Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[linux-2.6.git] / mm / page_alloc.c
blobb100255dedda6e48c9cba2d15bc1163b36292a3c
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 #endif
89 * Array of node states.
91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94 #ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96 #ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
98 #endif
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
101 #endif
102 [N_CPU] = { { [0] = 1UL } },
103 #endif /* NUMA */
105 EXPORT_SYMBOL(node_states);
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock);
110 unsigned long totalram_pages __read_mostly;
111 unsigned long totalreserve_pages __read_mostly;
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
118 unsigned long dirty_balance_reserve __read_mostly;
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 #ifdef CONFIG_PM_SLEEP
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
133 static gfp_t saved_gfp_mask;
135 void pm_restore_gfp_mask(void)
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
144 void pm_restrict_gfp_mask(void)
146 WARN_ON(!mutex_is_locked(&pm_mutex));
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
152 bool pm_suspended_storage(void)
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
158 #endif /* CONFIG_PM_SLEEP */
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly;
162 #endif
164 static void __free_pages_ok(struct page *page, unsigned int order);
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
178 #ifdef CONFIG_ZONE_DMA
179 256,
180 #endif
181 #ifdef CONFIG_ZONE_DMA32
182 256,
183 #endif
184 #ifdef CONFIG_HIGHMEM
186 #endif
190 EXPORT_SYMBOL(totalram_pages);
192 static char * const zone_names[MAX_NR_ZONES] = {
193 #ifdef CONFIG_ZONE_DMA
194 "DMA",
195 #endif
196 #ifdef CONFIG_ZONE_DMA32
197 "DMA32",
198 #endif
199 "Normal",
200 #ifdef CONFIG_HIGHMEM
201 "HighMem",
202 #endif
203 "Movable",
206 int min_free_kbytes = 1024;
207 int user_min_free_kbytes;
209 static unsigned long __meminitdata nr_kernel_pages;
210 static unsigned long __meminitdata nr_all_pages;
211 static unsigned long __meminitdata dma_reserve;
213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __initdata required_kernelcore;
217 static unsigned long __initdata required_movablecore;
218 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221 int movable_zone;
222 EXPORT_SYMBOL(movable_zone);
223 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 #if MAX_NUMNODES > 1
226 int nr_node_ids __read_mostly = MAX_NUMNODES;
227 int nr_online_nodes __read_mostly = 1;
228 EXPORT_SYMBOL(nr_node_ids);
229 EXPORT_SYMBOL(nr_online_nodes);
230 #endif
232 int page_group_by_mobility_disabled __read_mostly;
234 void set_pageblock_migratetype(struct page *page, int migratetype)
237 if (unlikely(page_group_by_mobility_disabled))
238 migratetype = MIGRATE_UNMOVABLE;
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
244 bool oom_killer_disabled __read_mostly;
246 #ifdef CONFIG_DEBUG_VM
247 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 int ret = 0;
250 unsigned seq;
251 unsigned long pfn = page_to_pfn(page);
252 unsigned long sp, start_pfn;
254 do {
255 seq = zone_span_seqbegin(zone);
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
258 if (!zone_spans_pfn(zone, pfn))
259 ret = 1;
260 } while (zone_span_seqretry(zone, seq));
262 if (ret)
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn, start_pfn, start_pfn + sp);
266 return ret;
269 static int page_is_consistent(struct zone *zone, struct page *page)
271 if (!pfn_valid_within(page_to_pfn(page)))
272 return 0;
273 if (zone != page_zone(page))
274 return 0;
276 return 1;
279 * Temporary debugging check for pages not lying within a given zone.
281 static int bad_range(struct zone *zone, struct page *page)
283 if (page_outside_zone_boundaries(zone, page))
284 return 1;
285 if (!page_is_consistent(zone, page))
286 return 1;
288 return 0;
290 #else
291 static inline int bad_range(struct zone *zone, struct page *page)
293 return 0;
295 #endif
297 static void bad_page(struct page *page)
299 static unsigned long resume;
300 static unsigned long nr_shown;
301 static unsigned long nr_unshown;
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page)) {
305 page_mapcount_reset(page); /* remove PageBuddy */
306 return;
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
313 if (nr_shown == 60) {
314 if (time_before(jiffies, resume)) {
315 nr_unshown++;
316 goto out;
318 if (nr_unshown) {
319 printk(KERN_ALERT
320 "BUG: Bad page state: %lu messages suppressed\n",
321 nr_unshown);
322 nr_unshown = 0;
324 nr_shown = 0;
326 if (nr_shown++ == 0)
327 resume = jiffies + 60 * HZ;
329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
330 current->comm, page_to_pfn(page));
331 dump_page(page);
333 print_modules();
334 dump_stack();
335 out:
336 /* Leave bad fields for debug, except PageBuddy could make trouble */
337 page_mapcount_reset(page); /* remove PageBuddy */
338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 * Higher-order pages are called "compound pages". They are structured thusly:
344 * The first PAGE_SIZE page is called the "head page".
346 * The remaining PAGE_SIZE pages are called "tail pages".
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
356 static void free_compound_page(struct page *page)
358 __free_pages_ok(page, compound_order(page));
361 void prep_compound_page(struct page *page, unsigned long order)
363 int i;
364 int nr_pages = 1 << order;
366 set_compound_page_dtor(page, free_compound_page);
367 set_compound_order(page, order);
368 __SetPageHead(page);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
371 __SetPageTail(p);
372 set_page_count(p, 0);
373 p->first_page = page;
377 /* update __split_huge_page_refcount if you change this function */
378 static int destroy_compound_page(struct page *page, unsigned long order)
380 int i;
381 int nr_pages = 1 << order;
382 int bad = 0;
384 if (unlikely(compound_order(page) != order)) {
385 bad_page(page);
386 bad++;
389 __ClearPageHead(page);
391 for (i = 1; i < nr_pages; i++) {
392 struct page *p = page + i;
394 if (unlikely(!PageTail(p) || (p->first_page != page))) {
395 bad_page(page);
396 bad++;
398 __ClearPageTail(p);
401 return bad;
404 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 int i;
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
413 for (i = 0; i < (1 << order); i++)
414 clear_highpage(page + i);
417 #ifdef CONFIG_DEBUG_PAGEALLOC
418 unsigned int _debug_guardpage_minorder;
420 static int __init debug_guardpage_minorder_setup(char *buf)
422 unsigned long res;
424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
426 return 0;
428 _debug_guardpage_minorder = res;
429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
430 return 0;
432 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434 static inline void set_page_guard_flag(struct page *page)
436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
439 static inline void clear_page_guard_flag(struct page *page)
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 #else
444 static inline void set_page_guard_flag(struct page *page) { }
445 static inline void clear_page_guard_flag(struct page *page) { }
446 #endif
448 static inline void set_page_order(struct page *page, int order)
450 set_page_private(page, order);
451 __SetPageBuddy(page);
454 static inline void rmv_page_order(struct page *page)
456 __ClearPageBuddy(page);
457 set_page_private(page, 0);
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
466 * B2 = B1 ^ (1 << O)
467 * For example, if the starting buddy (buddy2) is #8 its order
468 * 1 buddy is #10:
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
473 * P = B & ~(1 << O)
475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 static inline unsigned long
478 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 return page_idx ^ (1 << order);
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
486 * (a) the buddy is not in a hole &&
487 * (b) the buddy is in the buddy system &&
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
494 * For recording page's order, we use page_private(page).
496 static inline int page_is_buddy(struct page *page, struct page *buddy,
497 int order)
499 if (!pfn_valid_within(page_to_pfn(buddy)))
500 return 0;
502 if (page_zone_id(page) != page_zone_id(buddy))
503 return 0;
505 if (page_is_guard(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
510 if (PageBuddy(buddy) && page_order(buddy) == order) {
511 VM_BUG_ON(page_count(buddy) != 0);
512 return 1;
514 return 0;
518 * Freeing function for a buddy system allocator.
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
531 * order is recorded in page_private(page) field.
532 * So when we are allocating or freeing one, we can derive the state of the
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
535 * If a block is freed, and its buddy is also free, then this
536 * triggers coalescing into a block of larger size.
538 * -- nyc
541 static inline void __free_one_page(struct page *page,
542 struct zone *zone, unsigned int order,
543 int migratetype)
545 unsigned long page_idx;
546 unsigned long combined_idx;
547 unsigned long uninitialized_var(buddy_idx);
548 struct page *buddy;
550 VM_BUG_ON(!zone_is_initialized(zone));
552 if (unlikely(PageCompound(page)))
553 if (unlikely(destroy_compound_page(page, order)))
554 return;
556 VM_BUG_ON(migratetype == -1);
558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
560 VM_BUG_ON(page_idx & ((1 << order) - 1));
561 VM_BUG_ON(bad_range(zone, page));
563 while (order < MAX_ORDER-1) {
564 buddy_idx = __find_buddy_index(page_idx, order);
565 buddy = page + (buddy_idx - page_idx);
566 if (!page_is_buddy(page, buddy, order))
567 break;
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
572 if (page_is_guard(buddy)) {
573 clear_page_guard_flag(buddy);
574 set_page_private(page, 0);
575 __mod_zone_freepage_state(zone, 1 << order,
576 migratetype);
577 } else {
578 list_del(&buddy->lru);
579 zone->free_area[order].nr_free--;
580 rmv_page_order(buddy);
582 combined_idx = buddy_idx & page_idx;
583 page = page + (combined_idx - page_idx);
584 page_idx = combined_idx;
585 order++;
587 set_page_order(page, order);
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
598 struct page *higher_page, *higher_buddy;
599 combined_idx = buddy_idx & page_idx;
600 higher_page = page + (combined_idx - page_idx);
601 buddy_idx = __find_buddy_index(combined_idx, order + 1);
602 higher_buddy = higher_page + (buddy_idx - combined_idx);
603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
604 list_add_tail(&page->lru,
605 &zone->free_area[order].free_list[migratetype]);
606 goto out;
610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
611 out:
612 zone->free_area[order].nr_free++;
615 static inline int free_pages_check(struct page *page)
617 if (unlikely(page_mapcount(page) |
618 (page->mapping != NULL) |
619 (atomic_read(&page->_count) != 0) |
620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
621 (mem_cgroup_bad_page_check(page)))) {
622 bad_page(page);
623 return 1;
625 page_nid_reset_last(page);
626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
628 return 0;
632 * Frees a number of pages from the PCP lists
633 * Assumes all pages on list are in same zone, and of same order.
634 * count is the number of pages to free.
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
642 static void free_pcppages_bulk(struct zone *zone, int count,
643 struct per_cpu_pages *pcp)
645 int migratetype = 0;
646 int batch_free = 0;
647 int to_free = count;
649 spin_lock(&zone->lock);
650 zone->all_unreclaimable = 0;
651 zone->pages_scanned = 0;
653 while (to_free) {
654 struct page *page;
655 struct list_head *list;
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
664 do {
665 batch_free++;
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
675 do {
676 int mt; /* migratetype of the to-be-freed page */
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
681 mt = get_freepage_migratetype(page);
682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
685 if (likely(!is_migrate_isolate_page(page))) {
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
690 } while (--to_free && --batch_free && !list_empty(list));
692 spin_unlock(&zone->lock);
695 static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
698 spin_lock(&zone->lock);
699 zone->all_unreclaimable = 0;
700 zone->pages_scanned = 0;
702 __free_one_page(page, zone, order, migratetype);
703 if (unlikely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705 spin_unlock(&zone->lock);
708 static bool free_pages_prepare(struct page *page, unsigned int order)
710 int i;
711 int bad = 0;
713 trace_mm_page_free(page, order);
714 kmemcheck_free_shadow(page, order);
716 if (PageAnon(page))
717 page->mapping = NULL;
718 for (i = 0; i < (1 << order); i++)
719 bad += free_pages_check(page + i);
720 if (bad)
721 return false;
723 if (!PageHighMem(page)) {
724 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
725 debug_check_no_obj_freed(page_address(page),
726 PAGE_SIZE << order);
728 arch_free_page(page, order);
729 kernel_map_pages(page, 1 << order, 0);
731 return true;
734 static void __free_pages_ok(struct page *page, unsigned int order)
736 unsigned long flags;
737 int migratetype;
739 if (!free_pages_prepare(page, order))
740 return;
742 local_irq_save(flags);
743 __count_vm_events(PGFREE, 1 << order);
744 migratetype = get_pageblock_migratetype(page);
745 set_freepage_migratetype(page, migratetype);
746 free_one_page(page_zone(page), page, order, migratetype);
747 local_irq_restore(flags);
750 void __init __free_pages_bootmem(struct page *page, unsigned int order)
752 unsigned int nr_pages = 1 << order;
753 unsigned int loop;
755 prefetchw(page);
756 for (loop = 0; loop < nr_pages; loop++) {
757 struct page *p = &page[loop];
759 if (loop + 1 < nr_pages)
760 prefetchw(p + 1);
761 __ClearPageReserved(p);
762 set_page_count(p, 0);
765 page_zone(page)->managed_pages += 1 << order;
766 set_page_refcounted(page);
767 __free_pages(page, order);
770 #ifdef CONFIG_CMA
771 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
772 void __init init_cma_reserved_pageblock(struct page *page)
774 unsigned i = pageblock_nr_pages;
775 struct page *p = page;
777 do {
778 __ClearPageReserved(p);
779 set_page_count(p, 0);
780 } while (++p, --i);
782 set_page_refcounted(page);
783 set_pageblock_migratetype(page, MIGRATE_CMA);
784 __free_pages(page, pageblock_order);
785 adjust_managed_page_count(page, pageblock_nr_pages);
787 #endif
790 * The order of subdivision here is critical for the IO subsystem.
791 * Please do not alter this order without good reasons and regression
792 * testing. Specifically, as large blocks of memory are subdivided,
793 * the order in which smaller blocks are delivered depends on the order
794 * they're subdivided in this function. This is the primary factor
795 * influencing the order in which pages are delivered to the IO
796 * subsystem according to empirical testing, and this is also justified
797 * by considering the behavior of a buddy system containing a single
798 * large block of memory acted on by a series of small allocations.
799 * This behavior is a critical factor in sglist merging's success.
801 * -- nyc
803 static inline void expand(struct zone *zone, struct page *page,
804 int low, int high, struct free_area *area,
805 int migratetype)
807 unsigned long size = 1 << high;
809 while (high > low) {
810 area--;
811 high--;
812 size >>= 1;
813 VM_BUG_ON(bad_range(zone, &page[size]));
815 #ifdef CONFIG_DEBUG_PAGEALLOC
816 if (high < debug_guardpage_minorder()) {
818 * Mark as guard pages (or page), that will allow to
819 * merge back to allocator when buddy will be freed.
820 * Corresponding page table entries will not be touched,
821 * pages will stay not present in virtual address space
823 INIT_LIST_HEAD(&page[size].lru);
824 set_page_guard_flag(&page[size]);
825 set_page_private(&page[size], high);
826 /* Guard pages are not available for any usage */
827 __mod_zone_freepage_state(zone, -(1 << high),
828 migratetype);
829 continue;
831 #endif
832 list_add(&page[size].lru, &area->free_list[migratetype]);
833 area->nr_free++;
834 set_page_order(&page[size], high);
839 * This page is about to be returned from the page allocator
841 static inline int check_new_page(struct page *page)
843 if (unlikely(page_mapcount(page) |
844 (page->mapping != NULL) |
845 (atomic_read(&page->_count) != 0) |
846 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
847 (mem_cgroup_bad_page_check(page)))) {
848 bad_page(page);
849 return 1;
851 return 0;
854 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
856 int i;
858 for (i = 0; i < (1 << order); i++) {
859 struct page *p = page + i;
860 if (unlikely(check_new_page(p)))
861 return 1;
864 set_page_private(page, 0);
865 set_page_refcounted(page);
867 arch_alloc_page(page, order);
868 kernel_map_pages(page, 1 << order, 1);
870 if (gfp_flags & __GFP_ZERO)
871 prep_zero_page(page, order, gfp_flags);
873 if (order && (gfp_flags & __GFP_COMP))
874 prep_compound_page(page, order);
876 return 0;
880 * Go through the free lists for the given migratetype and remove
881 * the smallest available page from the freelists
883 static inline
884 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
885 int migratetype)
887 unsigned int current_order;
888 struct free_area * area;
889 struct page *page;
891 /* Find a page of the appropriate size in the preferred list */
892 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
893 area = &(zone->free_area[current_order]);
894 if (list_empty(&area->free_list[migratetype]))
895 continue;
897 page = list_entry(area->free_list[migratetype].next,
898 struct page, lru);
899 list_del(&page->lru);
900 rmv_page_order(page);
901 area->nr_free--;
902 expand(zone, page, order, current_order, area, migratetype);
903 return page;
906 return NULL;
911 * This array describes the order lists are fallen back to when
912 * the free lists for the desirable migrate type are depleted
914 static int fallbacks[MIGRATE_TYPES][4] = {
915 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917 #ifdef CONFIG_CMA
918 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
920 #else
921 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 #endif
923 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
924 #ifdef CONFIG_MEMORY_ISOLATION
925 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
926 #endif
930 * Move the free pages in a range to the free lists of the requested type.
931 * Note that start_page and end_pages are not aligned on a pageblock
932 * boundary. If alignment is required, use move_freepages_block()
934 int move_freepages(struct zone *zone,
935 struct page *start_page, struct page *end_page,
936 int migratetype)
938 struct page *page;
939 unsigned long order;
940 int pages_moved = 0;
942 #ifndef CONFIG_HOLES_IN_ZONE
944 * page_zone is not safe to call in this context when
945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
946 * anyway as we check zone boundaries in move_freepages_block().
947 * Remove at a later date when no bug reports exist related to
948 * grouping pages by mobility
950 BUG_ON(page_zone(start_page) != page_zone(end_page));
951 #endif
953 for (page = start_page; page <= end_page;) {
954 /* Make sure we are not inadvertently changing nodes */
955 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
957 if (!pfn_valid_within(page_to_pfn(page))) {
958 page++;
959 continue;
962 if (!PageBuddy(page)) {
963 page++;
964 continue;
967 order = page_order(page);
968 list_move(&page->lru,
969 &zone->free_area[order].free_list[migratetype]);
970 set_freepage_migratetype(page, migratetype);
971 page += 1 << order;
972 pages_moved += 1 << order;
975 return pages_moved;
978 int move_freepages_block(struct zone *zone, struct page *page,
979 int migratetype)
981 unsigned long start_pfn, end_pfn;
982 struct page *start_page, *end_page;
984 start_pfn = page_to_pfn(page);
985 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
986 start_page = pfn_to_page(start_pfn);
987 end_page = start_page + pageblock_nr_pages - 1;
988 end_pfn = start_pfn + pageblock_nr_pages - 1;
990 /* Do not cross zone boundaries */
991 if (!zone_spans_pfn(zone, start_pfn))
992 start_page = page;
993 if (!zone_spans_pfn(zone, end_pfn))
994 return 0;
996 return move_freepages(zone, start_page, end_page, migratetype);
999 static void change_pageblock_range(struct page *pageblock_page,
1000 int start_order, int migratetype)
1002 int nr_pageblocks = 1 << (start_order - pageblock_order);
1004 while (nr_pageblocks--) {
1005 set_pageblock_migratetype(pageblock_page, migratetype);
1006 pageblock_page += pageblock_nr_pages;
1010 /* Remove an element from the buddy allocator from the fallback list */
1011 static inline struct page *
1012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1014 struct free_area * area;
1015 int current_order;
1016 struct page *page;
1017 int migratetype, i;
1019 /* Find the largest possible block of pages in the other list */
1020 for (current_order = MAX_ORDER-1; current_order >= order;
1021 --current_order) {
1022 for (i = 0;; i++) {
1023 migratetype = fallbacks[start_migratetype][i];
1025 /* MIGRATE_RESERVE handled later if necessary */
1026 if (migratetype == MIGRATE_RESERVE)
1027 break;
1029 area = &(zone->free_area[current_order]);
1030 if (list_empty(&area->free_list[migratetype]))
1031 continue;
1033 page = list_entry(area->free_list[migratetype].next,
1034 struct page, lru);
1035 area->nr_free--;
1038 * If breaking a large block of pages, move all free
1039 * pages to the preferred allocation list. If falling
1040 * back for a reclaimable kernel allocation, be more
1041 * aggressive about taking ownership of free pages
1043 * On the other hand, never change migration
1044 * type of MIGRATE_CMA pageblocks nor move CMA
1045 * pages on different free lists. We don't
1046 * want unmovable pages to be allocated from
1047 * MIGRATE_CMA areas.
1049 if (!is_migrate_cma(migratetype) &&
1050 (current_order >= pageblock_order / 2 ||
1051 start_migratetype == MIGRATE_RECLAIMABLE ||
1052 page_group_by_mobility_disabled)) {
1053 int pages;
1054 pages = move_freepages_block(zone, page,
1055 start_migratetype);
1057 /* Claim the whole block if over half of it is free */
1058 if (pages >= (1 << (pageblock_order-1)) ||
1059 page_group_by_mobility_disabled)
1060 set_pageblock_migratetype(page,
1061 start_migratetype);
1063 migratetype = start_migratetype;
1066 /* Remove the page from the freelists */
1067 list_del(&page->lru);
1068 rmv_page_order(page);
1070 /* Take ownership for orders >= pageblock_order */
1071 if (current_order >= pageblock_order &&
1072 !is_migrate_cma(migratetype))
1073 change_pageblock_range(page, current_order,
1074 start_migratetype);
1076 expand(zone, page, order, current_order, area,
1077 is_migrate_cma(migratetype)
1078 ? migratetype : start_migratetype);
1080 trace_mm_page_alloc_extfrag(page, order, current_order,
1081 start_migratetype, migratetype);
1083 return page;
1087 return NULL;
1091 * Do the hard work of removing an element from the buddy allocator.
1092 * Call me with the zone->lock already held.
1094 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1095 int migratetype)
1097 struct page *page;
1099 retry_reserve:
1100 page = __rmqueue_smallest(zone, order, migratetype);
1102 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1103 page = __rmqueue_fallback(zone, order, migratetype);
1106 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1107 * is used because __rmqueue_smallest is an inline function
1108 * and we want just one call site
1110 if (!page) {
1111 migratetype = MIGRATE_RESERVE;
1112 goto retry_reserve;
1116 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1117 return page;
1121 * Obtain a specified number of elements from the buddy allocator, all under
1122 * a single hold of the lock, for efficiency. Add them to the supplied list.
1123 * Returns the number of new pages which were placed at *list.
1125 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1126 unsigned long count, struct list_head *list,
1127 int migratetype, int cold)
1129 int mt = migratetype, i;
1131 spin_lock(&zone->lock);
1132 for (i = 0; i < count; ++i) {
1133 struct page *page = __rmqueue(zone, order, migratetype);
1134 if (unlikely(page == NULL))
1135 break;
1138 * Split buddy pages returned by expand() are received here
1139 * in physical page order. The page is added to the callers and
1140 * list and the list head then moves forward. From the callers
1141 * perspective, the linked list is ordered by page number in
1142 * some conditions. This is useful for IO devices that can
1143 * merge IO requests if the physical pages are ordered
1144 * properly.
1146 if (likely(cold == 0))
1147 list_add(&page->lru, list);
1148 else
1149 list_add_tail(&page->lru, list);
1150 if (IS_ENABLED(CONFIG_CMA)) {
1151 mt = get_pageblock_migratetype(page);
1152 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1153 mt = migratetype;
1155 set_freepage_migratetype(page, mt);
1156 list = &page->lru;
1157 if (is_migrate_cma(mt))
1158 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1159 -(1 << order));
1161 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1162 spin_unlock(&zone->lock);
1163 return i;
1166 #ifdef CONFIG_NUMA
1168 * Called from the vmstat counter updater to drain pagesets of this
1169 * currently executing processor on remote nodes after they have
1170 * expired.
1172 * Note that this function must be called with the thread pinned to
1173 * a single processor.
1175 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1177 unsigned long flags;
1178 int to_drain;
1179 unsigned long batch;
1181 local_irq_save(flags);
1182 batch = ACCESS_ONCE(pcp->batch);
1183 if (pcp->count >= batch)
1184 to_drain = batch;
1185 else
1186 to_drain = pcp->count;
1187 if (to_drain > 0) {
1188 free_pcppages_bulk(zone, to_drain, pcp);
1189 pcp->count -= to_drain;
1191 local_irq_restore(flags);
1193 #endif
1196 * Drain pages of the indicated processor.
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1200 * is not online.
1202 static void drain_pages(unsigned int cpu)
1204 unsigned long flags;
1205 struct zone *zone;
1207 for_each_populated_zone(zone) {
1208 struct per_cpu_pageset *pset;
1209 struct per_cpu_pages *pcp;
1211 local_irq_save(flags);
1212 pset = per_cpu_ptr(zone->pageset, cpu);
1214 pcp = &pset->pcp;
1215 if (pcp->count) {
1216 free_pcppages_bulk(zone, pcp->count, pcp);
1217 pcp->count = 0;
1219 local_irq_restore(flags);
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1226 void drain_local_pages(void *arg)
1228 drain_pages(smp_processor_id());
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
1240 void drain_all_pages(void)
1242 int cpu;
1243 struct per_cpu_pageset *pcp;
1244 struct zone *zone;
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1250 static cpumask_t cpus_with_pcps;
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1258 for_each_online_cpu(cpu) {
1259 bool has_pcps = false;
1260 for_each_populated_zone(zone) {
1261 pcp = per_cpu_ptr(zone->pageset, cpu);
1262 if (pcp->pcp.count) {
1263 has_pcps = true;
1264 break;
1267 if (has_pcps)
1268 cpumask_set_cpu(cpu, &cpus_with_pcps);
1269 else
1270 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1275 #ifdef CONFIG_HIBERNATION
1277 void mark_free_pages(struct zone *zone)
1279 unsigned long pfn, max_zone_pfn;
1280 unsigned long flags;
1281 int order, t;
1282 struct list_head *curr;
1284 if (!zone->spanned_pages)
1285 return;
1287 spin_lock_irqsave(&zone->lock, flags);
1289 max_zone_pfn = zone_end_pfn(zone);
1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1291 if (pfn_valid(pfn)) {
1292 struct page *page = pfn_to_page(pfn);
1294 if (!swsusp_page_is_forbidden(page))
1295 swsusp_unset_page_free(page);
1298 for_each_migratetype_order(order, t) {
1299 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1300 unsigned long i;
1302 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1303 for (i = 0; i < (1UL << order); i++)
1304 swsusp_set_page_free(pfn_to_page(pfn + i));
1307 spin_unlock_irqrestore(&zone->lock, flags);
1309 #endif /* CONFIG_PM */
1312 * Free a 0-order page
1313 * cold == 1 ? free a cold page : free a hot page
1315 void free_hot_cold_page(struct page *page, int cold)
1317 struct zone *zone = page_zone(page);
1318 struct per_cpu_pages *pcp;
1319 unsigned long flags;
1320 int migratetype;
1322 if (!free_pages_prepare(page, 0))
1323 return;
1325 migratetype = get_pageblock_migratetype(page);
1326 set_freepage_migratetype(page, migratetype);
1327 local_irq_save(flags);
1328 __count_vm_event(PGFREE);
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1337 if (migratetype >= MIGRATE_PCPTYPES) {
1338 if (unlikely(is_migrate_isolate(migratetype))) {
1339 free_one_page(zone, page, 0, migratetype);
1340 goto out;
1342 migratetype = MIGRATE_MOVABLE;
1345 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1346 if (cold)
1347 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1348 else
1349 list_add(&page->lru, &pcp->lists[migratetype]);
1350 pcp->count++;
1351 if (pcp->count >= pcp->high) {
1352 unsigned long batch = ACCESS_ONCE(pcp->batch);
1353 free_pcppages_bulk(zone, batch, pcp);
1354 pcp->count -= batch;
1357 out:
1358 local_irq_restore(flags);
1362 * Free a list of 0-order pages
1364 void free_hot_cold_page_list(struct list_head *list, int cold)
1366 struct page *page, *next;
1368 list_for_each_entry_safe(page, next, list, lru) {
1369 trace_mm_page_free_batched(page, cold);
1370 free_hot_cold_page(page, cold);
1375 * split_page takes a non-compound higher-order page, and splits it into
1376 * n (1<<order) sub-pages: page[0..n]
1377 * Each sub-page must be freed individually.
1379 * Note: this is probably too low level an operation for use in drivers.
1380 * Please consult with lkml before using this in your driver.
1382 void split_page(struct page *page, unsigned int order)
1384 int i;
1386 VM_BUG_ON(PageCompound(page));
1387 VM_BUG_ON(!page_count(page));
1389 #ifdef CONFIG_KMEMCHECK
1391 * Split shadow pages too, because free(page[0]) would
1392 * otherwise free the whole shadow.
1394 if (kmemcheck_page_is_tracked(page))
1395 split_page(virt_to_page(page[0].shadow), order);
1396 #endif
1398 for (i = 1; i < (1 << order); i++)
1399 set_page_refcounted(page + i);
1401 EXPORT_SYMBOL_GPL(split_page);
1403 static int __isolate_free_page(struct page *page, unsigned int order)
1405 unsigned long watermark;
1406 struct zone *zone;
1407 int mt;
1409 BUG_ON(!PageBuddy(page));
1411 zone = page_zone(page);
1412 mt = get_pageblock_migratetype(page);
1414 if (!is_migrate_isolate(mt)) {
1415 /* Obey watermarks as if the page was being allocated */
1416 watermark = low_wmark_pages(zone) + (1 << order);
1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1418 return 0;
1420 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1423 /* Remove page from free list */
1424 list_del(&page->lru);
1425 zone->free_area[order].nr_free--;
1426 rmv_page_order(page);
1428 /* Set the pageblock if the isolated page is at least a pageblock */
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1439 return 1UL << order;
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1452 int split_free_page(struct page *page)
1454 unsigned int order;
1455 int nr_pages;
1457 order = page_order(page);
1459 nr_pages = __isolate_free_page(page, order);
1460 if (!nr_pages)
1461 return 0;
1463 /* Split into individual pages */
1464 set_page_refcounted(page);
1465 split_page(page, order);
1466 return nr_pages;
1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1472 * or two.
1474 static inline
1475 struct page *buffered_rmqueue(struct zone *preferred_zone,
1476 struct zone *zone, int order, gfp_t gfp_flags,
1477 int migratetype)
1479 unsigned long flags;
1480 struct page *page;
1481 int cold = !!(gfp_flags & __GFP_COLD);
1483 again:
1484 if (likely(order == 0)) {
1485 struct per_cpu_pages *pcp;
1486 struct list_head *list;
1488 local_irq_save(flags);
1489 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1490 list = &pcp->lists[migratetype];
1491 if (list_empty(list)) {
1492 pcp->count += rmqueue_bulk(zone, 0,
1493 pcp->batch, list,
1494 migratetype, cold);
1495 if (unlikely(list_empty(list)))
1496 goto failed;
1499 if (cold)
1500 page = list_entry(list->prev, struct page, lru);
1501 else
1502 page = list_entry(list->next, struct page, lru);
1504 list_del(&page->lru);
1505 pcp->count--;
1506 } else {
1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 * __GFP_NOFAIL is not to be used in new code.
1511 * All __GFP_NOFAIL callers should be fixed so that they
1512 * properly detect and handle allocation failures.
1514 * We most definitely don't want callers attempting to
1515 * allocate greater than order-1 page units with
1516 * __GFP_NOFAIL.
1518 WARN_ON_ONCE(order > 1);
1520 spin_lock_irqsave(&zone->lock, flags);
1521 page = __rmqueue(zone, order, migratetype);
1522 spin_unlock(&zone->lock);
1523 if (!page)
1524 goto failed;
1525 __mod_zone_freepage_state(zone, -(1 << order),
1526 get_pageblock_migratetype(page));
1529 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1530 zone_statistics(preferred_zone, zone, gfp_flags);
1531 local_irq_restore(flags);
1533 VM_BUG_ON(bad_range(zone, page));
1534 if (prep_new_page(page, order, gfp_flags))
1535 goto again;
1536 return page;
1538 failed:
1539 local_irq_restore(flags);
1540 return NULL;
1543 #ifdef CONFIG_FAIL_PAGE_ALLOC
1545 static struct {
1546 struct fault_attr attr;
1548 u32 ignore_gfp_highmem;
1549 u32 ignore_gfp_wait;
1550 u32 min_order;
1551 } fail_page_alloc = {
1552 .attr = FAULT_ATTR_INITIALIZER,
1553 .ignore_gfp_wait = 1,
1554 .ignore_gfp_highmem = 1,
1555 .min_order = 1,
1558 static int __init setup_fail_page_alloc(char *str)
1560 return setup_fault_attr(&fail_page_alloc.attr, str);
1562 __setup("fail_page_alloc=", setup_fail_page_alloc);
1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1566 if (order < fail_page_alloc.min_order)
1567 return false;
1568 if (gfp_mask & __GFP_NOFAIL)
1569 return false;
1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1571 return false;
1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1573 return false;
1575 return should_fail(&fail_page_alloc.attr, 1 << order);
1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580 static int __init fail_page_alloc_debugfs(void)
1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1583 struct dentry *dir;
1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1586 &fail_page_alloc.attr);
1587 if (IS_ERR(dir))
1588 return PTR_ERR(dir);
1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1591 &fail_page_alloc.ignore_gfp_wait))
1592 goto fail;
1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1594 &fail_page_alloc.ignore_gfp_highmem))
1595 goto fail;
1596 if (!debugfs_create_u32("min-order", mode, dir,
1597 &fail_page_alloc.min_order))
1598 goto fail;
1600 return 0;
1601 fail:
1602 debugfs_remove_recursive(dir);
1604 return -ENOMEM;
1607 late_initcall(fail_page_alloc_debugfs);
1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611 #else /* CONFIG_FAIL_PAGE_ALLOC */
1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1615 return false;
1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1621 * Return true if free pages are above 'mark'. This takes into account the order
1622 * of the allocation.
1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1625 int classzone_idx, int alloc_flags, long free_pages)
1627 /* free_pages my go negative - that's OK */
1628 long min = mark;
1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1630 int o;
1631 long free_cma = 0;
1633 free_pages -= (1 << order) - 1;
1634 if (alloc_flags & ALLOC_HIGH)
1635 min -= min / 2;
1636 if (alloc_flags & ALLOC_HARDER)
1637 min -= min / 4;
1638 #ifdef CONFIG_CMA
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags & ALLOC_CMA))
1641 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1642 #endif
1644 if (free_pages - free_cma <= min + lowmem_reserve)
1645 return false;
1646 for (o = 0; o < order; o++) {
1647 /* At the next order, this order's pages become unavailable */
1648 free_pages -= z->free_area[o].nr_free << o;
1650 /* Require fewer higher order pages to be free */
1651 min >>= 1;
1653 if (free_pages <= min)
1654 return false;
1656 return true;
1659 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1660 int classzone_idx, int alloc_flags)
1662 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1663 zone_page_state(z, NR_FREE_PAGES));
1666 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1667 int classzone_idx, int alloc_flags)
1669 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1671 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1672 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1674 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1675 free_pages);
1678 #ifdef CONFIG_NUMA
1680 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1681 * skip over zones that are not allowed by the cpuset, or that have
1682 * been recently (in last second) found to be nearly full. See further
1683 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1684 * that have to skip over a lot of full or unallowed zones.
1686 * If the zonelist cache is present in the passed in zonelist, then
1687 * returns a pointer to the allowed node mask (either the current
1688 * tasks mems_allowed, or node_states[N_MEMORY].)
1690 * If the zonelist cache is not available for this zonelist, does
1691 * nothing and returns NULL.
1693 * If the fullzones BITMAP in the zonelist cache is stale (more than
1694 * a second since last zap'd) then we zap it out (clear its bits.)
1696 * We hold off even calling zlc_setup, until after we've checked the
1697 * first zone in the zonelist, on the theory that most allocations will
1698 * be satisfied from that first zone, so best to examine that zone as
1699 * quickly as we can.
1701 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1704 nodemask_t *allowednodes; /* zonelist_cache approximation */
1706 zlc = zonelist->zlcache_ptr;
1707 if (!zlc)
1708 return NULL;
1710 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712 zlc->last_full_zap = jiffies;
1715 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1716 &cpuset_current_mems_allowed :
1717 &node_states[N_MEMORY];
1718 return allowednodes;
1722 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1723 * if it is worth looking at further for free memory:
1724 * 1) Check that the zone isn't thought to be full (doesn't have its
1725 * bit set in the zonelist_cache fullzones BITMAP).
1726 * 2) Check that the zones node (obtained from the zonelist_cache
1727 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1728 * Return true (non-zero) if zone is worth looking at further, or
1729 * else return false (zero) if it is not.
1731 * This check -ignores- the distinction between various watermarks,
1732 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1733 * found to be full for any variation of these watermarks, it will
1734 * be considered full for up to one second by all requests, unless
1735 * we are so low on memory on all allowed nodes that we are forced
1736 * into the second scan of the zonelist.
1738 * In the second scan we ignore this zonelist cache and exactly
1739 * apply the watermarks to all zones, even it is slower to do so.
1740 * We are low on memory in the second scan, and should leave no stone
1741 * unturned looking for a free page.
1743 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1744 nodemask_t *allowednodes)
1746 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1747 int i; /* index of *z in zonelist zones */
1748 int n; /* node that zone *z is on */
1750 zlc = zonelist->zlcache_ptr;
1751 if (!zlc)
1752 return 1;
1754 i = z - zonelist->_zonerefs;
1755 n = zlc->z_to_n[i];
1757 /* This zone is worth trying if it is allowed but not full */
1758 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1762 * Given 'z' scanning a zonelist, set the corresponding bit in
1763 * zlc->fullzones, so that subsequent attempts to allocate a page
1764 * from that zone don't waste time re-examining it.
1766 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return;
1775 i = z - zonelist->_zonerefs;
1777 set_bit(i, zlc->fullzones);
1781 * clear all zones full, called after direct reclaim makes progress so that
1782 * a zone that was recently full is not skipped over for up to a second
1784 static void zlc_clear_zones_full(struct zonelist *zonelist)
1786 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1788 zlc = zonelist->zlcache_ptr;
1789 if (!zlc)
1790 return;
1792 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1795 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1797 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1800 static void __paginginit init_zone_allows_reclaim(int nid)
1802 int i;
1804 for_each_online_node(i)
1805 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1806 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1807 else
1808 zone_reclaim_mode = 1;
1811 #else /* CONFIG_NUMA */
1813 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1815 return NULL;
1818 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1819 nodemask_t *allowednodes)
1821 return 1;
1824 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1828 static void zlc_clear_zones_full(struct zonelist *zonelist)
1832 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1834 return true;
1837 static inline void init_zone_allows_reclaim(int nid)
1840 #endif /* CONFIG_NUMA */
1843 * get_page_from_freelist goes through the zonelist trying to allocate
1844 * a page.
1846 static struct page *
1847 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1848 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1849 struct zone *preferred_zone, int migratetype)
1851 struct zoneref *z;
1852 struct page *page = NULL;
1853 int classzone_idx;
1854 struct zone *zone;
1855 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1856 int zlc_active = 0; /* set if using zonelist_cache */
1857 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1859 classzone_idx = zone_idx(preferred_zone);
1860 zonelist_scan:
1862 * Scan zonelist, looking for a zone with enough free.
1863 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1865 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1866 high_zoneidx, nodemask) {
1867 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1868 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1869 continue;
1870 if ((alloc_flags & ALLOC_CPUSET) &&
1871 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1872 continue;
1874 * When allocating a page cache page for writing, we
1875 * want to get it from a zone that is within its dirty
1876 * limit, such that no single zone holds more than its
1877 * proportional share of globally allowed dirty pages.
1878 * The dirty limits take into account the zone's
1879 * lowmem reserves and high watermark so that kswapd
1880 * should be able to balance it without having to
1881 * write pages from its LRU list.
1883 * This may look like it could increase pressure on
1884 * lower zones by failing allocations in higher zones
1885 * before they are full. But the pages that do spill
1886 * over are limited as the lower zones are protected
1887 * by this very same mechanism. It should not become
1888 * a practical burden to them.
1890 * XXX: For now, allow allocations to potentially
1891 * exceed the per-zone dirty limit in the slowpath
1892 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1893 * which is important when on a NUMA setup the allowed
1894 * zones are together not big enough to reach the
1895 * global limit. The proper fix for these situations
1896 * will require awareness of zones in the
1897 * dirty-throttling and the flusher threads.
1899 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1900 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1901 goto this_zone_full;
1903 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1904 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1905 unsigned long mark;
1906 int ret;
1908 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1909 if (zone_watermark_ok(zone, order, mark,
1910 classzone_idx, alloc_flags))
1911 goto try_this_zone;
1913 if (IS_ENABLED(CONFIG_NUMA) &&
1914 !did_zlc_setup && nr_online_nodes > 1) {
1916 * we do zlc_setup if there are multiple nodes
1917 * and before considering the first zone allowed
1918 * by the cpuset.
1920 allowednodes = zlc_setup(zonelist, alloc_flags);
1921 zlc_active = 1;
1922 did_zlc_setup = 1;
1925 if (zone_reclaim_mode == 0 ||
1926 !zone_allows_reclaim(preferred_zone, zone))
1927 goto this_zone_full;
1930 * As we may have just activated ZLC, check if the first
1931 * eligible zone has failed zone_reclaim recently.
1933 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1934 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1935 continue;
1937 ret = zone_reclaim(zone, gfp_mask, order);
1938 switch (ret) {
1939 case ZONE_RECLAIM_NOSCAN:
1940 /* did not scan */
1941 continue;
1942 case ZONE_RECLAIM_FULL:
1943 /* scanned but unreclaimable */
1944 continue;
1945 default:
1946 /* did we reclaim enough */
1947 if (zone_watermark_ok(zone, order, mark,
1948 classzone_idx, alloc_flags))
1949 goto try_this_zone;
1952 * Failed to reclaim enough to meet watermark.
1953 * Only mark the zone full if checking the min
1954 * watermark or if we failed to reclaim just
1955 * 1<<order pages or else the page allocator
1956 * fastpath will prematurely mark zones full
1957 * when the watermark is between the low and
1958 * min watermarks.
1960 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1961 ret == ZONE_RECLAIM_SOME)
1962 goto this_zone_full;
1964 continue;
1968 try_this_zone:
1969 page = buffered_rmqueue(preferred_zone, zone, order,
1970 gfp_mask, migratetype);
1971 if (page)
1972 break;
1973 this_zone_full:
1974 if (IS_ENABLED(CONFIG_NUMA))
1975 zlc_mark_zone_full(zonelist, z);
1978 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1979 /* Disable zlc cache for second zonelist scan */
1980 zlc_active = 0;
1981 goto zonelist_scan;
1984 if (page)
1986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1987 * necessary to allocate the page. The expectation is
1988 * that the caller is taking steps that will free more
1989 * memory. The caller should avoid the page being used
1990 * for !PFMEMALLOC purposes.
1992 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1994 return page;
1998 * Large machines with many possible nodes should not always dump per-node
1999 * meminfo in irq context.
2001 static inline bool should_suppress_show_mem(void)
2003 bool ret = false;
2005 #if NODES_SHIFT > 8
2006 ret = in_interrupt();
2007 #endif
2008 return ret;
2011 static DEFINE_RATELIMIT_STATE(nopage_rs,
2012 DEFAULT_RATELIMIT_INTERVAL,
2013 DEFAULT_RATELIMIT_BURST);
2015 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2017 unsigned int filter = SHOW_MEM_FILTER_NODES;
2019 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2020 debug_guardpage_minorder() > 0)
2021 return;
2024 * Walking all memory to count page types is very expensive and should
2025 * be inhibited in non-blockable contexts.
2027 if (!(gfp_mask & __GFP_WAIT))
2028 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2031 * This documents exceptions given to allocations in certain
2032 * contexts that are allowed to allocate outside current's set
2033 * of allowed nodes.
2035 if (!(gfp_mask & __GFP_NOMEMALLOC))
2036 if (test_thread_flag(TIF_MEMDIE) ||
2037 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2038 filter &= ~SHOW_MEM_FILTER_NODES;
2039 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2040 filter &= ~SHOW_MEM_FILTER_NODES;
2042 if (fmt) {
2043 struct va_format vaf;
2044 va_list args;
2046 va_start(args, fmt);
2048 vaf.fmt = fmt;
2049 vaf.va = &args;
2051 pr_warn("%pV", &vaf);
2053 va_end(args);
2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2057 current->comm, order, gfp_mask);
2059 dump_stack();
2060 if (!should_suppress_show_mem())
2061 show_mem(filter);
2064 static inline int
2065 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2066 unsigned long did_some_progress,
2067 unsigned long pages_reclaimed)
2069 /* Do not loop if specifically requested */
2070 if (gfp_mask & __GFP_NORETRY)
2071 return 0;
2073 /* Always retry if specifically requested */
2074 if (gfp_mask & __GFP_NOFAIL)
2075 return 1;
2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2079 * making forward progress without invoking OOM. Suspend also disables
2080 * storage devices so kswapd will not help. Bail if we are suspending.
2082 if (!did_some_progress && pm_suspended_storage())
2083 return 0;
2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2087 * means __GFP_NOFAIL, but that may not be true in other
2088 * implementations.
2090 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2091 return 1;
2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2095 * specified, then we retry until we no longer reclaim any pages
2096 * (above), or we've reclaimed an order of pages at least as
2097 * large as the allocation's order. In both cases, if the
2098 * allocation still fails, we stop retrying.
2100 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2101 return 1;
2103 return 0;
2106 static inline struct page *
2107 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2108 struct zonelist *zonelist, enum zone_type high_zoneidx,
2109 nodemask_t *nodemask, struct zone *preferred_zone,
2110 int migratetype)
2112 struct page *page;
2114 /* Acquire the OOM killer lock for the zones in zonelist */
2115 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2116 schedule_timeout_uninterruptible(1);
2117 return NULL;
2121 * Go through the zonelist yet one more time, keep very high watermark
2122 * here, this is only to catch a parallel oom killing, we must fail if
2123 * we're still under heavy pressure.
2125 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2126 order, zonelist, high_zoneidx,
2127 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2128 preferred_zone, migratetype);
2129 if (page)
2130 goto out;
2132 if (!(gfp_mask & __GFP_NOFAIL)) {
2133 /* The OOM killer will not help higher order allocs */
2134 if (order > PAGE_ALLOC_COSTLY_ORDER)
2135 goto out;
2136 /* The OOM killer does not needlessly kill tasks for lowmem */
2137 if (high_zoneidx < ZONE_NORMAL)
2138 goto out;
2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2142 * The caller should handle page allocation failure by itself if
2143 * it specifies __GFP_THISNODE.
2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2146 if (gfp_mask & __GFP_THISNODE)
2147 goto out;
2149 /* Exhausted what can be done so it's blamo time */
2150 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2152 out:
2153 clear_zonelist_oom(zonelist, gfp_mask);
2154 return page;
2157 #ifdef CONFIG_COMPACTION
2158 /* Try memory compaction for high-order allocations before reclaim */
2159 static struct page *
2160 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2161 struct zonelist *zonelist, enum zone_type high_zoneidx,
2162 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2163 int migratetype, bool sync_migration,
2164 bool *contended_compaction, bool *deferred_compaction,
2165 unsigned long *did_some_progress)
2167 if (!order)
2168 return NULL;
2170 if (compaction_deferred(preferred_zone, order)) {
2171 *deferred_compaction = true;
2172 return NULL;
2175 current->flags |= PF_MEMALLOC;
2176 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2177 nodemask, sync_migration,
2178 contended_compaction);
2179 current->flags &= ~PF_MEMALLOC;
2181 if (*did_some_progress != COMPACT_SKIPPED) {
2182 struct page *page;
2184 /* Page migration frees to the PCP lists but we want merging */
2185 drain_pages(get_cpu());
2186 put_cpu();
2188 page = get_page_from_freelist(gfp_mask, nodemask,
2189 order, zonelist, high_zoneidx,
2190 alloc_flags & ~ALLOC_NO_WATERMARKS,
2191 preferred_zone, migratetype);
2192 if (page) {
2193 preferred_zone->compact_blockskip_flush = false;
2194 preferred_zone->compact_considered = 0;
2195 preferred_zone->compact_defer_shift = 0;
2196 if (order >= preferred_zone->compact_order_failed)
2197 preferred_zone->compact_order_failed = order + 1;
2198 count_vm_event(COMPACTSUCCESS);
2199 return page;
2203 * It's bad if compaction run occurs and fails.
2204 * The most likely reason is that pages exist,
2205 * but not enough to satisfy watermarks.
2207 count_vm_event(COMPACTFAIL);
2210 * As async compaction considers a subset of pageblocks, only
2211 * defer if the failure was a sync compaction failure.
2213 if (sync_migration)
2214 defer_compaction(preferred_zone, order);
2216 cond_resched();
2219 return NULL;
2221 #else
2222 static inline struct page *
2223 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2224 struct zonelist *zonelist, enum zone_type high_zoneidx,
2225 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2226 int migratetype, bool sync_migration,
2227 bool *contended_compaction, bool *deferred_compaction,
2228 unsigned long *did_some_progress)
2230 return NULL;
2232 #endif /* CONFIG_COMPACTION */
2234 /* Perform direct synchronous page reclaim */
2235 static int
2236 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2237 nodemask_t *nodemask)
2239 struct reclaim_state reclaim_state;
2240 int progress;
2242 cond_resched();
2244 /* We now go into synchronous reclaim */
2245 cpuset_memory_pressure_bump();
2246 current->flags |= PF_MEMALLOC;
2247 lockdep_set_current_reclaim_state(gfp_mask);
2248 reclaim_state.reclaimed_slab = 0;
2249 current->reclaim_state = &reclaim_state;
2251 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2253 current->reclaim_state = NULL;
2254 lockdep_clear_current_reclaim_state();
2255 current->flags &= ~PF_MEMALLOC;
2257 cond_resched();
2259 return progress;
2262 /* The really slow allocator path where we enter direct reclaim */
2263 static inline struct page *
2264 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2265 struct zonelist *zonelist, enum zone_type high_zoneidx,
2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2267 int migratetype, unsigned long *did_some_progress)
2269 struct page *page = NULL;
2270 bool drained = false;
2272 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2273 nodemask);
2274 if (unlikely(!(*did_some_progress)))
2275 return NULL;
2277 /* After successful reclaim, reconsider all zones for allocation */
2278 if (IS_ENABLED(CONFIG_NUMA))
2279 zlc_clear_zones_full(zonelist);
2281 retry:
2282 page = get_page_from_freelist(gfp_mask, nodemask, order,
2283 zonelist, high_zoneidx,
2284 alloc_flags & ~ALLOC_NO_WATERMARKS,
2285 preferred_zone, migratetype);
2288 * If an allocation failed after direct reclaim, it could be because
2289 * pages are pinned on the per-cpu lists. Drain them and try again
2291 if (!page && !drained) {
2292 drain_all_pages();
2293 drained = true;
2294 goto retry;
2297 return page;
2301 * This is called in the allocator slow-path if the allocation request is of
2302 * sufficient urgency to ignore watermarks and take other desperate measures
2304 static inline struct page *
2305 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2306 struct zonelist *zonelist, enum zone_type high_zoneidx,
2307 nodemask_t *nodemask, struct zone *preferred_zone,
2308 int migratetype)
2310 struct page *page;
2312 do {
2313 page = get_page_from_freelist(gfp_mask, nodemask, order,
2314 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2315 preferred_zone, migratetype);
2317 if (!page && gfp_mask & __GFP_NOFAIL)
2318 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2319 } while (!page && (gfp_mask & __GFP_NOFAIL));
2321 return page;
2324 static inline
2325 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2326 enum zone_type high_zoneidx,
2327 enum zone_type classzone_idx)
2329 struct zoneref *z;
2330 struct zone *zone;
2332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2333 wakeup_kswapd(zone, order, classzone_idx);
2336 static inline int
2337 gfp_to_alloc_flags(gfp_t gfp_mask)
2339 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2340 const gfp_t wait = gfp_mask & __GFP_WAIT;
2342 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2343 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2346 * The caller may dip into page reserves a bit more if the caller
2347 * cannot run direct reclaim, or if the caller has realtime scheduling
2348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2349 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2351 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2353 if (!wait) {
2355 * Not worth trying to allocate harder for
2356 * __GFP_NOMEMALLOC even if it can't schedule.
2358 if (!(gfp_mask & __GFP_NOMEMALLOC))
2359 alloc_flags |= ALLOC_HARDER;
2361 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2362 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2364 alloc_flags &= ~ALLOC_CPUSET;
2365 } else if (unlikely(rt_task(current)) && !in_interrupt())
2366 alloc_flags |= ALLOC_HARDER;
2368 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2369 if (gfp_mask & __GFP_MEMALLOC)
2370 alloc_flags |= ALLOC_NO_WATERMARKS;
2371 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2372 alloc_flags |= ALLOC_NO_WATERMARKS;
2373 else if (!in_interrupt() &&
2374 ((current->flags & PF_MEMALLOC) ||
2375 unlikely(test_thread_flag(TIF_MEMDIE))))
2376 alloc_flags |= ALLOC_NO_WATERMARKS;
2378 #ifdef CONFIG_CMA
2379 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2380 alloc_flags |= ALLOC_CMA;
2381 #endif
2382 return alloc_flags;
2385 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2387 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2390 static inline struct page *
2391 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2392 struct zonelist *zonelist, enum zone_type high_zoneidx,
2393 nodemask_t *nodemask, struct zone *preferred_zone,
2394 int migratetype)
2396 const gfp_t wait = gfp_mask & __GFP_WAIT;
2397 struct page *page = NULL;
2398 int alloc_flags;
2399 unsigned long pages_reclaimed = 0;
2400 unsigned long did_some_progress;
2401 bool sync_migration = false;
2402 bool deferred_compaction = false;
2403 bool contended_compaction = false;
2406 * In the slowpath, we sanity check order to avoid ever trying to
2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 * be using allocators in order of preference for an area that is
2409 * too large.
2411 if (order >= MAX_ORDER) {
2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2413 return NULL;
2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 * using a larger set of nodes after it has established that the
2421 * allowed per node queues are empty and that nodes are
2422 * over allocated.
2424 if (IS_ENABLED(CONFIG_NUMA) &&
2425 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2426 goto nopage;
2428 restart:
2429 if (!(gfp_mask & __GFP_NO_KSWAPD))
2430 wake_all_kswapd(order, zonelist, high_zoneidx,
2431 zone_idx(preferred_zone));
2434 * OK, we're below the kswapd watermark and have kicked background
2435 * reclaim. Now things get more complex, so set up alloc_flags according
2436 * to how we want to proceed.
2438 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2441 * Find the true preferred zone if the allocation is unconstrained by
2442 * cpusets.
2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2445 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2446 &preferred_zone);
2448 rebalance:
2449 /* This is the last chance, in general, before the goto nopage. */
2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2452 preferred_zone, migratetype);
2453 if (page)
2454 goto got_pg;
2456 /* Allocate without watermarks if the context allows */
2457 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 * the allocation is high priority and these type of
2461 * allocations are system rather than user orientated
2463 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2465 page = __alloc_pages_high_priority(gfp_mask, order,
2466 zonelist, high_zoneidx, nodemask,
2467 preferred_zone, migratetype);
2468 if (page) {
2469 goto got_pg;
2473 /* Atomic allocations - we can't balance anything */
2474 if (!wait)
2475 goto nopage;
2477 /* Avoid recursion of direct reclaim */
2478 if (current->flags & PF_MEMALLOC)
2479 goto nopage;
2481 /* Avoid allocations with no watermarks from looping endlessly */
2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2483 goto nopage;
2486 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 * attempts after direct reclaim are synchronous
2489 page = __alloc_pages_direct_compact(gfp_mask, order,
2490 zonelist, high_zoneidx,
2491 nodemask,
2492 alloc_flags, preferred_zone,
2493 migratetype, sync_migration,
2494 &contended_compaction,
2495 &deferred_compaction,
2496 &did_some_progress);
2497 if (page)
2498 goto got_pg;
2499 sync_migration = true;
2502 * If compaction is deferred for high-order allocations, it is because
2503 * sync compaction recently failed. In this is the case and the caller
2504 * requested a movable allocation that does not heavily disrupt the
2505 * system then fail the allocation instead of entering direct reclaim.
2507 if ((deferred_compaction || contended_compaction) &&
2508 (gfp_mask & __GFP_NO_KSWAPD))
2509 goto nopage;
2511 /* Try direct reclaim and then allocating */
2512 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2513 zonelist, high_zoneidx,
2514 nodemask,
2515 alloc_flags, preferred_zone,
2516 migratetype, &did_some_progress);
2517 if (page)
2518 goto got_pg;
2521 * If we failed to make any progress reclaiming, then we are
2522 * running out of options and have to consider going OOM
2524 if (!did_some_progress) {
2525 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2526 if (oom_killer_disabled)
2527 goto nopage;
2528 /* Coredumps can quickly deplete all memory reserves */
2529 if ((current->flags & PF_DUMPCORE) &&
2530 !(gfp_mask & __GFP_NOFAIL))
2531 goto nopage;
2532 page = __alloc_pages_may_oom(gfp_mask, order,
2533 zonelist, high_zoneidx,
2534 nodemask, preferred_zone,
2535 migratetype);
2536 if (page)
2537 goto got_pg;
2539 if (!(gfp_mask & __GFP_NOFAIL)) {
2541 * The oom killer is not called for high-order
2542 * allocations that may fail, so if no progress
2543 * is being made, there are no other options and
2544 * retrying is unlikely to help.
2546 if (order > PAGE_ALLOC_COSTLY_ORDER)
2547 goto nopage;
2549 * The oom killer is not called for lowmem
2550 * allocations to prevent needlessly killing
2551 * innocent tasks.
2553 if (high_zoneidx < ZONE_NORMAL)
2554 goto nopage;
2557 goto restart;
2561 /* Check if we should retry the allocation */
2562 pages_reclaimed += did_some_progress;
2563 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2564 pages_reclaimed)) {
2565 /* Wait for some write requests to complete then retry */
2566 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2567 goto rebalance;
2568 } else {
2570 * High-order allocations do not necessarily loop after
2571 * direct reclaim and reclaim/compaction depends on compaction
2572 * being called after reclaim so call directly if necessary
2574 page = __alloc_pages_direct_compact(gfp_mask, order,
2575 zonelist, high_zoneidx,
2576 nodemask,
2577 alloc_flags, preferred_zone,
2578 migratetype, sync_migration,
2579 &contended_compaction,
2580 &deferred_compaction,
2581 &did_some_progress);
2582 if (page)
2583 goto got_pg;
2586 nopage:
2587 warn_alloc_failed(gfp_mask, order, NULL);
2588 return page;
2589 got_pg:
2590 if (kmemcheck_enabled)
2591 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2593 return page;
2597 * This is the 'heart' of the zoned buddy allocator.
2599 struct page *
2600 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2601 struct zonelist *zonelist, nodemask_t *nodemask)
2603 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2604 struct zone *preferred_zone;
2605 struct page *page = NULL;
2606 int migratetype = allocflags_to_migratetype(gfp_mask);
2607 unsigned int cpuset_mems_cookie;
2608 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2609 struct mem_cgroup *memcg = NULL;
2611 gfp_mask &= gfp_allowed_mask;
2613 lockdep_trace_alloc(gfp_mask);
2615 might_sleep_if(gfp_mask & __GFP_WAIT);
2617 if (should_fail_alloc_page(gfp_mask, order))
2618 return NULL;
2621 * Check the zones suitable for the gfp_mask contain at least one
2622 * valid zone. It's possible to have an empty zonelist as a result
2623 * of GFP_THISNODE and a memoryless node
2625 if (unlikely(!zonelist->_zonerefs->zone))
2626 return NULL;
2629 * Will only have any effect when __GFP_KMEMCG is set. This is
2630 * verified in the (always inline) callee
2632 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2633 return NULL;
2635 retry_cpuset:
2636 cpuset_mems_cookie = get_mems_allowed();
2638 /* The preferred zone is used for statistics later */
2639 first_zones_zonelist(zonelist, high_zoneidx,
2640 nodemask ? : &cpuset_current_mems_allowed,
2641 &preferred_zone);
2642 if (!preferred_zone)
2643 goto out;
2645 #ifdef CONFIG_CMA
2646 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2647 alloc_flags |= ALLOC_CMA;
2648 #endif
2649 /* First allocation attempt */
2650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2651 zonelist, high_zoneidx, alloc_flags,
2652 preferred_zone, migratetype);
2653 if (unlikely(!page)) {
2655 * Runtime PM, block IO and its error handling path
2656 * can deadlock because I/O on the device might not
2657 * complete.
2659 gfp_mask = memalloc_noio_flags(gfp_mask);
2660 page = __alloc_pages_slowpath(gfp_mask, order,
2661 zonelist, high_zoneidx, nodemask,
2662 preferred_zone, migratetype);
2665 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2667 out:
2669 * When updating a task's mems_allowed, it is possible to race with
2670 * parallel threads in such a way that an allocation can fail while
2671 * the mask is being updated. If a page allocation is about to fail,
2672 * check if the cpuset changed during allocation and if so, retry.
2674 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2675 goto retry_cpuset;
2677 memcg_kmem_commit_charge(page, memcg, order);
2679 return page;
2681 EXPORT_SYMBOL(__alloc_pages_nodemask);
2684 * Common helper functions.
2686 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2688 struct page *page;
2691 * __get_free_pages() returns a 32-bit address, which cannot represent
2692 * a highmem page
2694 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2696 page = alloc_pages(gfp_mask, order);
2697 if (!page)
2698 return 0;
2699 return (unsigned long) page_address(page);
2701 EXPORT_SYMBOL(__get_free_pages);
2703 unsigned long get_zeroed_page(gfp_t gfp_mask)
2705 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2707 EXPORT_SYMBOL(get_zeroed_page);
2709 void __free_pages(struct page *page, unsigned int order)
2711 if (put_page_testzero(page)) {
2712 if (order == 0)
2713 free_hot_cold_page(page, 0);
2714 else
2715 __free_pages_ok(page, order);
2719 EXPORT_SYMBOL(__free_pages);
2721 void free_pages(unsigned long addr, unsigned int order)
2723 if (addr != 0) {
2724 VM_BUG_ON(!virt_addr_valid((void *)addr));
2725 __free_pages(virt_to_page((void *)addr), order);
2729 EXPORT_SYMBOL(free_pages);
2732 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2733 * pages allocated with __GFP_KMEMCG.
2735 * Those pages are accounted to a particular memcg, embedded in the
2736 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2737 * for that information only to find out that it is NULL for users who have no
2738 * interest in that whatsoever, we provide these functions.
2740 * The caller knows better which flags it relies on.
2742 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2744 memcg_kmem_uncharge_pages(page, order);
2745 __free_pages(page, order);
2748 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2750 if (addr != 0) {
2751 VM_BUG_ON(!virt_addr_valid((void *)addr));
2752 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2756 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2758 if (addr) {
2759 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2760 unsigned long used = addr + PAGE_ALIGN(size);
2762 split_page(virt_to_page((void *)addr), order);
2763 while (used < alloc_end) {
2764 free_page(used);
2765 used += PAGE_SIZE;
2768 return (void *)addr;
2772 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2773 * @size: the number of bytes to allocate
2774 * @gfp_mask: GFP flags for the allocation
2776 * This function is similar to alloc_pages(), except that it allocates the
2777 * minimum number of pages to satisfy the request. alloc_pages() can only
2778 * allocate memory in power-of-two pages.
2780 * This function is also limited by MAX_ORDER.
2782 * Memory allocated by this function must be released by free_pages_exact().
2784 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2786 unsigned int order = get_order(size);
2787 unsigned long addr;
2789 addr = __get_free_pages(gfp_mask, order);
2790 return make_alloc_exact(addr, order, size);
2792 EXPORT_SYMBOL(alloc_pages_exact);
2795 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2796 * pages on a node.
2797 * @nid: the preferred node ID where memory should be allocated
2798 * @size: the number of bytes to allocate
2799 * @gfp_mask: GFP flags for the allocation
2801 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2802 * back.
2803 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2804 * but is not exact.
2806 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2808 unsigned order = get_order(size);
2809 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2810 if (!p)
2811 return NULL;
2812 return make_alloc_exact((unsigned long)page_address(p), order, size);
2814 EXPORT_SYMBOL(alloc_pages_exact_nid);
2817 * free_pages_exact - release memory allocated via alloc_pages_exact()
2818 * @virt: the value returned by alloc_pages_exact.
2819 * @size: size of allocation, same value as passed to alloc_pages_exact().
2821 * Release the memory allocated by a previous call to alloc_pages_exact.
2823 void free_pages_exact(void *virt, size_t size)
2825 unsigned long addr = (unsigned long)virt;
2826 unsigned long end = addr + PAGE_ALIGN(size);
2828 while (addr < end) {
2829 free_page(addr);
2830 addr += PAGE_SIZE;
2833 EXPORT_SYMBOL(free_pages_exact);
2836 * nr_free_zone_pages - count number of pages beyond high watermark
2837 * @offset: The zone index of the highest zone
2839 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2840 * high watermark within all zones at or below a given zone index. For each
2841 * zone, the number of pages is calculated as:
2842 * managed_pages - high_pages
2844 static unsigned long nr_free_zone_pages(int offset)
2846 struct zoneref *z;
2847 struct zone *zone;
2849 /* Just pick one node, since fallback list is circular */
2850 unsigned long sum = 0;
2852 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2854 for_each_zone_zonelist(zone, z, zonelist, offset) {
2855 unsigned long size = zone->managed_pages;
2856 unsigned long high = high_wmark_pages(zone);
2857 if (size > high)
2858 sum += size - high;
2861 return sum;
2865 * nr_free_buffer_pages - count number of pages beyond high watermark
2867 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2868 * watermark within ZONE_DMA and ZONE_NORMAL.
2870 unsigned long nr_free_buffer_pages(void)
2872 return nr_free_zone_pages(gfp_zone(GFP_USER));
2874 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2877 * nr_free_pagecache_pages - count number of pages beyond high watermark
2879 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2880 * high watermark within all zones.
2882 unsigned long nr_free_pagecache_pages(void)
2884 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2887 static inline void show_node(struct zone *zone)
2889 if (IS_ENABLED(CONFIG_NUMA))
2890 printk("Node %d ", zone_to_nid(zone));
2893 void si_meminfo(struct sysinfo *val)
2895 val->totalram = totalram_pages;
2896 val->sharedram = 0;
2897 val->freeram = global_page_state(NR_FREE_PAGES);
2898 val->bufferram = nr_blockdev_pages();
2899 val->totalhigh = totalhigh_pages;
2900 val->freehigh = nr_free_highpages();
2901 val->mem_unit = PAGE_SIZE;
2904 EXPORT_SYMBOL(si_meminfo);
2906 #ifdef CONFIG_NUMA
2907 void si_meminfo_node(struct sysinfo *val, int nid)
2909 int zone_type; /* needs to be signed */
2910 unsigned long managed_pages = 0;
2911 pg_data_t *pgdat = NODE_DATA(nid);
2913 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2914 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2915 val->totalram = managed_pages;
2916 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2917 #ifdef CONFIG_HIGHMEM
2918 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2919 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2920 NR_FREE_PAGES);
2921 #else
2922 val->totalhigh = 0;
2923 val->freehigh = 0;
2924 #endif
2925 val->mem_unit = PAGE_SIZE;
2927 #endif
2930 * Determine whether the node should be displayed or not, depending on whether
2931 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2933 bool skip_free_areas_node(unsigned int flags, int nid)
2935 bool ret = false;
2936 unsigned int cpuset_mems_cookie;
2938 if (!(flags & SHOW_MEM_FILTER_NODES))
2939 goto out;
2941 do {
2942 cpuset_mems_cookie = get_mems_allowed();
2943 ret = !node_isset(nid, cpuset_current_mems_allowed);
2944 } while (!put_mems_allowed(cpuset_mems_cookie));
2945 out:
2946 return ret;
2949 #define K(x) ((x) << (PAGE_SHIFT-10))
2951 static void show_migration_types(unsigned char type)
2953 static const char types[MIGRATE_TYPES] = {
2954 [MIGRATE_UNMOVABLE] = 'U',
2955 [MIGRATE_RECLAIMABLE] = 'E',
2956 [MIGRATE_MOVABLE] = 'M',
2957 [MIGRATE_RESERVE] = 'R',
2958 #ifdef CONFIG_CMA
2959 [MIGRATE_CMA] = 'C',
2960 #endif
2961 #ifdef CONFIG_MEMORY_ISOLATION
2962 [MIGRATE_ISOLATE] = 'I',
2963 #endif
2965 char tmp[MIGRATE_TYPES + 1];
2966 char *p = tmp;
2967 int i;
2969 for (i = 0; i < MIGRATE_TYPES; i++) {
2970 if (type & (1 << i))
2971 *p++ = types[i];
2974 *p = '\0';
2975 printk("(%s) ", tmp);
2979 * Show free area list (used inside shift_scroll-lock stuff)
2980 * We also calculate the percentage fragmentation. We do this by counting the
2981 * memory on each free list with the exception of the first item on the list.
2982 * Suppresses nodes that are not allowed by current's cpuset if
2983 * SHOW_MEM_FILTER_NODES is passed.
2985 void show_free_areas(unsigned int filter)
2987 int cpu;
2988 struct zone *zone;
2990 for_each_populated_zone(zone) {
2991 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2992 continue;
2993 show_node(zone);
2994 printk("%s per-cpu:\n", zone->name);
2996 for_each_online_cpu(cpu) {
2997 struct per_cpu_pageset *pageset;
2999 pageset = per_cpu_ptr(zone->pageset, cpu);
3001 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3002 cpu, pageset->pcp.high,
3003 pageset->pcp.batch, pageset->pcp.count);
3007 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3008 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3009 " unevictable:%lu"
3010 " dirty:%lu writeback:%lu unstable:%lu\n"
3011 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3012 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3013 " free_cma:%lu\n",
3014 global_page_state(NR_ACTIVE_ANON),
3015 global_page_state(NR_INACTIVE_ANON),
3016 global_page_state(NR_ISOLATED_ANON),
3017 global_page_state(NR_ACTIVE_FILE),
3018 global_page_state(NR_INACTIVE_FILE),
3019 global_page_state(NR_ISOLATED_FILE),
3020 global_page_state(NR_UNEVICTABLE),
3021 global_page_state(NR_FILE_DIRTY),
3022 global_page_state(NR_WRITEBACK),
3023 global_page_state(NR_UNSTABLE_NFS),
3024 global_page_state(NR_FREE_PAGES),
3025 global_page_state(NR_SLAB_RECLAIMABLE),
3026 global_page_state(NR_SLAB_UNRECLAIMABLE),
3027 global_page_state(NR_FILE_MAPPED),
3028 global_page_state(NR_SHMEM),
3029 global_page_state(NR_PAGETABLE),
3030 global_page_state(NR_BOUNCE),
3031 global_page_state(NR_FREE_CMA_PAGES));
3033 for_each_populated_zone(zone) {
3034 int i;
3036 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3037 continue;
3038 show_node(zone);
3039 printk("%s"
3040 " free:%lukB"
3041 " min:%lukB"
3042 " low:%lukB"
3043 " high:%lukB"
3044 " active_anon:%lukB"
3045 " inactive_anon:%lukB"
3046 " active_file:%lukB"
3047 " inactive_file:%lukB"
3048 " unevictable:%lukB"
3049 " isolated(anon):%lukB"
3050 " isolated(file):%lukB"
3051 " present:%lukB"
3052 " managed:%lukB"
3053 " mlocked:%lukB"
3054 " dirty:%lukB"
3055 " writeback:%lukB"
3056 " mapped:%lukB"
3057 " shmem:%lukB"
3058 " slab_reclaimable:%lukB"
3059 " slab_unreclaimable:%lukB"
3060 " kernel_stack:%lukB"
3061 " pagetables:%lukB"
3062 " unstable:%lukB"
3063 " bounce:%lukB"
3064 " free_cma:%lukB"
3065 " writeback_tmp:%lukB"
3066 " pages_scanned:%lu"
3067 " all_unreclaimable? %s"
3068 "\n",
3069 zone->name,
3070 K(zone_page_state(zone, NR_FREE_PAGES)),
3071 K(min_wmark_pages(zone)),
3072 K(low_wmark_pages(zone)),
3073 K(high_wmark_pages(zone)),
3074 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3075 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3076 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3077 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3078 K(zone_page_state(zone, NR_UNEVICTABLE)),
3079 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3080 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3081 K(zone->present_pages),
3082 K(zone->managed_pages),
3083 K(zone_page_state(zone, NR_MLOCK)),
3084 K(zone_page_state(zone, NR_FILE_DIRTY)),
3085 K(zone_page_state(zone, NR_WRITEBACK)),
3086 K(zone_page_state(zone, NR_FILE_MAPPED)),
3087 K(zone_page_state(zone, NR_SHMEM)),
3088 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3089 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3090 zone_page_state(zone, NR_KERNEL_STACK) *
3091 THREAD_SIZE / 1024,
3092 K(zone_page_state(zone, NR_PAGETABLE)),
3093 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3094 K(zone_page_state(zone, NR_BOUNCE)),
3095 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3096 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3097 zone->pages_scanned,
3098 (zone->all_unreclaimable ? "yes" : "no")
3100 printk("lowmem_reserve[]:");
3101 for (i = 0; i < MAX_NR_ZONES; i++)
3102 printk(" %lu", zone->lowmem_reserve[i]);
3103 printk("\n");
3106 for_each_populated_zone(zone) {
3107 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3108 unsigned char types[MAX_ORDER];
3110 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3111 continue;
3112 show_node(zone);
3113 printk("%s: ", zone->name);
3115 spin_lock_irqsave(&zone->lock, flags);
3116 for (order = 0; order < MAX_ORDER; order++) {
3117 struct free_area *area = &zone->free_area[order];
3118 int type;
3120 nr[order] = area->nr_free;
3121 total += nr[order] << order;
3123 types[order] = 0;
3124 for (type = 0; type < MIGRATE_TYPES; type++) {
3125 if (!list_empty(&area->free_list[type]))
3126 types[order] |= 1 << type;
3129 spin_unlock_irqrestore(&zone->lock, flags);
3130 for (order = 0; order < MAX_ORDER; order++) {
3131 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3132 if (nr[order])
3133 show_migration_types(types[order]);
3135 printk("= %lukB\n", K(total));
3138 hugetlb_show_meminfo();
3140 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3142 show_swap_cache_info();
3145 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3147 zoneref->zone = zone;
3148 zoneref->zone_idx = zone_idx(zone);
3152 * Builds allocation fallback zone lists.
3154 * Add all populated zones of a node to the zonelist.
3156 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3157 int nr_zones)
3159 struct zone *zone;
3160 enum zone_type zone_type = MAX_NR_ZONES;
3162 do {
3163 zone_type--;
3164 zone = pgdat->node_zones + zone_type;
3165 if (populated_zone(zone)) {
3166 zoneref_set_zone(zone,
3167 &zonelist->_zonerefs[nr_zones++]);
3168 check_highest_zone(zone_type);
3170 } while (zone_type);
3172 return nr_zones;
3177 * zonelist_order:
3178 * 0 = automatic detection of better ordering.
3179 * 1 = order by ([node] distance, -zonetype)
3180 * 2 = order by (-zonetype, [node] distance)
3182 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3183 * the same zonelist. So only NUMA can configure this param.
3185 #define ZONELIST_ORDER_DEFAULT 0
3186 #define ZONELIST_ORDER_NODE 1
3187 #define ZONELIST_ORDER_ZONE 2
3189 /* zonelist order in the kernel.
3190 * set_zonelist_order() will set this to NODE or ZONE.
3192 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3193 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3196 #ifdef CONFIG_NUMA
3197 /* The value user specified ....changed by config */
3198 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3199 /* string for sysctl */
3200 #define NUMA_ZONELIST_ORDER_LEN 16
3201 char numa_zonelist_order[16] = "default";
3204 * interface for configure zonelist ordering.
3205 * command line option "numa_zonelist_order"
3206 * = "[dD]efault - default, automatic configuration.
3207 * = "[nN]ode - order by node locality, then by zone within node
3208 * = "[zZ]one - order by zone, then by locality within zone
3211 static int __parse_numa_zonelist_order(char *s)
3213 if (*s == 'd' || *s == 'D') {
3214 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3215 } else if (*s == 'n' || *s == 'N') {
3216 user_zonelist_order = ZONELIST_ORDER_NODE;
3217 } else if (*s == 'z' || *s == 'Z') {
3218 user_zonelist_order = ZONELIST_ORDER_ZONE;
3219 } else {
3220 printk(KERN_WARNING
3221 "Ignoring invalid numa_zonelist_order value: "
3222 "%s\n", s);
3223 return -EINVAL;
3225 return 0;
3228 static __init int setup_numa_zonelist_order(char *s)
3230 int ret;
3232 if (!s)
3233 return 0;
3235 ret = __parse_numa_zonelist_order(s);
3236 if (ret == 0)
3237 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3239 return ret;
3241 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3244 * sysctl handler for numa_zonelist_order
3246 int numa_zonelist_order_handler(ctl_table *table, int write,
3247 void __user *buffer, size_t *length,
3248 loff_t *ppos)
3250 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3251 int ret;
3252 static DEFINE_MUTEX(zl_order_mutex);
3254 mutex_lock(&zl_order_mutex);
3255 if (write) {
3256 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3257 ret = -EINVAL;
3258 goto out;
3260 strcpy(saved_string, (char *)table->data);
3262 ret = proc_dostring(table, write, buffer, length, ppos);
3263 if (ret)
3264 goto out;
3265 if (write) {
3266 int oldval = user_zonelist_order;
3268 ret = __parse_numa_zonelist_order((char *)table->data);
3269 if (ret) {
3271 * bogus value. restore saved string
3273 strncpy((char *)table->data, saved_string,
3274 NUMA_ZONELIST_ORDER_LEN);
3275 user_zonelist_order = oldval;
3276 } else if (oldval != user_zonelist_order) {
3277 mutex_lock(&zonelists_mutex);
3278 build_all_zonelists(NULL, NULL);
3279 mutex_unlock(&zonelists_mutex);
3282 out:
3283 mutex_unlock(&zl_order_mutex);
3284 return ret;
3288 #define MAX_NODE_LOAD (nr_online_nodes)
3289 static int node_load[MAX_NUMNODES];
3292 * find_next_best_node - find the next node that should appear in a given node's fallback list
3293 * @node: node whose fallback list we're appending
3294 * @used_node_mask: nodemask_t of already used nodes
3296 * We use a number of factors to determine which is the next node that should
3297 * appear on a given node's fallback list. The node should not have appeared
3298 * already in @node's fallback list, and it should be the next closest node
3299 * according to the distance array (which contains arbitrary distance values
3300 * from each node to each node in the system), and should also prefer nodes
3301 * with no CPUs, since presumably they'll have very little allocation pressure
3302 * on them otherwise.
3303 * It returns -1 if no node is found.
3305 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3307 int n, val;
3308 int min_val = INT_MAX;
3309 int best_node = NUMA_NO_NODE;
3310 const struct cpumask *tmp = cpumask_of_node(0);
3312 /* Use the local node if we haven't already */
3313 if (!node_isset(node, *used_node_mask)) {
3314 node_set(node, *used_node_mask);
3315 return node;
3318 for_each_node_state(n, N_MEMORY) {
3320 /* Don't want a node to appear more than once */
3321 if (node_isset(n, *used_node_mask))
3322 continue;
3324 /* Use the distance array to find the distance */
3325 val = node_distance(node, n);
3327 /* Penalize nodes under us ("prefer the next node") */
3328 val += (n < node);
3330 /* Give preference to headless and unused nodes */
3331 tmp = cpumask_of_node(n);
3332 if (!cpumask_empty(tmp))
3333 val += PENALTY_FOR_NODE_WITH_CPUS;
3335 /* Slight preference for less loaded node */
3336 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3337 val += node_load[n];
3339 if (val < min_val) {
3340 min_val = val;
3341 best_node = n;
3345 if (best_node >= 0)
3346 node_set(best_node, *used_node_mask);
3348 return best_node;
3353 * Build zonelists ordered by node and zones within node.
3354 * This results in maximum locality--normal zone overflows into local
3355 * DMA zone, if any--but risks exhausting DMA zone.
3357 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3359 int j;
3360 struct zonelist *zonelist;
3362 zonelist = &pgdat->node_zonelists[0];
3363 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3365 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3366 zonelist->_zonerefs[j].zone = NULL;
3367 zonelist->_zonerefs[j].zone_idx = 0;
3371 * Build gfp_thisnode zonelists
3373 static void build_thisnode_zonelists(pg_data_t *pgdat)
3375 int j;
3376 struct zonelist *zonelist;
3378 zonelist = &pgdat->node_zonelists[1];
3379 j = build_zonelists_node(pgdat, zonelist, 0);
3380 zonelist->_zonerefs[j].zone = NULL;
3381 zonelist->_zonerefs[j].zone_idx = 0;
3385 * Build zonelists ordered by zone and nodes within zones.
3386 * This results in conserving DMA zone[s] until all Normal memory is
3387 * exhausted, but results in overflowing to remote node while memory
3388 * may still exist in local DMA zone.
3390 static int node_order[MAX_NUMNODES];
3392 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3394 int pos, j, node;
3395 int zone_type; /* needs to be signed */
3396 struct zone *z;
3397 struct zonelist *zonelist;
3399 zonelist = &pgdat->node_zonelists[0];
3400 pos = 0;
3401 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3402 for (j = 0; j < nr_nodes; j++) {
3403 node = node_order[j];
3404 z = &NODE_DATA(node)->node_zones[zone_type];
3405 if (populated_zone(z)) {
3406 zoneref_set_zone(z,
3407 &zonelist->_zonerefs[pos++]);
3408 check_highest_zone(zone_type);
3412 zonelist->_zonerefs[pos].zone = NULL;
3413 zonelist->_zonerefs[pos].zone_idx = 0;
3416 static int default_zonelist_order(void)
3418 int nid, zone_type;
3419 unsigned long low_kmem_size,total_size;
3420 struct zone *z;
3421 int average_size;
3423 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3424 * If they are really small and used heavily, the system can fall
3425 * into OOM very easily.
3426 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3428 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3429 low_kmem_size = 0;
3430 total_size = 0;
3431 for_each_online_node(nid) {
3432 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3433 z = &NODE_DATA(nid)->node_zones[zone_type];
3434 if (populated_zone(z)) {
3435 if (zone_type < ZONE_NORMAL)
3436 low_kmem_size += z->managed_pages;
3437 total_size += z->managed_pages;
3438 } else if (zone_type == ZONE_NORMAL) {
3440 * If any node has only lowmem, then node order
3441 * is preferred to allow kernel allocations
3442 * locally; otherwise, they can easily infringe
3443 * on other nodes when there is an abundance of
3444 * lowmem available to allocate from.
3446 return ZONELIST_ORDER_NODE;
3450 if (!low_kmem_size || /* there are no DMA area. */
3451 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3452 return ZONELIST_ORDER_NODE;
3454 * look into each node's config.
3455 * If there is a node whose DMA/DMA32 memory is very big area on
3456 * local memory, NODE_ORDER may be suitable.
3458 average_size = total_size /
3459 (nodes_weight(node_states[N_MEMORY]) + 1);
3460 for_each_online_node(nid) {
3461 low_kmem_size = 0;
3462 total_size = 0;
3463 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3464 z = &NODE_DATA(nid)->node_zones[zone_type];
3465 if (populated_zone(z)) {
3466 if (zone_type < ZONE_NORMAL)
3467 low_kmem_size += z->present_pages;
3468 total_size += z->present_pages;
3471 if (low_kmem_size &&
3472 total_size > average_size && /* ignore small node */
3473 low_kmem_size > total_size * 70/100)
3474 return ZONELIST_ORDER_NODE;
3476 return ZONELIST_ORDER_ZONE;
3479 static void set_zonelist_order(void)
3481 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3482 current_zonelist_order = default_zonelist_order();
3483 else
3484 current_zonelist_order = user_zonelist_order;
3487 static void build_zonelists(pg_data_t *pgdat)
3489 int j, node, load;
3490 enum zone_type i;
3491 nodemask_t used_mask;
3492 int local_node, prev_node;
3493 struct zonelist *zonelist;
3494 int order = current_zonelist_order;
3496 /* initialize zonelists */
3497 for (i = 0; i < MAX_ZONELISTS; i++) {
3498 zonelist = pgdat->node_zonelists + i;
3499 zonelist->_zonerefs[0].zone = NULL;
3500 zonelist->_zonerefs[0].zone_idx = 0;
3503 /* NUMA-aware ordering of nodes */
3504 local_node = pgdat->node_id;
3505 load = nr_online_nodes;
3506 prev_node = local_node;
3507 nodes_clear(used_mask);
3509 memset(node_order, 0, sizeof(node_order));
3510 j = 0;
3512 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3514 * We don't want to pressure a particular node.
3515 * So adding penalty to the first node in same
3516 * distance group to make it round-robin.
3518 if (node_distance(local_node, node) !=
3519 node_distance(local_node, prev_node))
3520 node_load[node] = load;
3522 prev_node = node;
3523 load--;
3524 if (order == ZONELIST_ORDER_NODE)
3525 build_zonelists_in_node_order(pgdat, node);
3526 else
3527 node_order[j++] = node; /* remember order */
3530 if (order == ZONELIST_ORDER_ZONE) {
3531 /* calculate node order -- i.e., DMA last! */
3532 build_zonelists_in_zone_order(pgdat, j);
3535 build_thisnode_zonelists(pgdat);
3538 /* Construct the zonelist performance cache - see further mmzone.h */
3539 static void build_zonelist_cache(pg_data_t *pgdat)
3541 struct zonelist *zonelist;
3542 struct zonelist_cache *zlc;
3543 struct zoneref *z;
3545 zonelist = &pgdat->node_zonelists[0];
3546 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3547 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3548 for (z = zonelist->_zonerefs; z->zone; z++)
3549 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3552 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3554 * Return node id of node used for "local" allocations.
3555 * I.e., first node id of first zone in arg node's generic zonelist.
3556 * Used for initializing percpu 'numa_mem', which is used primarily
3557 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3559 int local_memory_node(int node)
3561 struct zone *zone;
3563 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3564 gfp_zone(GFP_KERNEL),
3565 NULL,
3566 &zone);
3567 return zone->node;
3569 #endif
3571 #else /* CONFIG_NUMA */
3573 static void set_zonelist_order(void)
3575 current_zonelist_order = ZONELIST_ORDER_ZONE;
3578 static void build_zonelists(pg_data_t *pgdat)
3580 int node, local_node;
3581 enum zone_type j;
3582 struct zonelist *zonelist;
3584 local_node = pgdat->node_id;
3586 zonelist = &pgdat->node_zonelists[0];
3587 j = build_zonelists_node(pgdat, zonelist, 0);
3590 * Now we build the zonelist so that it contains the zones
3591 * of all the other nodes.
3592 * We don't want to pressure a particular node, so when
3593 * building the zones for node N, we make sure that the
3594 * zones coming right after the local ones are those from
3595 * node N+1 (modulo N)
3597 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3598 if (!node_online(node))
3599 continue;
3600 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3602 for (node = 0; node < local_node; node++) {
3603 if (!node_online(node))
3604 continue;
3605 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3608 zonelist->_zonerefs[j].zone = NULL;
3609 zonelist->_zonerefs[j].zone_idx = 0;
3612 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3613 static void build_zonelist_cache(pg_data_t *pgdat)
3615 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3618 #endif /* CONFIG_NUMA */
3621 * Boot pageset table. One per cpu which is going to be used for all
3622 * zones and all nodes. The parameters will be set in such a way
3623 * that an item put on a list will immediately be handed over to
3624 * the buddy list. This is safe since pageset manipulation is done
3625 * with interrupts disabled.
3627 * The boot_pagesets must be kept even after bootup is complete for
3628 * unused processors and/or zones. They do play a role for bootstrapping
3629 * hotplugged processors.
3631 * zoneinfo_show() and maybe other functions do
3632 * not check if the processor is online before following the pageset pointer.
3633 * Other parts of the kernel may not check if the zone is available.
3635 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3636 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3637 static void setup_zone_pageset(struct zone *zone);
3640 * Global mutex to protect against size modification of zonelists
3641 * as well as to serialize pageset setup for the new populated zone.
3643 DEFINE_MUTEX(zonelists_mutex);
3645 /* return values int ....just for stop_machine() */
3646 static int __build_all_zonelists(void *data)
3648 int nid;
3649 int cpu;
3650 pg_data_t *self = data;
3652 #ifdef CONFIG_NUMA
3653 memset(node_load, 0, sizeof(node_load));
3654 #endif
3656 if (self && !node_online(self->node_id)) {
3657 build_zonelists(self);
3658 build_zonelist_cache(self);
3661 for_each_online_node(nid) {
3662 pg_data_t *pgdat = NODE_DATA(nid);
3664 build_zonelists(pgdat);
3665 build_zonelist_cache(pgdat);
3669 * Initialize the boot_pagesets that are going to be used
3670 * for bootstrapping processors. The real pagesets for
3671 * each zone will be allocated later when the per cpu
3672 * allocator is available.
3674 * boot_pagesets are used also for bootstrapping offline
3675 * cpus if the system is already booted because the pagesets
3676 * are needed to initialize allocators on a specific cpu too.
3677 * F.e. the percpu allocator needs the page allocator which
3678 * needs the percpu allocator in order to allocate its pagesets
3679 * (a chicken-egg dilemma).
3681 for_each_possible_cpu(cpu) {
3682 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3684 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3686 * We now know the "local memory node" for each node--
3687 * i.e., the node of the first zone in the generic zonelist.
3688 * Set up numa_mem percpu variable for on-line cpus. During
3689 * boot, only the boot cpu should be on-line; we'll init the
3690 * secondary cpus' numa_mem as they come on-line. During
3691 * node/memory hotplug, we'll fixup all on-line cpus.
3693 if (cpu_online(cpu))
3694 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3695 #endif
3698 return 0;
3702 * Called with zonelists_mutex held always
3703 * unless system_state == SYSTEM_BOOTING.
3705 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3707 set_zonelist_order();
3709 if (system_state == SYSTEM_BOOTING) {
3710 __build_all_zonelists(NULL);
3711 mminit_verify_zonelist();
3712 cpuset_init_current_mems_allowed();
3713 } else {
3714 #ifdef CONFIG_MEMORY_HOTPLUG
3715 if (zone)
3716 setup_zone_pageset(zone);
3717 #endif
3718 /* we have to stop all cpus to guarantee there is no user
3719 of zonelist */
3720 stop_machine(__build_all_zonelists, pgdat, NULL);
3721 /* cpuset refresh routine should be here */
3723 vm_total_pages = nr_free_pagecache_pages();
3725 * Disable grouping by mobility if the number of pages in the
3726 * system is too low to allow the mechanism to work. It would be
3727 * more accurate, but expensive to check per-zone. This check is
3728 * made on memory-hotadd so a system can start with mobility
3729 * disabled and enable it later
3731 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3732 page_group_by_mobility_disabled = 1;
3733 else
3734 page_group_by_mobility_disabled = 0;
3736 printk("Built %i zonelists in %s order, mobility grouping %s. "
3737 "Total pages: %ld\n",
3738 nr_online_nodes,
3739 zonelist_order_name[current_zonelist_order],
3740 page_group_by_mobility_disabled ? "off" : "on",
3741 vm_total_pages);
3742 #ifdef CONFIG_NUMA
3743 printk("Policy zone: %s\n", zone_names[policy_zone]);
3744 #endif
3748 * Helper functions to size the waitqueue hash table.
3749 * Essentially these want to choose hash table sizes sufficiently
3750 * large so that collisions trying to wait on pages are rare.
3751 * But in fact, the number of active page waitqueues on typical
3752 * systems is ridiculously low, less than 200. So this is even
3753 * conservative, even though it seems large.
3755 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3756 * waitqueues, i.e. the size of the waitq table given the number of pages.
3758 #define PAGES_PER_WAITQUEUE 256
3760 #ifndef CONFIG_MEMORY_HOTPLUG
3761 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3763 unsigned long size = 1;
3765 pages /= PAGES_PER_WAITQUEUE;
3767 while (size < pages)
3768 size <<= 1;
3771 * Once we have dozens or even hundreds of threads sleeping
3772 * on IO we've got bigger problems than wait queue collision.
3773 * Limit the size of the wait table to a reasonable size.
3775 size = min(size, 4096UL);
3777 return max(size, 4UL);
3779 #else
3781 * A zone's size might be changed by hot-add, so it is not possible to determine
3782 * a suitable size for its wait_table. So we use the maximum size now.
3784 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3786 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3787 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3788 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3790 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3791 * or more by the traditional way. (See above). It equals:
3793 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3794 * ia64(16K page size) : = ( 8G + 4M)byte.
3795 * powerpc (64K page size) : = (32G +16M)byte.
3797 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3799 return 4096UL;
3801 #endif
3804 * This is an integer logarithm so that shifts can be used later
3805 * to extract the more random high bits from the multiplicative
3806 * hash function before the remainder is taken.
3808 static inline unsigned long wait_table_bits(unsigned long size)
3810 return ffz(~size);
3813 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3816 * Check if a pageblock contains reserved pages
3818 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3820 unsigned long pfn;
3822 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3823 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3824 return 1;
3826 return 0;
3830 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3831 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3832 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3833 * higher will lead to a bigger reserve which will get freed as contiguous
3834 * blocks as reclaim kicks in
3836 static void setup_zone_migrate_reserve(struct zone *zone)
3838 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3839 struct page *page;
3840 unsigned long block_migratetype;
3841 int reserve;
3844 * Get the start pfn, end pfn and the number of blocks to reserve
3845 * We have to be careful to be aligned to pageblock_nr_pages to
3846 * make sure that we always check pfn_valid for the first page in
3847 * the block.
3849 start_pfn = zone->zone_start_pfn;
3850 end_pfn = zone_end_pfn(zone);
3851 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3852 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3853 pageblock_order;
3856 * Reserve blocks are generally in place to help high-order atomic
3857 * allocations that are short-lived. A min_free_kbytes value that
3858 * would result in more than 2 reserve blocks for atomic allocations
3859 * is assumed to be in place to help anti-fragmentation for the
3860 * future allocation of hugepages at runtime.
3862 reserve = min(2, reserve);
3864 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3865 if (!pfn_valid(pfn))
3866 continue;
3867 page = pfn_to_page(pfn);
3869 /* Watch out for overlapping nodes */
3870 if (page_to_nid(page) != zone_to_nid(zone))
3871 continue;
3873 block_migratetype = get_pageblock_migratetype(page);
3875 /* Only test what is necessary when the reserves are not met */
3876 if (reserve > 0) {
3878 * Blocks with reserved pages will never free, skip
3879 * them.
3881 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3882 if (pageblock_is_reserved(pfn, block_end_pfn))
3883 continue;
3885 /* If this block is reserved, account for it */
3886 if (block_migratetype == MIGRATE_RESERVE) {
3887 reserve--;
3888 continue;
3891 /* Suitable for reserving if this block is movable */
3892 if (block_migratetype == MIGRATE_MOVABLE) {
3893 set_pageblock_migratetype(page,
3894 MIGRATE_RESERVE);
3895 move_freepages_block(zone, page,
3896 MIGRATE_RESERVE);
3897 reserve--;
3898 continue;
3903 * If the reserve is met and this is a previous reserved block,
3904 * take it back
3906 if (block_migratetype == MIGRATE_RESERVE) {
3907 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3908 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3914 * Initially all pages are reserved - free ones are freed
3915 * up by free_all_bootmem() once the early boot process is
3916 * done. Non-atomic initialization, single-pass.
3918 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3919 unsigned long start_pfn, enum memmap_context context)
3921 struct page *page;
3922 unsigned long end_pfn = start_pfn + size;
3923 unsigned long pfn;
3924 struct zone *z;
3926 if (highest_memmap_pfn < end_pfn - 1)
3927 highest_memmap_pfn = end_pfn - 1;
3929 z = &NODE_DATA(nid)->node_zones[zone];
3930 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3932 * There can be holes in boot-time mem_map[]s
3933 * handed to this function. They do not
3934 * exist on hotplugged memory.
3936 if (context == MEMMAP_EARLY) {
3937 if (!early_pfn_valid(pfn))
3938 continue;
3939 if (!early_pfn_in_nid(pfn, nid))
3940 continue;
3942 page = pfn_to_page(pfn);
3943 set_page_links(page, zone, nid, pfn);
3944 mminit_verify_page_links(page, zone, nid, pfn);
3945 init_page_count(page);
3946 page_mapcount_reset(page);
3947 page_nid_reset_last(page);
3948 SetPageReserved(page);
3950 * Mark the block movable so that blocks are reserved for
3951 * movable at startup. This will force kernel allocations
3952 * to reserve their blocks rather than leaking throughout
3953 * the address space during boot when many long-lived
3954 * kernel allocations are made. Later some blocks near
3955 * the start are marked MIGRATE_RESERVE by
3956 * setup_zone_migrate_reserve()
3958 * bitmap is created for zone's valid pfn range. but memmap
3959 * can be created for invalid pages (for alignment)
3960 * check here not to call set_pageblock_migratetype() against
3961 * pfn out of zone.
3963 if ((z->zone_start_pfn <= pfn)
3964 && (pfn < zone_end_pfn(z))
3965 && !(pfn & (pageblock_nr_pages - 1)))
3966 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3968 INIT_LIST_HEAD(&page->lru);
3969 #ifdef WANT_PAGE_VIRTUAL
3970 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3971 if (!is_highmem_idx(zone))
3972 set_page_address(page, __va(pfn << PAGE_SHIFT));
3973 #endif
3977 static void __meminit zone_init_free_lists(struct zone *zone)
3979 int order, t;
3980 for_each_migratetype_order(order, t) {
3981 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3982 zone->free_area[order].nr_free = 0;
3986 #ifndef __HAVE_ARCH_MEMMAP_INIT
3987 #define memmap_init(size, nid, zone, start_pfn) \
3988 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3989 #endif
3991 static int __meminit zone_batchsize(struct zone *zone)
3993 #ifdef CONFIG_MMU
3994 int batch;
3997 * The per-cpu-pages pools are set to around 1000th of the
3998 * size of the zone. But no more than 1/2 of a meg.
4000 * OK, so we don't know how big the cache is. So guess.
4002 batch = zone->managed_pages / 1024;
4003 if (batch * PAGE_SIZE > 512 * 1024)
4004 batch = (512 * 1024) / PAGE_SIZE;
4005 batch /= 4; /* We effectively *= 4 below */
4006 if (batch < 1)
4007 batch = 1;
4010 * Clamp the batch to a 2^n - 1 value. Having a power
4011 * of 2 value was found to be more likely to have
4012 * suboptimal cache aliasing properties in some cases.
4014 * For example if 2 tasks are alternately allocating
4015 * batches of pages, one task can end up with a lot
4016 * of pages of one half of the possible page colors
4017 * and the other with pages of the other colors.
4019 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4021 return batch;
4023 #else
4024 /* The deferral and batching of frees should be suppressed under NOMMU
4025 * conditions.
4027 * The problem is that NOMMU needs to be able to allocate large chunks
4028 * of contiguous memory as there's no hardware page translation to
4029 * assemble apparent contiguous memory from discontiguous pages.
4031 * Queueing large contiguous runs of pages for batching, however,
4032 * causes the pages to actually be freed in smaller chunks. As there
4033 * can be a significant delay between the individual batches being
4034 * recycled, this leads to the once large chunks of space being
4035 * fragmented and becoming unavailable for high-order allocations.
4037 return 0;
4038 #endif
4042 * pcp->high and pcp->batch values are related and dependent on one another:
4043 * ->batch must never be higher then ->high.
4044 * The following function updates them in a safe manner without read side
4045 * locking.
4047 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4048 * those fields changing asynchronously (acording the the above rule).
4050 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4051 * outside of boot time (or some other assurance that no concurrent updaters
4052 * exist).
4054 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4055 unsigned long batch)
4057 /* start with a fail safe value for batch */
4058 pcp->batch = 1;
4059 smp_wmb();
4061 /* Update high, then batch, in order */
4062 pcp->high = high;
4063 smp_wmb();
4065 pcp->batch = batch;
4068 /* a companion to pageset_set_high() */
4069 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4071 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4074 static void pageset_init(struct per_cpu_pageset *p)
4076 struct per_cpu_pages *pcp;
4077 int migratetype;
4079 memset(p, 0, sizeof(*p));
4081 pcp = &p->pcp;
4082 pcp->count = 0;
4083 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4084 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4087 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4089 pageset_init(p);
4090 pageset_set_batch(p, batch);
4094 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4095 * to the value high for the pageset p.
4097 static void pageset_set_high(struct per_cpu_pageset *p,
4098 unsigned long high)
4100 unsigned long batch = max(1UL, high / 4);
4101 if ((high / 4) > (PAGE_SHIFT * 8))
4102 batch = PAGE_SHIFT * 8;
4104 pageset_update(&p->pcp, high, batch);
4107 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4108 struct per_cpu_pageset *pcp)
4110 if (percpu_pagelist_fraction)
4111 pageset_set_high(pcp,
4112 (zone->managed_pages /
4113 percpu_pagelist_fraction));
4114 else
4115 pageset_set_batch(pcp, zone_batchsize(zone));
4118 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4120 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4122 pageset_init(pcp);
4123 pageset_set_high_and_batch(zone, pcp);
4126 static void __meminit setup_zone_pageset(struct zone *zone)
4128 int cpu;
4129 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4130 for_each_possible_cpu(cpu)
4131 zone_pageset_init(zone, cpu);
4135 * Allocate per cpu pagesets and initialize them.
4136 * Before this call only boot pagesets were available.
4138 void __init setup_per_cpu_pageset(void)
4140 struct zone *zone;
4142 for_each_populated_zone(zone)
4143 setup_zone_pageset(zone);
4146 static noinline __init_refok
4147 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4149 int i;
4150 struct pglist_data *pgdat = zone->zone_pgdat;
4151 size_t alloc_size;
4154 * The per-page waitqueue mechanism uses hashed waitqueues
4155 * per zone.
4157 zone->wait_table_hash_nr_entries =
4158 wait_table_hash_nr_entries(zone_size_pages);
4159 zone->wait_table_bits =
4160 wait_table_bits(zone->wait_table_hash_nr_entries);
4161 alloc_size = zone->wait_table_hash_nr_entries
4162 * sizeof(wait_queue_head_t);
4164 if (!slab_is_available()) {
4165 zone->wait_table = (wait_queue_head_t *)
4166 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4167 } else {
4169 * This case means that a zone whose size was 0 gets new memory
4170 * via memory hot-add.
4171 * But it may be the case that a new node was hot-added. In
4172 * this case vmalloc() will not be able to use this new node's
4173 * memory - this wait_table must be initialized to use this new
4174 * node itself as well.
4175 * To use this new node's memory, further consideration will be
4176 * necessary.
4178 zone->wait_table = vmalloc(alloc_size);
4180 if (!zone->wait_table)
4181 return -ENOMEM;
4183 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4184 init_waitqueue_head(zone->wait_table + i);
4186 return 0;
4189 static __meminit void zone_pcp_init(struct zone *zone)
4192 * per cpu subsystem is not up at this point. The following code
4193 * relies on the ability of the linker to provide the
4194 * offset of a (static) per cpu variable into the per cpu area.
4196 zone->pageset = &boot_pageset;
4198 if (zone->present_pages)
4199 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4200 zone->name, zone->present_pages,
4201 zone_batchsize(zone));
4204 int __meminit init_currently_empty_zone(struct zone *zone,
4205 unsigned long zone_start_pfn,
4206 unsigned long size,
4207 enum memmap_context context)
4209 struct pglist_data *pgdat = zone->zone_pgdat;
4210 int ret;
4211 ret = zone_wait_table_init(zone, size);
4212 if (ret)
4213 return ret;
4214 pgdat->nr_zones = zone_idx(zone) + 1;
4216 zone->zone_start_pfn = zone_start_pfn;
4218 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4219 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4220 pgdat->node_id,
4221 (unsigned long)zone_idx(zone),
4222 zone_start_pfn, (zone_start_pfn + size));
4224 zone_init_free_lists(zone);
4226 return 0;
4229 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4230 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4233 * Architectures may implement their own version but if add_active_range()
4234 * was used and there are no special requirements, this is a convenient
4235 * alternative
4237 int __meminit __early_pfn_to_nid(unsigned long pfn)
4239 unsigned long start_pfn, end_pfn;
4240 int i, nid;
4242 * NOTE: The following SMP-unsafe globals are only used early in boot
4243 * when the kernel is running single-threaded.
4245 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4246 static int __meminitdata last_nid;
4248 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4249 return last_nid;
4251 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4252 if (start_pfn <= pfn && pfn < end_pfn) {
4253 last_start_pfn = start_pfn;
4254 last_end_pfn = end_pfn;
4255 last_nid = nid;
4256 return nid;
4258 /* This is a memory hole */
4259 return -1;
4261 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4263 int __meminit early_pfn_to_nid(unsigned long pfn)
4265 int nid;
4267 nid = __early_pfn_to_nid(pfn);
4268 if (nid >= 0)
4269 return nid;
4270 /* just returns 0 */
4271 return 0;
4274 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4275 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4277 int nid;
4279 nid = __early_pfn_to_nid(pfn);
4280 if (nid >= 0 && nid != node)
4281 return false;
4282 return true;
4284 #endif
4287 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4288 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4289 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4291 * If an architecture guarantees that all ranges registered with
4292 * add_active_ranges() contain no holes and may be freed, this
4293 * this function may be used instead of calling free_bootmem() manually.
4295 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4297 unsigned long start_pfn, end_pfn;
4298 int i, this_nid;
4300 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4301 start_pfn = min(start_pfn, max_low_pfn);
4302 end_pfn = min(end_pfn, max_low_pfn);
4304 if (start_pfn < end_pfn)
4305 free_bootmem_node(NODE_DATA(this_nid),
4306 PFN_PHYS(start_pfn),
4307 (end_pfn - start_pfn) << PAGE_SHIFT);
4312 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4313 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4315 * If an architecture guarantees that all ranges registered with
4316 * add_active_ranges() contain no holes and may be freed, this
4317 * function may be used instead of calling memory_present() manually.
4319 void __init sparse_memory_present_with_active_regions(int nid)
4321 unsigned long start_pfn, end_pfn;
4322 int i, this_nid;
4324 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4325 memory_present(this_nid, start_pfn, end_pfn);
4329 * get_pfn_range_for_nid - Return the start and end page frames for a node
4330 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4331 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4332 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4334 * It returns the start and end page frame of a node based on information
4335 * provided by an arch calling add_active_range(). If called for a node
4336 * with no available memory, a warning is printed and the start and end
4337 * PFNs will be 0.
4339 void __meminit get_pfn_range_for_nid(unsigned int nid,
4340 unsigned long *start_pfn, unsigned long *end_pfn)
4342 unsigned long this_start_pfn, this_end_pfn;
4343 int i;
4345 *start_pfn = -1UL;
4346 *end_pfn = 0;
4348 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4349 *start_pfn = min(*start_pfn, this_start_pfn);
4350 *end_pfn = max(*end_pfn, this_end_pfn);
4353 if (*start_pfn == -1UL)
4354 *start_pfn = 0;
4358 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4359 * assumption is made that zones within a node are ordered in monotonic
4360 * increasing memory addresses so that the "highest" populated zone is used
4362 static void __init find_usable_zone_for_movable(void)
4364 int zone_index;
4365 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4366 if (zone_index == ZONE_MOVABLE)
4367 continue;
4369 if (arch_zone_highest_possible_pfn[zone_index] >
4370 arch_zone_lowest_possible_pfn[zone_index])
4371 break;
4374 VM_BUG_ON(zone_index == -1);
4375 movable_zone = zone_index;
4379 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4380 * because it is sized independent of architecture. Unlike the other zones,
4381 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4382 * in each node depending on the size of each node and how evenly kernelcore
4383 * is distributed. This helper function adjusts the zone ranges
4384 * provided by the architecture for a given node by using the end of the
4385 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4386 * zones within a node are in order of monotonic increases memory addresses
4388 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4389 unsigned long zone_type,
4390 unsigned long node_start_pfn,
4391 unsigned long node_end_pfn,
4392 unsigned long *zone_start_pfn,
4393 unsigned long *zone_end_pfn)
4395 /* Only adjust if ZONE_MOVABLE is on this node */
4396 if (zone_movable_pfn[nid]) {
4397 /* Size ZONE_MOVABLE */
4398 if (zone_type == ZONE_MOVABLE) {
4399 *zone_start_pfn = zone_movable_pfn[nid];
4400 *zone_end_pfn = min(node_end_pfn,
4401 arch_zone_highest_possible_pfn[movable_zone]);
4403 /* Adjust for ZONE_MOVABLE starting within this range */
4404 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4405 *zone_end_pfn > zone_movable_pfn[nid]) {
4406 *zone_end_pfn = zone_movable_pfn[nid];
4408 /* Check if this whole range is within ZONE_MOVABLE */
4409 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4410 *zone_start_pfn = *zone_end_pfn;
4415 * Return the number of pages a zone spans in a node, including holes
4416 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4418 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4419 unsigned long zone_type,
4420 unsigned long node_start_pfn,
4421 unsigned long node_end_pfn,
4422 unsigned long *ignored)
4424 unsigned long zone_start_pfn, zone_end_pfn;
4426 /* Get the start and end of the zone */
4427 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4428 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4429 adjust_zone_range_for_zone_movable(nid, zone_type,
4430 node_start_pfn, node_end_pfn,
4431 &zone_start_pfn, &zone_end_pfn);
4433 /* Check that this node has pages within the zone's required range */
4434 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4435 return 0;
4437 /* Move the zone boundaries inside the node if necessary */
4438 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4439 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4441 /* Return the spanned pages */
4442 return zone_end_pfn - zone_start_pfn;
4446 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4447 * then all holes in the requested range will be accounted for.
4449 unsigned long __meminit __absent_pages_in_range(int nid,
4450 unsigned long range_start_pfn,
4451 unsigned long range_end_pfn)
4453 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4454 unsigned long start_pfn, end_pfn;
4455 int i;
4457 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4458 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4459 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4460 nr_absent -= end_pfn - start_pfn;
4462 return nr_absent;
4466 * absent_pages_in_range - Return number of page frames in holes within a range
4467 * @start_pfn: The start PFN to start searching for holes
4468 * @end_pfn: The end PFN to stop searching for holes
4470 * It returns the number of pages frames in memory holes within a range.
4472 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4473 unsigned long end_pfn)
4475 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4478 /* Return the number of page frames in holes in a zone on a node */
4479 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4480 unsigned long zone_type,
4481 unsigned long node_start_pfn,
4482 unsigned long node_end_pfn,
4483 unsigned long *ignored)
4485 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4486 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4487 unsigned long zone_start_pfn, zone_end_pfn;
4489 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4490 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4492 adjust_zone_range_for_zone_movable(nid, zone_type,
4493 node_start_pfn, node_end_pfn,
4494 &zone_start_pfn, &zone_end_pfn);
4495 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4498 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4499 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4500 unsigned long zone_type,
4501 unsigned long node_start_pfn,
4502 unsigned long node_end_pfn,
4503 unsigned long *zones_size)
4505 return zones_size[zone_type];
4508 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4509 unsigned long zone_type,
4510 unsigned long node_start_pfn,
4511 unsigned long node_end_pfn,
4512 unsigned long *zholes_size)
4514 if (!zholes_size)
4515 return 0;
4517 return zholes_size[zone_type];
4520 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4522 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4523 unsigned long node_start_pfn,
4524 unsigned long node_end_pfn,
4525 unsigned long *zones_size,
4526 unsigned long *zholes_size)
4528 unsigned long realtotalpages, totalpages = 0;
4529 enum zone_type i;
4531 for (i = 0; i < MAX_NR_ZONES; i++)
4532 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4533 node_start_pfn,
4534 node_end_pfn,
4535 zones_size);
4536 pgdat->node_spanned_pages = totalpages;
4538 realtotalpages = totalpages;
4539 for (i = 0; i < MAX_NR_ZONES; i++)
4540 realtotalpages -=
4541 zone_absent_pages_in_node(pgdat->node_id, i,
4542 node_start_pfn, node_end_pfn,
4543 zholes_size);
4544 pgdat->node_present_pages = realtotalpages;
4545 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4546 realtotalpages);
4549 #ifndef CONFIG_SPARSEMEM
4551 * Calculate the size of the zone->blockflags rounded to an unsigned long
4552 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4553 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4554 * round what is now in bits to nearest long in bits, then return it in
4555 * bytes.
4557 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4559 unsigned long usemapsize;
4561 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4562 usemapsize = roundup(zonesize, pageblock_nr_pages);
4563 usemapsize = usemapsize >> pageblock_order;
4564 usemapsize *= NR_PAGEBLOCK_BITS;
4565 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4567 return usemapsize / 8;
4570 static void __init setup_usemap(struct pglist_data *pgdat,
4571 struct zone *zone,
4572 unsigned long zone_start_pfn,
4573 unsigned long zonesize)
4575 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4576 zone->pageblock_flags = NULL;
4577 if (usemapsize)
4578 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4579 usemapsize);
4581 #else
4582 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4583 unsigned long zone_start_pfn, unsigned long zonesize) {}
4584 #endif /* CONFIG_SPARSEMEM */
4586 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4588 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4589 void __init set_pageblock_order(void)
4591 unsigned int order;
4593 /* Check that pageblock_nr_pages has not already been setup */
4594 if (pageblock_order)
4595 return;
4597 if (HPAGE_SHIFT > PAGE_SHIFT)
4598 order = HUGETLB_PAGE_ORDER;
4599 else
4600 order = MAX_ORDER - 1;
4603 * Assume the largest contiguous order of interest is a huge page.
4604 * This value may be variable depending on boot parameters on IA64 and
4605 * powerpc.
4607 pageblock_order = order;
4609 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4612 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4613 * is unused as pageblock_order is set at compile-time. See
4614 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4615 * the kernel config
4617 void __init set_pageblock_order(void)
4621 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4623 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4624 unsigned long present_pages)
4626 unsigned long pages = spanned_pages;
4629 * Provide a more accurate estimation if there are holes within
4630 * the zone and SPARSEMEM is in use. If there are holes within the
4631 * zone, each populated memory region may cost us one or two extra
4632 * memmap pages due to alignment because memmap pages for each
4633 * populated regions may not naturally algined on page boundary.
4634 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4636 if (spanned_pages > present_pages + (present_pages >> 4) &&
4637 IS_ENABLED(CONFIG_SPARSEMEM))
4638 pages = present_pages;
4640 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4644 * Set up the zone data structures:
4645 * - mark all pages reserved
4646 * - mark all memory queues empty
4647 * - clear the memory bitmaps
4649 * NOTE: pgdat should get zeroed by caller.
4651 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4652 unsigned long node_start_pfn, unsigned long node_end_pfn,
4653 unsigned long *zones_size, unsigned long *zholes_size)
4655 enum zone_type j;
4656 int nid = pgdat->node_id;
4657 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4658 int ret;
4660 pgdat_resize_init(pgdat);
4661 #ifdef CONFIG_NUMA_BALANCING
4662 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4663 pgdat->numabalancing_migrate_nr_pages = 0;
4664 pgdat->numabalancing_migrate_next_window = jiffies;
4665 #endif
4666 init_waitqueue_head(&pgdat->kswapd_wait);
4667 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4668 pgdat_page_cgroup_init(pgdat);
4670 for (j = 0; j < MAX_NR_ZONES; j++) {
4671 struct zone *zone = pgdat->node_zones + j;
4672 unsigned long size, realsize, freesize, memmap_pages;
4674 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4675 node_end_pfn, zones_size);
4676 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4677 node_start_pfn,
4678 node_end_pfn,
4679 zholes_size);
4682 * Adjust freesize so that it accounts for how much memory
4683 * is used by this zone for memmap. This affects the watermark
4684 * and per-cpu initialisations
4686 memmap_pages = calc_memmap_size(size, realsize);
4687 if (freesize >= memmap_pages) {
4688 freesize -= memmap_pages;
4689 if (memmap_pages)
4690 printk(KERN_DEBUG
4691 " %s zone: %lu pages used for memmap\n",
4692 zone_names[j], memmap_pages);
4693 } else
4694 printk(KERN_WARNING
4695 " %s zone: %lu pages exceeds freesize %lu\n",
4696 zone_names[j], memmap_pages, freesize);
4698 /* Account for reserved pages */
4699 if (j == 0 && freesize > dma_reserve) {
4700 freesize -= dma_reserve;
4701 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4702 zone_names[0], dma_reserve);
4705 if (!is_highmem_idx(j))
4706 nr_kernel_pages += freesize;
4707 /* Charge for highmem memmap if there are enough kernel pages */
4708 else if (nr_kernel_pages > memmap_pages * 2)
4709 nr_kernel_pages -= memmap_pages;
4710 nr_all_pages += freesize;
4712 zone->spanned_pages = size;
4713 zone->present_pages = realsize;
4715 * Set an approximate value for lowmem here, it will be adjusted
4716 * when the bootmem allocator frees pages into the buddy system.
4717 * And all highmem pages will be managed by the buddy system.
4719 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4720 #ifdef CONFIG_NUMA
4721 zone->node = nid;
4722 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4723 / 100;
4724 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4725 #endif
4726 zone->name = zone_names[j];
4727 spin_lock_init(&zone->lock);
4728 spin_lock_init(&zone->lru_lock);
4729 zone_seqlock_init(zone);
4730 zone->zone_pgdat = pgdat;
4732 zone_pcp_init(zone);
4733 lruvec_init(&zone->lruvec);
4734 if (!size)
4735 continue;
4737 set_pageblock_order();
4738 setup_usemap(pgdat, zone, zone_start_pfn, size);
4739 ret = init_currently_empty_zone(zone, zone_start_pfn,
4740 size, MEMMAP_EARLY);
4741 BUG_ON(ret);
4742 memmap_init(size, nid, j, zone_start_pfn);
4743 zone_start_pfn += size;
4747 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4749 /* Skip empty nodes */
4750 if (!pgdat->node_spanned_pages)
4751 return;
4753 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4754 /* ia64 gets its own node_mem_map, before this, without bootmem */
4755 if (!pgdat->node_mem_map) {
4756 unsigned long size, start, end;
4757 struct page *map;
4760 * The zone's endpoints aren't required to be MAX_ORDER
4761 * aligned but the node_mem_map endpoints must be in order
4762 * for the buddy allocator to function correctly.
4764 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4765 end = pgdat_end_pfn(pgdat);
4766 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4767 size = (end - start) * sizeof(struct page);
4768 map = alloc_remap(pgdat->node_id, size);
4769 if (!map)
4770 map = alloc_bootmem_node_nopanic(pgdat, size);
4771 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4773 #ifndef CONFIG_NEED_MULTIPLE_NODES
4775 * With no DISCONTIG, the global mem_map is just set as node 0's
4777 if (pgdat == NODE_DATA(0)) {
4778 mem_map = NODE_DATA(0)->node_mem_map;
4779 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4780 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4781 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4782 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4784 #endif
4785 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4788 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4789 unsigned long node_start_pfn, unsigned long *zholes_size)
4791 pg_data_t *pgdat = NODE_DATA(nid);
4792 unsigned long start_pfn = 0;
4793 unsigned long end_pfn = 0;
4795 /* pg_data_t should be reset to zero when it's allocated */
4796 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4798 pgdat->node_id = nid;
4799 pgdat->node_start_pfn = node_start_pfn;
4800 init_zone_allows_reclaim(nid);
4801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4802 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4803 #endif
4804 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4805 zones_size, zholes_size);
4807 alloc_node_mem_map(pgdat);
4808 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4809 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4810 nid, (unsigned long)pgdat,
4811 (unsigned long)pgdat->node_mem_map);
4812 #endif
4814 free_area_init_core(pgdat, start_pfn, end_pfn,
4815 zones_size, zholes_size);
4818 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4820 #if MAX_NUMNODES > 1
4822 * Figure out the number of possible node ids.
4824 void __init setup_nr_node_ids(void)
4826 unsigned int node;
4827 unsigned int highest = 0;
4829 for_each_node_mask(node, node_possible_map)
4830 highest = node;
4831 nr_node_ids = highest + 1;
4833 #endif
4836 * node_map_pfn_alignment - determine the maximum internode alignment
4838 * This function should be called after node map is populated and sorted.
4839 * It calculates the maximum power of two alignment which can distinguish
4840 * all the nodes.
4842 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4843 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4844 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4845 * shifted, 1GiB is enough and this function will indicate so.
4847 * This is used to test whether pfn -> nid mapping of the chosen memory
4848 * model has fine enough granularity to avoid incorrect mapping for the
4849 * populated node map.
4851 * Returns the determined alignment in pfn's. 0 if there is no alignment
4852 * requirement (single node).
4854 unsigned long __init node_map_pfn_alignment(void)
4856 unsigned long accl_mask = 0, last_end = 0;
4857 unsigned long start, end, mask;
4858 int last_nid = -1;
4859 int i, nid;
4861 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4862 if (!start || last_nid < 0 || last_nid == nid) {
4863 last_nid = nid;
4864 last_end = end;
4865 continue;
4869 * Start with a mask granular enough to pin-point to the
4870 * start pfn and tick off bits one-by-one until it becomes
4871 * too coarse to separate the current node from the last.
4873 mask = ~((1 << __ffs(start)) - 1);
4874 while (mask && last_end <= (start & (mask << 1)))
4875 mask <<= 1;
4877 /* accumulate all internode masks */
4878 accl_mask |= mask;
4881 /* convert mask to number of pages */
4882 return ~accl_mask + 1;
4885 /* Find the lowest pfn for a node */
4886 static unsigned long __init find_min_pfn_for_node(int nid)
4888 unsigned long min_pfn = ULONG_MAX;
4889 unsigned long start_pfn;
4890 int i;
4892 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4893 min_pfn = min(min_pfn, start_pfn);
4895 if (min_pfn == ULONG_MAX) {
4896 printk(KERN_WARNING
4897 "Could not find start_pfn for node %d\n", nid);
4898 return 0;
4901 return min_pfn;
4905 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4907 * It returns the minimum PFN based on information provided via
4908 * add_active_range().
4910 unsigned long __init find_min_pfn_with_active_regions(void)
4912 return find_min_pfn_for_node(MAX_NUMNODES);
4916 * early_calculate_totalpages()
4917 * Sum pages in active regions for movable zone.
4918 * Populate N_MEMORY for calculating usable_nodes.
4920 static unsigned long __init early_calculate_totalpages(void)
4922 unsigned long totalpages = 0;
4923 unsigned long start_pfn, end_pfn;
4924 int i, nid;
4926 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4927 unsigned long pages = end_pfn - start_pfn;
4929 totalpages += pages;
4930 if (pages)
4931 node_set_state(nid, N_MEMORY);
4933 return totalpages;
4937 * Find the PFN the Movable zone begins in each node. Kernel memory
4938 * is spread evenly between nodes as long as the nodes have enough
4939 * memory. When they don't, some nodes will have more kernelcore than
4940 * others
4942 static void __init find_zone_movable_pfns_for_nodes(void)
4944 int i, nid;
4945 unsigned long usable_startpfn;
4946 unsigned long kernelcore_node, kernelcore_remaining;
4947 /* save the state before borrow the nodemask */
4948 nodemask_t saved_node_state = node_states[N_MEMORY];
4949 unsigned long totalpages = early_calculate_totalpages();
4950 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4953 * If movablecore was specified, calculate what size of
4954 * kernelcore that corresponds so that memory usable for
4955 * any allocation type is evenly spread. If both kernelcore
4956 * and movablecore are specified, then the value of kernelcore
4957 * will be used for required_kernelcore if it's greater than
4958 * what movablecore would have allowed.
4960 if (required_movablecore) {
4961 unsigned long corepages;
4964 * Round-up so that ZONE_MOVABLE is at least as large as what
4965 * was requested by the user
4967 required_movablecore =
4968 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4969 corepages = totalpages - required_movablecore;
4971 required_kernelcore = max(required_kernelcore, corepages);
4974 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4975 if (!required_kernelcore)
4976 goto out;
4978 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4979 find_usable_zone_for_movable();
4980 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4982 restart:
4983 /* Spread kernelcore memory as evenly as possible throughout nodes */
4984 kernelcore_node = required_kernelcore / usable_nodes;
4985 for_each_node_state(nid, N_MEMORY) {
4986 unsigned long start_pfn, end_pfn;
4989 * Recalculate kernelcore_node if the division per node
4990 * now exceeds what is necessary to satisfy the requested
4991 * amount of memory for the kernel
4993 if (required_kernelcore < kernelcore_node)
4994 kernelcore_node = required_kernelcore / usable_nodes;
4997 * As the map is walked, we track how much memory is usable
4998 * by the kernel using kernelcore_remaining. When it is
4999 * 0, the rest of the node is usable by ZONE_MOVABLE
5001 kernelcore_remaining = kernelcore_node;
5003 /* Go through each range of PFNs within this node */
5004 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5005 unsigned long size_pages;
5007 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5008 if (start_pfn >= end_pfn)
5009 continue;
5011 /* Account for what is only usable for kernelcore */
5012 if (start_pfn < usable_startpfn) {
5013 unsigned long kernel_pages;
5014 kernel_pages = min(end_pfn, usable_startpfn)
5015 - start_pfn;
5017 kernelcore_remaining -= min(kernel_pages,
5018 kernelcore_remaining);
5019 required_kernelcore -= min(kernel_pages,
5020 required_kernelcore);
5022 /* Continue if range is now fully accounted */
5023 if (end_pfn <= usable_startpfn) {
5026 * Push zone_movable_pfn to the end so
5027 * that if we have to rebalance
5028 * kernelcore across nodes, we will
5029 * not double account here
5031 zone_movable_pfn[nid] = end_pfn;
5032 continue;
5034 start_pfn = usable_startpfn;
5038 * The usable PFN range for ZONE_MOVABLE is from
5039 * start_pfn->end_pfn. Calculate size_pages as the
5040 * number of pages used as kernelcore
5042 size_pages = end_pfn - start_pfn;
5043 if (size_pages > kernelcore_remaining)
5044 size_pages = kernelcore_remaining;
5045 zone_movable_pfn[nid] = start_pfn + size_pages;
5048 * Some kernelcore has been met, update counts and
5049 * break if the kernelcore for this node has been
5050 * satisified
5052 required_kernelcore -= min(required_kernelcore,
5053 size_pages);
5054 kernelcore_remaining -= size_pages;
5055 if (!kernelcore_remaining)
5056 break;
5061 * If there is still required_kernelcore, we do another pass with one
5062 * less node in the count. This will push zone_movable_pfn[nid] further
5063 * along on the nodes that still have memory until kernelcore is
5064 * satisified
5066 usable_nodes--;
5067 if (usable_nodes && required_kernelcore > usable_nodes)
5068 goto restart;
5070 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5071 for (nid = 0; nid < MAX_NUMNODES; nid++)
5072 zone_movable_pfn[nid] =
5073 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5075 out:
5076 /* restore the node_state */
5077 node_states[N_MEMORY] = saved_node_state;
5080 /* Any regular or high memory on that node ? */
5081 static void check_for_memory(pg_data_t *pgdat, int nid)
5083 enum zone_type zone_type;
5085 if (N_MEMORY == N_NORMAL_MEMORY)
5086 return;
5088 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5089 struct zone *zone = &pgdat->node_zones[zone_type];
5090 if (zone->present_pages) {
5091 node_set_state(nid, N_HIGH_MEMORY);
5092 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5093 zone_type <= ZONE_NORMAL)
5094 node_set_state(nid, N_NORMAL_MEMORY);
5095 break;
5101 * free_area_init_nodes - Initialise all pg_data_t and zone data
5102 * @max_zone_pfn: an array of max PFNs for each zone
5104 * This will call free_area_init_node() for each active node in the system.
5105 * Using the page ranges provided by add_active_range(), the size of each
5106 * zone in each node and their holes is calculated. If the maximum PFN
5107 * between two adjacent zones match, it is assumed that the zone is empty.
5108 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5109 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5110 * starts where the previous one ended. For example, ZONE_DMA32 starts
5111 * at arch_max_dma_pfn.
5113 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5115 unsigned long start_pfn, end_pfn;
5116 int i, nid;
5118 /* Record where the zone boundaries are */
5119 memset(arch_zone_lowest_possible_pfn, 0,
5120 sizeof(arch_zone_lowest_possible_pfn));
5121 memset(arch_zone_highest_possible_pfn, 0,
5122 sizeof(arch_zone_highest_possible_pfn));
5123 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5124 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5125 for (i = 1; i < MAX_NR_ZONES; i++) {
5126 if (i == ZONE_MOVABLE)
5127 continue;
5128 arch_zone_lowest_possible_pfn[i] =
5129 arch_zone_highest_possible_pfn[i-1];
5130 arch_zone_highest_possible_pfn[i] =
5131 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5133 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5134 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5136 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5137 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5138 find_zone_movable_pfns_for_nodes();
5140 /* Print out the zone ranges */
5141 printk("Zone ranges:\n");
5142 for (i = 0; i < MAX_NR_ZONES; i++) {
5143 if (i == ZONE_MOVABLE)
5144 continue;
5145 printk(KERN_CONT " %-8s ", zone_names[i]);
5146 if (arch_zone_lowest_possible_pfn[i] ==
5147 arch_zone_highest_possible_pfn[i])
5148 printk(KERN_CONT "empty\n");
5149 else
5150 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5151 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5152 (arch_zone_highest_possible_pfn[i]
5153 << PAGE_SHIFT) - 1);
5156 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5157 printk("Movable zone start for each node\n");
5158 for (i = 0; i < MAX_NUMNODES; i++) {
5159 if (zone_movable_pfn[i])
5160 printk(" Node %d: %#010lx\n", i,
5161 zone_movable_pfn[i] << PAGE_SHIFT);
5164 /* Print out the early node map */
5165 printk("Early memory node ranges\n");
5166 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5167 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5168 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5170 /* Initialise every node */
5171 mminit_verify_pageflags_layout();
5172 setup_nr_node_ids();
5173 for_each_online_node(nid) {
5174 pg_data_t *pgdat = NODE_DATA(nid);
5175 free_area_init_node(nid, NULL,
5176 find_min_pfn_for_node(nid), NULL);
5178 /* Any memory on that node */
5179 if (pgdat->node_present_pages)
5180 node_set_state(nid, N_MEMORY);
5181 check_for_memory(pgdat, nid);
5185 static int __init cmdline_parse_core(char *p, unsigned long *core)
5187 unsigned long long coremem;
5188 if (!p)
5189 return -EINVAL;
5191 coremem = memparse(p, &p);
5192 *core = coremem >> PAGE_SHIFT;
5194 /* Paranoid check that UL is enough for the coremem value */
5195 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5197 return 0;
5201 * kernelcore=size sets the amount of memory for use for allocations that
5202 * cannot be reclaimed or migrated.
5204 static int __init cmdline_parse_kernelcore(char *p)
5206 return cmdline_parse_core(p, &required_kernelcore);
5210 * movablecore=size sets the amount of memory for use for allocations that
5211 * can be reclaimed or migrated.
5213 static int __init cmdline_parse_movablecore(char *p)
5215 return cmdline_parse_core(p, &required_movablecore);
5218 early_param("kernelcore", cmdline_parse_kernelcore);
5219 early_param("movablecore", cmdline_parse_movablecore);
5221 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5223 void adjust_managed_page_count(struct page *page, long count)
5225 spin_lock(&managed_page_count_lock);
5226 page_zone(page)->managed_pages += count;
5227 totalram_pages += count;
5228 #ifdef CONFIG_HIGHMEM
5229 if (PageHighMem(page))
5230 totalhigh_pages += count;
5231 #endif
5232 spin_unlock(&managed_page_count_lock);
5234 EXPORT_SYMBOL(adjust_managed_page_count);
5236 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5238 void *pos;
5239 unsigned long pages = 0;
5241 start = (void *)PAGE_ALIGN((unsigned long)start);
5242 end = (void *)((unsigned long)end & PAGE_MASK);
5243 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5244 if ((unsigned int)poison <= 0xFF)
5245 memset(pos, poison, PAGE_SIZE);
5246 free_reserved_page(virt_to_page(pos));
5249 if (pages && s)
5250 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5251 s, pages << (PAGE_SHIFT - 10), start, end);
5253 return pages;
5255 EXPORT_SYMBOL(free_reserved_area);
5257 #ifdef CONFIG_HIGHMEM
5258 void free_highmem_page(struct page *page)
5260 __free_reserved_page(page);
5261 totalram_pages++;
5262 page_zone(page)->managed_pages++;
5263 totalhigh_pages++;
5265 #endif
5268 void __init mem_init_print_info(const char *str)
5270 unsigned long physpages, codesize, datasize, rosize, bss_size;
5271 unsigned long init_code_size, init_data_size;
5273 physpages = get_num_physpages();
5274 codesize = _etext - _stext;
5275 datasize = _edata - _sdata;
5276 rosize = __end_rodata - __start_rodata;
5277 bss_size = __bss_stop - __bss_start;
5278 init_data_size = __init_end - __init_begin;
5279 init_code_size = _einittext - _sinittext;
5282 * Detect special cases and adjust section sizes accordingly:
5283 * 1) .init.* may be embedded into .data sections
5284 * 2) .init.text.* may be out of [__init_begin, __init_end],
5285 * please refer to arch/tile/kernel/vmlinux.lds.S.
5286 * 3) .rodata.* may be embedded into .text or .data sections.
5288 #define adj_init_size(start, end, size, pos, adj) \
5289 if (start <= pos && pos < end && size > adj) \
5290 size -= adj;
5292 adj_init_size(__init_begin, __init_end, init_data_size,
5293 _sinittext, init_code_size);
5294 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5295 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5296 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5297 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5299 #undef adj_init_size
5301 printk("Memory: %luK/%luK available "
5302 "(%luK kernel code, %luK rwdata, %luK rodata, "
5303 "%luK init, %luK bss, %luK reserved"
5304 #ifdef CONFIG_HIGHMEM
5305 ", %luK highmem"
5306 #endif
5307 "%s%s)\n",
5308 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5309 codesize >> 10, datasize >> 10, rosize >> 10,
5310 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5311 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5312 #ifdef CONFIG_HIGHMEM
5313 totalhigh_pages << (PAGE_SHIFT-10),
5314 #endif
5315 str ? ", " : "", str ? str : "");
5319 * set_dma_reserve - set the specified number of pages reserved in the first zone
5320 * @new_dma_reserve: The number of pages to mark reserved
5322 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5323 * In the DMA zone, a significant percentage may be consumed by kernel image
5324 * and other unfreeable allocations which can skew the watermarks badly. This
5325 * function may optionally be used to account for unfreeable pages in the
5326 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5327 * smaller per-cpu batchsize.
5329 void __init set_dma_reserve(unsigned long new_dma_reserve)
5331 dma_reserve = new_dma_reserve;
5334 void __init free_area_init(unsigned long *zones_size)
5336 free_area_init_node(0, zones_size,
5337 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5340 static int page_alloc_cpu_notify(struct notifier_block *self,
5341 unsigned long action, void *hcpu)
5343 int cpu = (unsigned long)hcpu;
5345 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5346 lru_add_drain_cpu(cpu);
5347 drain_pages(cpu);
5350 * Spill the event counters of the dead processor
5351 * into the current processors event counters.
5352 * This artificially elevates the count of the current
5353 * processor.
5355 vm_events_fold_cpu(cpu);
5358 * Zero the differential counters of the dead processor
5359 * so that the vm statistics are consistent.
5361 * This is only okay since the processor is dead and cannot
5362 * race with what we are doing.
5364 refresh_cpu_vm_stats(cpu);
5366 return NOTIFY_OK;
5369 void __init page_alloc_init(void)
5371 hotcpu_notifier(page_alloc_cpu_notify, 0);
5375 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5376 * or min_free_kbytes changes.
5378 static void calculate_totalreserve_pages(void)
5380 struct pglist_data *pgdat;
5381 unsigned long reserve_pages = 0;
5382 enum zone_type i, j;
5384 for_each_online_pgdat(pgdat) {
5385 for (i = 0; i < MAX_NR_ZONES; i++) {
5386 struct zone *zone = pgdat->node_zones + i;
5387 unsigned long max = 0;
5389 /* Find valid and maximum lowmem_reserve in the zone */
5390 for (j = i; j < MAX_NR_ZONES; j++) {
5391 if (zone->lowmem_reserve[j] > max)
5392 max = zone->lowmem_reserve[j];
5395 /* we treat the high watermark as reserved pages. */
5396 max += high_wmark_pages(zone);
5398 if (max > zone->managed_pages)
5399 max = zone->managed_pages;
5400 reserve_pages += max;
5402 * Lowmem reserves are not available to
5403 * GFP_HIGHUSER page cache allocations and
5404 * kswapd tries to balance zones to their high
5405 * watermark. As a result, neither should be
5406 * regarded as dirtyable memory, to prevent a
5407 * situation where reclaim has to clean pages
5408 * in order to balance the zones.
5410 zone->dirty_balance_reserve = max;
5413 dirty_balance_reserve = reserve_pages;
5414 totalreserve_pages = reserve_pages;
5418 * setup_per_zone_lowmem_reserve - called whenever
5419 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5420 * has a correct pages reserved value, so an adequate number of
5421 * pages are left in the zone after a successful __alloc_pages().
5423 static void setup_per_zone_lowmem_reserve(void)
5425 struct pglist_data *pgdat;
5426 enum zone_type j, idx;
5428 for_each_online_pgdat(pgdat) {
5429 for (j = 0; j < MAX_NR_ZONES; j++) {
5430 struct zone *zone = pgdat->node_zones + j;
5431 unsigned long managed_pages = zone->managed_pages;
5433 zone->lowmem_reserve[j] = 0;
5435 idx = j;
5436 while (idx) {
5437 struct zone *lower_zone;
5439 idx--;
5441 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5442 sysctl_lowmem_reserve_ratio[idx] = 1;
5444 lower_zone = pgdat->node_zones + idx;
5445 lower_zone->lowmem_reserve[j] = managed_pages /
5446 sysctl_lowmem_reserve_ratio[idx];
5447 managed_pages += lower_zone->managed_pages;
5452 /* update totalreserve_pages */
5453 calculate_totalreserve_pages();
5456 static void __setup_per_zone_wmarks(void)
5458 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5459 unsigned long lowmem_pages = 0;
5460 struct zone *zone;
5461 unsigned long flags;
5463 /* Calculate total number of !ZONE_HIGHMEM pages */
5464 for_each_zone(zone) {
5465 if (!is_highmem(zone))
5466 lowmem_pages += zone->managed_pages;
5469 for_each_zone(zone) {
5470 u64 tmp;
5472 spin_lock_irqsave(&zone->lock, flags);
5473 tmp = (u64)pages_min * zone->managed_pages;
5474 do_div(tmp, lowmem_pages);
5475 if (is_highmem(zone)) {
5477 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5478 * need highmem pages, so cap pages_min to a small
5479 * value here.
5481 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5482 * deltas controls asynch page reclaim, and so should
5483 * not be capped for highmem.
5485 unsigned long min_pages;
5487 min_pages = zone->managed_pages / 1024;
5488 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5489 zone->watermark[WMARK_MIN] = min_pages;
5490 } else {
5492 * If it's a lowmem zone, reserve a number of pages
5493 * proportionate to the zone's size.
5495 zone->watermark[WMARK_MIN] = tmp;
5498 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5499 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5501 setup_zone_migrate_reserve(zone);
5502 spin_unlock_irqrestore(&zone->lock, flags);
5505 /* update totalreserve_pages */
5506 calculate_totalreserve_pages();
5510 * setup_per_zone_wmarks - called when min_free_kbytes changes
5511 * or when memory is hot-{added|removed}
5513 * Ensures that the watermark[min,low,high] values for each zone are set
5514 * correctly with respect to min_free_kbytes.
5516 void setup_per_zone_wmarks(void)
5518 mutex_lock(&zonelists_mutex);
5519 __setup_per_zone_wmarks();
5520 mutex_unlock(&zonelists_mutex);
5524 * The inactive anon list should be small enough that the VM never has to
5525 * do too much work, but large enough that each inactive page has a chance
5526 * to be referenced again before it is swapped out.
5528 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5529 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5530 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5531 * the anonymous pages are kept on the inactive list.
5533 * total target max
5534 * memory ratio inactive anon
5535 * -------------------------------------
5536 * 10MB 1 5MB
5537 * 100MB 1 50MB
5538 * 1GB 3 250MB
5539 * 10GB 10 0.9GB
5540 * 100GB 31 3GB
5541 * 1TB 101 10GB
5542 * 10TB 320 32GB
5544 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5546 unsigned int gb, ratio;
5548 /* Zone size in gigabytes */
5549 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5550 if (gb)
5551 ratio = int_sqrt(10 * gb);
5552 else
5553 ratio = 1;
5555 zone->inactive_ratio = ratio;
5558 static void __meminit setup_per_zone_inactive_ratio(void)
5560 struct zone *zone;
5562 for_each_zone(zone)
5563 calculate_zone_inactive_ratio(zone);
5567 * Initialise min_free_kbytes.
5569 * For small machines we want it small (128k min). For large machines
5570 * we want it large (64MB max). But it is not linear, because network
5571 * bandwidth does not increase linearly with machine size. We use
5573 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5574 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5576 * which yields
5578 * 16MB: 512k
5579 * 32MB: 724k
5580 * 64MB: 1024k
5581 * 128MB: 1448k
5582 * 256MB: 2048k
5583 * 512MB: 2896k
5584 * 1024MB: 4096k
5585 * 2048MB: 5792k
5586 * 4096MB: 8192k
5587 * 8192MB: 11584k
5588 * 16384MB: 16384k
5590 int __meminit init_per_zone_wmark_min(void)
5592 unsigned long lowmem_kbytes;
5593 int new_min_free_kbytes;
5595 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5596 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5598 if (new_min_free_kbytes > user_min_free_kbytes) {
5599 min_free_kbytes = new_min_free_kbytes;
5600 if (min_free_kbytes < 128)
5601 min_free_kbytes = 128;
5602 if (min_free_kbytes > 65536)
5603 min_free_kbytes = 65536;
5604 } else {
5605 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5606 new_min_free_kbytes, user_min_free_kbytes);
5608 setup_per_zone_wmarks();
5609 refresh_zone_stat_thresholds();
5610 setup_per_zone_lowmem_reserve();
5611 setup_per_zone_inactive_ratio();
5612 return 0;
5614 module_init(init_per_zone_wmark_min)
5617 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5618 * that we can call two helper functions whenever min_free_kbytes
5619 * changes.
5621 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5622 void __user *buffer, size_t *length, loff_t *ppos)
5624 proc_dointvec(table, write, buffer, length, ppos);
5625 if (write) {
5626 user_min_free_kbytes = min_free_kbytes;
5627 setup_per_zone_wmarks();
5629 return 0;
5632 #ifdef CONFIG_NUMA
5633 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5634 void __user *buffer, size_t *length, loff_t *ppos)
5636 struct zone *zone;
5637 int rc;
5639 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5640 if (rc)
5641 return rc;
5643 for_each_zone(zone)
5644 zone->min_unmapped_pages = (zone->managed_pages *
5645 sysctl_min_unmapped_ratio) / 100;
5646 return 0;
5649 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5650 void __user *buffer, size_t *length, loff_t *ppos)
5652 struct zone *zone;
5653 int rc;
5655 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5656 if (rc)
5657 return rc;
5659 for_each_zone(zone)
5660 zone->min_slab_pages = (zone->managed_pages *
5661 sysctl_min_slab_ratio) / 100;
5662 return 0;
5664 #endif
5667 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5668 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5669 * whenever sysctl_lowmem_reserve_ratio changes.
5671 * The reserve ratio obviously has absolutely no relation with the
5672 * minimum watermarks. The lowmem reserve ratio can only make sense
5673 * if in function of the boot time zone sizes.
5675 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5676 void __user *buffer, size_t *length, loff_t *ppos)
5678 proc_dointvec_minmax(table, write, buffer, length, ppos);
5679 setup_per_zone_lowmem_reserve();
5680 return 0;
5684 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5685 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5686 * can have before it gets flushed back to buddy allocator.
5688 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5689 void __user *buffer, size_t *length, loff_t *ppos)
5691 struct zone *zone;
5692 unsigned int cpu;
5693 int ret;
5695 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5696 if (!write || (ret < 0))
5697 return ret;
5699 mutex_lock(&pcp_batch_high_lock);
5700 for_each_populated_zone(zone) {
5701 unsigned long high;
5702 high = zone->managed_pages / percpu_pagelist_fraction;
5703 for_each_possible_cpu(cpu)
5704 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5705 high);
5707 mutex_unlock(&pcp_batch_high_lock);
5708 return 0;
5711 int hashdist = HASHDIST_DEFAULT;
5713 #ifdef CONFIG_NUMA
5714 static int __init set_hashdist(char *str)
5716 if (!str)
5717 return 0;
5718 hashdist = simple_strtoul(str, &str, 0);
5719 return 1;
5721 __setup("hashdist=", set_hashdist);
5722 #endif
5725 * allocate a large system hash table from bootmem
5726 * - it is assumed that the hash table must contain an exact power-of-2
5727 * quantity of entries
5728 * - limit is the number of hash buckets, not the total allocation size
5730 void *__init alloc_large_system_hash(const char *tablename,
5731 unsigned long bucketsize,
5732 unsigned long numentries,
5733 int scale,
5734 int flags,
5735 unsigned int *_hash_shift,
5736 unsigned int *_hash_mask,
5737 unsigned long low_limit,
5738 unsigned long high_limit)
5740 unsigned long long max = high_limit;
5741 unsigned long log2qty, size;
5742 void *table = NULL;
5744 /* allow the kernel cmdline to have a say */
5745 if (!numentries) {
5746 /* round applicable memory size up to nearest megabyte */
5747 numentries = nr_kernel_pages;
5748 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5749 numentries >>= 20 - PAGE_SHIFT;
5750 numentries <<= 20 - PAGE_SHIFT;
5752 /* limit to 1 bucket per 2^scale bytes of low memory */
5753 if (scale > PAGE_SHIFT)
5754 numentries >>= (scale - PAGE_SHIFT);
5755 else
5756 numentries <<= (PAGE_SHIFT - scale);
5758 /* Make sure we've got at least a 0-order allocation.. */
5759 if (unlikely(flags & HASH_SMALL)) {
5760 /* Makes no sense without HASH_EARLY */
5761 WARN_ON(!(flags & HASH_EARLY));
5762 if (!(numentries >> *_hash_shift)) {
5763 numentries = 1UL << *_hash_shift;
5764 BUG_ON(!numentries);
5766 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5767 numentries = PAGE_SIZE / bucketsize;
5769 numentries = roundup_pow_of_two(numentries);
5771 /* limit allocation size to 1/16 total memory by default */
5772 if (max == 0) {
5773 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5774 do_div(max, bucketsize);
5776 max = min(max, 0x80000000ULL);
5778 if (numentries < low_limit)
5779 numentries = low_limit;
5780 if (numentries > max)
5781 numentries = max;
5783 log2qty = ilog2(numentries);
5785 do {
5786 size = bucketsize << log2qty;
5787 if (flags & HASH_EARLY)
5788 table = alloc_bootmem_nopanic(size);
5789 else if (hashdist)
5790 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5791 else {
5793 * If bucketsize is not a power-of-two, we may free
5794 * some pages at the end of hash table which
5795 * alloc_pages_exact() automatically does
5797 if (get_order(size) < MAX_ORDER) {
5798 table = alloc_pages_exact(size, GFP_ATOMIC);
5799 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5802 } while (!table && size > PAGE_SIZE && --log2qty);
5804 if (!table)
5805 panic("Failed to allocate %s hash table\n", tablename);
5807 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5808 tablename,
5809 (1UL << log2qty),
5810 ilog2(size) - PAGE_SHIFT,
5811 size);
5813 if (_hash_shift)
5814 *_hash_shift = log2qty;
5815 if (_hash_mask)
5816 *_hash_mask = (1 << log2qty) - 1;
5818 return table;
5821 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5822 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5823 unsigned long pfn)
5825 #ifdef CONFIG_SPARSEMEM
5826 return __pfn_to_section(pfn)->pageblock_flags;
5827 #else
5828 return zone->pageblock_flags;
5829 #endif /* CONFIG_SPARSEMEM */
5832 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5834 #ifdef CONFIG_SPARSEMEM
5835 pfn &= (PAGES_PER_SECTION-1);
5836 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5837 #else
5838 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5839 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5840 #endif /* CONFIG_SPARSEMEM */
5844 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5845 * @page: The page within the block of interest
5846 * @start_bitidx: The first bit of interest to retrieve
5847 * @end_bitidx: The last bit of interest
5848 * returns pageblock_bits flags
5850 unsigned long get_pageblock_flags_group(struct page *page,
5851 int start_bitidx, int end_bitidx)
5853 struct zone *zone;
5854 unsigned long *bitmap;
5855 unsigned long pfn, bitidx;
5856 unsigned long flags = 0;
5857 unsigned long value = 1;
5859 zone = page_zone(page);
5860 pfn = page_to_pfn(page);
5861 bitmap = get_pageblock_bitmap(zone, pfn);
5862 bitidx = pfn_to_bitidx(zone, pfn);
5864 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5865 if (test_bit(bitidx + start_bitidx, bitmap))
5866 flags |= value;
5868 return flags;
5872 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5873 * @page: The page within the block of interest
5874 * @start_bitidx: The first bit of interest
5875 * @end_bitidx: The last bit of interest
5876 * @flags: The flags to set
5878 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5879 int start_bitidx, int end_bitidx)
5881 struct zone *zone;
5882 unsigned long *bitmap;
5883 unsigned long pfn, bitidx;
5884 unsigned long value = 1;
5886 zone = page_zone(page);
5887 pfn = page_to_pfn(page);
5888 bitmap = get_pageblock_bitmap(zone, pfn);
5889 bitidx = pfn_to_bitidx(zone, pfn);
5890 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5892 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5893 if (flags & value)
5894 __set_bit(bitidx + start_bitidx, bitmap);
5895 else
5896 __clear_bit(bitidx + start_bitidx, bitmap);
5900 * This function checks whether pageblock includes unmovable pages or not.
5901 * If @count is not zero, it is okay to include less @count unmovable pages
5903 * PageLRU check wihtout isolation or lru_lock could race so that
5904 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5905 * expect this function should be exact.
5907 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5908 bool skip_hwpoisoned_pages)
5910 unsigned long pfn, iter, found;
5911 int mt;
5914 * For avoiding noise data, lru_add_drain_all() should be called
5915 * If ZONE_MOVABLE, the zone never contains unmovable pages
5917 if (zone_idx(zone) == ZONE_MOVABLE)
5918 return false;
5919 mt = get_pageblock_migratetype(page);
5920 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5921 return false;
5923 pfn = page_to_pfn(page);
5924 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5925 unsigned long check = pfn + iter;
5927 if (!pfn_valid_within(check))
5928 continue;
5930 page = pfn_to_page(check);
5932 * We can't use page_count without pin a page
5933 * because another CPU can free compound page.
5934 * This check already skips compound tails of THP
5935 * because their page->_count is zero at all time.
5937 if (!atomic_read(&page->_count)) {
5938 if (PageBuddy(page))
5939 iter += (1 << page_order(page)) - 1;
5940 continue;
5944 * The HWPoisoned page may be not in buddy system, and
5945 * page_count() is not 0.
5947 if (skip_hwpoisoned_pages && PageHWPoison(page))
5948 continue;
5950 if (!PageLRU(page))
5951 found++;
5953 * If there are RECLAIMABLE pages, we need to check it.
5954 * But now, memory offline itself doesn't call shrink_slab()
5955 * and it still to be fixed.
5958 * If the page is not RAM, page_count()should be 0.
5959 * we don't need more check. This is an _used_ not-movable page.
5961 * The problematic thing here is PG_reserved pages. PG_reserved
5962 * is set to both of a memory hole page and a _used_ kernel
5963 * page at boot.
5965 if (found > count)
5966 return true;
5968 return false;
5971 bool is_pageblock_removable_nolock(struct page *page)
5973 struct zone *zone;
5974 unsigned long pfn;
5977 * We have to be careful here because we are iterating over memory
5978 * sections which are not zone aware so we might end up outside of
5979 * the zone but still within the section.
5980 * We have to take care about the node as well. If the node is offline
5981 * its NODE_DATA will be NULL - see page_zone.
5983 if (!node_online(page_to_nid(page)))
5984 return false;
5986 zone = page_zone(page);
5987 pfn = page_to_pfn(page);
5988 if (!zone_spans_pfn(zone, pfn))
5989 return false;
5991 return !has_unmovable_pages(zone, page, 0, true);
5994 #ifdef CONFIG_CMA
5996 static unsigned long pfn_max_align_down(unsigned long pfn)
5998 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5999 pageblock_nr_pages) - 1);
6002 static unsigned long pfn_max_align_up(unsigned long pfn)
6004 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6005 pageblock_nr_pages));
6008 /* [start, end) must belong to a single zone. */
6009 static int __alloc_contig_migrate_range(struct compact_control *cc,
6010 unsigned long start, unsigned long end)
6012 /* This function is based on compact_zone() from compaction.c. */
6013 unsigned long nr_reclaimed;
6014 unsigned long pfn = start;
6015 unsigned int tries = 0;
6016 int ret = 0;
6018 migrate_prep();
6020 while (pfn < end || !list_empty(&cc->migratepages)) {
6021 if (fatal_signal_pending(current)) {
6022 ret = -EINTR;
6023 break;
6026 if (list_empty(&cc->migratepages)) {
6027 cc->nr_migratepages = 0;
6028 pfn = isolate_migratepages_range(cc->zone, cc,
6029 pfn, end, true);
6030 if (!pfn) {
6031 ret = -EINTR;
6032 break;
6034 tries = 0;
6035 } else if (++tries == 5) {
6036 ret = ret < 0 ? ret : -EBUSY;
6037 break;
6040 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6041 &cc->migratepages);
6042 cc->nr_migratepages -= nr_reclaimed;
6044 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6045 0, MIGRATE_SYNC, MR_CMA);
6047 if (ret < 0) {
6048 putback_movable_pages(&cc->migratepages);
6049 return ret;
6051 return 0;
6055 * alloc_contig_range() -- tries to allocate given range of pages
6056 * @start: start PFN to allocate
6057 * @end: one-past-the-last PFN to allocate
6058 * @migratetype: migratetype of the underlaying pageblocks (either
6059 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6060 * in range must have the same migratetype and it must
6061 * be either of the two.
6063 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6064 * aligned, however it's the caller's responsibility to guarantee that
6065 * we are the only thread that changes migrate type of pageblocks the
6066 * pages fall in.
6068 * The PFN range must belong to a single zone.
6070 * Returns zero on success or negative error code. On success all
6071 * pages which PFN is in [start, end) are allocated for the caller and
6072 * need to be freed with free_contig_range().
6074 int alloc_contig_range(unsigned long start, unsigned long end,
6075 unsigned migratetype)
6077 unsigned long outer_start, outer_end;
6078 int ret = 0, order;
6080 struct compact_control cc = {
6081 .nr_migratepages = 0,
6082 .order = -1,
6083 .zone = page_zone(pfn_to_page(start)),
6084 .sync = true,
6085 .ignore_skip_hint = true,
6087 INIT_LIST_HEAD(&cc.migratepages);
6090 * What we do here is we mark all pageblocks in range as
6091 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6092 * have different sizes, and due to the way page allocator
6093 * work, we align the range to biggest of the two pages so
6094 * that page allocator won't try to merge buddies from
6095 * different pageblocks and change MIGRATE_ISOLATE to some
6096 * other migration type.
6098 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6099 * migrate the pages from an unaligned range (ie. pages that
6100 * we are interested in). This will put all the pages in
6101 * range back to page allocator as MIGRATE_ISOLATE.
6103 * When this is done, we take the pages in range from page
6104 * allocator removing them from the buddy system. This way
6105 * page allocator will never consider using them.
6107 * This lets us mark the pageblocks back as
6108 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6109 * aligned range but not in the unaligned, original range are
6110 * put back to page allocator so that buddy can use them.
6113 ret = start_isolate_page_range(pfn_max_align_down(start),
6114 pfn_max_align_up(end), migratetype,
6115 false);
6116 if (ret)
6117 return ret;
6119 ret = __alloc_contig_migrate_range(&cc, start, end);
6120 if (ret)
6121 goto done;
6124 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6125 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6126 * more, all pages in [start, end) are free in page allocator.
6127 * What we are going to do is to allocate all pages from
6128 * [start, end) (that is remove them from page allocator).
6130 * The only problem is that pages at the beginning and at the
6131 * end of interesting range may be not aligned with pages that
6132 * page allocator holds, ie. they can be part of higher order
6133 * pages. Because of this, we reserve the bigger range and
6134 * once this is done free the pages we are not interested in.
6136 * We don't have to hold zone->lock here because the pages are
6137 * isolated thus they won't get removed from buddy.
6140 lru_add_drain_all();
6141 drain_all_pages();
6143 order = 0;
6144 outer_start = start;
6145 while (!PageBuddy(pfn_to_page(outer_start))) {
6146 if (++order >= MAX_ORDER) {
6147 ret = -EBUSY;
6148 goto done;
6150 outer_start &= ~0UL << order;
6153 /* Make sure the range is really isolated. */
6154 if (test_pages_isolated(outer_start, end, false)) {
6155 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6156 outer_start, end);
6157 ret = -EBUSY;
6158 goto done;
6162 /* Grab isolated pages from freelists. */
6163 outer_end = isolate_freepages_range(&cc, outer_start, end);
6164 if (!outer_end) {
6165 ret = -EBUSY;
6166 goto done;
6169 /* Free head and tail (if any) */
6170 if (start != outer_start)
6171 free_contig_range(outer_start, start - outer_start);
6172 if (end != outer_end)
6173 free_contig_range(end, outer_end - end);
6175 done:
6176 undo_isolate_page_range(pfn_max_align_down(start),
6177 pfn_max_align_up(end), migratetype);
6178 return ret;
6181 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6183 unsigned int count = 0;
6185 for (; nr_pages--; pfn++) {
6186 struct page *page = pfn_to_page(pfn);
6188 count += page_count(page) != 1;
6189 __free_page(page);
6191 WARN(count != 0, "%d pages are still in use!\n", count);
6193 #endif
6195 #ifdef CONFIG_MEMORY_HOTPLUG
6197 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6198 * page high values need to be recalulated.
6200 void __meminit zone_pcp_update(struct zone *zone)
6202 unsigned cpu;
6203 mutex_lock(&pcp_batch_high_lock);
6204 for_each_possible_cpu(cpu)
6205 pageset_set_high_and_batch(zone,
6206 per_cpu_ptr(zone->pageset, cpu));
6207 mutex_unlock(&pcp_batch_high_lock);
6209 #endif
6211 void zone_pcp_reset(struct zone *zone)
6213 unsigned long flags;
6214 int cpu;
6215 struct per_cpu_pageset *pset;
6217 /* avoid races with drain_pages() */
6218 local_irq_save(flags);
6219 if (zone->pageset != &boot_pageset) {
6220 for_each_online_cpu(cpu) {
6221 pset = per_cpu_ptr(zone->pageset, cpu);
6222 drain_zonestat(zone, pset);
6224 free_percpu(zone->pageset);
6225 zone->pageset = &boot_pageset;
6227 local_irq_restore(flags);
6230 #ifdef CONFIG_MEMORY_HOTREMOVE
6232 * All pages in the range must be isolated before calling this.
6234 void
6235 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6237 struct page *page;
6238 struct zone *zone;
6239 int order, i;
6240 unsigned long pfn;
6241 unsigned long flags;
6242 /* find the first valid pfn */
6243 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6244 if (pfn_valid(pfn))
6245 break;
6246 if (pfn == end_pfn)
6247 return;
6248 zone = page_zone(pfn_to_page(pfn));
6249 spin_lock_irqsave(&zone->lock, flags);
6250 pfn = start_pfn;
6251 while (pfn < end_pfn) {
6252 if (!pfn_valid(pfn)) {
6253 pfn++;
6254 continue;
6256 page = pfn_to_page(pfn);
6258 * The HWPoisoned page may be not in buddy system, and
6259 * page_count() is not 0.
6261 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6262 pfn++;
6263 SetPageReserved(page);
6264 continue;
6267 BUG_ON(page_count(page));
6268 BUG_ON(!PageBuddy(page));
6269 order = page_order(page);
6270 #ifdef CONFIG_DEBUG_VM
6271 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6272 pfn, 1 << order, end_pfn);
6273 #endif
6274 list_del(&page->lru);
6275 rmv_page_order(page);
6276 zone->free_area[order].nr_free--;
6277 #ifdef CONFIG_HIGHMEM
6278 if (PageHighMem(page))
6279 totalhigh_pages -= 1 << order;
6280 #endif
6281 for (i = 0; i < (1 << order); i++)
6282 SetPageReserved((page+i));
6283 pfn += (1 << order);
6285 spin_unlock_irqrestore(&zone->lock, flags);
6287 #endif
6289 #ifdef CONFIG_MEMORY_FAILURE
6290 bool is_free_buddy_page(struct page *page)
6292 struct zone *zone = page_zone(page);
6293 unsigned long pfn = page_to_pfn(page);
6294 unsigned long flags;
6295 int order;
6297 spin_lock_irqsave(&zone->lock, flags);
6298 for (order = 0; order < MAX_ORDER; order++) {
6299 struct page *page_head = page - (pfn & ((1 << order) - 1));
6301 if (PageBuddy(page_head) && page_order(page_head) >= order)
6302 break;
6304 spin_unlock_irqrestore(&zone->lock, flags);
6306 return order < MAX_ORDER;
6308 #endif
6310 static const struct trace_print_flags pageflag_names[] = {
6311 {1UL << PG_locked, "locked" },
6312 {1UL << PG_error, "error" },
6313 {1UL << PG_referenced, "referenced" },
6314 {1UL << PG_uptodate, "uptodate" },
6315 {1UL << PG_dirty, "dirty" },
6316 {1UL << PG_lru, "lru" },
6317 {1UL << PG_active, "active" },
6318 {1UL << PG_slab, "slab" },
6319 {1UL << PG_owner_priv_1, "owner_priv_1" },
6320 {1UL << PG_arch_1, "arch_1" },
6321 {1UL << PG_reserved, "reserved" },
6322 {1UL << PG_private, "private" },
6323 {1UL << PG_private_2, "private_2" },
6324 {1UL << PG_writeback, "writeback" },
6325 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6326 {1UL << PG_head, "head" },
6327 {1UL << PG_tail, "tail" },
6328 #else
6329 {1UL << PG_compound, "compound" },
6330 #endif
6331 {1UL << PG_swapcache, "swapcache" },
6332 {1UL << PG_mappedtodisk, "mappedtodisk" },
6333 {1UL << PG_reclaim, "reclaim" },
6334 {1UL << PG_swapbacked, "swapbacked" },
6335 {1UL << PG_unevictable, "unevictable" },
6336 #ifdef CONFIG_MMU
6337 {1UL << PG_mlocked, "mlocked" },
6338 #endif
6339 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6340 {1UL << PG_uncached, "uncached" },
6341 #endif
6342 #ifdef CONFIG_MEMORY_FAILURE
6343 {1UL << PG_hwpoison, "hwpoison" },
6344 #endif
6345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6346 {1UL << PG_compound_lock, "compound_lock" },
6347 #endif
6350 static void dump_page_flags(unsigned long flags)
6352 const char *delim = "";
6353 unsigned long mask;
6354 int i;
6356 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6358 printk(KERN_ALERT "page flags: %#lx(", flags);
6360 /* remove zone id */
6361 flags &= (1UL << NR_PAGEFLAGS) - 1;
6363 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6365 mask = pageflag_names[i].mask;
6366 if ((flags & mask) != mask)
6367 continue;
6369 flags &= ~mask;
6370 printk("%s%s", delim, pageflag_names[i].name);
6371 delim = "|";
6374 /* check for left over flags */
6375 if (flags)
6376 printk("%s%#lx", delim, flags);
6378 printk(")\n");
6381 void dump_page(struct page *page)
6383 printk(KERN_ALERT
6384 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6385 page, atomic_read(&page->_count), page_mapcount(page),
6386 page->mapping, page->index);
6387 dump_page_flags(page->flags);
6388 mem_cgroup_print_bad_page(page);