowpath functions, to reduce the register pressure on the fastpath.
67 * We also put the fastpath first in the kernel image, to make sure the
68 * branch is predicted by the CPU as default-untaken.
70 static __used noinline
void __sched
71 __mutex_lock_slowpath(atomic_t
*lock_count
);
74 * mutex_lock - acquire the mutex
75 * @lock: the mutex to be acquired
77 * Lock the mutex exclusively for this task. If the mutex is not
78 * available right now, it will sleep until it can get it.
80 * The mutex must later on be released by the same task that
81 * acquired it. Recursive locking is not allowed. The task
82 * may not exit without first unlocking the mutex. Also, kernel
83 * memory where the mutex resides mutex must not be freed with
84 * the mutex still locked. The mutex must first be initialized
85 * (or statically defined) before it can be locked. memset()-ing
86 * the mutex to 0 is not allowed.
88 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
89 * checks that will enforce the restrictions and will also do
90 * deadlock debugging. )
92 * This function is similar to (but not equivalent to) down().
94 void __sched
mutex_lock(struct mutex
*lock
)
98 * The locking fastpath is the 1->0 transition from
99 * 'unlocked' into 'locked' state.
101 __mutex_fastpath_lock(&lock
->count
, __mutex_lock_slowpath
);
102 mutex_set_owner(lock
);
105 EXPORT_SYMBOL(mutex_lock
);
108 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
110 * In order to avoid a stampede of mutex spinners from acquiring the mutex
111 * more or less simultaneously, the spinners need to acquire a MCS lock
112 * first before spinning on the owner field.
114 * We don't inline mspin_lock() so that perf can correctly account for the
115 * time spent in this lock function.
118 struct mspin_node
*next
;
119 int locked
; /* 1 if lock acquired */
121 #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
124 void mspin_lock(struct mspin_node
**lock
, struct mspin_node
*node
)
126 struct mspin_node
*prev
;
132 prev
= xchg(lock
, node
);
133 if (likely(prev
== NULL
)) {
138 ACCESS_ONCE(prev
->next
) = node
;
140 /* Wait until the lock holder passes the lock down */
141 while (!ACCESS_ONCE(node
->locked
))
142 arch_mutex_cpu_relax();
145 static void mspin_unlock(struct mspin_node
**lock
, struct mspin_node
*node
)
147 struct mspin_node
*next
= ACCESS_ONCE(node
->next
);
151 * Release the lock by setting it to NULL
153 if (cmpxchg(lock
, node
, NULL
) == node
)
155 /* Wait until the next pointer is set */
156 while (!(next
= ACCESS_ONCE(node
->next
)))
157 arch_mutex_cpu_relax();
159 ACCESS_ONCE(next
->locked
) = 1;
164 * Mutex spinning code migrated from kernel/sched/core.c
167 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
169 if (lock
->owner
!= owner
)
173 * Ensure we emit the owner->on_cpu, dereference _after_ checking
174 * lock->owner still matches owner, if that fails, owner might
175 * point to free()d memory, if it still matches, the rcu_read_lock()
176 * ensures the memory stays valid.
180 return owner
->on_cpu
;
184 * Look out! "owner" is an entirely speculative pointer
185 * access and not reliable.
188 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
191 while (owner_running(lock
, owner
)) {
195 arch_mutex_cpu_relax();
200 * We break out the loop above on need_resched() and when the
201 * owner changed, which is a sign for heavy contention. Return
202 * success only when lock->owner is NULL.
204 return lock
->owner
== NULL
;
208 * Initial check for entering the mutex spinning loop
210 static inline int mutex_can_spin_on_owner(struct mutex
*lock
)
216 retval
= lock
->owner
->on_cpu
;
219 * if lock->owner is not set, the mutex owner may have just acquired
220 * it and not set the owner yet or the mutex has been released.
226 static __used noinline
void __sched
__mutex_unlock_slowpath(atomic_t
*lock_count
);
229 * mutex_unlock - release the mutex
230 * @lock: the mutex to be released
232 * Unlock a mutex that has been locked by this task previously.
234 * This function must not be used in interrupt context. Unlocking
235 * of a not locked mutex is not allowed.
237 * This function is similar to (but not equivalent to) up().
239 void __sched
mutex_unlock(struct mutex
*lock
)
242 * The unlocking fastpath is the 0->1 transition from 'locked'
243 * into 'unlocked' state:
245 #ifndef CONFIG_DEBUG_MUTEXES
247 * When debugging is enabled we must not clear the owner before time,
248 * the slow path will always be taken, and that clears the owner field
249 * after verifying that it was indeed current.
251 mutex_clear_owner(lock
);
253 __mutex_fastpath_unlock(&lock
->count
, __mutex_unlock_slowpath
);
256 EXPORT_SYMBOL(mutex_unlock
);
259 * ww_mutex_unlock - release the w/w mutex
260 * @lock: the mutex to be released
262 * Unlock a mutex that has been locked by this task previously with any of the
263 * ww_mutex_lock* functions (with or without an acquire context). It is
264 * forbidden to release the locks after releasing the acquire context.
266 * This function must not be used in interrupt context. Unlocking
267 * of a unlocked mutex is not allowed.
269 void __sched
ww_mutex_unlock(struct ww_mutex
*lock
)
272 * The unlocking fastpath is the 0->1 transition from 'locked'
273 * into 'unlocked' state:
276 #ifdef CONFIG_DEBUG_MUTEXES
277 DEBUG_LOCKS_WARN_ON(!lock
->ctx
->acquired
);
279 if (lock
->ctx
->acquired
> 0)
280 lock
->ctx
->acquired
--;
284 #ifndef CONFIG_DEBUG_MUTEXES
286 * When debugging is enabled we must not clear the owner before time,
287 * the slow path will always be taken, and that clears the owner field
288 * after verifying that it was indeed current.
290 mutex_clear_owner(&lock
->base
);
292 __mutex_fastpath_unlock(&lock
->base
.count
, __mutex_unlock_slowpath
);
294 EXPORT_SYMBOL(ww_mutex_unlock
);
296 static inline int __sched
297 __mutex_lock_check_stamp(struct mutex
*lock
, struct ww_acquire_ctx
*ctx
)
299 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
300 struct ww_acquire_ctx
*hold_ctx
= ACCESS_ONCE(ww
->ctx
);
305 if (unlikely(ctx
== hold_ctx
))
308 if (ctx
->stamp
- hold_ctx
->stamp
<= LONG_MAX
&&
309 (ctx
->stamp
!= hold_ctx
->stamp
|| ctx
> hold_ctx
)) {
310 #ifdef CONFIG_DEBUG_MUTEXES
311 DEBUG_LOCKS_WARN_ON(ctx
->contending_lock
);
312 ctx
->contending_lock
= ww
;
320 static __always_inline
void ww_mutex_lock_acquired(struct ww_mutex
*ww
,
321 struct ww_acquire_ctx
*ww_ctx
)
323 #ifdef CONFIG_DEBUG_MUTEXES
325 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
326 * but released with a normal mutex_unlock in this call.
328 * This should never happen, always use ww_mutex_unlock.
330 DEBUG_LOCKS_WARN_ON(ww
->ctx
);
333 * Not quite done after calling ww_acquire_done() ?
335 DEBUG_LOCKS_WARN_ON(ww_ctx
->done_acquire
);
337 if (ww_ctx
->contending_lock
) {
339 * After -EDEADLK you tried to
340 * acquire a different ww_mutex? Bad!
342 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
!= ww
);
345 * You called ww_mutex_lock after receiving -EDEADLK,
346 * but 'forgot' to unlock everything else first?
348 DEBUG_LOCKS_WARN_ON(ww_ctx
->acquired
> 0);
349 ww_ctx
->contending_lock
= NULL
;
353 * Naughty, using a different class will lead to undefined behavior!
355 DEBUG_LOCKS_WARN_ON(ww_ctx
->ww_class
!= ww
->ww_class
);
361 * after acquiring lock with fastpath or when we lost out in contested
362 * slowpath, set ctx and wake up any waiters so they can recheck.
364 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
365 * as the fastpath and opportunistic spinning are disabled in that case.
367 static __always_inline
void
368 ww_mutex_set_context_fastpath(struct ww_mutex
*lock
,
369 struct ww_acquire_ctx
*ctx
)
372 struct mutex_waiter
*cur
;
374 ww_mutex_lock_acquired(lock
, ctx
);
379 * The lock->ctx update should be visible on all cores before
380 * the atomic read is done, otherwise contended waiters might be
381 * missed. The contended waiters will either see ww_ctx == NULL
382 * and keep spinning, or it will acquire wait_lock, add itself
383 * to waiter list and sleep.
388 * Check if lock is contended, if not there is nobody to wake up
390 if (likely(atomic_read(&lock
->base
.count
) == 0))
394 * Uh oh, we raced in fastpath, wake up everyone in this case,
395 * so they can see the new lock->ctx.
397 spin_lock_mutex(&lock
->base
.wait_lock
, flags
);
398 list_for_each_entry(cur
, &lock
->base
.wait_list
, list
) {
399 debug_mutex_wake_waiter(&lock
->base
, cur
);
400 wake_up_process(cur
->task
);
402 spin_unlock_mutex(&lock
->base
.wait_lock
, flags
);
406 * Lock a mutex (possibly interruptible), slowpath:
408 static __always_inline
int __sched
409 __mutex_lock_common(struct mutex
*lock
, long state
, unsigned int subclass
,
410 struct lockdep_map
*nest_lock
, unsigned long ip
,
411 struct ww_acquire_ctx
*ww_ctx
)
413 struct task_struct
*task
= current
;
414 struct mutex_waiter waiter
;
419 mutex_acquire_nest(&lock
->dep_map
, subclass
, 0, nest_lock
, ip
);
421 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
423 * Optimistic spinning.
425 * We try to spin for acquisition when we find that there are no
426 * pending waiters and the lock owner is currently running on a
429 * The rationale is that if the lock owner is running, it is likely to
430 * release the lock soon.
432 * Since this needs the lock owner, and this mutex implementation
433 * doesn't track the owner atomically in the lock field, we need to
434 * track it non-atomically.
436 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
437 * to serialize everything.
439 * The mutex spinners are queued up using MCS lock so that only one
440 * spinner can compete for the mutex. However, if mutex spinning isn't
441 * going to happen, there is no point in going through the lock/unlock
444 if (!mutex_can_spin_on_owner(lock
))
448 struct task_struct
*owner
;
449 struct mspin_node node
;
451 if (!__builtin_constant_p(ww_ctx
== NULL
) && ww_ctx
->acquired
> 0) {
454 ww
= container_of(lock
, struct ww_mutex
, base
);
456 * If ww->ctx is set the contents are undefined, only
457 * by acquiring wait_lock there is a guarantee that
458 * they are not invalid when reading.
460 * As such, when deadlock detection needs to be
461 * performed the optimistic spinning cannot be done.
463 if (ACCESS_ONCE(ww
->ctx
))
468 * If there's an owner, wait for it to either
469 * release the lock or go to sleep.
471 mspin_lock(MLOCK(lock
), &node
);
472 owner
= ACCESS_ONCE(lock
->owner
);
473 if (owner
&& !mutex_spin_on_owner(lock
, owner
)) {
474 mspin_unlock(MLOCK(lock
), &node
);
478 if ((atomic_read(&lock
->count
) == 1) &&
479 (atomic_cmpxchg(&lock
->count
, 1, 0) == 1)) {
480 lock_acquired(&lock
->dep_map
, ip
);
481 if (!__builtin_constant_p(ww_ctx
== NULL
)) {
483 ww
= container_of(lock
, struct ww_mutex
, base
);
485 ww_mutex_set_context_fastpath(ww
, ww_ctx
);
488 mutex_set_owner(lock
);
489 mspin_unlock(MLOCK(lock
), &node
);
493 mspin_unlock(MLOCK(lock
), &node
);
496 * When there's no owner, we might have preempted between the
497 * owner acquiring the lock and setting the owner field. If
498 * we're an RT task that will live-lock because we won't let
499 * the owner complete.
501 if (!owner
&& (need_resched() || rt_task(task
)))
505 * The cpu_relax() call is a compiler barrier which forces
506 * everything in this loop to be re-loaded. We don't need
507 * memory barriers as we'll eventually observe the right
508 * values at the cost of a few extra spins.
510 arch_mutex_cpu_relax();
514 spin_lock_mutex(&lock
->wait_lock
, flags
);
516 debug_mutex_lock_common(lock
, &waiter
);
517 debug_mutex_add_waiter(lock
, &waiter
, task_thread_info(task
));
519 /* add waiting tasks to the end of the waitqueue (FIFO): */
520 list_add_tail(&waiter
.list
, &lock
->wait_list
);
523 if (MUTEX_SHOW_NO_WAITER(lock
) && (atomic_xchg(&lock
->count
, -1) == 1))
526 lock_contended(&lock
->dep_map
, ip
);
530 * Lets try to take the lock again - this is needed even if
531 * we get here for the first time (shortly after failing to
532 * acquire the lock), to make sure that we get a wakeup once
533 * it's unlocked. Later on, if we sleep, this is the
534 * operation that gives us the lock. We xchg it to -1, so
535 * that when we release the lock, we properly wake up the
538 if (MUTEX_SHOW_NO_WAITER(lock
) &&
539 (atomic_xchg(&lock
->count
, -1) == 1))
543 * got a signal? (This code gets eliminated in the
544 * TASK_UNINTERRUPTIBLE case.)
546 if (unlikely(signal_pending_state(state
, task
))) {
551 if (!__builtin_constant_p(ww_ctx
== NULL
) && ww_ctx
->acquired
> 0) {
552 ret
= __mutex_lock_check_stamp(lock
, ww_ctx
);
557 __set_task_state(task
, state
);
559 /* didn't get the lock, go to sleep: */
560 spin_unlock_mutex(&lock
->wait_lock
, flags
);
561 schedule_preempt_disabled();
562 spin_lock_mutex(&lock
->wait_lock
, flags
);
566 lock_acquired(&lock
->dep_map
, ip
);
567 /* got the lock - rejoice! */
568 mutex_remove_waiter(lock
, &waiter
, current_thread_info());
569 mutex_set_owner(lock
);
571 if (!__builtin_constant_p(ww_ctx
== NULL
)) {
572 struct ww_mutex
*ww
= container_of(lock
,
575 struct mutex_waiter
*cur
;
578 * This branch gets optimized out for the common case,
579 * and is only important for ww_mutex_lock.
582 ww_mutex_lock_acquired(ww
, ww_ctx
);
586 * Give any possible sleeping processes the chance to wake up,
587 * so they can recheck if they have to back off.
589 list_for_each_entry(cur
, &lock
->wait_list
, list
) {
590 debug_mutex_wake_waiter(lock
, cur
);
591 wake_up_process(cur
->task
);
595 /* set it to 0 if there are no waiters left: */
596 if (likely(list_empty(&lock
->wait_list
)))
597 atomic_set(&lock
->count
, 0);
599 spin_unlock_mutex(&lock
->wait_lock
, flags
);
601 debug_mutex_free_waiter(&waiter
);
607 mutex_remove_waiter(lock
, &waiter
, task_thread_info(task
));
608 spin_unlock_mutex(&lock
->wait_lock
, flags
);
609 debug_mutex_free_waiter(&waiter
);
610 mutex_release(&lock
->dep_map
, 1, ip
);
615 #ifdef CONFIG_DEBUG_LOCK_ALLOC
617 mutex_lock_nested(struct mutex
*lock
, unsigned int subclass
)
620 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
621 subclass
, NULL
, _RET_IP_
, NULL
);
624 EXPORT_SYMBOL_GPL(mutex_lock_nested
);
627 _mutex_lock_nest_lock(struct mutex
*lock
, struct lockdep_map
*nest
)
630 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
631 0, nest
, _RET_IP_
, NULL
);
634 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock
);
637 mutex_lock_killable_nested(struct mutex
*lock
, unsigned int subclass
)
640 return __mutex_lock_common(lock
, TASK_KILLABLE
,
641 subclass
, NULL
, _RET_IP_
, NULL
);
643 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested
);
646 mutex_lock_interruptible_nested(struct mutex
*lock
, unsigned int subclass
)
649 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
,
650 subclass
, NULL
, _RET_IP_
, NULL
);
653 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested
);
656 ww_mutex_deadlock_injection(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
658 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
661 if (ctx
->deadlock_inject_countdown
-- == 0) {
662 tmp
= ctx
->deadlock_inject_interval
;
663 if (tmp
> UINT_MAX
/4)
666 tmp
= tmp
*2 + tmp
+ tmp
/2;
668 ctx
->deadlock_inject_interval
= tmp
;
669 ctx
->deadlock_inject_countdown
= tmp
;
670 ctx
->contending_lock
= lock
;
672 ww_mutex_unlock(lock
);
682 __ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
687 ret
= __mutex_lock_common(&lock
->base
, TASK_UNINTERRUPTIBLE
,
688 0, &ctx
->dep_map
, _RET_IP_
, ctx
);
689 if (!ret
&& ctx
->acquired
> 0)
690 return ww_mutex_deadlock_injection(lock
, ctx
);
694 EXPORT_SYMBOL_GPL(__ww_mutex_lock
);
697 __ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
702 ret
= __mutex_lock_common(&lock
->base
, TASK_INTERRUPTIBLE
,
703 0, &ctx
->dep_map
, _RET_IP_
, ctx
);
705 if (!ret
&& ctx
->acquired
> 0)
706 return ww_mutex_deadlock_injection(lock
, ctx
);
710 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible
);
715 * Release the lock, slowpath:
718 __mutex_unlock_common_slowpath(atomic_t
*lock_count
, int nested
)
720 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
723 spin_lock_mutex(&lock
->wait_lock
, flags
);
724 mutex_release(&lock
->dep_map
, nested
, _RET_IP_
);
725 debug_mutex_unlock(lock
);
728 * some architectures leave the lock unlocked in the fastpath failure
729 * case, others need to leave it locked. In the later case we have to
732 if (__mutex_slowpath_needs_to_unlock())
733 atomic_set(&lock
->count
, 1);
735 if (!list_empty(&lock
->wait_list
)) {
736 /* get the first entry from the wait-list: */
737 struct mutex_waiter
*waiter
=
738 list_entry(lock
->wait_list
.next
,
739 struct mutex_waiter
, list
);
741 debug_mutex_wake_waiter(lock
, waiter
);
743 wake_up_process(waiter
->task
);
746 spin_unlock_mutex(&lock
->wait_lock
, flags
);
750 * Release the lock, slowpath:
752 static __used noinline
void
753 __mutex_unlock_slowpath(atomic_t
*lock_count
)
755 __mutex_unlock_common_slowpath(lock_count
, 1);
758 #ifndef CONFIG_DEBUG_LOCK_ALLOC
760 * Here come the less common (and hence less performance-critical) APIs:
761 * mutex_lock_interruptible() and mutex_trylock().
763 static noinline
int __sched
764 __mutex_lock_killable_slowpath(struct mutex
*lock
);
766 static noinline
int __sched
767 __mutex_lock_interruptible_slowpath(struct mutex
*lock
);
770 * mutex_lock_interruptible - acquire the mutex, interruptible
771 * @lock: the mutex to be acquired
773 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
774 * been acquired or sleep until the mutex becomes available. If a
775 * signal arrives while waiting for the lock then this function
778 * This function is similar to (but not equivalent to) down_interruptible().
780 int __sched
mutex_lock_interruptible(struct mutex
*lock
)
785 ret
= __mutex_fastpath_lock_retval(&lock
->count
);
787 mutex_set_owner(lock
);
790 return __mutex_lock_interruptible_slowpath(lock
);
793 EXPORT_SYMBOL(mutex_lock_interruptible
);
795 int __sched
mutex_lock_killable(struct mutex
*lock
)
800 ret
= __mutex_fastpath_lock_retval(&lock
->count
);
802 mutex_set_owner(lock
);
805 return __mutex_lock_killable_slowpath(lock
);
807 EXPORT_SYMBOL(mutex_lock_killable
);
809 static __used noinline
void __sched
810 __mutex_lock_slowpath(atomic_t
*lock_count
)
812 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
814 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
, 0,
815 NULL
, _RET_IP_
, NULL
);
818 static noinline
int __sched
819 __mutex_lock_killable_slowpath(struct mutex
*lock
)
821 return __mutex_lock_common(lock
, TASK_KILLABLE
, 0,
822 NULL
, _RET_IP_
, NULL
);
825 static noinline
int __sched
826 __mutex_lock_interruptible_slowpath(struct mutex
*lock
)
828 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
, 0,
829 NULL
, _RET_IP_
, NULL
);
832 static noinline
int __sched
833 __ww_mutex_lock_slowpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
835 return __mutex_lock_common(&lock
->base
, TASK_UNINTERRUPTIBLE
, 0,
836 NULL
, _RET_IP_
, ctx
);
839 static noinline
int __sched
840 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex
*lock
,
841 struct ww_acquire_ctx
*ctx
)
843 return __mutex_lock_common(&lock
->base
, TASK_INTERRUPTIBLE
, 0,
844 NULL
, _RET_IP_
, ctx
);
850 * Spinlock based trylock, we take the spinlock and check whether we
853 static inline int __mutex_trylock_slowpath(atomic_t
*lock_count
)
855 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
859 spin_lock_mutex(&lock
->wait_lock
, flags
);
861 prev
= atomic_xchg(&lock
->count
, -1);
862 if (likely(prev
== 1)) {
863 mutex_set_owner(lock
);
864 mutex_acquire(&lock
->dep_map
, 0, 1, _RET_IP_
);
867 /* Set it back to 0 if there are no waiters: */
868 if (likely(list_empty(&lock
->wait_list
)))
869 atomic_set(&lock
->count
, 0);
871 spin_unlock_mutex(&lock
->wait_lock
, flags
);
877 * mutex_trylock - try to acquire the mutex, without waiting
878 * @lock: the mutex to be acquired
880 * Try to acquire the mutex atomically. Returns 1 if the mutex
881 * has been acquired successfully, and 0 on contention.
883 * NOTE: this function follows the spin_trylock() convention, so
884 * it is negated from the down_trylock() return values! Be careful
885 * about this when converting semaphore users to mutexes.
887 * This function must not be used in interrupt context. The
888 * mutex must be released by the same task that acquired it.
890 int __sched
mutex_trylock(struct mutex
*lock
)
894 ret
= __mutex_fastpath_trylock(&lock
->count
, __mutex_trylock_slowpath
);
896 mutex_set_owner(lock
);
900 EXPORT_SYMBOL(mutex_trylock
);
902 #ifndef CONFIG_DEBUG_LOCK_ALLOC
904 __ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
910 ret
= __mutex_fastpath_lock_retval(&lock
->base
.count
);
913 ww_mutex_set_context_fastpath(lock
, ctx
);
914 mutex_set_owner(&lock
->base
);
916 ret
= __ww_mutex_lock_slowpath(lock
, ctx
);
919 EXPORT_SYMBOL(__ww_mutex_lock
);
922 __ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
928 ret
= __mutex_fastpath_lock_retval(&lock
->base
.count
);
931 ww_mutex_set_context_fastpath(lock
, ctx
);
932 mutex_set_owner(&lock
->base
);
934 ret
= __ww_mutex_lock_interruptible_slowpath(lock
, ctx
);
937 EXPORT_SYMBOL(__ww_mutex_lock_interruptible
);
942 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
943 * @cnt: the atomic which we are to dec
944 * @lock: the mutex to return holding if we dec to 0
946 * return true and hold lock if we dec to 0, return false otherwise
948 int atomic_dec_and_mutex_lock(atomic_t
*cnt
, struct mutex
*lock
)
950 /* dec if we can't possibly hit 0 */
951 if (atomic_add_unless(cnt
, -1, 1))
953 /* we might hit 0, so take the lock */
955 if (!atomic_dec_and_test(cnt
)) {
956 /* when we actually did the dec, we didn't hit 0 */
960 /* we hit 0, and we hold the lock */
963 EXPORT_SYMBOL(atomic_dec_and_mutex_lock
);