[IPV6] IP6TUNNEL: Delete all tunnel device when unloading module.
[linux-2.6.git] / security / selinux / hooks.c
blob8ab5679a37a30324b9b61a61c159dd4978512447
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2,
20 * as published by the Free Software Foundation.
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for sysctl_local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72 #include <linux/selinux.h>
73 #include <linux/mutex.h>
75 #include "avc.h"
76 #include "objsec.h"
77 #include "netif.h"
78 #include "xfrm.h"
79 #include "selinux_netlabel.h"
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
91 static int __init enforcing_setup(char *str)
93 selinux_enforcing = simple_strtol(str,NULL,0);
94 return 1;
96 __setup("enforcing=", enforcing_setup);
97 #endif
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102 static int __init selinux_enabled_setup(char *str)
104 selinux_enabled = simple_strtol(str, NULL, 0);
105 return 1;
107 __setup("selinux=", selinux_enabled_setup);
108 #else
109 int selinux_enabled = 1;
110 #endif
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
115 /* Minimal support for a secondary security module,
116 just to allow the use of the dummy or capability modules.
117 The owlsm module can alternatively be used as a secondary
118 module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
121 /* Lists of inode and superblock security structures initialized
122 before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
126 static kmem_cache_t *sel_inode_cache;
128 /* Return security context for a given sid or just the context
129 length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 char *context;
133 unsigned len;
134 int rc;
136 rc = security_sid_to_context(sid, &context, &len);
137 if (rc)
138 return rc;
140 if (!buffer || !size)
141 goto getsecurity_exit;
143 if (size < len) {
144 len = -ERANGE;
145 goto getsecurity_exit;
147 memcpy(buffer, context, len);
149 getsecurity_exit:
150 kfree(context);
151 return len;
154 /* Allocate and free functions for each kind of security blob. */
156 static int task_alloc_security(struct task_struct *task)
158 struct task_security_struct *tsec;
160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 if (!tsec)
162 return -ENOMEM;
164 tsec->task = task;
165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 task->security = tsec;
168 return 0;
171 static void task_free_security(struct task_struct *task)
173 struct task_security_struct *tsec = task->security;
174 task->security = NULL;
175 kfree(tsec);
178 static int inode_alloc_security(struct inode *inode)
180 struct task_security_struct *tsec = current->security;
181 struct inode_security_struct *isec;
183 isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
184 if (!isec)
185 return -ENOMEM;
187 memset(isec, 0, sizeof(*isec));
188 mutex_init(&isec->lock);
189 INIT_LIST_HEAD(&isec->list);
190 isec->inode = inode;
191 isec->sid = SECINITSID_UNLABELED;
192 isec->sclass = SECCLASS_FILE;
193 isec->task_sid = tsec->sid;
194 inode->i_security = isec;
196 return 0;
199 static void inode_free_security(struct inode *inode)
201 struct inode_security_struct *isec = inode->i_security;
202 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204 spin_lock(&sbsec->isec_lock);
205 if (!list_empty(&isec->list))
206 list_del_init(&isec->list);
207 spin_unlock(&sbsec->isec_lock);
209 inode->i_security = NULL;
210 kmem_cache_free(sel_inode_cache, isec);
213 static int file_alloc_security(struct file *file)
215 struct task_security_struct *tsec = current->security;
216 struct file_security_struct *fsec;
218 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219 if (!fsec)
220 return -ENOMEM;
222 fsec->file = file;
223 fsec->sid = tsec->sid;
224 fsec->fown_sid = tsec->sid;
225 file->f_security = fsec;
227 return 0;
230 static void file_free_security(struct file *file)
232 struct file_security_struct *fsec = file->f_security;
233 file->f_security = NULL;
234 kfree(fsec);
237 static int superblock_alloc_security(struct super_block *sb)
239 struct superblock_security_struct *sbsec;
241 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242 if (!sbsec)
243 return -ENOMEM;
245 mutex_init(&sbsec->lock);
246 INIT_LIST_HEAD(&sbsec->list);
247 INIT_LIST_HEAD(&sbsec->isec_head);
248 spin_lock_init(&sbsec->isec_lock);
249 sbsec->sb = sb;
250 sbsec->sid = SECINITSID_UNLABELED;
251 sbsec->def_sid = SECINITSID_FILE;
252 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253 sb->s_security = sbsec;
255 return 0;
258 static void superblock_free_security(struct super_block *sb)
260 struct superblock_security_struct *sbsec = sb->s_security;
262 spin_lock(&sb_security_lock);
263 if (!list_empty(&sbsec->list))
264 list_del_init(&sbsec->list);
265 spin_unlock(&sb_security_lock);
267 sb->s_security = NULL;
268 kfree(sbsec);
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 struct sk_security_struct *ssec;
275 ssec = kzalloc(sizeof(*ssec), priority);
276 if (!ssec)
277 return -ENOMEM;
279 ssec->sk = sk;
280 ssec->peer_sid = SECINITSID_UNLABELED;
281 ssec->sid = SECINITSID_UNLABELED;
282 sk->sk_security = ssec;
284 selinux_netlbl_sk_security_init(ssec, family);
286 return 0;
289 static void sk_free_security(struct sock *sk)
291 struct sk_security_struct *ssec = sk->sk_security;
293 sk->sk_security = NULL;
294 kfree(ssec);
297 /* The security server must be initialized before
298 any labeling or access decisions can be provided. */
299 extern int ss_initialized;
301 /* The file system's label must be initialized prior to use. */
303 static char *labeling_behaviors[6] = {
304 "uses xattr",
305 "uses transition SIDs",
306 "uses task SIDs",
307 "uses genfs_contexts",
308 "not configured for labeling",
309 "uses mountpoint labeling",
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314 static inline int inode_doinit(struct inode *inode)
316 return inode_doinit_with_dentry(inode, NULL);
319 enum {
320 Opt_context = 1,
321 Opt_fscontext = 2,
322 Opt_defcontext = 4,
323 Opt_rootcontext = 8,
326 static match_table_t tokens = {
327 {Opt_context, "context=%s"},
328 {Opt_fscontext, "fscontext=%s"},
329 {Opt_defcontext, "defcontext=%s"},
330 {Opt_rootcontext, "rootcontext=%s"},
333 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
335 static int may_context_mount_sb_relabel(u32 sid,
336 struct superblock_security_struct *sbsec,
337 struct task_security_struct *tsec)
339 int rc;
341 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342 FILESYSTEM__RELABELFROM, NULL);
343 if (rc)
344 return rc;
346 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347 FILESYSTEM__RELABELTO, NULL);
348 return rc;
351 static int may_context_mount_inode_relabel(u32 sid,
352 struct superblock_security_struct *sbsec,
353 struct task_security_struct *tsec)
355 int rc;
356 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357 FILESYSTEM__RELABELFROM, NULL);
358 if (rc)
359 return rc;
361 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362 FILESYSTEM__ASSOCIATE, NULL);
363 return rc;
366 static int try_context_mount(struct super_block *sb, void *data)
368 char *context = NULL, *defcontext = NULL;
369 char *fscontext = NULL, *rootcontext = NULL;
370 const char *name;
371 u32 sid;
372 int alloc = 0, rc = 0, seen = 0;
373 struct task_security_struct *tsec = current->security;
374 struct superblock_security_struct *sbsec = sb->s_security;
376 if (!data)
377 goto out;
379 name = sb->s_type->name;
381 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383 /* NFS we understand. */
384 if (!strcmp(name, "nfs")) {
385 struct nfs_mount_data *d = data;
387 if (d->version < NFS_MOUNT_VERSION)
388 goto out;
390 if (d->context[0]) {
391 context = d->context;
392 seen |= Opt_context;
394 } else
395 goto out;
397 } else {
398 /* Standard string-based options. */
399 char *p, *options = data;
401 while ((p = strsep(&options, "|")) != NULL) {
402 int token;
403 substring_t args[MAX_OPT_ARGS];
405 if (!*p)
406 continue;
408 token = match_token(p, tokens, args);
410 switch (token) {
411 case Opt_context:
412 if (seen & (Opt_context|Opt_defcontext)) {
413 rc = -EINVAL;
414 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415 goto out_free;
417 context = match_strdup(&args[0]);
418 if (!context) {
419 rc = -ENOMEM;
420 goto out_free;
422 if (!alloc)
423 alloc = 1;
424 seen |= Opt_context;
425 break;
427 case Opt_fscontext:
428 if (seen & Opt_fscontext) {
429 rc = -EINVAL;
430 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431 goto out_free;
433 fscontext = match_strdup(&args[0]);
434 if (!fscontext) {
435 rc = -ENOMEM;
436 goto out_free;
438 if (!alloc)
439 alloc = 1;
440 seen |= Opt_fscontext;
441 break;
443 case Opt_rootcontext:
444 if (seen & Opt_rootcontext) {
445 rc = -EINVAL;
446 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447 goto out_free;
449 rootcontext = match_strdup(&args[0]);
450 if (!rootcontext) {
451 rc = -ENOMEM;
452 goto out_free;
454 if (!alloc)
455 alloc = 1;
456 seen |= Opt_rootcontext;
457 break;
459 case Opt_defcontext:
460 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461 rc = -EINVAL;
462 printk(KERN_WARNING "SELinux: "
463 "defcontext option is invalid "
464 "for this filesystem type\n");
465 goto out_free;
467 if (seen & (Opt_context|Opt_defcontext)) {
468 rc = -EINVAL;
469 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470 goto out_free;
472 defcontext = match_strdup(&args[0]);
473 if (!defcontext) {
474 rc = -ENOMEM;
475 goto out_free;
477 if (!alloc)
478 alloc = 1;
479 seen |= Opt_defcontext;
480 break;
482 default:
483 rc = -EINVAL;
484 printk(KERN_WARNING "SELinux: unknown mount "
485 "option\n");
486 goto out_free;
492 if (!seen)
493 goto out;
495 /* sets the context of the superblock for the fs being mounted. */
496 if (fscontext) {
497 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498 if (rc) {
499 printk(KERN_WARNING "SELinux: security_context_to_sid"
500 "(%s) failed for (dev %s, type %s) errno=%d\n",
501 fscontext, sb->s_id, name, rc);
502 goto out_free;
505 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506 if (rc)
507 goto out_free;
509 sbsec->sid = sid;
513 * Switch to using mount point labeling behavior.
514 * sets the label used on all file below the mountpoint, and will set
515 * the superblock context if not already set.
517 if (context) {
518 rc = security_context_to_sid(context, strlen(context), &sid);
519 if (rc) {
520 printk(KERN_WARNING "SELinux: security_context_to_sid"
521 "(%s) failed for (dev %s, type %s) errno=%d\n",
522 context, sb->s_id, name, rc);
523 goto out_free;
526 if (!fscontext) {
527 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528 if (rc)
529 goto out_free;
530 sbsec->sid = sid;
531 } else {
532 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533 if (rc)
534 goto out_free;
536 sbsec->mntpoint_sid = sid;
538 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
541 if (rootcontext) {
542 struct inode *inode = sb->s_root->d_inode;
543 struct inode_security_struct *isec = inode->i_security;
544 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545 if (rc) {
546 printk(KERN_WARNING "SELinux: security_context_to_sid"
547 "(%s) failed for (dev %s, type %s) errno=%d\n",
548 rootcontext, sb->s_id, name, rc);
549 goto out_free;
552 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553 if (rc)
554 goto out_free;
556 isec->sid = sid;
557 isec->initialized = 1;
560 if (defcontext) {
561 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562 if (rc) {
563 printk(KERN_WARNING "SELinux: security_context_to_sid"
564 "(%s) failed for (dev %s, type %s) errno=%d\n",
565 defcontext, sb->s_id, name, rc);
566 goto out_free;
569 if (sid == sbsec->def_sid)
570 goto out_free;
572 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573 if (rc)
574 goto out_free;
576 sbsec->def_sid = sid;
579 out_free:
580 if (alloc) {
581 kfree(context);
582 kfree(defcontext);
583 kfree(fscontext);
584 kfree(rootcontext);
586 out:
587 return rc;
590 static int superblock_doinit(struct super_block *sb, void *data)
592 struct superblock_security_struct *sbsec = sb->s_security;
593 struct dentry *root = sb->s_root;
594 struct inode *inode = root->d_inode;
595 int rc = 0;
597 mutex_lock(&sbsec->lock);
598 if (sbsec->initialized)
599 goto out;
601 if (!ss_initialized) {
602 /* Defer initialization until selinux_complete_init,
603 after the initial policy is loaded and the security
604 server is ready to handle calls. */
605 spin_lock(&sb_security_lock);
606 if (list_empty(&sbsec->list))
607 list_add(&sbsec->list, &superblock_security_head);
608 spin_unlock(&sb_security_lock);
609 goto out;
612 /* Determine the labeling behavior to use for this filesystem type. */
613 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614 if (rc) {
615 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
616 __FUNCTION__, sb->s_type->name, rc);
617 goto out;
620 rc = try_context_mount(sb, data);
621 if (rc)
622 goto out;
624 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625 /* Make sure that the xattr handler exists and that no
626 error other than -ENODATA is returned by getxattr on
627 the root directory. -ENODATA is ok, as this may be
628 the first boot of the SELinux kernel before we have
629 assigned xattr values to the filesystem. */
630 if (!inode->i_op->getxattr) {
631 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632 "xattr support\n", sb->s_id, sb->s_type->name);
633 rc = -EOPNOTSUPP;
634 goto out;
636 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637 if (rc < 0 && rc != -ENODATA) {
638 if (rc == -EOPNOTSUPP)
639 printk(KERN_WARNING "SELinux: (dev %s, type "
640 "%s) has no security xattr handler\n",
641 sb->s_id, sb->s_type->name);
642 else
643 printk(KERN_WARNING "SELinux: (dev %s, type "
644 "%s) getxattr errno %d\n", sb->s_id,
645 sb->s_type->name, -rc);
646 goto out;
650 if (strcmp(sb->s_type->name, "proc") == 0)
651 sbsec->proc = 1;
653 sbsec->initialized = 1;
655 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657 sb->s_id, sb->s_type->name);
659 else {
660 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661 sb->s_id, sb->s_type->name,
662 labeling_behaviors[sbsec->behavior-1]);
665 /* Initialize the root inode. */
666 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668 /* Initialize any other inodes associated with the superblock, e.g.
669 inodes created prior to initial policy load or inodes created
670 during get_sb by a pseudo filesystem that directly
671 populates itself. */
672 spin_lock(&sbsec->isec_lock);
673 next_inode:
674 if (!list_empty(&sbsec->isec_head)) {
675 struct inode_security_struct *isec =
676 list_entry(sbsec->isec_head.next,
677 struct inode_security_struct, list);
678 struct inode *inode = isec->inode;
679 spin_unlock(&sbsec->isec_lock);
680 inode = igrab(inode);
681 if (inode) {
682 if (!IS_PRIVATE (inode))
683 inode_doinit(inode);
684 iput(inode);
686 spin_lock(&sbsec->isec_lock);
687 list_del_init(&isec->list);
688 goto next_inode;
690 spin_unlock(&sbsec->isec_lock);
691 out:
692 mutex_unlock(&sbsec->lock);
693 return rc;
696 static inline u16 inode_mode_to_security_class(umode_t mode)
698 switch (mode & S_IFMT) {
699 case S_IFSOCK:
700 return SECCLASS_SOCK_FILE;
701 case S_IFLNK:
702 return SECCLASS_LNK_FILE;
703 case S_IFREG:
704 return SECCLASS_FILE;
705 case S_IFBLK:
706 return SECCLASS_BLK_FILE;
707 case S_IFDIR:
708 return SECCLASS_DIR;
709 case S_IFCHR:
710 return SECCLASS_CHR_FILE;
711 case S_IFIFO:
712 return SECCLASS_FIFO_FILE;
716 return SECCLASS_FILE;
719 static inline int default_protocol_stream(int protocol)
721 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
724 static inline int default_protocol_dgram(int protocol)
726 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
731 switch (family) {
732 case PF_UNIX:
733 switch (type) {
734 case SOCK_STREAM:
735 case SOCK_SEQPACKET:
736 return SECCLASS_UNIX_STREAM_SOCKET;
737 case SOCK_DGRAM:
738 return SECCLASS_UNIX_DGRAM_SOCKET;
740 break;
741 case PF_INET:
742 case PF_INET6:
743 switch (type) {
744 case SOCK_STREAM:
745 if (default_protocol_stream(protocol))
746 return SECCLASS_TCP_SOCKET;
747 else
748 return SECCLASS_RAWIP_SOCKET;
749 case SOCK_DGRAM:
750 if (default_protocol_dgram(protocol))
751 return SECCLASS_UDP_SOCKET;
752 else
753 return SECCLASS_RAWIP_SOCKET;
754 default:
755 return SECCLASS_RAWIP_SOCKET;
757 break;
758 case PF_NETLINK:
759 switch (protocol) {
760 case NETLINK_ROUTE:
761 return SECCLASS_NETLINK_ROUTE_SOCKET;
762 case NETLINK_FIREWALL:
763 return SECCLASS_NETLINK_FIREWALL_SOCKET;
764 case NETLINK_INET_DIAG:
765 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
766 case NETLINK_NFLOG:
767 return SECCLASS_NETLINK_NFLOG_SOCKET;
768 case NETLINK_XFRM:
769 return SECCLASS_NETLINK_XFRM_SOCKET;
770 case NETLINK_SELINUX:
771 return SECCLASS_NETLINK_SELINUX_SOCKET;
772 case NETLINK_AUDIT:
773 return SECCLASS_NETLINK_AUDIT_SOCKET;
774 case NETLINK_IP6_FW:
775 return SECCLASS_NETLINK_IP6FW_SOCKET;
776 case NETLINK_DNRTMSG:
777 return SECCLASS_NETLINK_DNRT_SOCKET;
778 case NETLINK_KOBJECT_UEVENT:
779 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
780 default:
781 return SECCLASS_NETLINK_SOCKET;
783 case PF_PACKET:
784 return SECCLASS_PACKET_SOCKET;
785 case PF_KEY:
786 return SECCLASS_KEY_SOCKET;
787 case PF_APPLETALK:
788 return SECCLASS_APPLETALK_SOCKET;
791 return SECCLASS_SOCKET;
794 #ifdef CONFIG_PROC_FS
795 static int selinux_proc_get_sid(struct proc_dir_entry *de,
796 u16 tclass,
797 u32 *sid)
799 int buflen, rc;
800 char *buffer, *path, *end;
802 buffer = (char*)__get_free_page(GFP_KERNEL);
803 if (!buffer)
804 return -ENOMEM;
806 buflen = PAGE_SIZE;
807 end = buffer+buflen;
808 *--end = '\0';
809 buflen--;
810 path = end-1;
811 *path = '/';
812 while (de && de != de->parent) {
813 buflen -= de->namelen + 1;
814 if (buflen < 0)
815 break;
816 end -= de->namelen;
817 memcpy(end, de->name, de->namelen);
818 *--end = '/';
819 path = end;
820 de = de->parent;
822 rc = security_genfs_sid("proc", path, tclass, sid);
823 free_page((unsigned long)buffer);
824 return rc;
826 #else
827 static int selinux_proc_get_sid(struct proc_dir_entry *de,
828 u16 tclass,
829 u32 *sid)
831 return -EINVAL;
833 #endif
835 /* The inode's security attributes must be initialized before first use. */
836 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
838 struct superblock_security_struct *sbsec = NULL;
839 struct inode_security_struct *isec = inode->i_security;
840 u32 sid;
841 struct dentry *dentry;
842 #define INITCONTEXTLEN 255
843 char *context = NULL;
844 unsigned len = 0;
845 int rc = 0;
847 if (isec->initialized)
848 goto out;
850 mutex_lock(&isec->lock);
851 if (isec->initialized)
852 goto out_unlock;
854 sbsec = inode->i_sb->s_security;
855 if (!sbsec->initialized) {
856 /* Defer initialization until selinux_complete_init,
857 after the initial policy is loaded and the security
858 server is ready to handle calls. */
859 spin_lock(&sbsec->isec_lock);
860 if (list_empty(&isec->list))
861 list_add(&isec->list, &sbsec->isec_head);
862 spin_unlock(&sbsec->isec_lock);
863 goto out_unlock;
866 switch (sbsec->behavior) {
867 case SECURITY_FS_USE_XATTR:
868 if (!inode->i_op->getxattr) {
869 isec->sid = sbsec->def_sid;
870 break;
873 /* Need a dentry, since the xattr API requires one.
874 Life would be simpler if we could just pass the inode. */
875 if (opt_dentry) {
876 /* Called from d_instantiate or d_splice_alias. */
877 dentry = dget(opt_dentry);
878 } else {
879 /* Called from selinux_complete_init, try to find a dentry. */
880 dentry = d_find_alias(inode);
882 if (!dentry) {
883 printk(KERN_WARNING "%s: no dentry for dev=%s "
884 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
885 inode->i_ino);
886 goto out_unlock;
889 len = INITCONTEXTLEN;
890 context = kmalloc(len, GFP_KERNEL);
891 if (!context) {
892 rc = -ENOMEM;
893 dput(dentry);
894 goto out_unlock;
896 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
897 context, len);
898 if (rc == -ERANGE) {
899 /* Need a larger buffer. Query for the right size. */
900 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
901 NULL, 0);
902 if (rc < 0) {
903 dput(dentry);
904 goto out_unlock;
906 kfree(context);
907 len = rc;
908 context = kmalloc(len, GFP_KERNEL);
909 if (!context) {
910 rc = -ENOMEM;
911 dput(dentry);
912 goto out_unlock;
914 rc = inode->i_op->getxattr(dentry,
915 XATTR_NAME_SELINUX,
916 context, len);
918 dput(dentry);
919 if (rc < 0) {
920 if (rc != -ENODATA) {
921 printk(KERN_WARNING "%s: getxattr returned "
922 "%d for dev=%s ino=%ld\n", __FUNCTION__,
923 -rc, inode->i_sb->s_id, inode->i_ino);
924 kfree(context);
925 goto out_unlock;
927 /* Map ENODATA to the default file SID */
928 sid = sbsec->def_sid;
929 rc = 0;
930 } else {
931 rc = security_context_to_sid_default(context, rc, &sid,
932 sbsec->def_sid);
933 if (rc) {
934 printk(KERN_WARNING "%s: context_to_sid(%s) "
935 "returned %d for dev=%s ino=%ld\n",
936 __FUNCTION__, context, -rc,
937 inode->i_sb->s_id, inode->i_ino);
938 kfree(context);
939 /* Leave with the unlabeled SID */
940 rc = 0;
941 break;
944 kfree(context);
945 isec->sid = sid;
946 break;
947 case SECURITY_FS_USE_TASK:
948 isec->sid = isec->task_sid;
949 break;
950 case SECURITY_FS_USE_TRANS:
951 /* Default to the fs SID. */
952 isec->sid = sbsec->sid;
954 /* Try to obtain a transition SID. */
955 isec->sclass = inode_mode_to_security_class(inode->i_mode);
956 rc = security_transition_sid(isec->task_sid,
957 sbsec->sid,
958 isec->sclass,
959 &sid);
960 if (rc)
961 goto out_unlock;
962 isec->sid = sid;
963 break;
964 case SECURITY_FS_USE_MNTPOINT:
965 isec->sid = sbsec->mntpoint_sid;
966 break;
967 default:
968 /* Default to the fs superblock SID. */
969 isec->sid = sbsec->sid;
971 if (sbsec->proc) {
972 struct proc_inode *proci = PROC_I(inode);
973 if (proci->pde) {
974 isec->sclass = inode_mode_to_security_class(inode->i_mode);
975 rc = selinux_proc_get_sid(proci->pde,
976 isec->sclass,
977 &sid);
978 if (rc)
979 goto out_unlock;
980 isec->sid = sid;
983 break;
986 isec->initialized = 1;
988 out_unlock:
989 mutex_unlock(&isec->lock);
990 out:
991 if (isec->sclass == SECCLASS_FILE)
992 isec->sclass = inode_mode_to_security_class(inode->i_mode);
993 return rc;
996 /* Convert a Linux signal to an access vector. */
997 static inline u32 signal_to_av(int sig)
999 u32 perm = 0;
1001 switch (sig) {
1002 case SIGCHLD:
1003 /* Commonly granted from child to parent. */
1004 perm = PROCESS__SIGCHLD;
1005 break;
1006 case SIGKILL:
1007 /* Cannot be caught or ignored */
1008 perm = PROCESS__SIGKILL;
1009 break;
1010 case SIGSTOP:
1011 /* Cannot be caught or ignored */
1012 perm = PROCESS__SIGSTOP;
1013 break;
1014 default:
1015 /* All other signals. */
1016 perm = PROCESS__SIGNAL;
1017 break;
1020 return perm;
1023 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1024 fork check, ptrace check, etc. */
1025 static int task_has_perm(struct task_struct *tsk1,
1026 struct task_struct *tsk2,
1027 u32 perms)
1029 struct task_security_struct *tsec1, *tsec2;
1031 tsec1 = tsk1->security;
1032 tsec2 = tsk2->security;
1033 return avc_has_perm(tsec1->sid, tsec2->sid,
1034 SECCLASS_PROCESS, perms, NULL);
1037 /* Check whether a task is allowed to use a capability. */
1038 static int task_has_capability(struct task_struct *tsk,
1039 int cap)
1041 struct task_security_struct *tsec;
1042 struct avc_audit_data ad;
1044 tsec = tsk->security;
1046 AVC_AUDIT_DATA_INIT(&ad,CAP);
1047 ad.tsk = tsk;
1048 ad.u.cap = cap;
1050 return avc_has_perm(tsec->sid, tsec->sid,
1051 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1054 /* Check whether a task is allowed to use a system operation. */
1055 static int task_has_system(struct task_struct *tsk,
1056 u32 perms)
1058 struct task_security_struct *tsec;
1060 tsec = tsk->security;
1062 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1063 SECCLASS_SYSTEM, perms, NULL);
1066 /* Check whether a task has a particular permission to an inode.
1067 The 'adp' parameter is optional and allows other audit
1068 data to be passed (e.g. the dentry). */
1069 static int inode_has_perm(struct task_struct *tsk,
1070 struct inode *inode,
1071 u32 perms,
1072 struct avc_audit_data *adp)
1074 struct task_security_struct *tsec;
1075 struct inode_security_struct *isec;
1076 struct avc_audit_data ad;
1078 tsec = tsk->security;
1079 isec = inode->i_security;
1081 if (!adp) {
1082 adp = &ad;
1083 AVC_AUDIT_DATA_INIT(&ad, FS);
1084 ad.u.fs.inode = inode;
1087 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1090 /* Same as inode_has_perm, but pass explicit audit data containing
1091 the dentry to help the auditing code to more easily generate the
1092 pathname if needed. */
1093 static inline int dentry_has_perm(struct task_struct *tsk,
1094 struct vfsmount *mnt,
1095 struct dentry *dentry,
1096 u32 av)
1098 struct inode *inode = dentry->d_inode;
1099 struct avc_audit_data ad;
1100 AVC_AUDIT_DATA_INIT(&ad,FS);
1101 ad.u.fs.mnt = mnt;
1102 ad.u.fs.dentry = dentry;
1103 return inode_has_perm(tsk, inode, av, &ad);
1106 /* Check whether a task can use an open file descriptor to
1107 access an inode in a given way. Check access to the
1108 descriptor itself, and then use dentry_has_perm to
1109 check a particular permission to the file.
1110 Access to the descriptor is implicitly granted if it
1111 has the same SID as the process. If av is zero, then
1112 access to the file is not checked, e.g. for cases
1113 where only the descriptor is affected like seek. */
1114 static int file_has_perm(struct task_struct *tsk,
1115 struct file *file,
1116 u32 av)
1118 struct task_security_struct *tsec = tsk->security;
1119 struct file_security_struct *fsec = file->f_security;
1120 struct vfsmount *mnt = file->f_vfsmnt;
1121 struct dentry *dentry = file->f_dentry;
1122 struct inode *inode = dentry->d_inode;
1123 struct avc_audit_data ad;
1124 int rc;
1126 AVC_AUDIT_DATA_INIT(&ad, FS);
1127 ad.u.fs.mnt = mnt;
1128 ad.u.fs.dentry = dentry;
1130 if (tsec->sid != fsec->sid) {
1131 rc = avc_has_perm(tsec->sid, fsec->sid,
1132 SECCLASS_FD,
1133 FD__USE,
1134 &ad);
1135 if (rc)
1136 return rc;
1139 /* av is zero if only checking access to the descriptor. */
1140 if (av)
1141 return inode_has_perm(tsk, inode, av, &ad);
1143 return 0;
1146 /* Check whether a task can create a file. */
1147 static int may_create(struct inode *dir,
1148 struct dentry *dentry,
1149 u16 tclass)
1151 struct task_security_struct *tsec;
1152 struct inode_security_struct *dsec;
1153 struct superblock_security_struct *sbsec;
1154 u32 newsid;
1155 struct avc_audit_data ad;
1156 int rc;
1158 tsec = current->security;
1159 dsec = dir->i_security;
1160 sbsec = dir->i_sb->s_security;
1162 AVC_AUDIT_DATA_INIT(&ad, FS);
1163 ad.u.fs.dentry = dentry;
1165 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1166 DIR__ADD_NAME | DIR__SEARCH,
1167 &ad);
1168 if (rc)
1169 return rc;
1171 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1172 newsid = tsec->create_sid;
1173 } else {
1174 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1175 &newsid);
1176 if (rc)
1177 return rc;
1180 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1181 if (rc)
1182 return rc;
1184 return avc_has_perm(newsid, sbsec->sid,
1185 SECCLASS_FILESYSTEM,
1186 FILESYSTEM__ASSOCIATE, &ad);
1189 /* Check whether a task can create a key. */
1190 static int may_create_key(u32 ksid,
1191 struct task_struct *ctx)
1193 struct task_security_struct *tsec;
1195 tsec = ctx->security;
1197 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1200 #define MAY_LINK 0
1201 #define MAY_UNLINK 1
1202 #define MAY_RMDIR 2
1204 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1205 static int may_link(struct inode *dir,
1206 struct dentry *dentry,
1207 int kind)
1210 struct task_security_struct *tsec;
1211 struct inode_security_struct *dsec, *isec;
1212 struct avc_audit_data ad;
1213 u32 av;
1214 int rc;
1216 tsec = current->security;
1217 dsec = dir->i_security;
1218 isec = dentry->d_inode->i_security;
1220 AVC_AUDIT_DATA_INIT(&ad, FS);
1221 ad.u.fs.dentry = dentry;
1223 av = DIR__SEARCH;
1224 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1225 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1226 if (rc)
1227 return rc;
1229 switch (kind) {
1230 case MAY_LINK:
1231 av = FILE__LINK;
1232 break;
1233 case MAY_UNLINK:
1234 av = FILE__UNLINK;
1235 break;
1236 case MAY_RMDIR:
1237 av = DIR__RMDIR;
1238 break;
1239 default:
1240 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1241 return 0;
1244 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1245 return rc;
1248 static inline int may_rename(struct inode *old_dir,
1249 struct dentry *old_dentry,
1250 struct inode *new_dir,
1251 struct dentry *new_dentry)
1253 struct task_security_struct *tsec;
1254 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1255 struct avc_audit_data ad;
1256 u32 av;
1257 int old_is_dir, new_is_dir;
1258 int rc;
1260 tsec = current->security;
1261 old_dsec = old_dir->i_security;
1262 old_isec = old_dentry->d_inode->i_security;
1263 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1264 new_dsec = new_dir->i_security;
1266 AVC_AUDIT_DATA_INIT(&ad, FS);
1268 ad.u.fs.dentry = old_dentry;
1269 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1270 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1271 if (rc)
1272 return rc;
1273 rc = avc_has_perm(tsec->sid, old_isec->sid,
1274 old_isec->sclass, FILE__RENAME, &ad);
1275 if (rc)
1276 return rc;
1277 if (old_is_dir && new_dir != old_dir) {
1278 rc = avc_has_perm(tsec->sid, old_isec->sid,
1279 old_isec->sclass, DIR__REPARENT, &ad);
1280 if (rc)
1281 return rc;
1284 ad.u.fs.dentry = new_dentry;
1285 av = DIR__ADD_NAME | DIR__SEARCH;
1286 if (new_dentry->d_inode)
1287 av |= DIR__REMOVE_NAME;
1288 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1289 if (rc)
1290 return rc;
1291 if (new_dentry->d_inode) {
1292 new_isec = new_dentry->d_inode->i_security;
1293 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1294 rc = avc_has_perm(tsec->sid, new_isec->sid,
1295 new_isec->sclass,
1296 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1297 if (rc)
1298 return rc;
1301 return 0;
1304 /* Check whether a task can perform a filesystem operation. */
1305 static int superblock_has_perm(struct task_struct *tsk,
1306 struct super_block *sb,
1307 u32 perms,
1308 struct avc_audit_data *ad)
1310 struct task_security_struct *tsec;
1311 struct superblock_security_struct *sbsec;
1313 tsec = tsk->security;
1314 sbsec = sb->s_security;
1315 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1316 perms, ad);
1319 /* Convert a Linux mode and permission mask to an access vector. */
1320 static inline u32 file_mask_to_av(int mode, int mask)
1322 u32 av = 0;
1324 if ((mode & S_IFMT) != S_IFDIR) {
1325 if (mask & MAY_EXEC)
1326 av |= FILE__EXECUTE;
1327 if (mask & MAY_READ)
1328 av |= FILE__READ;
1330 if (mask & MAY_APPEND)
1331 av |= FILE__APPEND;
1332 else if (mask & MAY_WRITE)
1333 av |= FILE__WRITE;
1335 } else {
1336 if (mask & MAY_EXEC)
1337 av |= DIR__SEARCH;
1338 if (mask & MAY_WRITE)
1339 av |= DIR__WRITE;
1340 if (mask & MAY_READ)
1341 av |= DIR__READ;
1344 return av;
1347 /* Convert a Linux file to an access vector. */
1348 static inline u32 file_to_av(struct file *file)
1350 u32 av = 0;
1352 if (file->f_mode & FMODE_READ)
1353 av |= FILE__READ;
1354 if (file->f_mode & FMODE_WRITE) {
1355 if (file->f_flags & O_APPEND)
1356 av |= FILE__APPEND;
1357 else
1358 av |= FILE__WRITE;
1361 return av;
1364 /* Hook functions begin here. */
1366 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1368 struct task_security_struct *psec = parent->security;
1369 struct task_security_struct *csec = child->security;
1370 int rc;
1372 rc = secondary_ops->ptrace(parent,child);
1373 if (rc)
1374 return rc;
1376 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1377 /* Save the SID of the tracing process for later use in apply_creds. */
1378 if (!(child->ptrace & PT_PTRACED) && !rc)
1379 csec->ptrace_sid = psec->sid;
1380 return rc;
1383 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1384 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1386 int error;
1388 error = task_has_perm(current, target, PROCESS__GETCAP);
1389 if (error)
1390 return error;
1392 return secondary_ops->capget(target, effective, inheritable, permitted);
1395 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1396 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1398 int error;
1400 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1401 if (error)
1402 return error;
1404 return task_has_perm(current, target, PROCESS__SETCAP);
1407 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1408 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1410 secondary_ops->capset_set(target, effective, inheritable, permitted);
1413 static int selinux_capable(struct task_struct *tsk, int cap)
1415 int rc;
1417 rc = secondary_ops->capable(tsk, cap);
1418 if (rc)
1419 return rc;
1421 return task_has_capability(tsk,cap);
1424 static int selinux_sysctl(ctl_table *table, int op)
1426 int error = 0;
1427 u32 av;
1428 struct task_security_struct *tsec;
1429 u32 tsid;
1430 int rc;
1432 rc = secondary_ops->sysctl(table, op);
1433 if (rc)
1434 return rc;
1436 tsec = current->security;
1438 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1439 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1440 if (rc) {
1441 /* Default to the well-defined sysctl SID. */
1442 tsid = SECINITSID_SYSCTL;
1445 /* The op values are "defined" in sysctl.c, thereby creating
1446 * a bad coupling between this module and sysctl.c */
1447 if(op == 001) {
1448 error = avc_has_perm(tsec->sid, tsid,
1449 SECCLASS_DIR, DIR__SEARCH, NULL);
1450 } else {
1451 av = 0;
1452 if (op & 004)
1453 av |= FILE__READ;
1454 if (op & 002)
1455 av |= FILE__WRITE;
1456 if (av)
1457 error = avc_has_perm(tsec->sid, tsid,
1458 SECCLASS_FILE, av, NULL);
1461 return error;
1464 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1466 int rc = 0;
1468 if (!sb)
1469 return 0;
1471 switch (cmds) {
1472 case Q_SYNC:
1473 case Q_QUOTAON:
1474 case Q_QUOTAOFF:
1475 case Q_SETINFO:
1476 case Q_SETQUOTA:
1477 rc = superblock_has_perm(current,
1479 FILESYSTEM__QUOTAMOD, NULL);
1480 break;
1481 case Q_GETFMT:
1482 case Q_GETINFO:
1483 case Q_GETQUOTA:
1484 rc = superblock_has_perm(current,
1486 FILESYSTEM__QUOTAGET, NULL);
1487 break;
1488 default:
1489 rc = 0; /* let the kernel handle invalid cmds */
1490 break;
1492 return rc;
1495 static int selinux_quota_on(struct dentry *dentry)
1497 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1500 static int selinux_syslog(int type)
1502 int rc;
1504 rc = secondary_ops->syslog(type);
1505 if (rc)
1506 return rc;
1508 switch (type) {
1509 case 3: /* Read last kernel messages */
1510 case 10: /* Return size of the log buffer */
1511 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1512 break;
1513 case 6: /* Disable logging to console */
1514 case 7: /* Enable logging to console */
1515 case 8: /* Set level of messages printed to console */
1516 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1517 break;
1518 case 0: /* Close log */
1519 case 1: /* Open log */
1520 case 2: /* Read from log */
1521 case 4: /* Read/clear last kernel messages */
1522 case 5: /* Clear ring buffer */
1523 default:
1524 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1525 break;
1527 return rc;
1531 * Check that a process has enough memory to allocate a new virtual
1532 * mapping. 0 means there is enough memory for the allocation to
1533 * succeed and -ENOMEM implies there is not.
1535 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1536 * if the capability is granted, but __vm_enough_memory requires 1 if
1537 * the capability is granted.
1539 * Do not audit the selinux permission check, as this is applied to all
1540 * processes that allocate mappings.
1542 static int selinux_vm_enough_memory(long pages)
1544 int rc, cap_sys_admin = 0;
1545 struct task_security_struct *tsec = current->security;
1547 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1548 if (rc == 0)
1549 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1550 SECCLASS_CAPABILITY,
1551 CAP_TO_MASK(CAP_SYS_ADMIN),
1552 NULL);
1554 if (rc == 0)
1555 cap_sys_admin = 1;
1557 return __vm_enough_memory(pages, cap_sys_admin);
1560 /* binprm security operations */
1562 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1564 struct bprm_security_struct *bsec;
1566 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1567 if (!bsec)
1568 return -ENOMEM;
1570 bsec->bprm = bprm;
1571 bsec->sid = SECINITSID_UNLABELED;
1572 bsec->set = 0;
1574 bprm->security = bsec;
1575 return 0;
1578 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1580 struct task_security_struct *tsec;
1581 struct inode *inode = bprm->file->f_dentry->d_inode;
1582 struct inode_security_struct *isec;
1583 struct bprm_security_struct *bsec;
1584 u32 newsid;
1585 struct avc_audit_data ad;
1586 int rc;
1588 rc = secondary_ops->bprm_set_security(bprm);
1589 if (rc)
1590 return rc;
1592 bsec = bprm->security;
1594 if (bsec->set)
1595 return 0;
1597 tsec = current->security;
1598 isec = inode->i_security;
1600 /* Default to the current task SID. */
1601 bsec->sid = tsec->sid;
1603 /* Reset fs, key, and sock SIDs on execve. */
1604 tsec->create_sid = 0;
1605 tsec->keycreate_sid = 0;
1606 tsec->sockcreate_sid = 0;
1608 if (tsec->exec_sid) {
1609 newsid = tsec->exec_sid;
1610 /* Reset exec SID on execve. */
1611 tsec->exec_sid = 0;
1612 } else {
1613 /* Check for a default transition on this program. */
1614 rc = security_transition_sid(tsec->sid, isec->sid,
1615 SECCLASS_PROCESS, &newsid);
1616 if (rc)
1617 return rc;
1620 AVC_AUDIT_DATA_INIT(&ad, FS);
1621 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1622 ad.u.fs.dentry = bprm->file->f_dentry;
1624 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1625 newsid = tsec->sid;
1627 if (tsec->sid == newsid) {
1628 rc = avc_has_perm(tsec->sid, isec->sid,
1629 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1630 if (rc)
1631 return rc;
1632 } else {
1633 /* Check permissions for the transition. */
1634 rc = avc_has_perm(tsec->sid, newsid,
1635 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1636 if (rc)
1637 return rc;
1639 rc = avc_has_perm(newsid, isec->sid,
1640 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1641 if (rc)
1642 return rc;
1644 /* Clear any possibly unsafe personality bits on exec: */
1645 current->personality &= ~PER_CLEAR_ON_SETID;
1647 /* Set the security field to the new SID. */
1648 bsec->sid = newsid;
1651 bsec->set = 1;
1652 return 0;
1655 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1657 return secondary_ops->bprm_check_security(bprm);
1661 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1663 struct task_security_struct *tsec = current->security;
1664 int atsecure = 0;
1666 if (tsec->osid != tsec->sid) {
1667 /* Enable secure mode for SIDs transitions unless
1668 the noatsecure permission is granted between
1669 the two SIDs, i.e. ahp returns 0. */
1670 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1671 SECCLASS_PROCESS,
1672 PROCESS__NOATSECURE, NULL);
1675 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1678 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1680 kfree(bprm->security);
1681 bprm->security = NULL;
1684 extern struct vfsmount *selinuxfs_mount;
1685 extern struct dentry *selinux_null;
1687 /* Derived from fs/exec.c:flush_old_files. */
1688 static inline void flush_unauthorized_files(struct files_struct * files)
1690 struct avc_audit_data ad;
1691 struct file *file, *devnull = NULL;
1692 struct tty_struct *tty;
1693 struct fdtable *fdt;
1694 long j = -1;
1696 mutex_lock(&tty_mutex);
1697 tty = current->signal->tty;
1698 if (tty) {
1699 file_list_lock();
1700 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1701 if (file) {
1702 /* Revalidate access to controlling tty.
1703 Use inode_has_perm on the tty inode directly rather
1704 than using file_has_perm, as this particular open
1705 file may belong to another process and we are only
1706 interested in the inode-based check here. */
1707 struct inode *inode = file->f_dentry->d_inode;
1708 if (inode_has_perm(current, inode,
1709 FILE__READ | FILE__WRITE, NULL)) {
1710 /* Reset controlling tty. */
1711 current->signal->tty = NULL;
1712 current->signal->tty_old_pgrp = 0;
1715 file_list_unlock();
1717 mutex_unlock(&tty_mutex);
1719 /* Revalidate access to inherited open files. */
1721 AVC_AUDIT_DATA_INIT(&ad,FS);
1723 spin_lock(&files->file_lock);
1724 for (;;) {
1725 unsigned long set, i;
1726 int fd;
1728 j++;
1729 i = j * __NFDBITS;
1730 fdt = files_fdtable(files);
1731 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1732 break;
1733 set = fdt->open_fds->fds_bits[j];
1734 if (!set)
1735 continue;
1736 spin_unlock(&files->file_lock);
1737 for ( ; set ; i++,set >>= 1) {
1738 if (set & 1) {
1739 file = fget(i);
1740 if (!file)
1741 continue;
1742 if (file_has_perm(current,
1743 file,
1744 file_to_av(file))) {
1745 sys_close(i);
1746 fd = get_unused_fd();
1747 if (fd != i) {
1748 if (fd >= 0)
1749 put_unused_fd(fd);
1750 fput(file);
1751 continue;
1753 if (devnull) {
1754 get_file(devnull);
1755 } else {
1756 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1757 if (!devnull) {
1758 put_unused_fd(fd);
1759 fput(file);
1760 continue;
1763 fd_install(fd, devnull);
1765 fput(file);
1768 spin_lock(&files->file_lock);
1771 spin_unlock(&files->file_lock);
1774 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1776 struct task_security_struct *tsec;
1777 struct bprm_security_struct *bsec;
1778 u32 sid;
1779 int rc;
1781 secondary_ops->bprm_apply_creds(bprm, unsafe);
1783 tsec = current->security;
1785 bsec = bprm->security;
1786 sid = bsec->sid;
1788 tsec->osid = tsec->sid;
1789 bsec->unsafe = 0;
1790 if (tsec->sid != sid) {
1791 /* Check for shared state. If not ok, leave SID
1792 unchanged and kill. */
1793 if (unsafe & LSM_UNSAFE_SHARE) {
1794 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1795 PROCESS__SHARE, NULL);
1796 if (rc) {
1797 bsec->unsafe = 1;
1798 return;
1802 /* Check for ptracing, and update the task SID if ok.
1803 Otherwise, leave SID unchanged and kill. */
1804 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1805 rc = avc_has_perm(tsec->ptrace_sid, sid,
1806 SECCLASS_PROCESS, PROCESS__PTRACE,
1807 NULL);
1808 if (rc) {
1809 bsec->unsafe = 1;
1810 return;
1813 tsec->sid = sid;
1818 * called after apply_creds without the task lock held
1820 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1822 struct task_security_struct *tsec;
1823 struct rlimit *rlim, *initrlim;
1824 struct itimerval itimer;
1825 struct bprm_security_struct *bsec;
1826 int rc, i;
1828 tsec = current->security;
1829 bsec = bprm->security;
1831 if (bsec->unsafe) {
1832 force_sig_specific(SIGKILL, current);
1833 return;
1835 if (tsec->osid == tsec->sid)
1836 return;
1838 /* Close files for which the new task SID is not authorized. */
1839 flush_unauthorized_files(current->files);
1841 /* Check whether the new SID can inherit signal state
1842 from the old SID. If not, clear itimers to avoid
1843 subsequent signal generation and flush and unblock
1844 signals. This must occur _after_ the task SID has
1845 been updated so that any kill done after the flush
1846 will be checked against the new SID. */
1847 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1848 PROCESS__SIGINH, NULL);
1849 if (rc) {
1850 memset(&itimer, 0, sizeof itimer);
1851 for (i = 0; i < 3; i++)
1852 do_setitimer(i, &itimer, NULL);
1853 flush_signals(current);
1854 spin_lock_irq(&current->sighand->siglock);
1855 flush_signal_handlers(current, 1);
1856 sigemptyset(&current->blocked);
1857 recalc_sigpending();
1858 spin_unlock_irq(&current->sighand->siglock);
1861 /* Check whether the new SID can inherit resource limits
1862 from the old SID. If not, reset all soft limits to
1863 the lower of the current task's hard limit and the init
1864 task's soft limit. Note that the setting of hard limits
1865 (even to lower them) can be controlled by the setrlimit
1866 check. The inclusion of the init task's soft limit into
1867 the computation is to avoid resetting soft limits higher
1868 than the default soft limit for cases where the default
1869 is lower than the hard limit, e.g. RLIMIT_CORE or
1870 RLIMIT_STACK.*/
1871 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1872 PROCESS__RLIMITINH, NULL);
1873 if (rc) {
1874 for (i = 0; i < RLIM_NLIMITS; i++) {
1875 rlim = current->signal->rlim + i;
1876 initrlim = init_task.signal->rlim+i;
1877 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1879 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1881 * This will cause RLIMIT_CPU calculations
1882 * to be refigured.
1884 current->it_prof_expires = jiffies_to_cputime(1);
1888 /* Wake up the parent if it is waiting so that it can
1889 recheck wait permission to the new task SID. */
1890 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1893 /* superblock security operations */
1895 static int selinux_sb_alloc_security(struct super_block *sb)
1897 return superblock_alloc_security(sb);
1900 static void selinux_sb_free_security(struct super_block *sb)
1902 superblock_free_security(sb);
1905 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1907 if (plen > olen)
1908 return 0;
1910 return !memcmp(prefix, option, plen);
1913 static inline int selinux_option(char *option, int len)
1915 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1916 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1917 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1918 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1921 static inline void take_option(char **to, char *from, int *first, int len)
1923 if (!*first) {
1924 **to = ',';
1925 *to += 1;
1926 } else
1927 *first = 0;
1928 memcpy(*to, from, len);
1929 *to += len;
1932 static inline void take_selinux_option(char **to, char *from, int *first,
1933 int len)
1935 int current_size = 0;
1937 if (!*first) {
1938 **to = '|';
1939 *to += 1;
1941 else
1942 *first = 0;
1944 while (current_size < len) {
1945 if (*from != '"') {
1946 **to = *from;
1947 *to += 1;
1949 from += 1;
1950 current_size += 1;
1954 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1956 int fnosec, fsec, rc = 0;
1957 char *in_save, *in_curr, *in_end;
1958 char *sec_curr, *nosec_save, *nosec;
1959 int open_quote = 0;
1961 in_curr = orig;
1962 sec_curr = copy;
1964 /* Binary mount data: just copy */
1965 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1966 copy_page(sec_curr, in_curr);
1967 goto out;
1970 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1971 if (!nosec) {
1972 rc = -ENOMEM;
1973 goto out;
1976 nosec_save = nosec;
1977 fnosec = fsec = 1;
1978 in_save = in_end = orig;
1980 do {
1981 if (*in_end == '"')
1982 open_quote = !open_quote;
1983 if ((*in_end == ',' && open_quote == 0) ||
1984 *in_end == '\0') {
1985 int len = in_end - in_curr;
1987 if (selinux_option(in_curr, len))
1988 take_selinux_option(&sec_curr, in_curr, &fsec, len);
1989 else
1990 take_option(&nosec, in_curr, &fnosec, len);
1992 in_curr = in_end + 1;
1994 } while (*in_end++);
1996 strcpy(in_save, nosec_save);
1997 free_page((unsigned long)nosec_save);
1998 out:
1999 return rc;
2002 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2004 struct avc_audit_data ad;
2005 int rc;
2007 rc = superblock_doinit(sb, data);
2008 if (rc)
2009 return rc;
2011 AVC_AUDIT_DATA_INIT(&ad,FS);
2012 ad.u.fs.dentry = sb->s_root;
2013 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2016 static int selinux_sb_statfs(struct dentry *dentry)
2018 struct avc_audit_data ad;
2020 AVC_AUDIT_DATA_INIT(&ad,FS);
2021 ad.u.fs.dentry = dentry->d_sb->s_root;
2022 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2025 static int selinux_mount(char * dev_name,
2026 struct nameidata *nd,
2027 char * type,
2028 unsigned long flags,
2029 void * data)
2031 int rc;
2033 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2034 if (rc)
2035 return rc;
2037 if (flags & MS_REMOUNT)
2038 return superblock_has_perm(current, nd->mnt->mnt_sb,
2039 FILESYSTEM__REMOUNT, NULL);
2040 else
2041 return dentry_has_perm(current, nd->mnt, nd->dentry,
2042 FILE__MOUNTON);
2045 static int selinux_umount(struct vfsmount *mnt, int flags)
2047 int rc;
2049 rc = secondary_ops->sb_umount(mnt, flags);
2050 if (rc)
2051 return rc;
2053 return superblock_has_perm(current,mnt->mnt_sb,
2054 FILESYSTEM__UNMOUNT,NULL);
2057 /* inode security operations */
2059 static int selinux_inode_alloc_security(struct inode *inode)
2061 return inode_alloc_security(inode);
2064 static void selinux_inode_free_security(struct inode *inode)
2066 inode_free_security(inode);
2069 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2070 char **name, void **value,
2071 size_t *len)
2073 struct task_security_struct *tsec;
2074 struct inode_security_struct *dsec;
2075 struct superblock_security_struct *sbsec;
2076 u32 newsid, clen;
2077 int rc;
2078 char *namep = NULL, *context;
2080 tsec = current->security;
2081 dsec = dir->i_security;
2082 sbsec = dir->i_sb->s_security;
2084 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2085 newsid = tsec->create_sid;
2086 } else {
2087 rc = security_transition_sid(tsec->sid, dsec->sid,
2088 inode_mode_to_security_class(inode->i_mode),
2089 &newsid);
2090 if (rc) {
2091 printk(KERN_WARNING "%s: "
2092 "security_transition_sid failed, rc=%d (dev=%s "
2093 "ino=%ld)\n",
2094 __FUNCTION__,
2095 -rc, inode->i_sb->s_id, inode->i_ino);
2096 return rc;
2100 /* Possibly defer initialization to selinux_complete_init. */
2101 if (sbsec->initialized) {
2102 struct inode_security_struct *isec = inode->i_security;
2103 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2104 isec->sid = newsid;
2105 isec->initialized = 1;
2108 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2109 return -EOPNOTSUPP;
2111 if (name) {
2112 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2113 if (!namep)
2114 return -ENOMEM;
2115 *name = namep;
2118 if (value && len) {
2119 rc = security_sid_to_context(newsid, &context, &clen);
2120 if (rc) {
2121 kfree(namep);
2122 return rc;
2124 *value = context;
2125 *len = clen;
2128 return 0;
2131 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2133 return may_create(dir, dentry, SECCLASS_FILE);
2136 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2138 int rc;
2140 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2141 if (rc)
2142 return rc;
2143 return may_link(dir, old_dentry, MAY_LINK);
2146 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2148 int rc;
2150 rc = secondary_ops->inode_unlink(dir, dentry);
2151 if (rc)
2152 return rc;
2153 return may_link(dir, dentry, MAY_UNLINK);
2156 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2158 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2161 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2163 return may_create(dir, dentry, SECCLASS_DIR);
2166 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2168 return may_link(dir, dentry, MAY_RMDIR);
2171 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2173 int rc;
2175 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2176 if (rc)
2177 return rc;
2179 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2182 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2183 struct inode *new_inode, struct dentry *new_dentry)
2185 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2188 static int selinux_inode_readlink(struct dentry *dentry)
2190 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2193 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2195 int rc;
2197 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2198 if (rc)
2199 return rc;
2200 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2203 static int selinux_inode_permission(struct inode *inode, int mask,
2204 struct nameidata *nd)
2206 int rc;
2208 rc = secondary_ops->inode_permission(inode, mask, nd);
2209 if (rc)
2210 return rc;
2212 if (!mask) {
2213 /* No permission to check. Existence test. */
2214 return 0;
2217 return inode_has_perm(current, inode,
2218 file_mask_to_av(inode->i_mode, mask), NULL);
2221 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2223 int rc;
2225 rc = secondary_ops->inode_setattr(dentry, iattr);
2226 if (rc)
2227 return rc;
2229 if (iattr->ia_valid & ATTR_FORCE)
2230 return 0;
2232 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2233 ATTR_ATIME_SET | ATTR_MTIME_SET))
2234 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2236 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2239 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2241 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2244 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2246 struct task_security_struct *tsec = current->security;
2247 struct inode *inode = dentry->d_inode;
2248 struct inode_security_struct *isec = inode->i_security;
2249 struct superblock_security_struct *sbsec;
2250 struct avc_audit_data ad;
2251 u32 newsid;
2252 int rc = 0;
2254 if (strcmp(name, XATTR_NAME_SELINUX)) {
2255 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2256 sizeof XATTR_SECURITY_PREFIX - 1) &&
2257 !capable(CAP_SYS_ADMIN)) {
2258 /* A different attribute in the security namespace.
2259 Restrict to administrator. */
2260 return -EPERM;
2263 /* Not an attribute we recognize, so just check the
2264 ordinary setattr permission. */
2265 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2268 sbsec = inode->i_sb->s_security;
2269 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2270 return -EOPNOTSUPP;
2272 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2273 return -EPERM;
2275 AVC_AUDIT_DATA_INIT(&ad,FS);
2276 ad.u.fs.dentry = dentry;
2278 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2279 FILE__RELABELFROM, &ad);
2280 if (rc)
2281 return rc;
2283 rc = security_context_to_sid(value, size, &newsid);
2284 if (rc)
2285 return rc;
2287 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2288 FILE__RELABELTO, &ad);
2289 if (rc)
2290 return rc;
2292 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2293 isec->sclass);
2294 if (rc)
2295 return rc;
2297 return avc_has_perm(newsid,
2298 sbsec->sid,
2299 SECCLASS_FILESYSTEM,
2300 FILESYSTEM__ASSOCIATE,
2301 &ad);
2304 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2305 void *value, size_t size, int flags)
2307 struct inode *inode = dentry->d_inode;
2308 struct inode_security_struct *isec = inode->i_security;
2309 u32 newsid;
2310 int rc;
2312 if (strcmp(name, XATTR_NAME_SELINUX)) {
2313 /* Not an attribute we recognize, so nothing to do. */
2314 return;
2317 rc = security_context_to_sid(value, size, &newsid);
2318 if (rc) {
2319 printk(KERN_WARNING "%s: unable to obtain SID for context "
2320 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2321 return;
2324 isec->sid = newsid;
2325 return;
2328 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2330 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2333 static int selinux_inode_listxattr (struct dentry *dentry)
2335 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2338 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2340 if (strcmp(name, XATTR_NAME_SELINUX)) {
2341 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2342 sizeof XATTR_SECURITY_PREFIX - 1) &&
2343 !capable(CAP_SYS_ADMIN)) {
2344 /* A different attribute in the security namespace.
2345 Restrict to administrator. */
2346 return -EPERM;
2349 /* Not an attribute we recognize, so just check the
2350 ordinary setattr permission. Might want a separate
2351 permission for removexattr. */
2352 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2355 /* No one is allowed to remove a SELinux security label.
2356 You can change the label, but all data must be labeled. */
2357 return -EACCES;
2360 static const char *selinux_inode_xattr_getsuffix(void)
2362 return XATTR_SELINUX_SUFFIX;
2366 * Copy the in-core inode security context value to the user. If the
2367 * getxattr() prior to this succeeded, check to see if we need to
2368 * canonicalize the value to be finally returned to the user.
2370 * Permission check is handled by selinux_inode_getxattr hook.
2372 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2374 struct inode_security_struct *isec = inode->i_security;
2376 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2377 return -EOPNOTSUPP;
2379 return selinux_getsecurity(isec->sid, buffer, size);
2382 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2383 const void *value, size_t size, int flags)
2385 struct inode_security_struct *isec = inode->i_security;
2386 u32 newsid;
2387 int rc;
2389 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2390 return -EOPNOTSUPP;
2392 if (!value || !size)
2393 return -EACCES;
2395 rc = security_context_to_sid((void*)value, size, &newsid);
2396 if (rc)
2397 return rc;
2399 isec->sid = newsid;
2400 return 0;
2403 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2405 const int len = sizeof(XATTR_NAME_SELINUX);
2406 if (buffer && len <= buffer_size)
2407 memcpy(buffer, XATTR_NAME_SELINUX, len);
2408 return len;
2411 /* file security operations */
2413 static int selinux_file_permission(struct file *file, int mask)
2415 int rc;
2416 struct inode *inode = file->f_dentry->d_inode;
2418 if (!mask) {
2419 /* No permission to check. Existence test. */
2420 return 0;
2423 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2424 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2425 mask |= MAY_APPEND;
2427 rc = file_has_perm(current, file,
2428 file_mask_to_av(inode->i_mode, mask));
2429 if (rc)
2430 return rc;
2432 return selinux_netlbl_inode_permission(inode, mask);
2435 static int selinux_file_alloc_security(struct file *file)
2437 return file_alloc_security(file);
2440 static void selinux_file_free_security(struct file *file)
2442 file_free_security(file);
2445 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2446 unsigned long arg)
2448 int error = 0;
2450 switch (cmd) {
2451 case FIONREAD:
2452 /* fall through */
2453 case FIBMAP:
2454 /* fall through */
2455 case FIGETBSZ:
2456 /* fall through */
2457 case EXT2_IOC_GETFLAGS:
2458 /* fall through */
2459 case EXT2_IOC_GETVERSION:
2460 error = file_has_perm(current, file, FILE__GETATTR);
2461 break;
2463 case EXT2_IOC_SETFLAGS:
2464 /* fall through */
2465 case EXT2_IOC_SETVERSION:
2466 error = file_has_perm(current, file, FILE__SETATTR);
2467 break;
2469 /* sys_ioctl() checks */
2470 case FIONBIO:
2471 /* fall through */
2472 case FIOASYNC:
2473 error = file_has_perm(current, file, 0);
2474 break;
2476 case KDSKBENT:
2477 case KDSKBSENT:
2478 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2479 break;
2481 /* default case assumes that the command will go
2482 * to the file's ioctl() function.
2484 default:
2485 error = file_has_perm(current, file, FILE__IOCTL);
2488 return error;
2491 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2493 #ifndef CONFIG_PPC32
2494 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2496 * We are making executable an anonymous mapping or a
2497 * private file mapping that will also be writable.
2498 * This has an additional check.
2500 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2501 if (rc)
2502 return rc;
2504 #endif
2506 if (file) {
2507 /* read access is always possible with a mapping */
2508 u32 av = FILE__READ;
2510 /* write access only matters if the mapping is shared */
2511 if (shared && (prot & PROT_WRITE))
2512 av |= FILE__WRITE;
2514 if (prot & PROT_EXEC)
2515 av |= FILE__EXECUTE;
2517 return file_has_perm(current, file, av);
2519 return 0;
2522 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2523 unsigned long prot, unsigned long flags)
2525 int rc;
2527 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2528 if (rc)
2529 return rc;
2531 if (selinux_checkreqprot)
2532 prot = reqprot;
2534 return file_map_prot_check(file, prot,
2535 (flags & MAP_TYPE) == MAP_SHARED);
2538 static int selinux_file_mprotect(struct vm_area_struct *vma,
2539 unsigned long reqprot,
2540 unsigned long prot)
2542 int rc;
2544 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2545 if (rc)
2546 return rc;
2548 if (selinux_checkreqprot)
2549 prot = reqprot;
2551 #ifndef CONFIG_PPC32
2552 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2553 rc = 0;
2554 if (vma->vm_start >= vma->vm_mm->start_brk &&
2555 vma->vm_end <= vma->vm_mm->brk) {
2556 rc = task_has_perm(current, current,
2557 PROCESS__EXECHEAP);
2558 } else if (!vma->vm_file &&
2559 vma->vm_start <= vma->vm_mm->start_stack &&
2560 vma->vm_end >= vma->vm_mm->start_stack) {
2561 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2562 } else if (vma->vm_file && vma->anon_vma) {
2564 * We are making executable a file mapping that has
2565 * had some COW done. Since pages might have been
2566 * written, check ability to execute the possibly
2567 * modified content. This typically should only
2568 * occur for text relocations.
2570 rc = file_has_perm(current, vma->vm_file,
2571 FILE__EXECMOD);
2573 if (rc)
2574 return rc;
2576 #endif
2578 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2581 static int selinux_file_lock(struct file *file, unsigned int cmd)
2583 return file_has_perm(current, file, FILE__LOCK);
2586 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2587 unsigned long arg)
2589 int err = 0;
2591 switch (cmd) {
2592 case F_SETFL:
2593 if (!file->f_dentry || !file->f_dentry->d_inode) {
2594 err = -EINVAL;
2595 break;
2598 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2599 err = file_has_perm(current, file,FILE__WRITE);
2600 break;
2602 /* fall through */
2603 case F_SETOWN:
2604 case F_SETSIG:
2605 case F_GETFL:
2606 case F_GETOWN:
2607 case F_GETSIG:
2608 /* Just check FD__USE permission */
2609 err = file_has_perm(current, file, 0);
2610 break;
2611 case F_GETLK:
2612 case F_SETLK:
2613 case F_SETLKW:
2614 #if BITS_PER_LONG == 32
2615 case F_GETLK64:
2616 case F_SETLK64:
2617 case F_SETLKW64:
2618 #endif
2619 if (!file->f_dentry || !file->f_dentry->d_inode) {
2620 err = -EINVAL;
2621 break;
2623 err = file_has_perm(current, file, FILE__LOCK);
2624 break;
2627 return err;
2630 static int selinux_file_set_fowner(struct file *file)
2632 struct task_security_struct *tsec;
2633 struct file_security_struct *fsec;
2635 tsec = current->security;
2636 fsec = file->f_security;
2637 fsec->fown_sid = tsec->sid;
2639 return 0;
2642 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2643 struct fown_struct *fown, int signum)
2645 struct file *file;
2646 u32 perm;
2647 struct task_security_struct *tsec;
2648 struct file_security_struct *fsec;
2650 /* struct fown_struct is never outside the context of a struct file */
2651 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2653 tsec = tsk->security;
2654 fsec = file->f_security;
2656 if (!signum)
2657 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2658 else
2659 perm = signal_to_av(signum);
2661 return avc_has_perm(fsec->fown_sid, tsec->sid,
2662 SECCLASS_PROCESS, perm, NULL);
2665 static int selinux_file_receive(struct file *file)
2667 return file_has_perm(current, file, file_to_av(file));
2670 /* task security operations */
2672 static int selinux_task_create(unsigned long clone_flags)
2674 int rc;
2676 rc = secondary_ops->task_create(clone_flags);
2677 if (rc)
2678 return rc;
2680 return task_has_perm(current, current, PROCESS__FORK);
2683 static int selinux_task_alloc_security(struct task_struct *tsk)
2685 struct task_security_struct *tsec1, *tsec2;
2686 int rc;
2688 tsec1 = current->security;
2690 rc = task_alloc_security(tsk);
2691 if (rc)
2692 return rc;
2693 tsec2 = tsk->security;
2695 tsec2->osid = tsec1->osid;
2696 tsec2->sid = tsec1->sid;
2698 /* Retain the exec, fs, key, and sock SIDs across fork */
2699 tsec2->exec_sid = tsec1->exec_sid;
2700 tsec2->create_sid = tsec1->create_sid;
2701 tsec2->keycreate_sid = tsec1->keycreate_sid;
2702 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2704 /* Retain ptracer SID across fork, if any.
2705 This will be reset by the ptrace hook upon any
2706 subsequent ptrace_attach operations. */
2707 tsec2->ptrace_sid = tsec1->ptrace_sid;
2709 return 0;
2712 static void selinux_task_free_security(struct task_struct *tsk)
2714 task_free_security(tsk);
2717 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2719 /* Since setuid only affects the current process, and
2720 since the SELinux controls are not based on the Linux
2721 identity attributes, SELinux does not need to control
2722 this operation. However, SELinux does control the use
2723 of the CAP_SETUID and CAP_SETGID capabilities using the
2724 capable hook. */
2725 return 0;
2728 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2730 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2733 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2735 /* See the comment for setuid above. */
2736 return 0;
2739 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2741 return task_has_perm(current, p, PROCESS__SETPGID);
2744 static int selinux_task_getpgid(struct task_struct *p)
2746 return task_has_perm(current, p, PROCESS__GETPGID);
2749 static int selinux_task_getsid(struct task_struct *p)
2751 return task_has_perm(current, p, PROCESS__GETSESSION);
2754 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2756 selinux_get_task_sid(p, secid);
2759 static int selinux_task_setgroups(struct group_info *group_info)
2761 /* See the comment for setuid above. */
2762 return 0;
2765 static int selinux_task_setnice(struct task_struct *p, int nice)
2767 int rc;
2769 rc = secondary_ops->task_setnice(p, nice);
2770 if (rc)
2771 return rc;
2773 return task_has_perm(current,p, PROCESS__SETSCHED);
2776 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2778 return task_has_perm(current, p, PROCESS__SETSCHED);
2781 static int selinux_task_getioprio(struct task_struct *p)
2783 return task_has_perm(current, p, PROCESS__GETSCHED);
2786 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2788 struct rlimit *old_rlim = current->signal->rlim + resource;
2789 int rc;
2791 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2792 if (rc)
2793 return rc;
2795 /* Control the ability to change the hard limit (whether
2796 lowering or raising it), so that the hard limit can
2797 later be used as a safe reset point for the soft limit
2798 upon context transitions. See selinux_bprm_apply_creds. */
2799 if (old_rlim->rlim_max != new_rlim->rlim_max)
2800 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2802 return 0;
2805 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2807 return task_has_perm(current, p, PROCESS__SETSCHED);
2810 static int selinux_task_getscheduler(struct task_struct *p)
2812 return task_has_perm(current, p, PROCESS__GETSCHED);
2815 static int selinux_task_movememory(struct task_struct *p)
2817 return task_has_perm(current, p, PROCESS__SETSCHED);
2820 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2821 int sig, u32 secid)
2823 u32 perm;
2824 int rc;
2825 struct task_security_struct *tsec;
2827 rc = secondary_ops->task_kill(p, info, sig, secid);
2828 if (rc)
2829 return rc;
2831 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2832 return 0;
2834 if (!sig)
2835 perm = PROCESS__SIGNULL; /* null signal; existence test */
2836 else
2837 perm = signal_to_av(sig);
2838 tsec = p->security;
2839 if (secid)
2840 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2841 else
2842 rc = task_has_perm(current, p, perm);
2843 return rc;
2846 static int selinux_task_prctl(int option,
2847 unsigned long arg2,
2848 unsigned long arg3,
2849 unsigned long arg4,
2850 unsigned long arg5)
2852 /* The current prctl operations do not appear to require
2853 any SELinux controls since they merely observe or modify
2854 the state of the current process. */
2855 return 0;
2858 static int selinux_task_wait(struct task_struct *p)
2860 u32 perm;
2862 perm = signal_to_av(p->exit_signal);
2864 return task_has_perm(p, current, perm);
2867 static void selinux_task_reparent_to_init(struct task_struct *p)
2869 struct task_security_struct *tsec;
2871 secondary_ops->task_reparent_to_init(p);
2873 tsec = p->security;
2874 tsec->osid = tsec->sid;
2875 tsec->sid = SECINITSID_KERNEL;
2876 return;
2879 static void selinux_task_to_inode(struct task_struct *p,
2880 struct inode *inode)
2882 struct task_security_struct *tsec = p->security;
2883 struct inode_security_struct *isec = inode->i_security;
2885 isec->sid = tsec->sid;
2886 isec->initialized = 1;
2887 return;
2890 /* Returns error only if unable to parse addresses */
2891 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2893 int offset, ihlen, ret = -EINVAL;
2894 struct iphdr _iph, *ih;
2896 offset = skb->nh.raw - skb->data;
2897 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2898 if (ih == NULL)
2899 goto out;
2901 ihlen = ih->ihl * 4;
2902 if (ihlen < sizeof(_iph))
2903 goto out;
2905 ad->u.net.v4info.saddr = ih->saddr;
2906 ad->u.net.v4info.daddr = ih->daddr;
2907 ret = 0;
2909 switch (ih->protocol) {
2910 case IPPROTO_TCP: {
2911 struct tcphdr _tcph, *th;
2913 if (ntohs(ih->frag_off) & IP_OFFSET)
2914 break;
2916 offset += ihlen;
2917 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2918 if (th == NULL)
2919 break;
2921 ad->u.net.sport = th->source;
2922 ad->u.net.dport = th->dest;
2923 break;
2926 case IPPROTO_UDP: {
2927 struct udphdr _udph, *uh;
2929 if (ntohs(ih->frag_off) & IP_OFFSET)
2930 break;
2932 offset += ihlen;
2933 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2934 if (uh == NULL)
2935 break;
2937 ad->u.net.sport = uh->source;
2938 ad->u.net.dport = uh->dest;
2939 break;
2942 default:
2943 break;
2945 out:
2946 return ret;
2949 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2951 /* Returns error only if unable to parse addresses */
2952 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2954 u8 nexthdr;
2955 int ret = -EINVAL, offset;
2956 struct ipv6hdr _ipv6h, *ip6;
2958 offset = skb->nh.raw - skb->data;
2959 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2960 if (ip6 == NULL)
2961 goto out;
2963 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2964 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2965 ret = 0;
2967 nexthdr = ip6->nexthdr;
2968 offset += sizeof(_ipv6h);
2969 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2970 if (offset < 0)
2971 goto out;
2973 switch (nexthdr) {
2974 case IPPROTO_TCP: {
2975 struct tcphdr _tcph, *th;
2977 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2978 if (th == NULL)
2979 break;
2981 ad->u.net.sport = th->source;
2982 ad->u.net.dport = th->dest;
2983 break;
2986 case IPPROTO_UDP: {
2987 struct udphdr _udph, *uh;
2989 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2990 if (uh == NULL)
2991 break;
2993 ad->u.net.sport = uh->source;
2994 ad->u.net.dport = uh->dest;
2995 break;
2998 /* includes fragments */
2999 default:
3000 break;
3002 out:
3003 return ret;
3006 #endif /* IPV6 */
3008 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3009 char **addrp, int *len, int src)
3011 int ret = 0;
3013 switch (ad->u.net.family) {
3014 case PF_INET:
3015 ret = selinux_parse_skb_ipv4(skb, ad);
3016 if (ret || !addrp)
3017 break;
3018 *len = 4;
3019 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3020 &ad->u.net.v4info.daddr);
3021 break;
3023 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3024 case PF_INET6:
3025 ret = selinux_parse_skb_ipv6(skb, ad);
3026 if (ret || !addrp)
3027 break;
3028 *len = 16;
3029 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3030 &ad->u.net.v6info.daddr);
3031 break;
3032 #endif /* IPV6 */
3033 default:
3034 break;
3037 return ret;
3040 /* socket security operations */
3041 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3042 u32 perms)
3044 struct inode_security_struct *isec;
3045 struct task_security_struct *tsec;
3046 struct avc_audit_data ad;
3047 int err = 0;
3049 tsec = task->security;
3050 isec = SOCK_INODE(sock)->i_security;
3052 if (isec->sid == SECINITSID_KERNEL)
3053 goto out;
3055 AVC_AUDIT_DATA_INIT(&ad,NET);
3056 ad.u.net.sk = sock->sk;
3057 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3059 out:
3060 return err;
3063 static int selinux_socket_create(int family, int type,
3064 int protocol, int kern)
3066 int err = 0;
3067 struct task_security_struct *tsec;
3068 u32 newsid;
3070 if (kern)
3071 goto out;
3073 tsec = current->security;
3074 newsid = tsec->sockcreate_sid ? : tsec->sid;
3075 err = avc_has_perm(tsec->sid, newsid,
3076 socket_type_to_security_class(family, type,
3077 protocol), SOCKET__CREATE, NULL);
3079 out:
3080 return err;
3083 static int selinux_socket_post_create(struct socket *sock, int family,
3084 int type, int protocol, int kern)
3086 int err = 0;
3087 struct inode_security_struct *isec;
3088 struct task_security_struct *tsec;
3089 struct sk_security_struct *sksec;
3090 u32 newsid;
3092 isec = SOCK_INODE(sock)->i_security;
3094 tsec = current->security;
3095 newsid = tsec->sockcreate_sid ? : tsec->sid;
3096 isec->sclass = socket_type_to_security_class(family, type, protocol);
3097 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3098 isec->initialized = 1;
3100 if (sock->sk) {
3101 sksec = sock->sk->sk_security;
3102 sksec->sid = isec->sid;
3103 err = selinux_netlbl_socket_post_create(sock,
3104 family,
3105 isec->sid);
3108 return err;
3111 /* Range of port numbers used to automatically bind.
3112 Need to determine whether we should perform a name_bind
3113 permission check between the socket and the port number. */
3114 #define ip_local_port_range_0 sysctl_local_port_range[0]
3115 #define ip_local_port_range_1 sysctl_local_port_range[1]
3117 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3119 u16 family;
3120 int err;
3122 err = socket_has_perm(current, sock, SOCKET__BIND);
3123 if (err)
3124 goto out;
3127 * If PF_INET or PF_INET6, check name_bind permission for the port.
3128 * Multiple address binding for SCTP is not supported yet: we just
3129 * check the first address now.
3131 family = sock->sk->sk_family;
3132 if (family == PF_INET || family == PF_INET6) {
3133 char *addrp;
3134 struct inode_security_struct *isec;
3135 struct task_security_struct *tsec;
3136 struct avc_audit_data ad;
3137 struct sockaddr_in *addr4 = NULL;
3138 struct sockaddr_in6 *addr6 = NULL;
3139 unsigned short snum;
3140 struct sock *sk = sock->sk;
3141 u32 sid, node_perm, addrlen;
3143 tsec = current->security;
3144 isec = SOCK_INODE(sock)->i_security;
3146 if (family == PF_INET) {
3147 addr4 = (struct sockaddr_in *)address;
3148 snum = ntohs(addr4->sin_port);
3149 addrlen = sizeof(addr4->sin_addr.s_addr);
3150 addrp = (char *)&addr4->sin_addr.s_addr;
3151 } else {
3152 addr6 = (struct sockaddr_in6 *)address;
3153 snum = ntohs(addr6->sin6_port);
3154 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3155 addrp = (char *)&addr6->sin6_addr.s6_addr;
3158 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3159 snum > ip_local_port_range_1)) {
3160 err = security_port_sid(sk->sk_family, sk->sk_type,
3161 sk->sk_protocol, snum, &sid);
3162 if (err)
3163 goto out;
3164 AVC_AUDIT_DATA_INIT(&ad,NET);
3165 ad.u.net.sport = htons(snum);
3166 ad.u.net.family = family;
3167 err = avc_has_perm(isec->sid, sid,
3168 isec->sclass,
3169 SOCKET__NAME_BIND, &ad);
3170 if (err)
3171 goto out;
3174 switch(isec->sclass) {
3175 case SECCLASS_TCP_SOCKET:
3176 node_perm = TCP_SOCKET__NODE_BIND;
3177 break;
3179 case SECCLASS_UDP_SOCKET:
3180 node_perm = UDP_SOCKET__NODE_BIND;
3181 break;
3183 default:
3184 node_perm = RAWIP_SOCKET__NODE_BIND;
3185 break;
3188 err = security_node_sid(family, addrp, addrlen, &sid);
3189 if (err)
3190 goto out;
3192 AVC_AUDIT_DATA_INIT(&ad,NET);
3193 ad.u.net.sport = htons(snum);
3194 ad.u.net.family = family;
3196 if (family == PF_INET)
3197 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3198 else
3199 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3201 err = avc_has_perm(isec->sid, sid,
3202 isec->sclass, node_perm, &ad);
3203 if (err)
3204 goto out;
3206 out:
3207 return err;
3210 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3212 struct inode_security_struct *isec;
3213 int err;
3215 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3216 if (err)
3217 return err;
3220 * If a TCP socket, check name_connect permission for the port.
3222 isec = SOCK_INODE(sock)->i_security;
3223 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3224 struct sock *sk = sock->sk;
3225 struct avc_audit_data ad;
3226 struct sockaddr_in *addr4 = NULL;
3227 struct sockaddr_in6 *addr6 = NULL;
3228 unsigned short snum;
3229 u32 sid;
3231 if (sk->sk_family == PF_INET) {
3232 addr4 = (struct sockaddr_in *)address;
3233 if (addrlen < sizeof(struct sockaddr_in))
3234 return -EINVAL;
3235 snum = ntohs(addr4->sin_port);
3236 } else {
3237 addr6 = (struct sockaddr_in6 *)address;
3238 if (addrlen < SIN6_LEN_RFC2133)
3239 return -EINVAL;
3240 snum = ntohs(addr6->sin6_port);
3243 err = security_port_sid(sk->sk_family, sk->sk_type,
3244 sk->sk_protocol, snum, &sid);
3245 if (err)
3246 goto out;
3248 AVC_AUDIT_DATA_INIT(&ad,NET);
3249 ad.u.net.dport = htons(snum);
3250 ad.u.net.family = sk->sk_family;
3251 err = avc_has_perm(isec->sid, sid, isec->sclass,
3252 TCP_SOCKET__NAME_CONNECT, &ad);
3253 if (err)
3254 goto out;
3257 out:
3258 return err;
3261 static int selinux_socket_listen(struct socket *sock, int backlog)
3263 return socket_has_perm(current, sock, SOCKET__LISTEN);
3266 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3268 int err;
3269 struct inode_security_struct *isec;
3270 struct inode_security_struct *newisec;
3272 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3273 if (err)
3274 return err;
3276 newisec = SOCK_INODE(newsock)->i_security;
3278 isec = SOCK_INODE(sock)->i_security;
3279 newisec->sclass = isec->sclass;
3280 newisec->sid = isec->sid;
3281 newisec->initialized = 1;
3283 return 0;
3286 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3287 int size)
3289 int rc;
3291 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3292 if (rc)
3293 return rc;
3295 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3298 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3299 int size, int flags)
3301 return socket_has_perm(current, sock, SOCKET__READ);
3304 static int selinux_socket_getsockname(struct socket *sock)
3306 return socket_has_perm(current, sock, SOCKET__GETATTR);
3309 static int selinux_socket_getpeername(struct socket *sock)
3311 return socket_has_perm(current, sock, SOCKET__GETATTR);
3314 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3316 int err;
3318 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3319 if (err)
3320 return err;
3322 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3325 static int selinux_socket_getsockopt(struct socket *sock, int level,
3326 int optname)
3328 return socket_has_perm(current, sock, SOCKET__GETOPT);
3331 static int selinux_socket_shutdown(struct socket *sock, int how)
3333 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3336 static int selinux_socket_unix_stream_connect(struct socket *sock,
3337 struct socket *other,
3338 struct sock *newsk)
3340 struct sk_security_struct *ssec;
3341 struct inode_security_struct *isec;
3342 struct inode_security_struct *other_isec;
3343 struct avc_audit_data ad;
3344 int err;
3346 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3347 if (err)
3348 return err;
3350 isec = SOCK_INODE(sock)->i_security;
3351 other_isec = SOCK_INODE(other)->i_security;
3353 AVC_AUDIT_DATA_INIT(&ad,NET);
3354 ad.u.net.sk = other->sk;
3356 err = avc_has_perm(isec->sid, other_isec->sid,
3357 isec->sclass,
3358 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3359 if (err)
3360 return err;
3362 /* connecting socket */
3363 ssec = sock->sk->sk_security;
3364 ssec->peer_sid = other_isec->sid;
3366 /* server child socket */
3367 ssec = newsk->sk_security;
3368 ssec->peer_sid = isec->sid;
3369 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3371 return err;
3374 static int selinux_socket_unix_may_send(struct socket *sock,
3375 struct socket *other)
3377 struct inode_security_struct *isec;
3378 struct inode_security_struct *other_isec;
3379 struct avc_audit_data ad;
3380 int err;
3382 isec = SOCK_INODE(sock)->i_security;
3383 other_isec = SOCK_INODE(other)->i_security;
3385 AVC_AUDIT_DATA_INIT(&ad,NET);
3386 ad.u.net.sk = other->sk;
3388 err = avc_has_perm(isec->sid, other_isec->sid,
3389 isec->sclass, SOCKET__SENDTO, &ad);
3390 if (err)
3391 return err;
3393 return 0;
3396 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3397 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3399 int err = 0;
3400 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3401 struct socket *sock;
3402 u16 sock_class = 0;
3403 u32 sock_sid = 0;
3405 read_lock_bh(&sk->sk_callback_lock);
3406 sock = sk->sk_socket;
3407 if (sock) {
3408 struct inode *inode;
3409 inode = SOCK_INODE(sock);
3410 if (inode) {
3411 struct inode_security_struct *isec;
3412 isec = inode->i_security;
3413 sock_sid = isec->sid;
3414 sock_class = isec->sclass;
3417 read_unlock_bh(&sk->sk_callback_lock);
3418 if (!sock_sid)
3419 goto out;
3421 if (!skb->dev)
3422 goto out;
3424 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3425 if (err)
3426 goto out;
3428 switch (sock_class) {
3429 case SECCLASS_UDP_SOCKET:
3430 netif_perm = NETIF__UDP_RECV;
3431 node_perm = NODE__UDP_RECV;
3432 recv_perm = UDP_SOCKET__RECV_MSG;
3433 break;
3435 case SECCLASS_TCP_SOCKET:
3436 netif_perm = NETIF__TCP_RECV;
3437 node_perm = NODE__TCP_RECV;
3438 recv_perm = TCP_SOCKET__RECV_MSG;
3439 break;
3441 default:
3442 netif_perm = NETIF__RAWIP_RECV;
3443 node_perm = NODE__RAWIP_RECV;
3444 break;
3447 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3448 if (err)
3449 goto out;
3451 err = security_node_sid(family, addrp, len, &node_sid);
3452 if (err)
3453 goto out;
3455 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3456 if (err)
3457 goto out;
3459 if (recv_perm) {
3460 u32 port_sid;
3462 err = security_port_sid(sk->sk_family, sk->sk_type,
3463 sk->sk_protocol, ntohs(ad->u.net.sport),
3464 &port_sid);
3465 if (err)
3466 goto out;
3468 err = avc_has_perm(sock_sid, port_sid,
3469 sock_class, recv_perm, ad);
3472 out:
3473 return err;
3476 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3478 u16 family;
3479 char *addrp;
3480 int len, err = 0;
3481 struct avc_audit_data ad;
3482 struct sk_security_struct *sksec = sk->sk_security;
3484 family = sk->sk_family;
3485 if (family != PF_INET && family != PF_INET6)
3486 goto out;
3488 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3489 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3490 family = PF_INET;
3492 AVC_AUDIT_DATA_INIT(&ad, NET);
3493 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3494 ad.u.net.family = family;
3496 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3497 if (err)
3498 goto out;
3500 if (selinux_compat_net)
3501 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3502 addrp, len);
3503 else
3504 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3505 PACKET__RECV, &ad);
3506 if (err)
3507 goto out;
3509 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3510 if (err)
3511 goto out;
3513 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3514 out:
3515 return err;
3518 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3519 int __user *optlen, unsigned len)
3521 int err = 0;
3522 char *scontext;
3523 u32 scontext_len;
3524 struct sk_security_struct *ssec;
3525 struct inode_security_struct *isec;
3526 u32 peer_sid = 0;
3528 isec = SOCK_INODE(sock)->i_security;
3530 /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3531 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3532 ssec = sock->sk->sk_security;
3533 peer_sid = ssec->peer_sid;
3535 else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3536 peer_sid = selinux_netlbl_socket_getpeersec_stream(sock);
3537 if (peer_sid == SECSID_NULL)
3538 peer_sid = selinux_socket_getpeer_stream(sock->sk);
3539 if (peer_sid == SECSID_NULL) {
3540 err = -ENOPROTOOPT;
3541 goto out;
3544 else {
3545 err = -ENOPROTOOPT;
3546 goto out;
3549 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3551 if (err)
3552 goto out;
3554 if (scontext_len > len) {
3555 err = -ERANGE;
3556 goto out_len;
3559 if (copy_to_user(optval, scontext, scontext_len))
3560 err = -EFAULT;
3562 out_len:
3563 if (put_user(scontext_len, optlen))
3564 err = -EFAULT;
3566 kfree(scontext);
3567 out:
3568 return err;
3571 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3573 u32 peer_secid = SECSID_NULL;
3574 int err = 0;
3576 if (sock && (sock->sk->sk_family == PF_UNIX))
3577 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3578 else if (skb) {
3579 peer_secid = selinux_netlbl_socket_getpeersec_dgram(skb);
3580 if (peer_secid == SECSID_NULL)
3581 peer_secid = selinux_socket_getpeer_dgram(skb);
3584 if (peer_secid == SECSID_NULL)
3585 err = -EINVAL;
3586 *secid = peer_secid;
3588 return err;
3591 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3593 return sk_alloc_security(sk, family, priority);
3596 static void selinux_sk_free_security(struct sock *sk)
3598 sk_free_security(sk);
3601 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3603 struct sk_security_struct *ssec = sk->sk_security;
3604 struct sk_security_struct *newssec = newsk->sk_security;
3606 newssec->sid = ssec->sid;
3607 newssec->peer_sid = ssec->peer_sid;
3609 selinux_netlbl_sk_clone_security(ssec, newssec);
3612 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3614 if (!sk)
3615 *secid = SECINITSID_ANY_SOCKET;
3616 else {
3617 struct sk_security_struct *sksec = sk->sk_security;
3619 *secid = sksec->sid;
3623 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3625 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3626 struct sk_security_struct *sksec = sk->sk_security;
3628 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3629 sk->sk_family == PF_UNIX)
3630 isec->sid = sksec->sid;
3632 selinux_netlbl_sock_graft(sk, parent);
3635 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3636 struct request_sock *req)
3638 struct sk_security_struct *sksec = sk->sk_security;
3639 int err;
3640 u32 newsid;
3641 u32 peersid;
3643 newsid = selinux_netlbl_inet_conn_request(skb, sksec->sid);
3644 if (newsid != SECSID_NULL) {
3645 req->secid = newsid;
3646 return 0;
3649 err = selinux_xfrm_decode_session(skb, &peersid, 0);
3650 BUG_ON(err);
3652 if (peersid == SECSID_NULL) {
3653 req->secid = sksec->sid;
3654 return 0;
3657 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3658 if (err)
3659 return err;
3661 req->secid = newsid;
3662 return 0;
3665 static void selinux_inet_csk_clone(struct sock *newsk,
3666 const struct request_sock *req)
3668 struct sk_security_struct *newsksec = newsk->sk_security;
3670 newsksec->sid = req->secid;
3671 /* NOTE: Ideally, we should also get the isec->sid for the
3672 new socket in sync, but we don't have the isec available yet.
3673 So we will wait until sock_graft to do it, by which
3674 time it will have been created and available. */
3676 selinux_netlbl_sk_security_init(newsksec, req->rsk_ops->family);
3679 static void selinux_req_classify_flow(const struct request_sock *req,
3680 struct flowi *fl)
3682 fl->secid = req->secid;
3685 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3687 int err = 0;
3688 u32 perm;
3689 struct nlmsghdr *nlh;
3690 struct socket *sock = sk->sk_socket;
3691 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3693 if (skb->len < NLMSG_SPACE(0)) {
3694 err = -EINVAL;
3695 goto out;
3697 nlh = (struct nlmsghdr *)skb->data;
3699 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3700 if (err) {
3701 if (err == -EINVAL) {
3702 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3703 "SELinux: unrecognized netlink message"
3704 " type=%hu for sclass=%hu\n",
3705 nlh->nlmsg_type, isec->sclass);
3706 if (!selinux_enforcing)
3707 err = 0;
3710 /* Ignore */
3711 if (err == -ENOENT)
3712 err = 0;
3713 goto out;
3716 err = socket_has_perm(current, sock, perm);
3717 out:
3718 return err;
3721 #ifdef CONFIG_NETFILTER
3723 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3724 struct avc_audit_data *ad,
3725 u16 family, char *addrp, int len)
3727 int err = 0;
3728 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3729 struct socket *sock;
3730 struct inode *inode;
3731 struct inode_security_struct *isec;
3733 sock = sk->sk_socket;
3734 if (!sock)
3735 goto out;
3737 inode = SOCK_INODE(sock);
3738 if (!inode)
3739 goto out;
3741 isec = inode->i_security;
3743 err = sel_netif_sids(dev, &if_sid, NULL);
3744 if (err)
3745 goto out;
3747 switch (isec->sclass) {
3748 case SECCLASS_UDP_SOCKET:
3749 netif_perm = NETIF__UDP_SEND;
3750 node_perm = NODE__UDP_SEND;
3751 send_perm = UDP_SOCKET__SEND_MSG;
3752 break;
3754 case SECCLASS_TCP_SOCKET:
3755 netif_perm = NETIF__TCP_SEND;
3756 node_perm = NODE__TCP_SEND;
3757 send_perm = TCP_SOCKET__SEND_MSG;
3758 break;
3760 default:
3761 netif_perm = NETIF__RAWIP_SEND;
3762 node_perm = NODE__RAWIP_SEND;
3763 break;
3766 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3767 if (err)
3768 goto out;
3770 err = security_node_sid(family, addrp, len, &node_sid);
3771 if (err)
3772 goto out;
3774 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3775 if (err)
3776 goto out;
3778 if (send_perm) {
3779 u32 port_sid;
3781 err = security_port_sid(sk->sk_family,
3782 sk->sk_type,
3783 sk->sk_protocol,
3784 ntohs(ad->u.net.dport),
3785 &port_sid);
3786 if (err)
3787 goto out;
3789 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3790 send_perm, ad);
3792 out:
3793 return err;
3796 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3797 struct sk_buff **pskb,
3798 const struct net_device *in,
3799 const struct net_device *out,
3800 int (*okfn)(struct sk_buff *),
3801 u16 family)
3803 char *addrp;
3804 int len, err = 0;
3805 struct sock *sk;
3806 struct sk_buff *skb = *pskb;
3807 struct avc_audit_data ad;
3808 struct net_device *dev = (struct net_device *)out;
3809 struct sk_security_struct *sksec;
3811 sk = skb->sk;
3812 if (!sk)
3813 goto out;
3815 sksec = sk->sk_security;
3817 AVC_AUDIT_DATA_INIT(&ad, NET);
3818 ad.u.net.netif = dev->name;
3819 ad.u.net.family = family;
3821 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3822 if (err)
3823 goto out;
3825 if (selinux_compat_net)
3826 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3827 family, addrp, len);
3828 else
3829 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3830 PACKET__SEND, &ad);
3832 if (err)
3833 goto out;
3835 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad);
3836 out:
3837 return err ? NF_DROP : NF_ACCEPT;
3840 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3841 struct sk_buff **pskb,
3842 const struct net_device *in,
3843 const struct net_device *out,
3844 int (*okfn)(struct sk_buff *))
3846 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3849 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3851 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3852 struct sk_buff **pskb,
3853 const struct net_device *in,
3854 const struct net_device *out,
3855 int (*okfn)(struct sk_buff *))
3857 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3860 #endif /* IPV6 */
3862 #endif /* CONFIG_NETFILTER */
3864 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3866 int err;
3868 err = secondary_ops->netlink_send(sk, skb);
3869 if (err)
3870 return err;
3872 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3873 err = selinux_nlmsg_perm(sk, skb);
3875 return err;
3878 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3880 int err;
3881 struct avc_audit_data ad;
3883 err = secondary_ops->netlink_recv(skb, capability);
3884 if (err)
3885 return err;
3887 AVC_AUDIT_DATA_INIT(&ad, CAP);
3888 ad.u.cap = capability;
3890 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3891 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3894 static int ipc_alloc_security(struct task_struct *task,
3895 struct kern_ipc_perm *perm,
3896 u16 sclass)
3898 struct task_security_struct *tsec = task->security;
3899 struct ipc_security_struct *isec;
3901 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3902 if (!isec)
3903 return -ENOMEM;
3905 isec->sclass = sclass;
3906 isec->ipc_perm = perm;
3907 isec->sid = tsec->sid;
3908 perm->security = isec;
3910 return 0;
3913 static void ipc_free_security(struct kern_ipc_perm *perm)
3915 struct ipc_security_struct *isec = perm->security;
3916 perm->security = NULL;
3917 kfree(isec);
3920 static int msg_msg_alloc_security(struct msg_msg *msg)
3922 struct msg_security_struct *msec;
3924 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3925 if (!msec)
3926 return -ENOMEM;
3928 msec->msg = msg;
3929 msec->sid = SECINITSID_UNLABELED;
3930 msg->security = msec;
3932 return 0;
3935 static void msg_msg_free_security(struct msg_msg *msg)
3937 struct msg_security_struct *msec = msg->security;
3939 msg->security = NULL;
3940 kfree(msec);
3943 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3944 u32 perms)
3946 struct task_security_struct *tsec;
3947 struct ipc_security_struct *isec;
3948 struct avc_audit_data ad;
3950 tsec = current->security;
3951 isec = ipc_perms->security;
3953 AVC_AUDIT_DATA_INIT(&ad, IPC);
3954 ad.u.ipc_id = ipc_perms->key;
3956 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3959 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3961 return msg_msg_alloc_security(msg);
3964 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3966 msg_msg_free_security(msg);
3969 /* message queue security operations */
3970 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3972 struct task_security_struct *tsec;
3973 struct ipc_security_struct *isec;
3974 struct avc_audit_data ad;
3975 int rc;
3977 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3978 if (rc)
3979 return rc;
3981 tsec = current->security;
3982 isec = msq->q_perm.security;
3984 AVC_AUDIT_DATA_INIT(&ad, IPC);
3985 ad.u.ipc_id = msq->q_perm.key;
3987 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3988 MSGQ__CREATE, &ad);
3989 if (rc) {
3990 ipc_free_security(&msq->q_perm);
3991 return rc;
3993 return 0;
3996 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3998 ipc_free_security(&msq->q_perm);
4001 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4003 struct task_security_struct *tsec;
4004 struct ipc_security_struct *isec;
4005 struct avc_audit_data ad;
4007 tsec = current->security;
4008 isec = msq->q_perm.security;
4010 AVC_AUDIT_DATA_INIT(&ad, IPC);
4011 ad.u.ipc_id = msq->q_perm.key;
4013 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4014 MSGQ__ASSOCIATE, &ad);
4017 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4019 int err;
4020 int perms;
4022 switch(cmd) {
4023 case IPC_INFO:
4024 case MSG_INFO:
4025 /* No specific object, just general system-wide information. */
4026 return task_has_system(current, SYSTEM__IPC_INFO);
4027 case IPC_STAT:
4028 case MSG_STAT:
4029 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4030 break;
4031 case IPC_SET:
4032 perms = MSGQ__SETATTR;
4033 break;
4034 case IPC_RMID:
4035 perms = MSGQ__DESTROY;
4036 break;
4037 default:
4038 return 0;
4041 err = ipc_has_perm(&msq->q_perm, perms);
4042 return err;
4045 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4047 struct task_security_struct *tsec;
4048 struct ipc_security_struct *isec;
4049 struct msg_security_struct *msec;
4050 struct avc_audit_data ad;
4051 int rc;
4053 tsec = current->security;
4054 isec = msq->q_perm.security;
4055 msec = msg->security;
4058 * First time through, need to assign label to the message
4060 if (msec->sid == SECINITSID_UNLABELED) {
4062 * Compute new sid based on current process and
4063 * message queue this message will be stored in
4065 rc = security_transition_sid(tsec->sid,
4066 isec->sid,
4067 SECCLASS_MSG,
4068 &msec->sid);
4069 if (rc)
4070 return rc;
4073 AVC_AUDIT_DATA_INIT(&ad, IPC);
4074 ad.u.ipc_id = msq->q_perm.key;
4076 /* Can this process write to the queue? */
4077 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4078 MSGQ__WRITE, &ad);
4079 if (!rc)
4080 /* Can this process send the message */
4081 rc = avc_has_perm(tsec->sid, msec->sid,
4082 SECCLASS_MSG, MSG__SEND, &ad);
4083 if (!rc)
4084 /* Can the message be put in the queue? */
4085 rc = avc_has_perm(msec->sid, isec->sid,
4086 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4088 return rc;
4091 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4092 struct task_struct *target,
4093 long type, int mode)
4095 struct task_security_struct *tsec;
4096 struct ipc_security_struct *isec;
4097 struct msg_security_struct *msec;
4098 struct avc_audit_data ad;
4099 int rc;
4101 tsec = target->security;
4102 isec = msq->q_perm.security;
4103 msec = msg->security;
4105 AVC_AUDIT_DATA_INIT(&ad, IPC);
4106 ad.u.ipc_id = msq->q_perm.key;
4108 rc = avc_has_perm(tsec->sid, isec->sid,
4109 SECCLASS_MSGQ, MSGQ__READ, &ad);
4110 if (!rc)
4111 rc = avc_has_perm(tsec->sid, msec->sid,
4112 SECCLASS_MSG, MSG__RECEIVE, &ad);
4113 return rc;
4116 /* Shared Memory security operations */
4117 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4119 struct task_security_struct *tsec;
4120 struct ipc_security_struct *isec;
4121 struct avc_audit_data ad;
4122 int rc;
4124 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4125 if (rc)
4126 return rc;
4128 tsec = current->security;
4129 isec = shp->shm_perm.security;
4131 AVC_AUDIT_DATA_INIT(&ad, IPC);
4132 ad.u.ipc_id = shp->shm_perm.key;
4134 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4135 SHM__CREATE, &ad);
4136 if (rc) {
4137 ipc_free_security(&shp->shm_perm);
4138 return rc;
4140 return 0;
4143 static void selinux_shm_free_security(struct shmid_kernel *shp)
4145 ipc_free_security(&shp->shm_perm);
4148 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4150 struct task_security_struct *tsec;
4151 struct ipc_security_struct *isec;
4152 struct avc_audit_data ad;
4154 tsec = current->security;
4155 isec = shp->shm_perm.security;
4157 AVC_AUDIT_DATA_INIT(&ad, IPC);
4158 ad.u.ipc_id = shp->shm_perm.key;
4160 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4161 SHM__ASSOCIATE, &ad);
4164 /* Note, at this point, shp is locked down */
4165 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4167 int perms;
4168 int err;
4170 switch(cmd) {
4171 case IPC_INFO:
4172 case SHM_INFO:
4173 /* No specific object, just general system-wide information. */
4174 return task_has_system(current, SYSTEM__IPC_INFO);
4175 case IPC_STAT:
4176 case SHM_STAT:
4177 perms = SHM__GETATTR | SHM__ASSOCIATE;
4178 break;
4179 case IPC_SET:
4180 perms = SHM__SETATTR;
4181 break;
4182 case SHM_LOCK:
4183 case SHM_UNLOCK:
4184 perms = SHM__LOCK;
4185 break;
4186 case IPC_RMID:
4187 perms = SHM__DESTROY;
4188 break;
4189 default:
4190 return 0;
4193 err = ipc_has_perm(&shp->shm_perm, perms);
4194 return err;
4197 static int selinux_shm_shmat(struct shmid_kernel *shp,
4198 char __user *shmaddr, int shmflg)
4200 u32 perms;
4201 int rc;
4203 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4204 if (rc)
4205 return rc;
4207 if (shmflg & SHM_RDONLY)
4208 perms = SHM__READ;
4209 else
4210 perms = SHM__READ | SHM__WRITE;
4212 return ipc_has_perm(&shp->shm_perm, perms);
4215 /* Semaphore security operations */
4216 static int selinux_sem_alloc_security(struct sem_array *sma)
4218 struct task_security_struct *tsec;
4219 struct ipc_security_struct *isec;
4220 struct avc_audit_data ad;
4221 int rc;
4223 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4224 if (rc)
4225 return rc;
4227 tsec = current->security;
4228 isec = sma->sem_perm.security;
4230 AVC_AUDIT_DATA_INIT(&ad, IPC);
4231 ad.u.ipc_id = sma->sem_perm.key;
4233 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4234 SEM__CREATE, &ad);
4235 if (rc) {
4236 ipc_free_security(&sma->sem_perm);
4237 return rc;
4239 return 0;
4242 static void selinux_sem_free_security(struct sem_array *sma)
4244 ipc_free_security(&sma->sem_perm);
4247 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4249 struct task_security_struct *tsec;
4250 struct ipc_security_struct *isec;
4251 struct avc_audit_data ad;
4253 tsec = current->security;
4254 isec = sma->sem_perm.security;
4256 AVC_AUDIT_DATA_INIT(&ad, IPC);
4257 ad.u.ipc_id = sma->sem_perm.key;
4259 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4260 SEM__ASSOCIATE, &ad);
4263 /* Note, at this point, sma is locked down */
4264 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4266 int err;
4267 u32 perms;
4269 switch(cmd) {
4270 case IPC_INFO:
4271 case SEM_INFO:
4272 /* No specific object, just general system-wide information. */
4273 return task_has_system(current, SYSTEM__IPC_INFO);
4274 case GETPID:
4275 case GETNCNT:
4276 case GETZCNT:
4277 perms = SEM__GETATTR;
4278 break;
4279 case GETVAL:
4280 case GETALL:
4281 perms = SEM__READ;
4282 break;
4283 case SETVAL:
4284 case SETALL:
4285 perms = SEM__WRITE;
4286 break;
4287 case IPC_RMID:
4288 perms = SEM__DESTROY;
4289 break;
4290 case IPC_SET:
4291 perms = SEM__SETATTR;
4292 break;
4293 case IPC_STAT:
4294 case SEM_STAT:
4295 perms = SEM__GETATTR | SEM__ASSOCIATE;
4296 break;
4297 default:
4298 return 0;
4301 err = ipc_has_perm(&sma->sem_perm, perms);
4302 return err;
4305 static int selinux_sem_semop(struct sem_array *sma,
4306 struct sembuf *sops, unsigned nsops, int alter)
4308 u32 perms;
4310 if (alter)
4311 perms = SEM__READ | SEM__WRITE;
4312 else
4313 perms = SEM__READ;
4315 return ipc_has_perm(&sma->sem_perm, perms);
4318 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4320 u32 av = 0;
4322 av = 0;
4323 if (flag & S_IRUGO)
4324 av |= IPC__UNIX_READ;
4325 if (flag & S_IWUGO)
4326 av |= IPC__UNIX_WRITE;
4328 if (av == 0)
4329 return 0;
4331 return ipc_has_perm(ipcp, av);
4334 /* module stacking operations */
4335 static int selinux_register_security (const char *name, struct security_operations *ops)
4337 if (secondary_ops != original_ops) {
4338 printk(KERN_INFO "%s: There is already a secondary security "
4339 "module registered.\n", __FUNCTION__);
4340 return -EINVAL;
4343 secondary_ops = ops;
4345 printk(KERN_INFO "%s: Registering secondary module %s\n",
4346 __FUNCTION__,
4347 name);
4349 return 0;
4352 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4354 if (ops != secondary_ops) {
4355 printk (KERN_INFO "%s: trying to unregister a security module "
4356 "that is not registered.\n", __FUNCTION__);
4357 return -EINVAL;
4360 secondary_ops = original_ops;
4362 return 0;
4365 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4367 if (inode)
4368 inode_doinit_with_dentry(inode, dentry);
4371 static int selinux_getprocattr(struct task_struct *p,
4372 char *name, void *value, size_t size)
4374 struct task_security_struct *tsec;
4375 u32 sid;
4376 int error;
4378 if (current != p) {
4379 error = task_has_perm(current, p, PROCESS__GETATTR);
4380 if (error)
4381 return error;
4384 tsec = p->security;
4386 if (!strcmp(name, "current"))
4387 sid = tsec->sid;
4388 else if (!strcmp(name, "prev"))
4389 sid = tsec->osid;
4390 else if (!strcmp(name, "exec"))
4391 sid = tsec->exec_sid;
4392 else if (!strcmp(name, "fscreate"))
4393 sid = tsec->create_sid;
4394 else if (!strcmp(name, "keycreate"))
4395 sid = tsec->keycreate_sid;
4396 else if (!strcmp(name, "sockcreate"))
4397 sid = tsec->sockcreate_sid;
4398 else
4399 return -EINVAL;
4401 if (!sid)
4402 return 0;
4404 return selinux_getsecurity(sid, value, size);
4407 static int selinux_setprocattr(struct task_struct *p,
4408 char *name, void *value, size_t size)
4410 struct task_security_struct *tsec;
4411 u32 sid = 0;
4412 int error;
4413 char *str = value;
4415 if (current != p) {
4416 /* SELinux only allows a process to change its own
4417 security attributes. */
4418 return -EACCES;
4422 * Basic control over ability to set these attributes at all.
4423 * current == p, but we'll pass them separately in case the
4424 * above restriction is ever removed.
4426 if (!strcmp(name, "exec"))
4427 error = task_has_perm(current, p, PROCESS__SETEXEC);
4428 else if (!strcmp(name, "fscreate"))
4429 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4430 else if (!strcmp(name, "keycreate"))
4431 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4432 else if (!strcmp(name, "sockcreate"))
4433 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4434 else if (!strcmp(name, "current"))
4435 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4436 else
4437 error = -EINVAL;
4438 if (error)
4439 return error;
4441 /* Obtain a SID for the context, if one was specified. */
4442 if (size && str[1] && str[1] != '\n') {
4443 if (str[size-1] == '\n') {
4444 str[size-1] = 0;
4445 size--;
4447 error = security_context_to_sid(value, size, &sid);
4448 if (error)
4449 return error;
4452 /* Permission checking based on the specified context is
4453 performed during the actual operation (execve,
4454 open/mkdir/...), when we know the full context of the
4455 operation. See selinux_bprm_set_security for the execve
4456 checks and may_create for the file creation checks. The
4457 operation will then fail if the context is not permitted. */
4458 tsec = p->security;
4459 if (!strcmp(name, "exec"))
4460 tsec->exec_sid = sid;
4461 else if (!strcmp(name, "fscreate"))
4462 tsec->create_sid = sid;
4463 else if (!strcmp(name, "keycreate")) {
4464 error = may_create_key(sid, p);
4465 if (error)
4466 return error;
4467 tsec->keycreate_sid = sid;
4468 } else if (!strcmp(name, "sockcreate"))
4469 tsec->sockcreate_sid = sid;
4470 else if (!strcmp(name, "current")) {
4471 struct av_decision avd;
4473 if (sid == 0)
4474 return -EINVAL;
4476 /* Only allow single threaded processes to change context */
4477 if (atomic_read(&p->mm->mm_users) != 1) {
4478 struct task_struct *g, *t;
4479 struct mm_struct *mm = p->mm;
4480 read_lock(&tasklist_lock);
4481 do_each_thread(g, t)
4482 if (t->mm == mm && t != p) {
4483 read_unlock(&tasklist_lock);
4484 return -EPERM;
4486 while_each_thread(g, t);
4487 read_unlock(&tasklist_lock);
4490 /* Check permissions for the transition. */
4491 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4492 PROCESS__DYNTRANSITION, NULL);
4493 if (error)
4494 return error;
4496 /* Check for ptracing, and update the task SID if ok.
4497 Otherwise, leave SID unchanged and fail. */
4498 task_lock(p);
4499 if (p->ptrace & PT_PTRACED) {
4500 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4501 SECCLASS_PROCESS,
4502 PROCESS__PTRACE, &avd);
4503 if (!error)
4504 tsec->sid = sid;
4505 task_unlock(p);
4506 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4507 PROCESS__PTRACE, &avd, error, NULL);
4508 if (error)
4509 return error;
4510 } else {
4511 tsec->sid = sid;
4512 task_unlock(p);
4515 else
4516 return -EINVAL;
4518 return size;
4521 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4523 return security_sid_to_context(secid, secdata, seclen);
4526 static void selinux_release_secctx(char *secdata, u32 seclen)
4528 if (secdata)
4529 kfree(secdata);
4532 #ifdef CONFIG_KEYS
4534 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4535 unsigned long flags)
4537 struct task_security_struct *tsec = tsk->security;
4538 struct key_security_struct *ksec;
4540 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4541 if (!ksec)
4542 return -ENOMEM;
4544 ksec->obj = k;
4545 if (tsec->keycreate_sid)
4546 ksec->sid = tsec->keycreate_sid;
4547 else
4548 ksec->sid = tsec->sid;
4549 k->security = ksec;
4551 return 0;
4554 static void selinux_key_free(struct key *k)
4556 struct key_security_struct *ksec = k->security;
4558 k->security = NULL;
4559 kfree(ksec);
4562 static int selinux_key_permission(key_ref_t key_ref,
4563 struct task_struct *ctx,
4564 key_perm_t perm)
4566 struct key *key;
4567 struct task_security_struct *tsec;
4568 struct key_security_struct *ksec;
4570 key = key_ref_to_ptr(key_ref);
4572 tsec = ctx->security;
4573 ksec = key->security;
4575 /* if no specific permissions are requested, we skip the
4576 permission check. No serious, additional covert channels
4577 appear to be created. */
4578 if (perm == 0)
4579 return 0;
4581 return avc_has_perm(tsec->sid, ksec->sid,
4582 SECCLASS_KEY, perm, NULL);
4585 #endif
4587 static struct security_operations selinux_ops = {
4588 .ptrace = selinux_ptrace,
4589 .capget = selinux_capget,
4590 .capset_check = selinux_capset_check,
4591 .capset_set = selinux_capset_set,
4592 .sysctl = selinux_sysctl,
4593 .capable = selinux_capable,
4594 .quotactl = selinux_quotactl,
4595 .quota_on = selinux_quota_on,
4596 .syslog = selinux_syslog,
4597 .vm_enough_memory = selinux_vm_enough_memory,
4599 .netlink_send = selinux_netlink_send,
4600 .netlink_recv = selinux_netlink_recv,
4602 .bprm_alloc_security = selinux_bprm_alloc_security,
4603 .bprm_free_security = selinux_bprm_free_security,
4604 .bprm_apply_creds = selinux_bprm_apply_creds,
4605 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4606 .bprm_set_security = selinux_bprm_set_security,
4607 .bprm_check_security = selinux_bprm_check_security,
4608 .bprm_secureexec = selinux_bprm_secureexec,
4610 .sb_alloc_security = selinux_sb_alloc_security,
4611 .sb_free_security = selinux_sb_free_security,
4612 .sb_copy_data = selinux_sb_copy_data,
4613 .sb_kern_mount = selinux_sb_kern_mount,
4614 .sb_statfs = selinux_sb_statfs,
4615 .sb_mount = selinux_mount,
4616 .sb_umount = selinux_umount,
4618 .inode_alloc_security = selinux_inode_alloc_security,
4619 .inode_free_security = selinux_inode_free_security,
4620 .inode_init_security = selinux_inode_init_security,
4621 .inode_create = selinux_inode_create,
4622 .inode_link = selinux_inode_link,
4623 .inode_unlink = selinux_inode_unlink,
4624 .inode_symlink = selinux_inode_symlink,
4625 .inode_mkdir = selinux_inode_mkdir,
4626 .inode_rmdir = selinux_inode_rmdir,
4627 .inode_mknod = selinux_inode_mknod,
4628 .inode_rename = selinux_inode_rename,
4629 .inode_readlink = selinux_inode_readlink,
4630 .inode_follow_link = selinux_inode_follow_link,
4631 .inode_permission = selinux_inode_permission,
4632 .inode_setattr = selinux_inode_setattr,
4633 .inode_getattr = selinux_inode_getattr,
4634 .inode_setxattr = selinux_inode_setxattr,
4635 .inode_post_setxattr = selinux_inode_post_setxattr,
4636 .inode_getxattr = selinux_inode_getxattr,
4637 .inode_listxattr = selinux_inode_listxattr,
4638 .inode_removexattr = selinux_inode_removexattr,
4639 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4640 .inode_getsecurity = selinux_inode_getsecurity,
4641 .inode_setsecurity = selinux_inode_setsecurity,
4642 .inode_listsecurity = selinux_inode_listsecurity,
4644 .file_permission = selinux_file_permission,
4645 .file_alloc_security = selinux_file_alloc_security,
4646 .file_free_security = selinux_file_free_security,
4647 .file_ioctl = selinux_file_ioctl,
4648 .file_mmap = selinux_file_mmap,
4649 .file_mprotect = selinux_file_mprotect,
4650 .file_lock = selinux_file_lock,
4651 .file_fcntl = selinux_file_fcntl,
4652 .file_set_fowner = selinux_file_set_fowner,
4653 .file_send_sigiotask = selinux_file_send_sigiotask,
4654 .file_receive = selinux_file_receive,
4656 .task_create = selinux_task_create,
4657 .task_alloc_security = selinux_task_alloc_security,
4658 .task_free_security = selinux_task_free_security,
4659 .task_setuid = selinux_task_setuid,
4660 .task_post_setuid = selinux_task_post_setuid,
4661 .task_setgid = selinux_task_setgid,
4662 .task_setpgid = selinux_task_setpgid,
4663 .task_getpgid = selinux_task_getpgid,
4664 .task_getsid = selinux_task_getsid,
4665 .task_getsecid = selinux_task_getsecid,
4666 .task_setgroups = selinux_task_setgroups,
4667 .task_setnice = selinux_task_setnice,
4668 .task_setioprio = selinux_task_setioprio,
4669 .task_getioprio = selinux_task_getioprio,
4670 .task_setrlimit = selinux_task_setrlimit,
4671 .task_setscheduler = selinux_task_setscheduler,
4672 .task_getscheduler = selinux_task_getscheduler,
4673 .task_movememory = selinux_task_movememory,
4674 .task_kill = selinux_task_kill,
4675 .task_wait = selinux_task_wait,
4676 .task_prctl = selinux_task_prctl,
4677 .task_reparent_to_init = selinux_task_reparent_to_init,
4678 .task_to_inode = selinux_task_to_inode,
4680 .ipc_permission = selinux_ipc_permission,
4682 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4683 .msg_msg_free_security = selinux_msg_msg_free_security,
4685 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4686 .msg_queue_free_security = selinux_msg_queue_free_security,
4687 .msg_queue_associate = selinux_msg_queue_associate,
4688 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4689 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4690 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4692 .shm_alloc_security = selinux_shm_alloc_security,
4693 .shm_free_security = selinux_shm_free_security,
4694 .shm_associate = selinux_shm_associate,
4695 .shm_shmctl = selinux_shm_shmctl,
4696 .shm_shmat = selinux_shm_shmat,
4698 .sem_alloc_security = selinux_sem_alloc_security,
4699 .sem_free_security = selinux_sem_free_security,
4700 .sem_associate = selinux_sem_associate,
4701 .sem_semctl = selinux_sem_semctl,
4702 .sem_semop = selinux_sem_semop,
4704 .register_security = selinux_register_security,
4705 .unregister_security = selinux_unregister_security,
4707 .d_instantiate = selinux_d_instantiate,
4709 .getprocattr = selinux_getprocattr,
4710 .setprocattr = selinux_setprocattr,
4712 .secid_to_secctx = selinux_secid_to_secctx,
4713 .release_secctx = selinux_release_secctx,
4715 .unix_stream_connect = selinux_socket_unix_stream_connect,
4716 .unix_may_send = selinux_socket_unix_may_send,
4718 .socket_create = selinux_socket_create,
4719 .socket_post_create = selinux_socket_post_create,
4720 .socket_bind = selinux_socket_bind,
4721 .socket_connect = selinux_socket_connect,
4722 .socket_listen = selinux_socket_listen,
4723 .socket_accept = selinux_socket_accept,
4724 .socket_sendmsg = selinux_socket_sendmsg,
4725 .socket_recvmsg = selinux_socket_recvmsg,
4726 .socket_getsockname = selinux_socket_getsockname,
4727 .socket_getpeername = selinux_socket_getpeername,
4728 .socket_getsockopt = selinux_socket_getsockopt,
4729 .socket_setsockopt = selinux_socket_setsockopt,
4730 .socket_shutdown = selinux_socket_shutdown,
4731 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4732 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4733 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4734 .sk_alloc_security = selinux_sk_alloc_security,
4735 .sk_free_security = selinux_sk_free_security,
4736 .sk_clone_security = selinux_sk_clone_security,
4737 .sk_getsecid = selinux_sk_getsecid,
4738 .sock_graft = selinux_sock_graft,
4739 .inet_conn_request = selinux_inet_conn_request,
4740 .inet_csk_clone = selinux_inet_csk_clone,
4741 .req_classify_flow = selinux_req_classify_flow,
4743 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4744 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4745 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4746 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4747 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4748 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4749 .xfrm_state_free_security = selinux_xfrm_state_free,
4750 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4751 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4752 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4753 .xfrm_flow_state_match = selinux_xfrm_flow_state_match,
4754 .xfrm_decode_session = selinux_xfrm_decode_session,
4755 #endif
4757 #ifdef CONFIG_KEYS
4758 .key_alloc = selinux_key_alloc,
4759 .key_free = selinux_key_free,
4760 .key_permission = selinux_key_permission,
4761 #endif
4764 static __init int selinux_init(void)
4766 struct task_security_struct *tsec;
4768 if (!selinux_enabled) {
4769 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4770 return 0;
4773 printk(KERN_INFO "SELinux: Initializing.\n");
4775 /* Set the security state for the initial task. */
4776 if (task_alloc_security(current))
4777 panic("SELinux: Failed to initialize initial task.\n");
4778 tsec = current->security;
4779 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4781 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4782 sizeof(struct inode_security_struct),
4783 0, SLAB_PANIC, NULL, NULL);
4784 avc_init();
4786 original_ops = secondary_ops = security_ops;
4787 if (!secondary_ops)
4788 panic ("SELinux: No initial security operations\n");
4789 if (register_security (&selinux_ops))
4790 panic("SELinux: Unable to register with kernel.\n");
4792 if (selinux_enforcing) {
4793 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4794 } else {
4795 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4798 #ifdef CONFIG_KEYS
4799 /* Add security information to initial keyrings */
4800 selinux_key_alloc(&root_user_keyring, current,
4801 KEY_ALLOC_NOT_IN_QUOTA);
4802 selinux_key_alloc(&root_session_keyring, current,
4803 KEY_ALLOC_NOT_IN_QUOTA);
4804 #endif
4806 return 0;
4809 void selinux_complete_init(void)
4811 printk(KERN_INFO "SELinux: Completing initialization.\n");
4813 /* Set up any superblocks initialized prior to the policy load. */
4814 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4815 spin_lock(&sb_lock);
4816 spin_lock(&sb_security_lock);
4817 next_sb:
4818 if (!list_empty(&superblock_security_head)) {
4819 struct superblock_security_struct *sbsec =
4820 list_entry(superblock_security_head.next,
4821 struct superblock_security_struct,
4822 list);
4823 struct super_block *sb = sbsec->sb;
4824 sb->s_count++;
4825 spin_unlock(&sb_security_lock);
4826 spin_unlock(&sb_lock);
4827 down_read(&sb->s_umount);
4828 if (sb->s_root)
4829 superblock_doinit(sb, NULL);
4830 drop_super(sb);
4831 spin_lock(&sb_lock);
4832 spin_lock(&sb_security_lock);
4833 list_del_init(&sbsec->list);
4834 goto next_sb;
4836 spin_unlock(&sb_security_lock);
4837 spin_unlock(&sb_lock);
4840 /* SELinux requires early initialization in order to label
4841 all processes and objects when they are created. */
4842 security_initcall(selinux_init);
4844 #if defined(CONFIG_NETFILTER)
4846 static struct nf_hook_ops selinux_ipv4_op = {
4847 .hook = selinux_ipv4_postroute_last,
4848 .owner = THIS_MODULE,
4849 .pf = PF_INET,
4850 .hooknum = NF_IP_POST_ROUTING,
4851 .priority = NF_IP_PRI_SELINUX_LAST,
4854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4856 static struct nf_hook_ops selinux_ipv6_op = {
4857 .hook = selinux_ipv6_postroute_last,
4858 .owner = THIS_MODULE,
4859 .pf = PF_INET6,
4860 .hooknum = NF_IP6_POST_ROUTING,
4861 .priority = NF_IP6_PRI_SELINUX_LAST,
4864 #endif /* IPV6 */
4866 static int __init selinux_nf_ip_init(void)
4868 int err = 0;
4870 if (!selinux_enabled)
4871 goto out;
4873 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4875 err = nf_register_hook(&selinux_ipv4_op);
4876 if (err)
4877 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4879 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4881 err = nf_register_hook(&selinux_ipv6_op);
4882 if (err)
4883 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4885 #endif /* IPV6 */
4887 out:
4888 return err;
4891 __initcall(selinux_nf_ip_init);
4893 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4894 static void selinux_nf_ip_exit(void)
4896 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4898 nf_unregister_hook(&selinux_ipv4_op);
4899 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4900 nf_unregister_hook(&selinux_ipv6_op);
4901 #endif /* IPV6 */
4903 #endif
4905 #else /* CONFIG_NETFILTER */
4907 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4908 #define selinux_nf_ip_exit()
4909 #endif
4911 #endif /* CONFIG_NETFILTER */
4913 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4914 int selinux_disable(void)
4916 extern void exit_sel_fs(void);
4917 static int selinux_disabled = 0;
4919 if (ss_initialized) {
4920 /* Not permitted after initial policy load. */
4921 return -EINVAL;
4924 if (selinux_disabled) {
4925 /* Only do this once. */
4926 return -EINVAL;
4929 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4931 selinux_disabled = 1;
4932 selinux_enabled = 0;
4934 /* Reset security_ops to the secondary module, dummy or capability. */
4935 security_ops = secondary_ops;
4937 /* Unregister netfilter hooks. */
4938 selinux_nf_ip_exit();
4940 /* Unregister selinuxfs. */
4941 exit_sel_fs();
4943 return 0;
4945 #endif