ACPI: Fix stale pointer access to flags.lockable
[linux-2.6.git] / tools / perf / builtin-sched.c
blob3488ead3b60ce80707493e93f821945bad8a6455
1 #include "builtin.h"
2 #include "perf.h"
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
17 #include "util/debug.h"
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
26 #define PR_SET_NAME 15 /* Set process name */
27 #define MAX_CPUS 4096
28 #define COMM_LEN 20
29 #define SYM_LEN 129
30 #define MAX_PID 65536
32 struct sched_atom;
34 struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
43 pthread_t thread;
44 sem_t sleep_sem;
46 sem_t ready_for_work;
47 sem_t work_done_sem;
49 u64 cpu_usage;
52 enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
59 struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
71 enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
78 struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
87 struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
100 struct perf_sched;
102 struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
112 int (*fork_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113 struct perf_sample *sample);
115 int (*migrate_task_event)(struct perf_sched *sched,
116 struct perf_evsel *evsel,
117 struct perf_sample *sample,
118 struct machine *machine);
121 struct perf_sched {
122 struct perf_tool tool;
123 const char *input_name;
124 const char *sort_order;
125 unsigned long nr_tasks;
126 struct task_desc *pid_to_task[MAX_PID];
127 struct task_desc **tasks;
128 const struct trace_sched_handler *tp_handler;
129 pthread_mutex_t start_work_mutex;
130 pthread_mutex_t work_done_wait_mutex;
131 int profile_cpu;
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
136 int max_cpu;
137 u32 curr_pid[MAX_CPUS];
138 struct thread *curr_thread[MAX_CPUS];
139 char next_shortname1;
140 char next_shortname2;
141 unsigned int replay_repeat;
142 unsigned long nr_run_events;
143 unsigned long nr_sleep_events;
144 unsigned long nr_wakeup_events;
145 unsigned long nr_sleep_corrections;
146 unsigned long nr_run_events_optimized;
147 unsigned long targetless_wakeups;
148 unsigned long multitarget_wakeups;
149 unsigned long nr_runs;
150 unsigned long nr_timestamps;
151 unsigned long nr_unordered_timestamps;
152 unsigned long nr_state_machine_bugs;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
174 static u64 get_nsecs(void)
176 struct timespec ts;
178 clock_gettime(CLOCK_MONOTONIC, &ts);
180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
185 u64 T0 = get_nsecs(), T1;
187 do {
188 T1 = get_nsecs();
189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
192 static void sleep_nsecs(u64 nsecs)
194 struct timespec ts;
196 ts.tv_nsec = nsecs % 999999999;
197 ts.tv_sec = nsecs / 999999999;
199 nanosleep(&ts, NULL);
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 burn_nsecs(sched, 0);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
214 sched->run_measurement_overhead = min_delta;
216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
221 u64 T0, T1, delta, min_delta = 1000000000ULL;
222 int i;
224 for (i = 0; i < 10; i++) {
225 T0 = get_nsecs();
226 sleep_nsecs(10000);
227 T1 = get_nsecs();
228 delta = T1-T0;
229 min_delta = min(min_delta, delta);
231 min_delta -= 10000;
232 sched->sleep_measurement_overhead = min_delta;
234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
240 struct sched_atom *event = zalloc(sizeof(*event));
241 unsigned long idx = task->nr_events;
242 size_t size;
244 event->timestamp = timestamp;
245 event->nr = idx;
247 task->nr_events++;
248 size = sizeof(struct sched_atom *) * task->nr_events;
249 task->atoms = realloc(task->atoms, size);
250 BUG_ON(!task->atoms);
252 task->atoms[idx] = event;
254 return event;
257 static struct sched_atom *last_event(struct task_desc *task)
259 if (!task->nr_events)
260 return NULL;
262 return task->atoms[task->nr_events - 1];
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266 u64 timestamp, u64 duration)
268 struct sched_atom *event, *curr_event = last_event(task);
271 * optimize an existing RUN event by merging this one
272 * to it:
274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275 sched->nr_run_events_optimized++;
276 curr_event->duration += duration;
277 return;
280 event = get_new_event(task, timestamp);
282 event->type = SCHED_EVENT_RUN;
283 event->duration = duration;
285 sched->nr_run_events++;
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, struct task_desc *wakee)
291 struct sched_atom *event, *wakee_event;
293 event = get_new_event(task, timestamp);
294 event->type = SCHED_EVENT_WAKEUP;
295 event->wakee = wakee;
297 wakee_event = last_event(wakee);
298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299 sched->targetless_wakeups++;
300 return;
302 if (wakee_event->wait_sem) {
303 sched->multitarget_wakeups++;
304 return;
307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308 sem_init(wakee_event->wait_sem, 0, 0);
309 wakee_event->specific_wait = 1;
310 event->wait_sem = wakee_event->wait_sem;
312 sched->nr_wakeup_events++;
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316 u64 timestamp, u64 task_state __maybe_unused)
318 struct sched_atom *event = get_new_event(task, timestamp);
320 event->type = SCHED_EVENT_SLEEP;
322 sched->nr_sleep_events++;
325 static struct task_desc *register_pid(struct perf_sched *sched,
326 unsigned long pid, const char *comm)
328 struct task_desc *task;
330 BUG_ON(pid >= MAX_PID);
332 task = sched->pid_to_task[pid];
334 if (task)
335 return task;
337 task = zalloc(sizeof(*task));
338 task->pid = pid;
339 task->nr = sched->nr_tasks;
340 strcpy(task->comm, comm);
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
345 add_sched_event_sleep(sched, task, 0, 0);
347 sched->pid_to_task[pid] = task;
348 sched->nr_tasks++;
349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350 BUG_ON(!sched->tasks);
351 sched->tasks[task->nr] = task;
353 if (verbose)
354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
356 return task;
360 static void print_task_traces(struct perf_sched *sched)
362 struct task_desc *task;
363 unsigned long i;
365 for (i = 0; i < sched->nr_tasks; i++) {
366 task = sched->tasks[i];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task->nr, task->comm, task->pid, task->nr_events);
372 static void add_cross_task_wakeups(struct perf_sched *sched)
374 struct task_desc *task1, *task2;
375 unsigned long i, j;
377 for (i = 0; i < sched->nr_tasks; i++) {
378 task1 = sched->tasks[i];
379 j = i + 1;
380 if (j == sched->nr_tasks)
381 j = 0;
382 task2 = sched->tasks[j];
383 add_sched_event_wakeup(sched, task1, 0, task2);
387 static void perf_sched__process_event(struct perf_sched *sched,
388 struct sched_atom *atom)
390 int ret = 0;
392 switch (atom->type) {
393 case SCHED_EVENT_RUN:
394 burn_nsecs(sched, atom->duration);
395 break;
396 case SCHED_EVENT_SLEEP:
397 if (atom->wait_sem)
398 ret = sem_wait(atom->wait_sem);
399 BUG_ON(ret);
400 break;
401 case SCHED_EVENT_WAKEUP:
402 if (atom->wait_sem)
403 ret = sem_post(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_MIGRATION:
407 break;
408 default:
409 BUG_ON(1);
413 static u64 get_cpu_usage_nsec_parent(void)
415 struct rusage ru;
416 u64 sum;
417 int err;
419 err = getrusage(RUSAGE_SELF, &ru);
420 BUG_ON(err);
422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
425 return sum;
428 static int self_open_counters(void)
430 struct perf_event_attr attr;
431 int fd;
433 memset(&attr, 0, sizeof(attr));
435 attr.type = PERF_TYPE_SOFTWARE;
436 attr.config = PERF_COUNT_SW_TASK_CLOCK;
438 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
440 if (fd < 0)
441 pr_err("Error: sys_perf_event_open() syscall returned "
442 "with %d (%s)\n", fd, strerror(errno));
443 return fd;
446 static u64 get_cpu_usage_nsec_self(int fd)
448 u64 runtime;
449 int ret;
451 ret = read(fd, &runtime, sizeof(runtime));
452 BUG_ON(ret != sizeof(runtime));
454 return runtime;
457 struct sched_thread_parms {
458 struct task_desc *task;
459 struct perf_sched *sched;
462 static void *thread_func(void *ctx)
464 struct sched_thread_parms *parms = ctx;
465 struct task_desc *this_task = parms->task;
466 struct perf_sched *sched = parms->sched;
467 u64 cpu_usage_0, cpu_usage_1;
468 unsigned long i, ret;
469 char comm2[22];
470 int fd;
472 free(parms);
474 sprintf(comm2, ":%s", this_task->comm);
475 prctl(PR_SET_NAME, comm2);
476 fd = self_open_counters();
477 if (fd < 0)
478 return NULL;
479 again:
480 ret = sem_post(&this_task->ready_for_work);
481 BUG_ON(ret);
482 ret = pthread_mutex_lock(&sched->start_work_mutex);
483 BUG_ON(ret);
484 ret = pthread_mutex_unlock(&sched->start_work_mutex);
485 BUG_ON(ret);
487 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
489 for (i = 0; i < this_task->nr_events; i++) {
490 this_task->curr_event = i;
491 perf_sched__process_event(sched, this_task->atoms[i]);
494 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496 ret = sem_post(&this_task->work_done_sem);
497 BUG_ON(ret);
499 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500 BUG_ON(ret);
501 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502 BUG_ON(ret);
504 goto again;
507 static void create_tasks(struct perf_sched *sched)
509 struct task_desc *task;
510 pthread_attr_t attr;
511 unsigned long i;
512 int err;
514 err = pthread_attr_init(&attr);
515 BUG_ON(err);
516 err = pthread_attr_setstacksize(&attr,
517 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518 BUG_ON(err);
519 err = pthread_mutex_lock(&sched->start_work_mutex);
520 BUG_ON(err);
521 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522 BUG_ON(err);
523 for (i = 0; i < sched->nr_tasks; i++) {
524 struct sched_thread_parms *parms = malloc(sizeof(*parms));
525 BUG_ON(parms == NULL);
526 parms->task = task = sched->tasks[i];
527 parms->sched = sched;
528 sem_init(&task->sleep_sem, 0, 0);
529 sem_init(&task->ready_for_work, 0, 0);
530 sem_init(&task->work_done_sem, 0, 0);
531 task->curr_event = 0;
532 err = pthread_create(&task->thread, &attr, thread_func, parms);
533 BUG_ON(err);
537 static void wait_for_tasks(struct perf_sched *sched)
539 u64 cpu_usage_0, cpu_usage_1;
540 struct task_desc *task;
541 unsigned long i, ret;
543 sched->start_time = get_nsecs();
544 sched->cpu_usage = 0;
545 pthread_mutex_unlock(&sched->work_done_wait_mutex);
547 for (i = 0; i < sched->nr_tasks; i++) {
548 task = sched->tasks[i];
549 ret = sem_wait(&task->ready_for_work);
550 BUG_ON(ret);
551 sem_init(&task->ready_for_work, 0, 0);
553 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554 BUG_ON(ret);
556 cpu_usage_0 = get_cpu_usage_nsec_parent();
558 pthread_mutex_unlock(&sched->start_work_mutex);
560 for (i = 0; i < sched->nr_tasks; i++) {
561 task = sched->tasks[i];
562 ret = sem_wait(&task->work_done_sem);
563 BUG_ON(ret);
564 sem_init(&task->work_done_sem, 0, 0);
565 sched->cpu_usage += task->cpu_usage;
566 task->cpu_usage = 0;
569 cpu_usage_1 = get_cpu_usage_nsec_parent();
570 if (!sched->runavg_cpu_usage)
571 sched->runavg_cpu_usage = sched->cpu_usage;
572 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
574 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575 if (!sched->runavg_parent_cpu_usage)
576 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
577 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578 sched->parent_cpu_usage)/10;
580 ret = pthread_mutex_lock(&sched->start_work_mutex);
581 BUG_ON(ret);
583 for (i = 0; i < sched->nr_tasks; i++) {
584 task = sched->tasks[i];
585 sem_init(&task->sleep_sem, 0, 0);
586 task->curr_event = 0;
590 static void run_one_test(struct perf_sched *sched)
592 u64 T0, T1, delta, avg_delta, fluct;
594 T0 = get_nsecs();
595 wait_for_tasks(sched);
596 T1 = get_nsecs();
598 delta = T1 - T0;
599 sched->sum_runtime += delta;
600 sched->nr_runs++;
602 avg_delta = sched->sum_runtime / sched->nr_runs;
603 if (delta < avg_delta)
604 fluct = avg_delta - delta;
605 else
606 fluct = delta - avg_delta;
607 sched->sum_fluct += fluct;
608 if (!sched->run_avg)
609 sched->run_avg = delta;
610 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
612 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
614 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
616 printf("cpu: %0.2f / %0.2f",
617 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
619 #if 0
621 * rusage statistics done by the parent, these are less
622 * accurate than the sched->sum_exec_runtime based statistics:
624 printf(" [%0.2f / %0.2f]",
625 (double)sched->parent_cpu_usage/1e6,
626 (double)sched->runavg_parent_cpu_usage/1e6);
627 #endif
629 printf("\n");
631 if (sched->nr_sleep_corrections)
632 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633 sched->nr_sleep_corrections = 0;
636 static void test_calibrations(struct perf_sched *sched)
638 u64 T0, T1;
640 T0 = get_nsecs();
641 burn_nsecs(sched, 1e6);
642 T1 = get_nsecs();
644 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
646 T0 = get_nsecs();
647 sleep_nsecs(1e6);
648 T1 = get_nsecs();
650 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
653 static int
654 replay_wakeup_event(struct perf_sched *sched,
655 struct perf_evsel *evsel, struct perf_sample *sample,
656 struct machine *machine __maybe_unused)
658 const char *comm = perf_evsel__strval(evsel, sample, "comm");
659 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
660 struct task_desc *waker, *wakee;
662 if (verbose) {
663 printf("sched_wakeup event %p\n", evsel);
665 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
668 waker = register_pid(sched, sample->tid, "<unknown>");
669 wakee = register_pid(sched, pid, comm);
671 add_sched_event_wakeup(sched, waker, sample->time, wakee);
672 return 0;
675 static int replay_switch_event(struct perf_sched *sched,
676 struct perf_evsel *evsel,
677 struct perf_sample *sample,
678 struct machine *machine __maybe_unused)
680 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
681 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
682 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685 struct task_desc *prev, __maybe_unused *next;
686 u64 timestamp0, timestamp = sample->time;
687 int cpu = sample->cpu;
688 s64 delta;
690 if (verbose)
691 printf("sched_switch event %p\n", evsel);
693 if (cpu >= MAX_CPUS || cpu < 0)
694 return 0;
696 timestamp0 = sched->cpu_last_switched[cpu];
697 if (timestamp0)
698 delta = timestamp - timestamp0;
699 else
700 delta = 0;
702 if (delta < 0) {
703 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704 return -1;
707 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708 prev_comm, prev_pid, next_comm, next_pid, delta);
710 prev = register_pid(sched, prev_pid, prev_comm);
711 next = register_pid(sched, next_pid, next_comm);
713 sched->cpu_last_switched[cpu] = timestamp;
715 add_sched_event_run(sched, prev, timestamp, delta);
716 add_sched_event_sleep(sched, prev, timestamp, prev_state);
718 return 0;
721 static int replay_fork_event(struct perf_sched *sched, struct perf_evsel *evsel,
722 struct perf_sample *sample)
724 const char *parent_comm = perf_evsel__strval(evsel, sample, "parent_comm"),
725 *child_comm = perf_evsel__strval(evsel, sample, "child_comm");
726 const u32 parent_pid = perf_evsel__intval(evsel, sample, "parent_pid"),
727 child_pid = perf_evsel__intval(evsel, sample, "child_pid");
729 if (verbose) {
730 printf("sched_fork event %p\n", evsel);
731 printf("... parent: %s/%d\n", parent_comm, parent_pid);
732 printf("... child: %s/%d\n", child_comm, child_pid);
735 register_pid(sched, parent_pid, parent_comm);
736 register_pid(sched, child_pid, child_comm);
737 return 0;
740 struct sort_dimension {
741 const char *name;
742 sort_fn_t cmp;
743 struct list_head list;
746 static int
747 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
749 struct sort_dimension *sort;
750 int ret = 0;
752 BUG_ON(list_empty(list));
754 list_for_each_entry(sort, list, list) {
755 ret = sort->cmp(l, r);
756 if (ret)
757 return ret;
760 return ret;
763 static struct work_atoms *
764 thread_atoms_search(struct rb_root *root, struct thread *thread,
765 struct list_head *sort_list)
767 struct rb_node *node = root->rb_node;
768 struct work_atoms key = { .thread = thread };
770 while (node) {
771 struct work_atoms *atoms;
772 int cmp;
774 atoms = container_of(node, struct work_atoms, node);
776 cmp = thread_lat_cmp(sort_list, &key, atoms);
777 if (cmp > 0)
778 node = node->rb_left;
779 else if (cmp < 0)
780 node = node->rb_right;
781 else {
782 BUG_ON(thread != atoms->thread);
783 return atoms;
786 return NULL;
789 static void
790 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
791 struct list_head *sort_list)
793 struct rb_node **new = &(root->rb_node), *parent = NULL;
795 while (*new) {
796 struct work_atoms *this;
797 int cmp;
799 this = container_of(*new, struct work_atoms, node);
800 parent = *new;
802 cmp = thread_lat_cmp(sort_list, data, this);
804 if (cmp > 0)
805 new = &((*new)->rb_left);
806 else
807 new = &((*new)->rb_right);
810 rb_link_node(&data->node, parent, new);
811 rb_insert_color(&data->node, root);
814 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
816 struct work_atoms *atoms = zalloc(sizeof(*atoms));
817 if (!atoms) {
818 pr_err("No memory at %s\n", __func__);
819 return -1;
822 atoms->thread = thread;
823 INIT_LIST_HEAD(&atoms->work_list);
824 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
825 return 0;
828 static int latency_fork_event(struct perf_sched *sched __maybe_unused,
829 struct perf_evsel *evsel __maybe_unused,
830 struct perf_sample *sample __maybe_unused)
832 /* should insert the newcomer */
833 return 0;
836 static char sched_out_state(u64 prev_state)
838 const char *str = TASK_STATE_TO_CHAR_STR;
840 return str[prev_state];
843 static int
844 add_sched_out_event(struct work_atoms *atoms,
845 char run_state,
846 u64 timestamp)
848 struct work_atom *atom = zalloc(sizeof(*atom));
849 if (!atom) {
850 pr_err("Non memory at %s", __func__);
851 return -1;
854 atom->sched_out_time = timestamp;
856 if (run_state == 'R') {
857 atom->state = THREAD_WAIT_CPU;
858 atom->wake_up_time = atom->sched_out_time;
861 list_add_tail(&atom->list, &atoms->work_list);
862 return 0;
865 static void
866 add_runtime_event(struct work_atoms *atoms, u64 delta,
867 u64 timestamp __maybe_unused)
869 struct work_atom *atom;
871 BUG_ON(list_empty(&atoms->work_list));
873 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
875 atom->runtime += delta;
876 atoms->total_runtime += delta;
879 static void
880 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
882 struct work_atom *atom;
883 u64 delta;
885 if (list_empty(&atoms->work_list))
886 return;
888 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
890 if (atom->state != THREAD_WAIT_CPU)
891 return;
893 if (timestamp < atom->wake_up_time) {
894 atom->state = THREAD_IGNORE;
895 return;
898 atom->state = THREAD_SCHED_IN;
899 atom->sched_in_time = timestamp;
901 delta = atom->sched_in_time - atom->wake_up_time;
902 atoms->total_lat += delta;
903 if (delta > atoms->max_lat) {
904 atoms->max_lat = delta;
905 atoms->max_lat_at = timestamp;
907 atoms->nb_atoms++;
910 static int latency_switch_event(struct perf_sched *sched,
911 struct perf_evsel *evsel,
912 struct perf_sample *sample,
913 struct machine *machine)
915 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
916 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
917 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
918 struct work_atoms *out_events, *in_events;
919 struct thread *sched_out, *sched_in;
920 u64 timestamp0, timestamp = sample->time;
921 int cpu = sample->cpu;
922 s64 delta;
924 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
926 timestamp0 = sched->cpu_last_switched[cpu];
927 sched->cpu_last_switched[cpu] = timestamp;
928 if (timestamp0)
929 delta = timestamp - timestamp0;
930 else
931 delta = 0;
933 if (delta < 0) {
934 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
935 return -1;
938 sched_out = machine__findnew_thread(machine, prev_pid);
939 sched_in = machine__findnew_thread(machine, next_pid);
941 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
942 if (!out_events) {
943 if (thread_atoms_insert(sched, sched_out))
944 return -1;
945 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
946 if (!out_events) {
947 pr_err("out-event: Internal tree error");
948 return -1;
951 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
952 return -1;
954 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
955 if (!in_events) {
956 if (thread_atoms_insert(sched, sched_in))
957 return -1;
958 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
959 if (!in_events) {
960 pr_err("in-event: Internal tree error");
961 return -1;
964 * Take came in we have not heard about yet,
965 * add in an initial atom in runnable state:
967 if (add_sched_out_event(in_events, 'R', timestamp))
968 return -1;
970 add_sched_in_event(in_events, timestamp);
972 return 0;
975 static int latency_runtime_event(struct perf_sched *sched,
976 struct perf_evsel *evsel,
977 struct perf_sample *sample,
978 struct machine *machine)
980 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
981 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
982 struct thread *thread = machine__findnew_thread(machine, pid);
983 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
984 u64 timestamp = sample->time;
985 int cpu = sample->cpu;
987 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
988 if (!atoms) {
989 if (thread_atoms_insert(sched, thread))
990 return -1;
991 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
992 if (!atoms) {
993 pr_err("in-event: Internal tree error");
994 return -1;
996 if (add_sched_out_event(atoms, 'R', timestamp))
997 return -1;
1000 add_runtime_event(atoms, runtime, timestamp);
1001 return 0;
1004 static int latency_wakeup_event(struct perf_sched *sched,
1005 struct perf_evsel *evsel,
1006 struct perf_sample *sample,
1007 struct machine *machine)
1009 const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1010 success = perf_evsel__intval(evsel, sample, "success");
1011 struct work_atoms *atoms;
1012 struct work_atom *atom;
1013 struct thread *wakee;
1014 u64 timestamp = sample->time;
1016 /* Note for later, it may be interesting to observe the failing cases */
1017 if (!success)
1018 return 0;
1020 wakee = machine__findnew_thread(machine, pid);
1021 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1022 if (!atoms) {
1023 if (thread_atoms_insert(sched, wakee))
1024 return -1;
1025 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1026 if (!atoms) {
1027 pr_err("wakeup-event: Internal tree error");
1028 return -1;
1030 if (add_sched_out_event(atoms, 'S', timestamp))
1031 return -1;
1034 BUG_ON(list_empty(&atoms->work_list));
1036 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1039 * You WILL be missing events if you've recorded only
1040 * one CPU, or are only looking at only one, so don't
1041 * make useless noise.
1043 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1044 sched->nr_state_machine_bugs++;
1046 sched->nr_timestamps++;
1047 if (atom->sched_out_time > timestamp) {
1048 sched->nr_unordered_timestamps++;
1049 return 0;
1052 atom->state = THREAD_WAIT_CPU;
1053 atom->wake_up_time = timestamp;
1054 return 0;
1057 static int latency_migrate_task_event(struct perf_sched *sched,
1058 struct perf_evsel *evsel,
1059 struct perf_sample *sample,
1060 struct machine *machine)
1062 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1063 u64 timestamp = sample->time;
1064 struct work_atoms *atoms;
1065 struct work_atom *atom;
1066 struct thread *migrant;
1069 * Only need to worry about migration when profiling one CPU.
1071 if (sched->profile_cpu == -1)
1072 return 0;
1074 migrant = machine__findnew_thread(machine, pid);
1075 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1076 if (!atoms) {
1077 if (thread_atoms_insert(sched, migrant))
1078 return -1;
1079 register_pid(sched, migrant->pid, migrant->comm);
1080 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1081 if (!atoms) {
1082 pr_err("migration-event: Internal tree error");
1083 return -1;
1085 if (add_sched_out_event(atoms, 'R', timestamp))
1086 return -1;
1089 BUG_ON(list_empty(&atoms->work_list));
1091 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094 sched->nr_timestamps++;
1096 if (atom->sched_out_time > timestamp)
1097 sched->nr_unordered_timestamps++;
1099 return 0;
1102 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104 int i;
1105 int ret;
1106 u64 avg;
1108 if (!work_list->nb_atoms)
1109 return;
1111 * Ignore idle threads:
1113 if (!strcmp(work_list->thread->comm, "swapper"))
1114 return;
1116 sched->all_runtime += work_list->total_runtime;
1117 sched->all_count += work_list->nb_atoms;
1119 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1121 for (i = 0; i < 24 - ret; i++)
1122 printf(" ");
1124 avg = work_list->total_lat / work_list->nb_atoms;
1126 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1127 (double)work_list->total_runtime / 1e6,
1128 work_list->nb_atoms, (double)avg / 1e6,
1129 (double)work_list->max_lat / 1e6,
1130 (double)work_list->max_lat_at / 1e9);
1133 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135 if (l->thread->pid < r->thread->pid)
1136 return -1;
1137 if (l->thread->pid > r->thread->pid)
1138 return 1;
1140 return 0;
1143 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145 u64 avgl, avgr;
1147 if (!l->nb_atoms)
1148 return -1;
1150 if (!r->nb_atoms)
1151 return 1;
1153 avgl = l->total_lat / l->nb_atoms;
1154 avgr = r->total_lat / r->nb_atoms;
1156 if (avgl < avgr)
1157 return -1;
1158 if (avgl > avgr)
1159 return 1;
1161 return 0;
1164 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166 if (l->max_lat < r->max_lat)
1167 return -1;
1168 if (l->max_lat > r->max_lat)
1169 return 1;
1171 return 0;
1174 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176 if (l->nb_atoms < r->nb_atoms)
1177 return -1;
1178 if (l->nb_atoms > r->nb_atoms)
1179 return 1;
1181 return 0;
1184 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186 if (l->total_runtime < r->total_runtime)
1187 return -1;
1188 if (l->total_runtime > r->total_runtime)
1189 return 1;
1191 return 0;
1194 static int sort_dimension__add(const char *tok, struct list_head *list)
1196 size_t i;
1197 static struct sort_dimension avg_sort_dimension = {
1198 .name = "avg",
1199 .cmp = avg_cmp,
1201 static struct sort_dimension max_sort_dimension = {
1202 .name = "max",
1203 .cmp = max_cmp,
1205 static struct sort_dimension pid_sort_dimension = {
1206 .name = "pid",
1207 .cmp = pid_cmp,
1209 static struct sort_dimension runtime_sort_dimension = {
1210 .name = "runtime",
1211 .cmp = runtime_cmp,
1213 static struct sort_dimension switch_sort_dimension = {
1214 .name = "switch",
1215 .cmp = switch_cmp,
1217 struct sort_dimension *available_sorts[] = {
1218 &pid_sort_dimension,
1219 &avg_sort_dimension,
1220 &max_sort_dimension,
1221 &switch_sort_dimension,
1222 &runtime_sort_dimension,
1225 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1226 if (!strcmp(available_sorts[i]->name, tok)) {
1227 list_add_tail(&available_sorts[i]->list, list);
1229 return 0;
1233 return -1;
1236 static void perf_sched__sort_lat(struct perf_sched *sched)
1238 struct rb_node *node;
1240 for (;;) {
1241 struct work_atoms *data;
1242 node = rb_first(&sched->atom_root);
1243 if (!node)
1244 break;
1246 rb_erase(node, &sched->atom_root);
1247 data = rb_entry(node, struct work_atoms, node);
1248 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1252 static int process_sched_wakeup_event(struct perf_tool *tool,
1253 struct perf_evsel *evsel,
1254 struct perf_sample *sample,
1255 struct machine *machine)
1257 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259 if (sched->tp_handler->wakeup_event)
1260 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262 return 0;
1265 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1266 struct perf_sample *sample, struct machine *machine)
1268 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1269 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1270 struct thread *sched_out __maybe_unused, *sched_in;
1271 int new_shortname;
1272 u64 timestamp0, timestamp = sample->time;
1273 s64 delta;
1274 int cpu, this_cpu = sample->cpu;
1276 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278 if (this_cpu > sched->max_cpu)
1279 sched->max_cpu = this_cpu;
1281 timestamp0 = sched->cpu_last_switched[this_cpu];
1282 sched->cpu_last_switched[this_cpu] = timestamp;
1283 if (timestamp0)
1284 delta = timestamp - timestamp0;
1285 else
1286 delta = 0;
1288 if (delta < 0) {
1289 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1290 return -1;
1293 sched_out = machine__findnew_thread(machine, prev_pid);
1294 sched_in = machine__findnew_thread(machine, next_pid);
1296 sched->curr_thread[this_cpu] = sched_in;
1298 printf(" ");
1300 new_shortname = 0;
1301 if (!sched_in->shortname[0]) {
1302 sched_in->shortname[0] = sched->next_shortname1;
1303 sched_in->shortname[1] = sched->next_shortname2;
1305 if (sched->next_shortname1 < 'Z') {
1306 sched->next_shortname1++;
1307 } else {
1308 sched->next_shortname1='A';
1309 if (sched->next_shortname2 < '9') {
1310 sched->next_shortname2++;
1311 } else {
1312 sched->next_shortname2='0';
1315 new_shortname = 1;
1318 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1319 if (cpu != this_cpu)
1320 printf(" ");
1321 else
1322 printf("*");
1324 if (sched->curr_thread[cpu]) {
1325 if (sched->curr_thread[cpu]->pid)
1326 printf("%2s ", sched->curr_thread[cpu]->shortname);
1327 else
1328 printf(". ");
1329 } else
1330 printf(" ");
1333 printf(" %12.6f secs ", (double)timestamp/1e9);
1334 if (new_shortname) {
1335 printf("%s => %s:%d\n",
1336 sched_in->shortname, sched_in->comm, sched_in->pid);
1337 } else {
1338 printf("\n");
1341 return 0;
1344 static int process_sched_switch_event(struct perf_tool *tool,
1345 struct perf_evsel *evsel,
1346 struct perf_sample *sample,
1347 struct machine *machine)
1349 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1350 int this_cpu = sample->cpu, err = 0;
1351 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1352 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1354 if (sched->curr_pid[this_cpu] != (u32)-1) {
1356 * Are we trying to switch away a PID that is
1357 * not current?
1359 if (sched->curr_pid[this_cpu] != prev_pid)
1360 sched->nr_context_switch_bugs++;
1363 if (sched->tp_handler->switch_event)
1364 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366 sched->curr_pid[this_cpu] = next_pid;
1367 return err;
1370 static int process_sched_runtime_event(struct perf_tool *tool,
1371 struct perf_evsel *evsel,
1372 struct perf_sample *sample,
1373 struct machine *machine)
1375 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377 if (sched->tp_handler->runtime_event)
1378 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380 return 0;
1383 static int process_sched_fork_event(struct perf_tool *tool,
1384 struct perf_evsel *evsel,
1385 struct perf_sample *sample,
1386 struct machine *machine __maybe_unused)
1388 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390 if (sched->tp_handler->fork_event)
1391 return sched->tp_handler->fork_event(sched, evsel, sample);
1393 return 0;
1396 static int process_sched_exit_event(struct perf_tool *tool __maybe_unused,
1397 struct perf_evsel *evsel,
1398 struct perf_sample *sample __maybe_unused,
1399 struct machine *machine __maybe_unused)
1401 pr_debug("sched_exit event %p\n", evsel);
1402 return 0;
1405 static int process_sched_migrate_task_event(struct perf_tool *tool,
1406 struct perf_evsel *evsel,
1407 struct perf_sample *sample,
1408 struct machine *machine)
1410 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1412 if (sched->tp_handler->migrate_task_event)
1413 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1415 return 0;
1418 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1419 struct perf_evsel *evsel,
1420 struct perf_sample *sample,
1421 struct machine *machine);
1423 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1424 union perf_event *event __maybe_unused,
1425 struct perf_sample *sample,
1426 struct perf_evsel *evsel,
1427 struct machine *machine)
1429 struct thread *thread = machine__findnew_thread(machine, sample->tid);
1430 int err = 0;
1432 if (thread == NULL) {
1433 pr_debug("problem processing %s event, skipping it.\n",
1434 perf_evsel__name(evsel));
1435 return -1;
1438 evsel->hists.stats.total_period += sample->period;
1439 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1441 if (evsel->handler.func != NULL) {
1442 tracepoint_handler f = evsel->handler.func;
1443 err = f(tool, evsel, sample, machine);
1446 return err;
1449 static int perf_sched__read_events(struct perf_sched *sched, bool destroy,
1450 struct perf_session **psession)
1452 const struct perf_evsel_str_handler handlers[] = {
1453 { "sched:sched_switch", process_sched_switch_event, },
1454 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1455 { "sched:sched_wakeup", process_sched_wakeup_event, },
1456 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1457 { "sched:sched_process_fork", process_sched_fork_event, },
1458 { "sched:sched_process_exit", process_sched_exit_event, },
1459 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1461 struct perf_session *session;
1463 session = perf_session__new(sched->input_name, O_RDONLY, 0, false, &sched->tool);
1464 if (session == NULL) {
1465 pr_debug("No Memory for session\n");
1466 return -1;
1469 if (perf_session__set_tracepoints_handlers(session, handlers))
1470 goto out_delete;
1472 if (perf_session__has_traces(session, "record -R")) {
1473 int err = perf_session__process_events(session, &sched->tool);
1474 if (err) {
1475 pr_err("Failed to process events, error %d", err);
1476 goto out_delete;
1479 sched->nr_events = session->hists.stats.nr_events[0];
1480 sched->nr_lost_events = session->hists.stats.total_lost;
1481 sched->nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1484 if (destroy)
1485 perf_session__delete(session);
1487 if (psession)
1488 *psession = session;
1490 return 0;
1492 out_delete:
1493 perf_session__delete(session);
1494 return -1;
1497 static void print_bad_events(struct perf_sched *sched)
1499 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1500 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1501 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1502 sched->nr_unordered_timestamps, sched->nr_timestamps);
1504 if (sched->nr_lost_events && sched->nr_events) {
1505 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1506 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1507 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1509 if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1510 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1511 (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1512 sched->nr_state_machine_bugs, sched->nr_timestamps);
1513 if (sched->nr_lost_events)
1514 printf(" (due to lost events?)");
1515 printf("\n");
1517 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1518 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1519 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1520 sched->nr_context_switch_bugs, sched->nr_timestamps);
1521 if (sched->nr_lost_events)
1522 printf(" (due to lost events?)");
1523 printf("\n");
1527 static int perf_sched__lat(struct perf_sched *sched)
1529 struct rb_node *next;
1530 struct perf_session *session;
1532 setup_pager();
1533 if (perf_sched__read_events(sched, false, &session))
1534 return -1;
1535 perf_sched__sort_lat(sched);
1537 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1538 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1539 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1541 next = rb_first(&sched->sorted_atom_root);
1543 while (next) {
1544 struct work_atoms *work_list;
1546 work_list = rb_entry(next, struct work_atoms, node);
1547 output_lat_thread(sched, work_list);
1548 next = rb_next(next);
1551 printf(" -----------------------------------------------------------------------------------------\n");
1552 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1553 (double)sched->all_runtime / 1e6, sched->all_count);
1555 printf(" ---------------------------------------------------\n");
1557 print_bad_events(sched);
1558 printf("\n");
1560 perf_session__delete(session);
1561 return 0;
1564 static int perf_sched__map(struct perf_sched *sched)
1566 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1568 setup_pager();
1569 if (perf_sched__read_events(sched, true, NULL))
1570 return -1;
1571 print_bad_events(sched);
1572 return 0;
1575 static int perf_sched__replay(struct perf_sched *sched)
1577 unsigned long i;
1579 calibrate_run_measurement_overhead(sched);
1580 calibrate_sleep_measurement_overhead(sched);
1582 test_calibrations(sched);
1584 if (perf_sched__read_events(sched, true, NULL))
1585 return -1;
1587 printf("nr_run_events: %ld\n", sched->nr_run_events);
1588 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1589 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1591 if (sched->targetless_wakeups)
1592 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1593 if (sched->multitarget_wakeups)
1594 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1595 if (sched->nr_run_events_optimized)
1596 printf("run atoms optimized: %ld\n",
1597 sched->nr_run_events_optimized);
1599 print_task_traces(sched);
1600 add_cross_task_wakeups(sched);
1602 create_tasks(sched);
1603 printf("------------------------------------------------------------\n");
1604 for (i = 0; i < sched->replay_repeat; i++)
1605 run_one_test(sched);
1607 return 0;
1610 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1611 const char * const usage_msg[])
1613 char *tmp, *tok, *str = strdup(sched->sort_order);
1615 for (tok = strtok_r(str, ", ", &tmp);
1616 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1617 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1618 error("Unknown --sort key: `%s'", tok);
1619 usage_with_options(usage_msg, options);
1623 free(str);
1625 sort_dimension__add("pid", &sched->cmp_pid);
1628 static int __cmd_record(int argc, const char **argv)
1630 unsigned int rec_argc, i, j;
1631 const char **rec_argv;
1632 const char * const record_args[] = {
1633 "record",
1634 "-a",
1635 "-R",
1636 "-f",
1637 "-m", "1024",
1638 "-c", "1",
1639 "-e", "sched:sched_switch",
1640 "-e", "sched:sched_stat_wait",
1641 "-e", "sched:sched_stat_sleep",
1642 "-e", "sched:sched_stat_iowait",
1643 "-e", "sched:sched_stat_runtime",
1644 "-e", "sched:sched_process_exit",
1645 "-e", "sched:sched_process_fork",
1646 "-e", "sched:sched_wakeup",
1647 "-e", "sched:sched_migrate_task",
1650 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1651 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1653 if (rec_argv == NULL)
1654 return -ENOMEM;
1656 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1657 rec_argv[i] = strdup(record_args[i]);
1659 for (j = 1; j < (unsigned int)argc; j++, i++)
1660 rec_argv[i] = argv[j];
1662 BUG_ON(i != rec_argc);
1664 return cmd_record(i, rec_argv, NULL);
1667 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1669 const char default_sort_order[] = "avg, max, switch, runtime";
1670 struct perf_sched sched = {
1671 .tool = {
1672 .sample = perf_sched__process_tracepoint_sample,
1673 .comm = perf_event__process_comm,
1674 .lost = perf_event__process_lost,
1675 .fork = perf_event__process_task,
1676 .ordered_samples = true,
1678 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1679 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1680 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1681 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1682 .curr_pid = { [0 ... MAX_CPUS - 1] = -1 },
1683 .sort_order = default_sort_order,
1684 .replay_repeat = 10,
1685 .profile_cpu = -1,
1686 .next_shortname1 = 'A',
1687 .next_shortname2 = '0',
1689 const struct option latency_options[] = {
1690 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1691 "sort by key(s): runtime, switch, avg, max"),
1692 OPT_INCR('v', "verbose", &verbose,
1693 "be more verbose (show symbol address, etc)"),
1694 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1695 "CPU to profile on"),
1696 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1697 "dump raw trace in ASCII"),
1698 OPT_END()
1700 const struct option replay_options[] = {
1701 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1702 "repeat the workload replay N times (-1: infinite)"),
1703 OPT_INCR('v', "verbose", &verbose,
1704 "be more verbose (show symbol address, etc)"),
1705 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1706 "dump raw trace in ASCII"),
1707 OPT_END()
1709 const struct option sched_options[] = {
1710 OPT_STRING('i', "input", &sched.input_name, "file",
1711 "input file name"),
1712 OPT_INCR('v', "verbose", &verbose,
1713 "be more verbose (show symbol address, etc)"),
1714 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1715 "dump raw trace in ASCII"),
1716 OPT_END()
1718 const char * const latency_usage[] = {
1719 "perf sched latency [<options>]",
1720 NULL
1722 const char * const replay_usage[] = {
1723 "perf sched replay [<options>]",
1724 NULL
1726 const char * const sched_usage[] = {
1727 "perf sched [<options>] {record|latency|map|replay|script}",
1728 NULL
1730 struct trace_sched_handler lat_ops = {
1731 .wakeup_event = latency_wakeup_event,
1732 .switch_event = latency_switch_event,
1733 .runtime_event = latency_runtime_event,
1734 .fork_event = latency_fork_event,
1735 .migrate_task_event = latency_migrate_task_event,
1737 struct trace_sched_handler map_ops = {
1738 .switch_event = map_switch_event,
1740 struct trace_sched_handler replay_ops = {
1741 .wakeup_event = replay_wakeup_event,
1742 .switch_event = replay_switch_event,
1743 .fork_event = replay_fork_event,
1746 argc = parse_options(argc, argv, sched_options, sched_usage,
1747 PARSE_OPT_STOP_AT_NON_OPTION);
1748 if (!argc)
1749 usage_with_options(sched_usage, sched_options);
1752 * Aliased to 'perf script' for now:
1754 if (!strcmp(argv[0], "script"))
1755 return cmd_script(argc, argv, prefix);
1757 symbol__init();
1758 if (!strncmp(argv[0], "rec", 3)) {
1759 return __cmd_record(argc, argv);
1760 } else if (!strncmp(argv[0], "lat", 3)) {
1761 sched.tp_handler = &lat_ops;
1762 if (argc > 1) {
1763 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1764 if (argc)
1765 usage_with_options(latency_usage, latency_options);
1767 setup_sorting(&sched, latency_options, latency_usage);
1768 return perf_sched__lat(&sched);
1769 } else if (!strcmp(argv[0], "map")) {
1770 sched.tp_handler = &map_ops;
1771 setup_sorting(&sched, latency_options, latency_usage);
1772 return perf_sched__map(&sched);
1773 } else if (!strncmp(argv[0], "rep", 3)) {
1774 sched.tp_handler = &replay_ops;
1775 if (argc) {
1776 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1777 if (argc)
1778 usage_with_options(replay_usage, replay_options);
1780 return perf_sched__replay(&sched);
1781 } else {
1782 usage_with_options(sched_usage, sched_options);
1785 return 0;