task_work: Revert "hold task_lock around checks in keyctl"
[linux-2.6.git] / mm / shmem.c
blobd4e184e2a38ea590350e5f31073c1ed8ad6690e0
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
80 struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
92 struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages / 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 #endif
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 return sb->s_fs_info;
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
162 static inline int shmem_acct_block(unsigned long flags)
164 return (flags & VM_NORESERVE) ?
165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
170 if (flags & VM_NORESERVE)
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
183 .ra_pages = 0, /* No readahead */
184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
190 static int shmem_reserve_inode(struct super_block *sb)
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
202 return 0;
205 static void shmem_free_inode(struct super_block *sb)
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
225 * It has to be called with the spinlock held.
227 static void shmem_recalc_inode(struct inode *inode)
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
237 info->alloced -= freed;
238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 shmem_unacct_blocks(info->flags, freed);
244 * Replace item expected in radix tree by a new item, while holding tree lock.
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
249 void **pslot;
250 void *item = NULL;
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
267 * Sometimes, before we decide whether to proceed or to fail, we must check
268 * that an entry was not already brought back from swap by a racing thread.
270 * Checking page is not enough: by the time a SwapCache page is locked, it
271 * might be reused, and again be SwapCache, using the same swap as before.
273 static bool shmem_confirm_swap(struct address_space *mapping,
274 pgoff_t index, swp_entry_t swap)
276 void *item;
278 rcu_read_lock();
279 item = radix_tree_lookup(&mapping->page_tree, index);
280 rcu_read_unlock();
281 return item == swp_to_radix_entry(swap);
285 * Like add_to_page_cache_locked, but error if expected item has gone.
287 static int shmem_add_to_page_cache(struct page *page,
288 struct address_space *mapping,
289 pgoff_t index, gfp_t gfp, void *expected)
291 int error;
293 VM_BUG_ON(!PageLocked(page));
294 VM_BUG_ON(!PageSwapBacked(page));
296 page_cache_get(page);
297 page->mapping = mapping;
298 page->index = index;
300 spin_lock_irq(&mapping->tree_lock);
301 if (!expected)
302 error = radix_tree_insert(&mapping->page_tree, index, page);
303 else
304 error = shmem_radix_tree_replace(mapping, index, expected,
305 page);
306 if (!error) {
307 mapping->nrpages++;
308 __inc_zone_page_state(page, NR_FILE_PAGES);
309 __inc_zone_page_state(page, NR_SHMEM);
310 spin_unlock_irq(&mapping->tree_lock);
311 } else {
312 page->mapping = NULL;
313 spin_unlock_irq(&mapping->tree_lock);
314 page_cache_release(page);
316 return error;
320 * Like delete_from_page_cache, but substitutes swap for page.
322 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
324 struct address_space *mapping = page->mapping;
325 int error;
327 spin_lock_irq(&mapping->tree_lock);
328 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
329 page->mapping = NULL;
330 mapping->nrpages--;
331 __dec_zone_page_state(page, NR_FILE_PAGES);
332 __dec_zone_page_state(page, NR_SHMEM);
333 spin_unlock_irq(&mapping->tree_lock);
334 page_cache_release(page);
335 BUG_ON(error);
339 * Like find_get_pages, but collecting swap entries as well as pages.
341 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
342 pgoff_t start, unsigned int nr_pages,
343 struct page **pages, pgoff_t *indices)
345 unsigned int i;
346 unsigned int ret;
347 unsigned int nr_found;
349 rcu_read_lock();
350 restart:
351 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
352 (void ***)pages, indices, start, nr_pages);
353 ret = 0;
354 for (i = 0; i < nr_found; i++) {
355 struct page *page;
356 repeat:
357 page = radix_tree_deref_slot((void **)pages[i]);
358 if (unlikely(!page))
359 continue;
360 if (radix_tree_exception(page)) {
361 if (radix_tree_deref_retry(page))
362 goto restart;
364 * Otherwise, we must be storing a swap entry
365 * here as an exceptional entry: so return it
366 * without attempting to raise page count.
368 goto export;
370 if (!page_cache_get_speculative(page))
371 goto repeat;
373 /* Has the page moved? */
374 if (unlikely(page != *((void **)pages[i]))) {
375 page_cache_release(page);
376 goto repeat;
378 export:
379 indices[ret] = indices[i];
380 pages[ret] = page;
381 ret++;
383 if (unlikely(!ret && nr_found))
384 goto restart;
385 rcu_read_unlock();
386 return ret;
390 * Remove swap entry from radix tree, free the swap and its page cache.
392 static int shmem_free_swap(struct address_space *mapping,
393 pgoff_t index, void *radswap)
395 int error;
397 spin_lock_irq(&mapping->tree_lock);
398 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
399 spin_unlock_irq(&mapping->tree_lock);
400 if (!error)
401 free_swap_and_cache(radix_to_swp_entry(radswap));
402 return error;
406 * Pagevec may contain swap entries, so shuffle up pages before releasing.
408 static void shmem_deswap_pagevec(struct pagevec *pvec)
410 int i, j;
412 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
413 struct page *page = pvec->pages[i];
414 if (!radix_tree_exceptional_entry(page))
415 pvec->pages[j++] = page;
417 pvec->nr = j;
421 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
423 void shmem_unlock_mapping(struct address_space *mapping)
425 struct pagevec pvec;
426 pgoff_t indices[PAGEVEC_SIZE];
427 pgoff_t index = 0;
429 pagevec_init(&pvec, 0);
431 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
433 while (!mapping_unevictable(mapping)) {
435 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
436 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
438 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
439 PAGEVEC_SIZE, pvec.pages, indices);
440 if (!pvec.nr)
441 break;
442 index = indices[pvec.nr - 1] + 1;
443 shmem_deswap_pagevec(&pvec);
444 check_move_unevictable_pages(pvec.pages, pvec.nr);
445 pagevec_release(&pvec);
446 cond_resched();
451 * Remove range of pages and swap entries from radix tree, and free them.
452 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
454 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
455 bool unfalloc)
457 struct address_space *mapping = inode->i_mapping;
458 struct shmem_inode_info *info = SHMEM_I(inode);
459 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
460 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
461 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
462 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
463 struct pagevec pvec;
464 pgoff_t indices[PAGEVEC_SIZE];
465 long nr_swaps_freed = 0;
466 pgoff_t index;
467 int i;
469 if (lend == -1)
470 end = -1; /* unsigned, so actually very big */
472 pagevec_init(&pvec, 0);
473 index = start;
474 while (index < end) {
475 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
476 min(end - index, (pgoff_t)PAGEVEC_SIZE),
477 pvec.pages, indices);
478 if (!pvec.nr)
479 break;
480 mem_cgroup_uncharge_start();
481 for (i = 0; i < pagevec_count(&pvec); i++) {
482 struct page *page = pvec.pages[i];
484 index = indices[i];
485 if (index >= end)
486 break;
488 if (radix_tree_exceptional_entry(page)) {
489 if (unfalloc)
490 continue;
491 nr_swaps_freed += !shmem_free_swap(mapping,
492 index, page);
493 continue;
496 if (!trylock_page(page))
497 continue;
498 if (!unfalloc || !PageUptodate(page)) {
499 if (page->mapping == mapping) {
500 VM_BUG_ON(PageWriteback(page));
501 truncate_inode_page(mapping, page);
504 unlock_page(page);
506 shmem_deswap_pagevec(&pvec);
507 pagevec_release(&pvec);
508 mem_cgroup_uncharge_end();
509 cond_resched();
510 index++;
513 if (partial_start) {
514 struct page *page = NULL;
515 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
516 if (page) {
517 unsigned int top = PAGE_CACHE_SIZE;
518 if (start > end) {
519 top = partial_end;
520 partial_end = 0;
522 zero_user_segment(page, partial_start, top);
523 set_page_dirty(page);
524 unlock_page(page);
525 page_cache_release(page);
528 if (partial_end) {
529 struct page *page = NULL;
530 shmem_getpage(inode, end, &page, SGP_READ, NULL);
531 if (page) {
532 zero_user_segment(page, 0, partial_end);
533 set_page_dirty(page);
534 unlock_page(page);
535 page_cache_release(page);
538 if (start >= end)
539 return;
541 index = start;
542 for ( ; ; ) {
543 cond_resched();
544 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
545 min(end - index, (pgoff_t)PAGEVEC_SIZE),
546 pvec.pages, indices);
547 if (!pvec.nr) {
548 if (index == start || unfalloc)
549 break;
550 index = start;
551 continue;
553 if ((index == start || unfalloc) && indices[0] >= end) {
554 shmem_deswap_pagevec(&pvec);
555 pagevec_release(&pvec);
556 break;
558 mem_cgroup_uncharge_start();
559 for (i = 0; i < pagevec_count(&pvec); i++) {
560 struct page *page = pvec.pages[i];
562 index = indices[i];
563 if (index >= end)
564 break;
566 if (radix_tree_exceptional_entry(page)) {
567 if (unfalloc)
568 continue;
569 nr_swaps_freed += !shmem_free_swap(mapping,
570 index, page);
571 continue;
574 lock_page(page);
575 if (!unfalloc || !PageUptodate(page)) {
576 if (page->mapping == mapping) {
577 VM_BUG_ON(PageWriteback(page));
578 truncate_inode_page(mapping, page);
581 unlock_page(page);
583 shmem_deswap_pagevec(&pvec);
584 pagevec_release(&pvec);
585 mem_cgroup_uncharge_end();
586 index++;
589 spin_lock(&info->lock);
590 info->swapped -= nr_swaps_freed;
591 shmem_recalc_inode(inode);
592 spin_unlock(&info->lock);
595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
597 shmem_undo_range(inode, lstart, lend, false);
598 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
600 EXPORT_SYMBOL_GPL(shmem_truncate_range);
602 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
604 struct inode *inode = dentry->d_inode;
605 int error;
607 error = inode_change_ok(inode, attr);
608 if (error)
609 return error;
611 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
612 loff_t oldsize = inode->i_size;
613 loff_t newsize = attr->ia_size;
615 if (newsize != oldsize) {
616 i_size_write(inode, newsize);
617 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
619 if (newsize < oldsize) {
620 loff_t holebegin = round_up(newsize, PAGE_SIZE);
621 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
622 shmem_truncate_range(inode, newsize, (loff_t)-1);
623 /* unmap again to remove racily COWed private pages */
624 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
628 setattr_copy(inode, attr);
629 #ifdef CONFIG_TMPFS_POSIX_ACL
630 if (attr->ia_valid & ATTR_MODE)
631 error = generic_acl_chmod(inode);
632 #endif
633 return error;
636 static void shmem_evict_inode(struct inode *inode)
638 struct shmem_inode_info *info = SHMEM_I(inode);
639 struct shmem_xattr *xattr, *nxattr;
641 if (inode->i_mapping->a_ops == &shmem_aops) {
642 shmem_unacct_size(info->flags, inode->i_size);
643 inode->i_size = 0;
644 shmem_truncate_range(inode, 0, (loff_t)-1);
645 if (!list_empty(&info->swaplist)) {
646 mutex_lock(&shmem_swaplist_mutex);
647 list_del_init(&info->swaplist);
648 mutex_unlock(&shmem_swaplist_mutex);
650 } else
651 kfree(info->symlink);
653 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
654 kfree(xattr->name);
655 kfree(xattr);
657 BUG_ON(inode->i_blocks);
658 shmem_free_inode(inode->i_sb);
659 clear_inode(inode);
663 * If swap found in inode, free it and move page from swapcache to filecache.
665 static int shmem_unuse_inode(struct shmem_inode_info *info,
666 swp_entry_t swap, struct page **pagep)
668 struct address_space *mapping = info->vfs_inode.i_mapping;
669 void *radswap;
670 pgoff_t index;
671 gfp_t gfp;
672 int error = 0;
674 radswap = swp_to_radix_entry(swap);
675 index = radix_tree_locate_item(&mapping->page_tree, radswap);
676 if (index == -1)
677 return 0;
680 * Move _head_ to start search for next from here.
681 * But be careful: shmem_evict_inode checks list_empty without taking
682 * mutex, and there's an instant in list_move_tail when info->swaplist
683 * would appear empty, if it were the only one on shmem_swaplist.
685 if (shmem_swaplist.next != &info->swaplist)
686 list_move_tail(&shmem_swaplist, &info->swaplist);
688 gfp = mapping_gfp_mask(mapping);
689 if (shmem_should_replace_page(*pagep, gfp)) {
690 mutex_unlock(&shmem_swaplist_mutex);
691 error = shmem_replace_page(pagep, gfp, info, index);
692 mutex_lock(&shmem_swaplist_mutex);
694 * We needed to drop mutex to make that restrictive page
695 * allocation, but the inode might have been freed while we
696 * dropped it: although a racing shmem_evict_inode() cannot
697 * complete without emptying the radix_tree, our page lock
698 * on this swapcache page is not enough to prevent that -
699 * free_swap_and_cache() of our swap entry will only
700 * trylock_page(), removing swap from radix_tree whatever.
702 * We must not proceed to shmem_add_to_page_cache() if the
703 * inode has been freed, but of course we cannot rely on
704 * inode or mapping or info to check that. However, we can
705 * safely check if our swap entry is still in use (and here
706 * it can't have got reused for another page): if it's still
707 * in use, then the inode cannot have been freed yet, and we
708 * can safely proceed (if it's no longer in use, that tells
709 * nothing about the inode, but we don't need to unuse swap).
711 if (!page_swapcount(*pagep))
712 error = -ENOENT;
716 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
717 * but also to hold up shmem_evict_inode(): so inode cannot be freed
718 * beneath us (pagelock doesn't help until the page is in pagecache).
720 if (!error)
721 error = shmem_add_to_page_cache(*pagep, mapping, index,
722 GFP_NOWAIT, radswap);
723 if (error != -ENOMEM) {
725 * Truncation and eviction use free_swap_and_cache(), which
726 * only does trylock page: if we raced, best clean up here.
728 delete_from_swap_cache(*pagep);
729 set_page_dirty(*pagep);
730 if (!error) {
731 spin_lock(&info->lock);
732 info->swapped--;
733 spin_unlock(&info->lock);
734 swap_free(swap);
736 error = 1; /* not an error, but entry was found */
738 return error;
742 * Search through swapped inodes to find and replace swap by page.
744 int shmem_unuse(swp_entry_t swap, struct page *page)
746 struct list_head *this, *next;
747 struct shmem_inode_info *info;
748 int found = 0;
749 int error = 0;
752 * There's a faint possibility that swap page was replaced before
753 * caller locked it: caller will come back later with the right page.
755 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
756 goto out;
759 * Charge page using GFP_KERNEL while we can wait, before taking
760 * the shmem_swaplist_mutex which might hold up shmem_writepage().
761 * Charged back to the user (not to caller) when swap account is used.
763 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
764 if (error)
765 goto out;
766 /* No radix_tree_preload: swap entry keeps a place for page in tree */
768 mutex_lock(&shmem_swaplist_mutex);
769 list_for_each_safe(this, next, &shmem_swaplist) {
770 info = list_entry(this, struct shmem_inode_info, swaplist);
771 if (info->swapped)
772 found = shmem_unuse_inode(info, swap, &page);
773 else
774 list_del_init(&info->swaplist);
775 cond_resched();
776 if (found)
777 break;
779 mutex_unlock(&shmem_swaplist_mutex);
781 if (found < 0)
782 error = found;
783 out:
784 unlock_page(page);
785 page_cache_release(page);
786 return error;
790 * Move the page from the page cache to the swap cache.
792 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
794 struct shmem_inode_info *info;
795 struct address_space *mapping;
796 struct inode *inode;
797 swp_entry_t swap;
798 pgoff_t index;
800 BUG_ON(!PageLocked(page));
801 mapping = page->mapping;
802 index = page->index;
803 inode = mapping->host;
804 info = SHMEM_I(inode);
805 if (info->flags & VM_LOCKED)
806 goto redirty;
807 if (!total_swap_pages)
808 goto redirty;
811 * shmem_backing_dev_info's capabilities prevent regular writeback or
812 * sync from ever calling shmem_writepage; but a stacking filesystem
813 * might use ->writepage of its underlying filesystem, in which case
814 * tmpfs should write out to swap only in response to memory pressure,
815 * and not for the writeback threads or sync.
817 if (!wbc->for_reclaim) {
818 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
819 goto redirty;
823 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
824 * value into swapfile.c, the only way we can correctly account for a
825 * fallocated page arriving here is now to initialize it and write it.
827 * That's okay for a page already fallocated earlier, but if we have
828 * not yet completed the fallocation, then (a) we want to keep track
829 * of this page in case we have to undo it, and (b) it may not be a
830 * good idea to continue anyway, once we're pushing into swap. So
831 * reactivate the page, and let shmem_fallocate() quit when too many.
833 if (!PageUptodate(page)) {
834 if (inode->i_private) {
835 struct shmem_falloc *shmem_falloc;
836 spin_lock(&inode->i_lock);
837 shmem_falloc = inode->i_private;
838 if (shmem_falloc &&
839 index >= shmem_falloc->start &&
840 index < shmem_falloc->next)
841 shmem_falloc->nr_unswapped++;
842 else
843 shmem_falloc = NULL;
844 spin_unlock(&inode->i_lock);
845 if (shmem_falloc)
846 goto redirty;
848 clear_highpage(page);
849 flush_dcache_page(page);
850 SetPageUptodate(page);
853 swap = get_swap_page();
854 if (!swap.val)
855 goto redirty;
858 * Add inode to shmem_unuse()'s list of swapped-out inodes,
859 * if it's not already there. Do it now before the page is
860 * moved to swap cache, when its pagelock no longer protects
861 * the inode from eviction. But don't unlock the mutex until
862 * we've incremented swapped, because shmem_unuse_inode() will
863 * prune a !swapped inode from the swaplist under this mutex.
865 mutex_lock(&shmem_swaplist_mutex);
866 if (list_empty(&info->swaplist))
867 list_add_tail(&info->swaplist, &shmem_swaplist);
869 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
870 swap_shmem_alloc(swap);
871 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
873 spin_lock(&info->lock);
874 info->swapped++;
875 shmem_recalc_inode(inode);
876 spin_unlock(&info->lock);
878 mutex_unlock(&shmem_swaplist_mutex);
879 BUG_ON(page_mapped(page));
880 swap_writepage(page, wbc);
881 return 0;
884 mutex_unlock(&shmem_swaplist_mutex);
885 swapcache_free(swap, NULL);
886 redirty:
887 set_page_dirty(page);
888 if (wbc->for_reclaim)
889 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
890 unlock_page(page);
891 return 0;
894 #ifdef CONFIG_NUMA
895 #ifdef CONFIG_TMPFS
896 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
898 char buffer[64];
900 if (!mpol || mpol->mode == MPOL_DEFAULT)
901 return; /* show nothing */
903 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
905 seq_printf(seq, ",mpol=%s", buffer);
908 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
910 struct mempolicy *mpol = NULL;
911 if (sbinfo->mpol) {
912 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
913 mpol = sbinfo->mpol;
914 mpol_get(mpol);
915 spin_unlock(&sbinfo->stat_lock);
917 return mpol;
919 #endif /* CONFIG_TMPFS */
921 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
922 struct shmem_inode_info *info, pgoff_t index)
924 struct mempolicy mpol, *spol;
925 struct vm_area_struct pvma;
927 spol = mpol_cond_copy(&mpol,
928 mpol_shared_policy_lookup(&info->policy, index));
930 /* Create a pseudo vma that just contains the policy */
931 pvma.vm_start = 0;
932 /* Bias interleave by inode number to distribute better across nodes */
933 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
934 pvma.vm_ops = NULL;
935 pvma.vm_policy = spol;
936 return swapin_readahead(swap, gfp, &pvma, 0);
939 static struct page *shmem_alloc_page(gfp_t gfp,
940 struct shmem_inode_info *info, pgoff_t index)
942 struct vm_area_struct pvma;
944 /* Create a pseudo vma that just contains the policy */
945 pvma.vm_start = 0;
946 /* Bias interleave by inode number to distribute better across nodes */
947 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
948 pvma.vm_ops = NULL;
949 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
952 * alloc_page_vma() will drop the shared policy reference
954 return alloc_page_vma(gfp, &pvma, 0);
956 #else /* !CONFIG_NUMA */
957 #ifdef CONFIG_TMPFS
958 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
961 #endif /* CONFIG_TMPFS */
963 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
964 struct shmem_inode_info *info, pgoff_t index)
966 return swapin_readahead(swap, gfp, NULL, 0);
969 static inline struct page *shmem_alloc_page(gfp_t gfp,
970 struct shmem_inode_info *info, pgoff_t index)
972 return alloc_page(gfp);
974 #endif /* CONFIG_NUMA */
976 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
977 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
979 return NULL;
981 #endif
984 * When a page is moved from swapcache to shmem filecache (either by the
985 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
986 * shmem_unuse_inode()), it may have been read in earlier from swap, in
987 * ignorance of the mapping it belongs to. If that mapping has special
988 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
989 * we may need to copy to a suitable page before moving to filecache.
991 * In a future release, this may well be extended to respect cpuset and
992 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
993 * but for now it is a simple matter of zone.
995 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
997 return page_zonenum(page) > gfp_zone(gfp);
1000 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1001 struct shmem_inode_info *info, pgoff_t index)
1003 struct page *oldpage, *newpage;
1004 struct address_space *swap_mapping;
1005 pgoff_t swap_index;
1006 int error;
1008 oldpage = *pagep;
1009 swap_index = page_private(oldpage);
1010 swap_mapping = page_mapping(oldpage);
1013 * We have arrived here because our zones are constrained, so don't
1014 * limit chance of success by further cpuset and node constraints.
1016 gfp &= ~GFP_CONSTRAINT_MASK;
1017 newpage = shmem_alloc_page(gfp, info, index);
1018 if (!newpage)
1019 return -ENOMEM;
1021 page_cache_get(newpage);
1022 copy_highpage(newpage, oldpage);
1023 flush_dcache_page(newpage);
1025 __set_page_locked(newpage);
1026 SetPageUptodate(newpage);
1027 SetPageSwapBacked(newpage);
1028 set_page_private(newpage, swap_index);
1029 SetPageSwapCache(newpage);
1032 * Our caller will very soon move newpage out of swapcache, but it's
1033 * a nice clean interface for us to replace oldpage by newpage there.
1035 spin_lock_irq(&swap_mapping->tree_lock);
1036 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1037 newpage);
1038 if (!error) {
1039 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1040 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1042 spin_unlock_irq(&swap_mapping->tree_lock);
1044 if (unlikely(error)) {
1046 * Is this possible? I think not, now that our callers check
1047 * both PageSwapCache and page_private after getting page lock;
1048 * but be defensive. Reverse old to newpage for clear and free.
1050 oldpage = newpage;
1051 } else {
1052 mem_cgroup_replace_page_cache(oldpage, newpage);
1053 lru_cache_add_anon(newpage);
1054 *pagep = newpage;
1057 ClearPageSwapCache(oldpage);
1058 set_page_private(oldpage, 0);
1060 unlock_page(oldpage);
1061 page_cache_release(oldpage);
1062 page_cache_release(oldpage);
1063 return error;
1067 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1069 * If we allocate a new one we do not mark it dirty. That's up to the
1070 * vm. If we swap it in we mark it dirty since we also free the swap
1071 * entry since a page cannot live in both the swap and page cache
1073 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1074 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1076 struct address_space *mapping = inode->i_mapping;
1077 struct shmem_inode_info *info;
1078 struct shmem_sb_info *sbinfo;
1079 struct page *page;
1080 swp_entry_t swap;
1081 int error;
1082 int once = 0;
1083 int alloced = 0;
1085 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1086 return -EFBIG;
1087 repeat:
1088 swap.val = 0;
1089 page = find_lock_page(mapping, index);
1090 if (radix_tree_exceptional_entry(page)) {
1091 swap = radix_to_swp_entry(page);
1092 page = NULL;
1095 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1096 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1097 error = -EINVAL;
1098 goto failed;
1101 /* fallocated page? */
1102 if (page && !PageUptodate(page)) {
1103 if (sgp != SGP_READ)
1104 goto clear;
1105 unlock_page(page);
1106 page_cache_release(page);
1107 page = NULL;
1109 if (page || (sgp == SGP_READ && !swap.val)) {
1110 *pagep = page;
1111 return 0;
1115 * Fast cache lookup did not find it:
1116 * bring it back from swap or allocate.
1118 info = SHMEM_I(inode);
1119 sbinfo = SHMEM_SB(inode->i_sb);
1121 if (swap.val) {
1122 /* Look it up and read it in.. */
1123 page = lookup_swap_cache(swap);
1124 if (!page) {
1125 /* here we actually do the io */
1126 if (fault_type)
1127 *fault_type |= VM_FAULT_MAJOR;
1128 page = shmem_swapin(swap, gfp, info, index);
1129 if (!page) {
1130 error = -ENOMEM;
1131 goto failed;
1135 /* We have to do this with page locked to prevent races */
1136 lock_page(page);
1137 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1138 !shmem_confirm_swap(mapping, index, swap)) {
1139 error = -EEXIST; /* try again */
1140 goto unlock;
1142 if (!PageUptodate(page)) {
1143 error = -EIO;
1144 goto failed;
1146 wait_on_page_writeback(page);
1148 if (shmem_should_replace_page(page, gfp)) {
1149 error = shmem_replace_page(&page, gfp, info, index);
1150 if (error)
1151 goto failed;
1154 error = mem_cgroup_cache_charge(page, current->mm,
1155 gfp & GFP_RECLAIM_MASK);
1156 if (!error) {
1157 error = shmem_add_to_page_cache(page, mapping, index,
1158 gfp, swp_to_radix_entry(swap));
1159 /* We already confirmed swap, and make no allocation */
1160 VM_BUG_ON(error);
1162 if (error)
1163 goto failed;
1165 spin_lock(&info->lock);
1166 info->swapped--;
1167 shmem_recalc_inode(inode);
1168 spin_unlock(&info->lock);
1170 delete_from_swap_cache(page);
1171 set_page_dirty(page);
1172 swap_free(swap);
1174 } else {
1175 if (shmem_acct_block(info->flags)) {
1176 error = -ENOSPC;
1177 goto failed;
1179 if (sbinfo->max_blocks) {
1180 if (percpu_counter_compare(&sbinfo->used_blocks,
1181 sbinfo->max_blocks) >= 0) {
1182 error = -ENOSPC;
1183 goto unacct;
1185 percpu_counter_inc(&sbinfo->used_blocks);
1188 page = shmem_alloc_page(gfp, info, index);
1189 if (!page) {
1190 error = -ENOMEM;
1191 goto decused;
1194 SetPageSwapBacked(page);
1195 __set_page_locked(page);
1196 error = mem_cgroup_cache_charge(page, current->mm,
1197 gfp & GFP_RECLAIM_MASK);
1198 if (error)
1199 goto decused;
1200 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1201 if (!error) {
1202 error = shmem_add_to_page_cache(page, mapping, index,
1203 gfp, NULL);
1204 radix_tree_preload_end();
1206 if (error) {
1207 mem_cgroup_uncharge_cache_page(page);
1208 goto decused;
1210 lru_cache_add_anon(page);
1212 spin_lock(&info->lock);
1213 info->alloced++;
1214 inode->i_blocks += BLOCKS_PER_PAGE;
1215 shmem_recalc_inode(inode);
1216 spin_unlock(&info->lock);
1217 alloced = true;
1220 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1222 if (sgp == SGP_FALLOC)
1223 sgp = SGP_WRITE;
1224 clear:
1226 * Let SGP_WRITE caller clear ends if write does not fill page;
1227 * but SGP_FALLOC on a page fallocated earlier must initialize
1228 * it now, lest undo on failure cancel our earlier guarantee.
1230 if (sgp != SGP_WRITE) {
1231 clear_highpage(page);
1232 flush_dcache_page(page);
1233 SetPageUptodate(page);
1235 if (sgp == SGP_DIRTY)
1236 set_page_dirty(page);
1239 /* Perhaps the file has been truncated since we checked */
1240 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1241 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1242 error = -EINVAL;
1243 if (alloced)
1244 goto trunc;
1245 else
1246 goto failed;
1248 *pagep = page;
1249 return 0;
1252 * Error recovery.
1254 trunc:
1255 info = SHMEM_I(inode);
1256 ClearPageDirty(page);
1257 delete_from_page_cache(page);
1258 spin_lock(&info->lock);
1259 info->alloced--;
1260 inode->i_blocks -= BLOCKS_PER_PAGE;
1261 spin_unlock(&info->lock);
1262 decused:
1263 sbinfo = SHMEM_SB(inode->i_sb);
1264 if (sbinfo->max_blocks)
1265 percpu_counter_add(&sbinfo->used_blocks, -1);
1266 unacct:
1267 shmem_unacct_blocks(info->flags, 1);
1268 failed:
1269 if (swap.val && error != -EINVAL &&
1270 !shmem_confirm_swap(mapping, index, swap))
1271 error = -EEXIST;
1272 unlock:
1273 if (page) {
1274 unlock_page(page);
1275 page_cache_release(page);
1277 if (error == -ENOSPC && !once++) {
1278 info = SHMEM_I(inode);
1279 spin_lock(&info->lock);
1280 shmem_recalc_inode(inode);
1281 spin_unlock(&info->lock);
1282 goto repeat;
1284 if (error == -EEXIST) /* from above or from radix_tree_insert */
1285 goto repeat;
1286 return error;
1289 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1291 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1292 int error;
1293 int ret = VM_FAULT_LOCKED;
1295 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1296 if (error)
1297 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1299 if (ret & VM_FAULT_MAJOR) {
1300 count_vm_event(PGMAJFAULT);
1301 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1303 return ret;
1306 #ifdef CONFIG_NUMA
1307 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1309 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1310 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1313 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1314 unsigned long addr)
1316 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317 pgoff_t index;
1319 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1320 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1322 #endif
1324 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1326 struct inode *inode = file->f_path.dentry->d_inode;
1327 struct shmem_inode_info *info = SHMEM_I(inode);
1328 int retval = -ENOMEM;
1330 spin_lock(&info->lock);
1331 if (lock && !(info->flags & VM_LOCKED)) {
1332 if (!user_shm_lock(inode->i_size, user))
1333 goto out_nomem;
1334 info->flags |= VM_LOCKED;
1335 mapping_set_unevictable(file->f_mapping);
1337 if (!lock && (info->flags & VM_LOCKED) && user) {
1338 user_shm_unlock(inode->i_size, user);
1339 info->flags &= ~VM_LOCKED;
1340 mapping_clear_unevictable(file->f_mapping);
1342 retval = 0;
1344 out_nomem:
1345 spin_unlock(&info->lock);
1346 return retval;
1349 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1351 file_accessed(file);
1352 vma->vm_ops = &shmem_vm_ops;
1353 vma->vm_flags |= VM_CAN_NONLINEAR;
1354 return 0;
1357 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1358 umode_t mode, dev_t dev, unsigned long flags)
1360 struct inode *inode;
1361 struct shmem_inode_info *info;
1362 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1364 if (shmem_reserve_inode(sb))
1365 return NULL;
1367 inode = new_inode(sb);
1368 if (inode) {
1369 inode->i_ino = get_next_ino();
1370 inode_init_owner(inode, dir, mode);
1371 inode->i_blocks = 0;
1372 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1373 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1374 inode->i_generation = get_seconds();
1375 info = SHMEM_I(inode);
1376 memset(info, 0, (char *)inode - (char *)info);
1377 spin_lock_init(&info->lock);
1378 info->flags = flags & VM_NORESERVE;
1379 INIT_LIST_HEAD(&info->swaplist);
1380 INIT_LIST_HEAD(&info->xattr_list);
1381 cache_no_acl(inode);
1383 switch (mode & S_IFMT) {
1384 default:
1385 inode->i_op = &shmem_special_inode_operations;
1386 init_special_inode(inode, mode, dev);
1387 break;
1388 case S_IFREG:
1389 inode->i_mapping->a_ops = &shmem_aops;
1390 inode->i_op = &shmem_inode_operations;
1391 inode->i_fop = &shmem_file_operations;
1392 mpol_shared_policy_init(&info->policy,
1393 shmem_get_sbmpol(sbinfo));
1394 break;
1395 case S_IFDIR:
1396 inc_nlink(inode);
1397 /* Some things misbehave if size == 0 on a directory */
1398 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1399 inode->i_op = &shmem_dir_inode_operations;
1400 inode->i_fop = &simple_dir_operations;
1401 break;
1402 case S_IFLNK:
1404 * Must not load anything in the rbtree,
1405 * mpol_free_shared_policy will not be called.
1407 mpol_shared_policy_init(&info->policy, NULL);
1408 break;
1410 } else
1411 shmem_free_inode(sb);
1412 return inode;
1415 #ifdef CONFIG_TMPFS
1416 static const struct inode_operations shmem_symlink_inode_operations;
1417 static const struct inode_operations shmem_short_symlink_operations;
1419 #ifdef CONFIG_TMPFS_XATTR
1420 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1421 #else
1422 #define shmem_initxattrs NULL
1423 #endif
1425 static int
1426 shmem_write_begin(struct file *file, struct address_space *mapping,
1427 loff_t pos, unsigned len, unsigned flags,
1428 struct page **pagep, void **fsdata)
1430 struct inode *inode = mapping->host;
1431 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1432 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1435 static int
1436 shmem_write_end(struct file *file, struct address_space *mapping,
1437 loff_t pos, unsigned len, unsigned copied,
1438 struct page *page, void *fsdata)
1440 struct inode *inode = mapping->host;
1442 if (pos + copied > inode->i_size)
1443 i_size_write(inode, pos + copied);
1445 if (!PageUptodate(page)) {
1446 if (copied < PAGE_CACHE_SIZE) {
1447 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1448 zero_user_segments(page, 0, from,
1449 from + copied, PAGE_CACHE_SIZE);
1451 SetPageUptodate(page);
1453 set_page_dirty(page);
1454 unlock_page(page);
1455 page_cache_release(page);
1457 return copied;
1460 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1462 struct inode *inode = filp->f_path.dentry->d_inode;
1463 struct address_space *mapping = inode->i_mapping;
1464 pgoff_t index;
1465 unsigned long offset;
1466 enum sgp_type sgp = SGP_READ;
1469 * Might this read be for a stacking filesystem? Then when reading
1470 * holes of a sparse file, we actually need to allocate those pages,
1471 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1473 if (segment_eq(get_fs(), KERNEL_DS))
1474 sgp = SGP_DIRTY;
1476 index = *ppos >> PAGE_CACHE_SHIFT;
1477 offset = *ppos & ~PAGE_CACHE_MASK;
1479 for (;;) {
1480 struct page *page = NULL;
1481 pgoff_t end_index;
1482 unsigned long nr, ret;
1483 loff_t i_size = i_size_read(inode);
1485 end_index = i_size >> PAGE_CACHE_SHIFT;
1486 if (index > end_index)
1487 break;
1488 if (index == end_index) {
1489 nr = i_size & ~PAGE_CACHE_MASK;
1490 if (nr <= offset)
1491 break;
1494 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1495 if (desc->error) {
1496 if (desc->error == -EINVAL)
1497 desc->error = 0;
1498 break;
1500 if (page)
1501 unlock_page(page);
1504 * We must evaluate after, since reads (unlike writes)
1505 * are called without i_mutex protection against truncate
1507 nr = PAGE_CACHE_SIZE;
1508 i_size = i_size_read(inode);
1509 end_index = i_size >> PAGE_CACHE_SHIFT;
1510 if (index == end_index) {
1511 nr = i_size & ~PAGE_CACHE_MASK;
1512 if (nr <= offset) {
1513 if (page)
1514 page_cache_release(page);
1515 break;
1518 nr -= offset;
1520 if (page) {
1522 * If users can be writing to this page using arbitrary
1523 * virtual addresses, take care about potential aliasing
1524 * before reading the page on the kernel side.
1526 if (mapping_writably_mapped(mapping))
1527 flush_dcache_page(page);
1529 * Mark the page accessed if we read the beginning.
1531 if (!offset)
1532 mark_page_accessed(page);
1533 } else {
1534 page = ZERO_PAGE(0);
1535 page_cache_get(page);
1539 * Ok, we have the page, and it's up-to-date, so
1540 * now we can copy it to user space...
1542 * The actor routine returns how many bytes were actually used..
1543 * NOTE! This may not be the same as how much of a user buffer
1544 * we filled up (we may be padding etc), so we can only update
1545 * "pos" here (the actor routine has to update the user buffer
1546 * pointers and the remaining count).
1548 ret = actor(desc, page, offset, nr);
1549 offset += ret;
1550 index += offset >> PAGE_CACHE_SHIFT;
1551 offset &= ~PAGE_CACHE_MASK;
1553 page_cache_release(page);
1554 if (ret != nr || !desc->count)
1555 break;
1557 cond_resched();
1560 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1561 file_accessed(filp);
1564 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1565 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1567 struct file *filp = iocb->ki_filp;
1568 ssize_t retval;
1569 unsigned long seg;
1570 size_t count;
1571 loff_t *ppos = &iocb->ki_pos;
1573 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1574 if (retval)
1575 return retval;
1577 for (seg = 0; seg < nr_segs; seg++) {
1578 read_descriptor_t desc;
1580 desc.written = 0;
1581 desc.arg.buf = iov[seg].iov_base;
1582 desc.count = iov[seg].iov_len;
1583 if (desc.count == 0)
1584 continue;
1585 desc.error = 0;
1586 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1587 retval += desc.written;
1588 if (desc.error) {
1589 retval = retval ?: desc.error;
1590 break;
1592 if (desc.count > 0)
1593 break;
1595 return retval;
1598 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1599 struct pipe_inode_info *pipe, size_t len,
1600 unsigned int flags)
1602 struct address_space *mapping = in->f_mapping;
1603 struct inode *inode = mapping->host;
1604 unsigned int loff, nr_pages, req_pages;
1605 struct page *pages[PIPE_DEF_BUFFERS];
1606 struct partial_page partial[PIPE_DEF_BUFFERS];
1607 struct page *page;
1608 pgoff_t index, end_index;
1609 loff_t isize, left;
1610 int error, page_nr;
1611 struct splice_pipe_desc spd = {
1612 .pages = pages,
1613 .partial = partial,
1614 .nr_pages_max = PIPE_DEF_BUFFERS,
1615 .flags = flags,
1616 .ops = &page_cache_pipe_buf_ops,
1617 .spd_release = spd_release_page,
1620 isize = i_size_read(inode);
1621 if (unlikely(*ppos >= isize))
1622 return 0;
1624 left = isize - *ppos;
1625 if (unlikely(left < len))
1626 len = left;
1628 if (splice_grow_spd(pipe, &spd))
1629 return -ENOMEM;
1631 index = *ppos >> PAGE_CACHE_SHIFT;
1632 loff = *ppos & ~PAGE_CACHE_MASK;
1633 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1634 nr_pages = min(req_pages, pipe->buffers);
1636 spd.nr_pages = find_get_pages_contig(mapping, index,
1637 nr_pages, spd.pages);
1638 index += spd.nr_pages;
1639 error = 0;
1641 while (spd.nr_pages < nr_pages) {
1642 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1643 if (error)
1644 break;
1645 unlock_page(page);
1646 spd.pages[spd.nr_pages++] = page;
1647 index++;
1650 index = *ppos >> PAGE_CACHE_SHIFT;
1651 nr_pages = spd.nr_pages;
1652 spd.nr_pages = 0;
1654 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1655 unsigned int this_len;
1657 if (!len)
1658 break;
1660 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1661 page = spd.pages[page_nr];
1663 if (!PageUptodate(page) || page->mapping != mapping) {
1664 error = shmem_getpage(inode, index, &page,
1665 SGP_CACHE, NULL);
1666 if (error)
1667 break;
1668 unlock_page(page);
1669 page_cache_release(spd.pages[page_nr]);
1670 spd.pages[page_nr] = page;
1673 isize = i_size_read(inode);
1674 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1675 if (unlikely(!isize || index > end_index))
1676 break;
1678 if (end_index == index) {
1679 unsigned int plen;
1681 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682 if (plen <= loff)
1683 break;
1685 this_len = min(this_len, plen - loff);
1686 len = this_len;
1689 spd.partial[page_nr].offset = loff;
1690 spd.partial[page_nr].len = this_len;
1691 len -= this_len;
1692 loff = 0;
1693 spd.nr_pages++;
1694 index++;
1697 while (page_nr < nr_pages)
1698 page_cache_release(spd.pages[page_nr++]);
1700 if (spd.nr_pages)
1701 error = splice_to_pipe(pipe, &spd);
1703 splice_shrink_spd(&spd);
1705 if (error > 0) {
1706 *ppos += error;
1707 file_accessed(in);
1709 return error;
1712 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1713 loff_t len)
1715 struct inode *inode = file->f_path.dentry->d_inode;
1716 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1717 struct shmem_falloc shmem_falloc;
1718 pgoff_t start, index, end;
1719 int error;
1721 mutex_lock(&inode->i_mutex);
1723 if (mode & FALLOC_FL_PUNCH_HOLE) {
1724 struct address_space *mapping = file->f_mapping;
1725 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1726 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1728 if ((u64)unmap_end > (u64)unmap_start)
1729 unmap_mapping_range(mapping, unmap_start,
1730 1 + unmap_end - unmap_start, 0);
1731 shmem_truncate_range(inode, offset, offset + len - 1);
1732 /* No need to unmap again: hole-punching leaves COWed pages */
1733 error = 0;
1734 goto out;
1737 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1738 error = inode_newsize_ok(inode, offset + len);
1739 if (error)
1740 goto out;
1742 start = offset >> PAGE_CACHE_SHIFT;
1743 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1744 /* Try to avoid a swapstorm if len is impossible to satisfy */
1745 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1746 error = -ENOSPC;
1747 goto out;
1750 shmem_falloc.start = start;
1751 shmem_falloc.next = start;
1752 shmem_falloc.nr_falloced = 0;
1753 shmem_falloc.nr_unswapped = 0;
1754 spin_lock(&inode->i_lock);
1755 inode->i_private = &shmem_falloc;
1756 spin_unlock(&inode->i_lock);
1758 for (index = start; index < end; index++) {
1759 struct page *page;
1762 * Good, the fallocate(2) manpage permits EINTR: we may have
1763 * been interrupted because we are using up too much memory.
1765 if (signal_pending(current))
1766 error = -EINTR;
1767 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1768 error = -ENOMEM;
1769 else
1770 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1771 NULL);
1772 if (error) {
1773 /* Remove the !PageUptodate pages we added */
1774 shmem_undo_range(inode,
1775 (loff_t)start << PAGE_CACHE_SHIFT,
1776 (loff_t)index << PAGE_CACHE_SHIFT, true);
1777 goto undone;
1781 * Inform shmem_writepage() how far we have reached.
1782 * No need for lock or barrier: we have the page lock.
1784 shmem_falloc.next++;
1785 if (!PageUptodate(page))
1786 shmem_falloc.nr_falloced++;
1789 * If !PageUptodate, leave it that way so that freeable pages
1790 * can be recognized if we need to rollback on error later.
1791 * But set_page_dirty so that memory pressure will swap rather
1792 * than free the pages we are allocating (and SGP_CACHE pages
1793 * might still be clean: we now need to mark those dirty too).
1795 set_page_dirty(page);
1796 unlock_page(page);
1797 page_cache_release(page);
1798 cond_resched();
1801 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1802 i_size_write(inode, offset + len);
1803 inode->i_ctime = CURRENT_TIME;
1804 undone:
1805 spin_lock(&inode->i_lock);
1806 inode->i_private = NULL;
1807 spin_unlock(&inode->i_lock);
1808 out:
1809 mutex_unlock(&inode->i_mutex);
1810 return error;
1813 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1815 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1817 buf->f_type = TMPFS_MAGIC;
1818 buf->f_bsize = PAGE_CACHE_SIZE;
1819 buf->f_namelen = NAME_MAX;
1820 if (sbinfo->max_blocks) {
1821 buf->f_blocks = sbinfo->max_blocks;
1822 buf->f_bavail =
1823 buf->f_bfree = sbinfo->max_blocks -
1824 percpu_counter_sum(&sbinfo->used_blocks);
1826 if (sbinfo->max_inodes) {
1827 buf->f_files = sbinfo->max_inodes;
1828 buf->f_ffree = sbinfo->free_inodes;
1830 /* else leave those fields 0 like simple_statfs */
1831 return 0;
1835 * File creation. Allocate an inode, and we're done..
1837 static int
1838 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1840 struct inode *inode;
1841 int error = -ENOSPC;
1843 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844 if (inode) {
1845 error = security_inode_init_security(inode, dir,
1846 &dentry->d_name,
1847 shmem_initxattrs, NULL);
1848 if (error) {
1849 if (error != -EOPNOTSUPP) {
1850 iput(inode);
1851 return error;
1854 #ifdef CONFIG_TMPFS_POSIX_ACL
1855 error = generic_acl_init(inode, dir);
1856 if (error) {
1857 iput(inode);
1858 return error;
1860 #else
1861 error = 0;
1862 #endif
1863 dir->i_size += BOGO_DIRENT_SIZE;
1864 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865 d_instantiate(dentry, inode);
1866 dget(dentry); /* Extra count - pin the dentry in core */
1868 return error;
1871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1873 int error;
1875 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1876 return error;
1877 inc_nlink(dir);
1878 return 0;
1881 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1882 bool excl)
1884 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1888 * Link a file..
1890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1892 struct inode *inode = old_dentry->d_inode;
1893 int ret;
1896 * No ordinary (disk based) filesystem counts links as inodes;
1897 * but each new link needs a new dentry, pinning lowmem, and
1898 * tmpfs dentries cannot be pruned until they are unlinked.
1900 ret = shmem_reserve_inode(inode->i_sb);
1901 if (ret)
1902 goto out;
1904 dir->i_size += BOGO_DIRENT_SIZE;
1905 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1906 inc_nlink(inode);
1907 ihold(inode); /* New dentry reference */
1908 dget(dentry); /* Extra pinning count for the created dentry */
1909 d_instantiate(dentry, inode);
1910 out:
1911 return ret;
1914 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1916 struct inode *inode = dentry->d_inode;
1918 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1919 shmem_free_inode(inode->i_sb);
1921 dir->i_size -= BOGO_DIRENT_SIZE;
1922 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1923 drop_nlink(inode);
1924 dput(dentry); /* Undo the count from "create" - this does all the work */
1925 return 0;
1928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1930 if (!simple_empty(dentry))
1931 return -ENOTEMPTY;
1933 drop_nlink(dentry->d_inode);
1934 drop_nlink(dir);
1935 return shmem_unlink(dir, dentry);
1939 * The VFS layer already does all the dentry stuff for rename,
1940 * we just have to decrement the usage count for the target if
1941 * it exists so that the VFS layer correctly free's it when it
1942 * gets overwritten.
1944 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1946 struct inode *inode = old_dentry->d_inode;
1947 int they_are_dirs = S_ISDIR(inode->i_mode);
1949 if (!simple_empty(new_dentry))
1950 return -ENOTEMPTY;
1952 if (new_dentry->d_inode) {
1953 (void) shmem_unlink(new_dir, new_dentry);
1954 if (they_are_dirs)
1955 drop_nlink(old_dir);
1956 } else if (they_are_dirs) {
1957 drop_nlink(old_dir);
1958 inc_nlink(new_dir);
1961 old_dir->i_size -= BOGO_DIRENT_SIZE;
1962 new_dir->i_size += BOGO_DIRENT_SIZE;
1963 old_dir->i_ctime = old_dir->i_mtime =
1964 new_dir->i_ctime = new_dir->i_mtime =
1965 inode->i_ctime = CURRENT_TIME;
1966 return 0;
1969 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1971 int error;
1972 int len;
1973 struct inode *inode;
1974 struct page *page;
1975 char *kaddr;
1976 struct shmem_inode_info *info;
1978 len = strlen(symname) + 1;
1979 if (len > PAGE_CACHE_SIZE)
1980 return -ENAMETOOLONG;
1982 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1983 if (!inode)
1984 return -ENOSPC;
1986 error = security_inode_init_security(inode, dir, &dentry->d_name,
1987 shmem_initxattrs, NULL);
1988 if (error) {
1989 if (error != -EOPNOTSUPP) {
1990 iput(inode);
1991 return error;
1993 error = 0;
1996 info = SHMEM_I(inode);
1997 inode->i_size = len-1;
1998 if (len <= SHORT_SYMLINK_LEN) {
1999 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2000 if (!info->symlink) {
2001 iput(inode);
2002 return -ENOMEM;
2004 inode->i_op = &shmem_short_symlink_operations;
2005 } else {
2006 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2007 if (error) {
2008 iput(inode);
2009 return error;
2011 inode->i_mapping->a_ops = &shmem_aops;
2012 inode->i_op = &shmem_symlink_inode_operations;
2013 kaddr = kmap_atomic(page);
2014 memcpy(kaddr, symname, len);
2015 kunmap_atomic(kaddr);
2016 SetPageUptodate(page);
2017 set_page_dirty(page);
2018 unlock_page(page);
2019 page_cache_release(page);
2021 dir->i_size += BOGO_DIRENT_SIZE;
2022 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2023 d_instantiate(dentry, inode);
2024 dget(dentry);
2025 return 0;
2028 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2030 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2031 return NULL;
2034 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2036 struct page *page = NULL;
2037 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2038 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2039 if (page)
2040 unlock_page(page);
2041 return page;
2044 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2046 if (!IS_ERR(nd_get_link(nd))) {
2047 struct page *page = cookie;
2048 kunmap(page);
2049 mark_page_accessed(page);
2050 page_cache_release(page);
2054 #ifdef CONFIG_TMPFS_XATTR
2056 * Superblocks without xattr inode operations may get some security.* xattr
2057 * support from the LSM "for free". As soon as we have any other xattrs
2058 * like ACLs, we also need to implement the security.* handlers at
2059 * filesystem level, though.
2063 * Allocate new xattr and copy in the value; but leave the name to callers.
2065 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2067 struct shmem_xattr *new_xattr;
2068 size_t len;
2070 /* wrap around? */
2071 len = sizeof(*new_xattr) + size;
2072 if (len <= sizeof(*new_xattr))
2073 return NULL;
2075 new_xattr = kmalloc(len, GFP_KERNEL);
2076 if (!new_xattr)
2077 return NULL;
2079 new_xattr->size = size;
2080 memcpy(new_xattr->value, value, size);
2081 return new_xattr;
2085 * Callback for security_inode_init_security() for acquiring xattrs.
2087 static int shmem_initxattrs(struct inode *inode,
2088 const struct xattr *xattr_array,
2089 void *fs_info)
2091 struct shmem_inode_info *info = SHMEM_I(inode);
2092 const struct xattr *xattr;
2093 struct shmem_xattr *new_xattr;
2094 size_t len;
2096 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2097 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2098 if (!new_xattr)
2099 return -ENOMEM;
2101 len = strlen(xattr->name) + 1;
2102 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2103 GFP_KERNEL);
2104 if (!new_xattr->name) {
2105 kfree(new_xattr);
2106 return -ENOMEM;
2109 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2110 XATTR_SECURITY_PREFIX_LEN);
2111 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2112 xattr->name, len);
2114 spin_lock(&info->lock);
2115 list_add(&new_xattr->list, &info->xattr_list);
2116 spin_unlock(&info->lock);
2119 return 0;
2122 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2123 void *buffer, size_t size)
2125 struct shmem_inode_info *info;
2126 struct shmem_xattr *xattr;
2127 int ret = -ENODATA;
2129 info = SHMEM_I(dentry->d_inode);
2131 spin_lock(&info->lock);
2132 list_for_each_entry(xattr, &info->xattr_list, list) {
2133 if (strcmp(name, xattr->name))
2134 continue;
2136 ret = xattr->size;
2137 if (buffer) {
2138 if (size < xattr->size)
2139 ret = -ERANGE;
2140 else
2141 memcpy(buffer, xattr->value, xattr->size);
2143 break;
2145 spin_unlock(&info->lock);
2146 return ret;
2149 static int shmem_xattr_set(struct inode *inode, const char *name,
2150 const void *value, size_t size, int flags)
2152 struct shmem_inode_info *info = SHMEM_I(inode);
2153 struct shmem_xattr *xattr;
2154 struct shmem_xattr *new_xattr = NULL;
2155 int err = 0;
2157 /* value == NULL means remove */
2158 if (value) {
2159 new_xattr = shmem_xattr_alloc(value, size);
2160 if (!new_xattr)
2161 return -ENOMEM;
2163 new_xattr->name = kstrdup(name, GFP_KERNEL);
2164 if (!new_xattr->name) {
2165 kfree(new_xattr);
2166 return -ENOMEM;
2170 spin_lock(&info->lock);
2171 list_for_each_entry(xattr, &info->xattr_list, list) {
2172 if (!strcmp(name, xattr->name)) {
2173 if (flags & XATTR_CREATE) {
2174 xattr = new_xattr;
2175 err = -EEXIST;
2176 } else if (new_xattr) {
2177 list_replace(&xattr->list, &new_xattr->list);
2178 } else {
2179 list_del(&xattr->list);
2181 goto out;
2184 if (flags & XATTR_REPLACE) {
2185 xattr = new_xattr;
2186 err = -ENODATA;
2187 } else {
2188 list_add(&new_xattr->list, &info->xattr_list);
2189 xattr = NULL;
2191 out:
2192 spin_unlock(&info->lock);
2193 if (xattr)
2194 kfree(xattr->name);
2195 kfree(xattr);
2196 return err;
2199 static const struct xattr_handler *shmem_xattr_handlers[] = {
2200 #ifdef CONFIG_TMPFS_POSIX_ACL
2201 &generic_acl_access_handler,
2202 &generic_acl_default_handler,
2203 #endif
2204 NULL
2207 static int shmem_xattr_validate(const char *name)
2209 struct { const char *prefix; size_t len; } arr[] = {
2210 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2211 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2213 int i;
2215 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2216 size_t preflen = arr[i].len;
2217 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2218 if (!name[preflen])
2219 return -EINVAL;
2220 return 0;
2223 return -EOPNOTSUPP;
2226 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2227 void *buffer, size_t size)
2229 int err;
2232 * If this is a request for a synthetic attribute in the system.*
2233 * namespace use the generic infrastructure to resolve a handler
2234 * for it via sb->s_xattr.
2236 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2237 return generic_getxattr(dentry, name, buffer, size);
2239 err = shmem_xattr_validate(name);
2240 if (err)
2241 return err;
2243 return shmem_xattr_get(dentry, name, buffer, size);
2246 static int shmem_setxattr(struct dentry *dentry, const char *name,
2247 const void *value, size_t size, int flags)
2249 int err;
2252 * If this is a request for a synthetic attribute in the system.*
2253 * namespace use the generic infrastructure to resolve a handler
2254 * for it via sb->s_xattr.
2256 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2257 return generic_setxattr(dentry, name, value, size, flags);
2259 err = shmem_xattr_validate(name);
2260 if (err)
2261 return err;
2263 if (size == 0)
2264 value = ""; /* empty EA, do not remove */
2266 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2270 static int shmem_removexattr(struct dentry *dentry, const char *name)
2272 int err;
2275 * If this is a request for a synthetic attribute in the system.*
2276 * namespace use the generic infrastructure to resolve a handler
2277 * for it via sb->s_xattr.
2279 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2280 return generic_removexattr(dentry, name);
2282 err = shmem_xattr_validate(name);
2283 if (err)
2284 return err;
2286 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2289 static bool xattr_is_trusted(const char *name)
2291 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2296 bool trusted = capable(CAP_SYS_ADMIN);
2297 struct shmem_xattr *xattr;
2298 struct shmem_inode_info *info;
2299 size_t used = 0;
2301 info = SHMEM_I(dentry->d_inode);
2303 spin_lock(&info->lock);
2304 list_for_each_entry(xattr, &info->xattr_list, list) {
2305 size_t len;
2307 /* skip "trusted." attributes for unprivileged callers */
2308 if (!trusted && xattr_is_trusted(xattr->name))
2309 continue;
2311 len = strlen(xattr->name) + 1;
2312 used += len;
2313 if (buffer) {
2314 if (size < used) {
2315 used = -ERANGE;
2316 break;
2318 memcpy(buffer, xattr->name, len);
2319 buffer += len;
2322 spin_unlock(&info->lock);
2324 return used;
2326 #endif /* CONFIG_TMPFS_XATTR */
2328 static const struct inode_operations shmem_short_symlink_operations = {
2329 .readlink = generic_readlink,
2330 .follow_link = shmem_follow_short_symlink,
2331 #ifdef CONFIG_TMPFS_XATTR
2332 .setxattr = shmem_setxattr,
2333 .getxattr = shmem_getxattr,
2334 .listxattr = shmem_listxattr,
2335 .removexattr = shmem_removexattr,
2336 #endif
2339 static const struct inode_operations shmem_symlink_inode_operations = {
2340 .readlink = generic_readlink,
2341 .follow_link = shmem_follow_link,
2342 .put_link = shmem_put_link,
2343 #ifdef CONFIG_TMPFS_XATTR
2344 .setxattr = shmem_setxattr,
2345 .getxattr = shmem_getxattr,
2346 .listxattr = shmem_listxattr,
2347 .removexattr = shmem_removexattr,
2348 #endif
2351 static struct dentry *shmem_get_parent(struct dentry *child)
2353 return ERR_PTR(-ESTALE);
2356 static int shmem_match(struct inode *ino, void *vfh)
2358 __u32 *fh = vfh;
2359 __u64 inum = fh[2];
2360 inum = (inum << 32) | fh[1];
2361 return ino->i_ino == inum && fh[0] == ino->i_generation;
2364 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2365 struct fid *fid, int fh_len, int fh_type)
2367 struct inode *inode;
2368 struct dentry *dentry = NULL;
2369 u64 inum = fid->raw[2];
2370 inum = (inum << 32) | fid->raw[1];
2372 if (fh_len < 3)
2373 return NULL;
2375 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2376 shmem_match, fid->raw);
2377 if (inode) {
2378 dentry = d_find_alias(inode);
2379 iput(inode);
2382 return dentry;
2385 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2386 struct inode *parent)
2388 if (*len < 3) {
2389 *len = 3;
2390 return 255;
2393 if (inode_unhashed(inode)) {
2394 /* Unfortunately insert_inode_hash is not idempotent,
2395 * so as we hash inodes here rather than at creation
2396 * time, we need a lock to ensure we only try
2397 * to do it once
2399 static DEFINE_SPINLOCK(lock);
2400 spin_lock(&lock);
2401 if (inode_unhashed(inode))
2402 __insert_inode_hash(inode,
2403 inode->i_ino + inode->i_generation);
2404 spin_unlock(&lock);
2407 fh[0] = inode->i_generation;
2408 fh[1] = inode->i_ino;
2409 fh[2] = ((__u64)inode->i_ino) >> 32;
2411 *len = 3;
2412 return 1;
2415 static const struct export_operations shmem_export_ops = {
2416 .get_parent = shmem_get_parent,
2417 .encode_fh = shmem_encode_fh,
2418 .fh_to_dentry = shmem_fh_to_dentry,
2421 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2422 bool remount)
2424 char *this_char, *value, *rest;
2425 uid_t uid;
2426 gid_t gid;
2428 while (options != NULL) {
2429 this_char = options;
2430 for (;;) {
2432 * NUL-terminate this option: unfortunately,
2433 * mount options form a comma-separated list,
2434 * but mpol's nodelist may also contain commas.
2436 options = strchr(options, ',');
2437 if (options == NULL)
2438 break;
2439 options++;
2440 if (!isdigit(*options)) {
2441 options[-1] = '\0';
2442 break;
2445 if (!*this_char)
2446 continue;
2447 if ((value = strchr(this_char,'=')) != NULL) {
2448 *value++ = 0;
2449 } else {
2450 printk(KERN_ERR
2451 "tmpfs: No value for mount option '%s'\n",
2452 this_char);
2453 return 1;
2456 if (!strcmp(this_char,"size")) {
2457 unsigned long long size;
2458 size = memparse(value,&rest);
2459 if (*rest == '%') {
2460 size <<= PAGE_SHIFT;
2461 size *= totalram_pages;
2462 do_div(size, 100);
2463 rest++;
2465 if (*rest)
2466 goto bad_val;
2467 sbinfo->max_blocks =
2468 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2469 } else if (!strcmp(this_char,"nr_blocks")) {
2470 sbinfo->max_blocks = memparse(value, &rest);
2471 if (*rest)
2472 goto bad_val;
2473 } else if (!strcmp(this_char,"nr_inodes")) {
2474 sbinfo->max_inodes = memparse(value, &rest);
2475 if (*rest)
2476 goto bad_val;
2477 } else if (!strcmp(this_char,"mode")) {
2478 if (remount)
2479 continue;
2480 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2481 if (*rest)
2482 goto bad_val;
2483 } else if (!strcmp(this_char,"uid")) {
2484 if (remount)
2485 continue;
2486 uid = simple_strtoul(value, &rest, 0);
2487 if (*rest)
2488 goto bad_val;
2489 sbinfo->uid = make_kuid(current_user_ns(), uid);
2490 if (!uid_valid(sbinfo->uid))
2491 goto bad_val;
2492 } else if (!strcmp(this_char,"gid")) {
2493 if (remount)
2494 continue;
2495 gid = simple_strtoul(value, &rest, 0);
2496 if (*rest)
2497 goto bad_val;
2498 sbinfo->gid = make_kgid(current_user_ns(), gid);
2499 if (!gid_valid(sbinfo->gid))
2500 goto bad_val;
2501 } else if (!strcmp(this_char,"mpol")) {
2502 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2503 goto bad_val;
2504 } else {
2505 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2506 this_char);
2507 return 1;
2510 return 0;
2512 bad_val:
2513 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2514 value, this_char);
2515 return 1;
2519 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2521 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2522 struct shmem_sb_info config = *sbinfo;
2523 unsigned long inodes;
2524 int error = -EINVAL;
2526 if (shmem_parse_options(data, &config, true))
2527 return error;
2529 spin_lock(&sbinfo->stat_lock);
2530 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2531 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2532 goto out;
2533 if (config.max_inodes < inodes)
2534 goto out;
2536 * Those tests disallow limited->unlimited while any are in use;
2537 * but we must separately disallow unlimited->limited, because
2538 * in that case we have no record of how much is already in use.
2540 if (config.max_blocks && !sbinfo->max_blocks)
2541 goto out;
2542 if (config.max_inodes && !sbinfo->max_inodes)
2543 goto out;
2545 error = 0;
2546 sbinfo->max_blocks = config.max_blocks;
2547 sbinfo->max_inodes = config.max_inodes;
2548 sbinfo->free_inodes = config.max_inodes - inodes;
2550 mpol_put(sbinfo->mpol);
2551 sbinfo->mpol = config.mpol; /* transfers initial ref */
2552 out:
2553 spin_unlock(&sbinfo->stat_lock);
2554 return error;
2557 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2559 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2561 if (sbinfo->max_blocks != shmem_default_max_blocks())
2562 seq_printf(seq, ",size=%luk",
2563 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2564 if (sbinfo->max_inodes != shmem_default_max_inodes())
2565 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2566 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2567 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2568 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2569 seq_printf(seq, ",uid=%u",
2570 from_kuid_munged(&init_user_ns, sbinfo->uid));
2571 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2572 seq_printf(seq, ",gid=%u",
2573 from_kgid_munged(&init_user_ns, sbinfo->gid));
2574 shmem_show_mpol(seq, sbinfo->mpol);
2575 return 0;
2577 #endif /* CONFIG_TMPFS */
2579 static void shmem_put_super(struct super_block *sb)
2581 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2583 percpu_counter_destroy(&sbinfo->used_blocks);
2584 kfree(sbinfo);
2585 sb->s_fs_info = NULL;
2588 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2590 struct inode *inode;
2591 struct shmem_sb_info *sbinfo;
2592 int err = -ENOMEM;
2594 /* Round up to L1_CACHE_BYTES to resist false sharing */
2595 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2596 L1_CACHE_BYTES), GFP_KERNEL);
2597 if (!sbinfo)
2598 return -ENOMEM;
2600 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2601 sbinfo->uid = current_fsuid();
2602 sbinfo->gid = current_fsgid();
2603 sb->s_fs_info = sbinfo;
2605 #ifdef CONFIG_TMPFS
2607 * Per default we only allow half of the physical ram per
2608 * tmpfs instance, limiting inodes to one per page of lowmem;
2609 * but the internal instance is left unlimited.
2611 if (!(sb->s_flags & MS_NOUSER)) {
2612 sbinfo->max_blocks = shmem_default_max_blocks();
2613 sbinfo->max_inodes = shmem_default_max_inodes();
2614 if (shmem_parse_options(data, sbinfo, false)) {
2615 err = -EINVAL;
2616 goto failed;
2619 sb->s_export_op = &shmem_export_ops;
2620 sb->s_flags |= MS_NOSEC;
2621 #else
2622 sb->s_flags |= MS_NOUSER;
2623 #endif
2625 spin_lock_init(&sbinfo->stat_lock);
2626 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2627 goto failed;
2628 sbinfo->free_inodes = sbinfo->max_inodes;
2630 sb->s_maxbytes = MAX_LFS_FILESIZE;
2631 sb->s_blocksize = PAGE_CACHE_SIZE;
2632 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2633 sb->s_magic = TMPFS_MAGIC;
2634 sb->s_op = &shmem_ops;
2635 sb->s_time_gran = 1;
2636 #ifdef CONFIG_TMPFS_XATTR
2637 sb->s_xattr = shmem_xattr_handlers;
2638 #endif
2639 #ifdef CONFIG_TMPFS_POSIX_ACL
2640 sb->s_flags |= MS_POSIXACL;
2641 #endif
2643 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2644 if (!inode)
2645 goto failed;
2646 inode->i_uid = sbinfo->uid;
2647 inode->i_gid = sbinfo->gid;
2648 sb->s_root = d_make_root(inode);
2649 if (!sb->s_root)
2650 goto failed;
2651 return 0;
2653 failed:
2654 shmem_put_super(sb);
2655 return err;
2658 static struct kmem_cache *shmem_inode_cachep;
2660 static struct inode *shmem_alloc_inode(struct super_block *sb)
2662 struct shmem_inode_info *info;
2663 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2664 if (!info)
2665 return NULL;
2666 return &info->vfs_inode;
2669 static void shmem_destroy_callback(struct rcu_head *head)
2671 struct inode *inode = container_of(head, struct inode, i_rcu);
2672 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2675 static void shmem_destroy_inode(struct inode *inode)
2677 if (S_ISREG(inode->i_mode))
2678 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2679 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2682 static void shmem_init_inode(void *foo)
2684 struct shmem_inode_info *info = foo;
2685 inode_init_once(&info->vfs_inode);
2688 static int shmem_init_inodecache(void)
2690 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2691 sizeof(struct shmem_inode_info),
2692 0, SLAB_PANIC, shmem_init_inode);
2693 return 0;
2696 static void shmem_destroy_inodecache(void)
2698 kmem_cache_destroy(shmem_inode_cachep);
2701 static const struct address_space_operations shmem_aops = {
2702 .writepage = shmem_writepage,
2703 .set_page_dirty = __set_page_dirty_no_writeback,
2704 #ifdef CONFIG_TMPFS
2705 .write_begin = shmem_write_begin,
2706 .write_end = shmem_write_end,
2707 #endif
2708 .migratepage = migrate_page,
2709 .error_remove_page = generic_error_remove_page,
2712 static const struct file_operations shmem_file_operations = {
2713 .mmap = shmem_mmap,
2714 #ifdef CONFIG_TMPFS
2715 .llseek = generic_file_llseek,
2716 .read = do_sync_read,
2717 .write = do_sync_write,
2718 .aio_read = shmem_file_aio_read,
2719 .aio_write = generic_file_aio_write,
2720 .fsync = noop_fsync,
2721 .splice_read = shmem_file_splice_read,
2722 .splice_write = generic_file_splice_write,
2723 .fallocate = shmem_fallocate,
2724 #endif
2727 static const struct inode_operations shmem_inode_operations = {
2728 .setattr = shmem_setattr,
2729 #ifdef CONFIG_TMPFS_XATTR
2730 .setxattr = shmem_setxattr,
2731 .getxattr = shmem_getxattr,
2732 .listxattr = shmem_listxattr,
2733 .removexattr = shmem_removexattr,
2734 #endif
2737 static const struct inode_operations shmem_dir_inode_operations = {
2738 #ifdef CONFIG_TMPFS
2739 .create = shmem_create,
2740 .lookup = simple_lookup,
2741 .link = shmem_link,
2742 .unlink = shmem_unlink,
2743 .symlink = shmem_symlink,
2744 .mkdir = shmem_mkdir,
2745 .rmdir = shmem_rmdir,
2746 .mknod = shmem_mknod,
2747 .rename = shmem_rename,
2748 #endif
2749 #ifdef CONFIG_TMPFS_XATTR
2750 .setxattr = shmem_setxattr,
2751 .getxattr = shmem_getxattr,
2752 .listxattr = shmem_listxattr,
2753 .removexattr = shmem_removexattr,
2754 #endif
2755 #ifdef CONFIG_TMPFS_POSIX_ACL
2756 .setattr = shmem_setattr,
2757 #endif
2760 static const struct inode_operations shmem_special_inode_operations = {
2761 #ifdef CONFIG_TMPFS_XATTR
2762 .setxattr = shmem_setxattr,
2763 .getxattr = shmem_getxattr,
2764 .listxattr = shmem_listxattr,
2765 .removexattr = shmem_removexattr,
2766 #endif
2767 #ifdef CONFIG_TMPFS_POSIX_ACL
2768 .setattr = shmem_setattr,
2769 #endif
2772 static const struct super_operations shmem_ops = {
2773 .alloc_inode = shmem_alloc_inode,
2774 .destroy_inode = shmem_destroy_inode,
2775 #ifdef CONFIG_TMPFS
2776 .statfs = shmem_statfs,
2777 .remount_fs = shmem_remount_fs,
2778 .show_options = shmem_show_options,
2779 #endif
2780 .evict_inode = shmem_evict_inode,
2781 .drop_inode = generic_delete_inode,
2782 .put_super = shmem_put_super,
2785 static const struct vm_operations_struct shmem_vm_ops = {
2786 .fault = shmem_fault,
2787 #ifdef CONFIG_NUMA
2788 .set_policy = shmem_set_policy,
2789 .get_policy = shmem_get_policy,
2790 #endif
2793 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2794 int flags, const char *dev_name, void *data)
2796 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2799 static struct file_system_type shmem_fs_type = {
2800 .owner = THIS_MODULE,
2801 .name = "tmpfs",
2802 .mount = shmem_mount,
2803 .kill_sb = kill_litter_super,
2806 int __init shmem_init(void)
2808 int error;
2810 error = bdi_init(&shmem_backing_dev_info);
2811 if (error)
2812 goto out4;
2814 error = shmem_init_inodecache();
2815 if (error)
2816 goto out3;
2818 error = register_filesystem(&shmem_fs_type);
2819 if (error) {
2820 printk(KERN_ERR "Could not register tmpfs\n");
2821 goto out2;
2824 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2825 shmem_fs_type.name, NULL);
2826 if (IS_ERR(shm_mnt)) {
2827 error = PTR_ERR(shm_mnt);
2828 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829 goto out1;
2831 return 0;
2833 out1:
2834 unregister_filesystem(&shmem_fs_type);
2835 out2:
2836 shmem_destroy_inodecache();
2837 out3:
2838 bdi_destroy(&shmem_backing_dev_info);
2839 out4:
2840 shm_mnt = ERR_PTR(error);
2841 return error;
2844 #else /* !CONFIG_SHMEM */
2847 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2849 * This is intended for small system where the benefits of the full
2850 * shmem code (swap-backed and resource-limited) are outweighed by
2851 * their complexity. On systems without swap this code should be
2852 * effectively equivalent, but much lighter weight.
2855 #include <linux/ramfs.h>
2857 static struct file_system_type shmem_fs_type = {
2858 .name = "tmpfs",
2859 .mount = ramfs_mount,
2860 .kill_sb = kill_litter_super,
2863 int __init shmem_init(void)
2865 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2867 shm_mnt = kern_mount(&shmem_fs_type);
2868 BUG_ON(IS_ERR(shm_mnt));
2870 return 0;
2873 int shmem_unuse(swp_entry_t swap, struct page *page)
2875 return 0;
2878 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2880 return 0;
2883 void shmem_unlock_mapping(struct address_space *mapping)
2887 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2889 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2891 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2893 #define shmem_vm_ops generic_file_vm_ops
2894 #define shmem_file_operations ramfs_file_operations
2895 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2896 #define shmem_acct_size(flags, size) 0
2897 #define shmem_unacct_size(flags, size) do {} while (0)
2899 #endif /* CONFIG_SHMEM */
2901 /* common code */
2904 * shmem_file_setup - get an unlinked file living in tmpfs
2905 * @name: name for dentry (to be seen in /proc/<pid>/maps
2906 * @size: size to be set for the file
2907 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2909 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2911 int error;
2912 struct file *file;
2913 struct inode *inode;
2914 struct path path;
2915 struct dentry *root;
2916 struct qstr this;
2918 if (IS_ERR(shm_mnt))
2919 return (void *)shm_mnt;
2921 if (size < 0 || size > MAX_LFS_FILESIZE)
2922 return ERR_PTR(-EINVAL);
2924 if (shmem_acct_size(flags, size))
2925 return ERR_PTR(-ENOMEM);
2927 error = -ENOMEM;
2928 this.name = name;
2929 this.len = strlen(name);
2930 this.hash = 0; /* will go */
2931 root = shm_mnt->mnt_root;
2932 path.dentry = d_alloc(root, &this);
2933 if (!path.dentry)
2934 goto put_memory;
2935 path.mnt = mntget(shm_mnt);
2937 error = -ENOSPC;
2938 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2939 if (!inode)
2940 goto put_dentry;
2942 d_instantiate(path.dentry, inode);
2943 inode->i_size = size;
2944 clear_nlink(inode); /* It is unlinked */
2945 #ifndef CONFIG_MMU
2946 error = ramfs_nommu_expand_for_mapping(inode, size);
2947 if (error)
2948 goto put_dentry;
2949 #endif
2951 error = -ENFILE;
2952 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2953 &shmem_file_operations);
2954 if (!file)
2955 goto put_dentry;
2957 return file;
2959 put_dentry:
2960 path_put(&path);
2961 put_memory:
2962 shmem_unacct_size(flags, size);
2963 return ERR_PTR(error);
2965 EXPORT_SYMBOL_GPL(shmem_file_setup);
2968 * shmem_zero_setup - setup a shared anonymous mapping
2969 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2971 int shmem_zero_setup(struct vm_area_struct *vma)
2973 struct file *file;
2974 loff_t size = vma->vm_end - vma->vm_start;
2976 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2977 if (IS_ERR(file))
2978 return PTR_ERR(file);
2980 if (vma->vm_file)
2981 fput(vma->vm_file);
2982 vma->vm_file = file;
2983 vma->vm_ops = &shmem_vm_ops;
2984 vma->vm_flags |= VM_CAN_NONLINEAR;
2985 return 0;
2989 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2990 * @mapping: the page's address_space
2991 * @index: the page index
2992 * @gfp: the page allocator flags to use if allocating
2994 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2995 * with any new page allocations done using the specified allocation flags.
2996 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2997 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2998 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3000 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3001 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3003 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3004 pgoff_t index, gfp_t gfp)
3006 #ifdef CONFIG_SHMEM
3007 struct inode *inode = mapping->host;
3008 struct page *page;
3009 int error;
3011 BUG_ON(mapping->a_ops != &shmem_aops);
3012 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3013 if (error)
3014 page = ERR_PTR(error);
3015 else
3016 unlock_page(page);
3017 return page;
3018 #else
3020 * The tiny !SHMEM case uses ramfs without swap
3022 return read_cache_page_gfp(mapping, index, gfp);
3023 #endif
3025 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);