Merge tag 'trace-3.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6.git] / drivers / crypto / atmel-sha.c
blobeaed8bf183bc51e81aeb49d4727301abe8a028d8
1 /*
2 * Cryptographic API.
4 * Support for ATMEL SHA1/SHA256 HW acceleration.
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
13 * Some ideas are from omap-sham.c drivers.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/delay.h>
34 #include <linux/crypto.h>
35 #include <linux/cryptohash.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/sha.h>
39 #include <crypto/hash.h>
40 #include <crypto/internal/hash.h>
41 #include <linux/platform_data/crypto-atmel.h>
42 #include "atmel-sha-regs.h"
44 /* SHA flags */
45 #define SHA_FLAGS_BUSY BIT(0)
46 #define SHA_FLAGS_FINAL BIT(1)
47 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
48 #define SHA_FLAGS_OUTPUT_READY BIT(3)
49 #define SHA_FLAGS_INIT BIT(4)
50 #define SHA_FLAGS_CPU BIT(5)
51 #define SHA_FLAGS_DMA_READY BIT(6)
53 #define SHA_FLAGS_FINUP BIT(16)
54 #define SHA_FLAGS_SG BIT(17)
55 #define SHA_FLAGS_SHA1 BIT(18)
56 #define SHA_FLAGS_SHA224 BIT(19)
57 #define SHA_FLAGS_SHA256 BIT(20)
58 #define SHA_FLAGS_SHA384 BIT(21)
59 #define SHA_FLAGS_SHA512 BIT(22)
60 #define SHA_FLAGS_ERROR BIT(23)
61 #define SHA_FLAGS_PAD BIT(24)
63 #define SHA_OP_UPDATE 1
64 #define SHA_OP_FINAL 2
66 #define SHA_BUFFER_LEN PAGE_SIZE
68 #define ATMEL_SHA_DMA_THRESHOLD 56
70 struct atmel_sha_caps {
71 bool has_dma;
72 bool has_dualbuff;
73 bool has_sha224;
74 bool has_sha_384_512;
77 struct atmel_sha_dev;
79 struct atmel_sha_reqctx {
80 struct atmel_sha_dev *dd;
81 unsigned long flags;
82 unsigned long op;
84 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
85 u64 digcnt[2];
86 size_t bufcnt;
87 size_t buflen;
88 dma_addr_t dma_addr;
90 /* walk state */
91 struct scatterlist *sg;
92 unsigned int offset; /* offset in current sg */
93 unsigned int total; /* total request */
95 size_t block_size;
97 u8 buffer[0] __aligned(sizeof(u32));
100 struct atmel_sha_ctx {
101 struct atmel_sha_dev *dd;
103 unsigned long flags;
105 /* fallback stuff */
106 struct crypto_shash *fallback;
110 #define ATMEL_SHA_QUEUE_LENGTH 50
112 struct atmel_sha_dma {
113 struct dma_chan *chan;
114 struct dma_slave_config dma_conf;
117 struct atmel_sha_dev {
118 struct list_head list;
119 unsigned long phys_base;
120 struct device *dev;
121 struct clk *iclk;
122 int irq;
123 void __iomem *io_base;
125 spinlock_t lock;
126 int err;
127 struct tasklet_struct done_task;
129 unsigned long flags;
130 struct crypto_queue queue;
131 struct ahash_request *req;
133 struct atmel_sha_dma dma_lch_in;
135 struct atmel_sha_caps caps;
137 u32 hw_version;
140 struct atmel_sha_drv {
141 struct list_head dev_list;
142 spinlock_t lock;
145 static struct atmel_sha_drv atmel_sha = {
146 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
147 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
150 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
152 return readl_relaxed(dd->io_base + offset);
155 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
156 u32 offset, u32 value)
158 writel_relaxed(value, dd->io_base + offset);
161 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
163 size_t count;
165 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
166 count = min(ctx->sg->length - ctx->offset, ctx->total);
167 count = min(count, ctx->buflen - ctx->bufcnt);
169 if (count <= 0)
170 break;
172 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
173 ctx->offset, count, 0);
175 ctx->bufcnt += count;
176 ctx->offset += count;
177 ctx->total -= count;
179 if (ctx->offset == ctx->sg->length) {
180 ctx->sg = sg_next(ctx->sg);
181 if (ctx->sg)
182 ctx->offset = 0;
183 else
184 ctx->total = 0;
188 return 0;
192 * The purpose of this padding is to ensure that the padded message is a
193 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
194 * The bit "1" is appended at the end of the message followed by
195 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
196 * 128 bits block (SHA384/SHA512) equals to the message length in bits
197 * is appended.
199 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
200 * - if message length < 56 bytes then padlen = 56 - message length
201 * - else padlen = 64 + 56 - message length
203 * For SHA384/SHA512, padlen is calculated as followed:
204 * - if message length < 112 bytes then padlen = 112 - message length
205 * - else padlen = 128 + 112 - message length
207 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
209 unsigned int index, padlen;
210 u64 bits[2];
211 u64 size[2];
213 size[0] = ctx->digcnt[0];
214 size[1] = ctx->digcnt[1];
216 size[0] += ctx->bufcnt;
217 if (size[0] < ctx->bufcnt)
218 size[1]++;
220 size[0] += length;
221 if (size[0] < length)
222 size[1]++;
224 bits[1] = cpu_to_be64(size[0] << 3);
225 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
227 if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
228 index = ctx->bufcnt & 0x7f;
229 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
230 *(ctx->buffer + ctx->bufcnt) = 0x80;
231 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
232 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
233 ctx->bufcnt += padlen + 16;
234 ctx->flags |= SHA_FLAGS_PAD;
235 } else {
236 index = ctx->bufcnt & 0x3f;
237 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
238 *(ctx->buffer + ctx->bufcnt) = 0x80;
239 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
240 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
241 ctx->bufcnt += padlen + 8;
242 ctx->flags |= SHA_FLAGS_PAD;
246 static int atmel_sha_init(struct ahash_request *req)
248 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
249 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
250 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
251 struct atmel_sha_dev *dd = NULL;
252 struct atmel_sha_dev *tmp;
254 spin_lock_bh(&atmel_sha.lock);
255 if (!tctx->dd) {
256 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
257 dd = tmp;
258 break;
260 tctx->dd = dd;
261 } else {
262 dd = tctx->dd;
265 spin_unlock_bh(&atmel_sha.lock);
267 ctx->dd = dd;
269 ctx->flags = 0;
271 dev_dbg(dd->dev, "init: digest size: %d\n",
272 crypto_ahash_digestsize(tfm));
274 switch (crypto_ahash_digestsize(tfm)) {
275 case SHA1_DIGEST_SIZE:
276 ctx->flags |= SHA_FLAGS_SHA1;
277 ctx->block_size = SHA1_BLOCK_SIZE;
278 break;
279 case SHA224_DIGEST_SIZE:
280 ctx->flags |= SHA_FLAGS_SHA224;
281 ctx->block_size = SHA224_BLOCK_SIZE;
282 break;
283 case SHA256_DIGEST_SIZE:
284 ctx->flags |= SHA_FLAGS_SHA256;
285 ctx->block_size = SHA256_BLOCK_SIZE;
286 break;
287 case SHA384_DIGEST_SIZE:
288 ctx->flags |= SHA_FLAGS_SHA384;
289 ctx->block_size = SHA384_BLOCK_SIZE;
290 break;
291 case SHA512_DIGEST_SIZE:
292 ctx->flags |= SHA_FLAGS_SHA512;
293 ctx->block_size = SHA512_BLOCK_SIZE;
294 break;
295 default:
296 return -EINVAL;
297 break;
300 ctx->bufcnt = 0;
301 ctx->digcnt[0] = 0;
302 ctx->digcnt[1] = 0;
303 ctx->buflen = SHA_BUFFER_LEN;
305 return 0;
308 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
310 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
311 u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
313 if (likely(dma)) {
314 if (!dd->caps.has_dma)
315 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
316 valmr = SHA_MR_MODE_PDC;
317 if (dd->caps.has_dualbuff)
318 valmr |= SHA_MR_DUALBUFF;
319 } else {
320 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
323 if (ctx->flags & SHA_FLAGS_SHA1)
324 valmr |= SHA_MR_ALGO_SHA1;
325 else if (ctx->flags & SHA_FLAGS_SHA224)
326 valmr |= SHA_MR_ALGO_SHA224;
327 else if (ctx->flags & SHA_FLAGS_SHA256)
328 valmr |= SHA_MR_ALGO_SHA256;
329 else if (ctx->flags & SHA_FLAGS_SHA384)
330 valmr |= SHA_MR_ALGO_SHA384;
331 else if (ctx->flags & SHA_FLAGS_SHA512)
332 valmr |= SHA_MR_ALGO_SHA512;
334 /* Setting CR_FIRST only for the first iteration */
335 if (!(ctx->digcnt[0] || ctx->digcnt[1]))
336 valcr = SHA_CR_FIRST;
338 atmel_sha_write(dd, SHA_CR, valcr);
339 atmel_sha_write(dd, SHA_MR, valmr);
342 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
343 size_t length, int final)
345 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
346 int count, len32;
347 const u32 *buffer = (const u32 *)buf;
349 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
350 ctx->digcnt[1], ctx->digcnt[0], length, final);
352 atmel_sha_write_ctrl(dd, 0);
354 /* should be non-zero before next lines to disable clocks later */
355 ctx->digcnt[0] += length;
356 if (ctx->digcnt[0] < length)
357 ctx->digcnt[1]++;
359 if (final)
360 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
362 len32 = DIV_ROUND_UP(length, sizeof(u32));
364 dd->flags |= SHA_FLAGS_CPU;
366 for (count = 0; count < len32; count++)
367 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
369 return -EINPROGRESS;
372 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
373 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
375 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
376 int len32;
378 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
379 ctx->digcnt[1], ctx->digcnt[0], length1, final);
381 len32 = DIV_ROUND_UP(length1, sizeof(u32));
382 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
383 atmel_sha_write(dd, SHA_TPR, dma_addr1);
384 atmel_sha_write(dd, SHA_TCR, len32);
386 len32 = DIV_ROUND_UP(length2, sizeof(u32));
387 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
388 atmel_sha_write(dd, SHA_TNCR, len32);
390 atmel_sha_write_ctrl(dd, 1);
392 /* should be non-zero before next lines to disable clocks later */
393 ctx->digcnt[0] += length1;
394 if (ctx->digcnt[0] < length1)
395 ctx->digcnt[1]++;
397 if (final)
398 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
400 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
402 /* Start DMA transfer */
403 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
405 return -EINPROGRESS;
408 static void atmel_sha_dma_callback(void *data)
410 struct atmel_sha_dev *dd = data;
412 /* dma_lch_in - completed - wait DATRDY */
413 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
416 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
417 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
419 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
420 struct dma_async_tx_descriptor *in_desc;
421 struct scatterlist sg[2];
423 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
424 ctx->digcnt[1], ctx->digcnt[0], length1, final);
426 if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
427 SHA_FLAGS_SHA256)) {
428 dd->dma_lch_in.dma_conf.src_maxburst = 16;
429 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
430 } else {
431 dd->dma_lch_in.dma_conf.src_maxburst = 32;
432 dd->dma_lch_in.dma_conf.dst_maxburst = 32;
435 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
437 if (length2) {
438 sg_init_table(sg, 2);
439 sg_dma_address(&sg[0]) = dma_addr1;
440 sg_dma_len(&sg[0]) = length1;
441 sg_dma_address(&sg[1]) = dma_addr2;
442 sg_dma_len(&sg[1]) = length2;
443 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
444 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
445 } else {
446 sg_init_table(sg, 1);
447 sg_dma_address(&sg[0]) = dma_addr1;
448 sg_dma_len(&sg[0]) = length1;
449 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
450 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
452 if (!in_desc)
453 return -EINVAL;
455 in_desc->callback = atmel_sha_dma_callback;
456 in_desc->callback_param = dd;
458 atmel_sha_write_ctrl(dd, 1);
460 /* should be non-zero before next lines to disable clocks later */
461 ctx->digcnt[0] += length1;
462 if (ctx->digcnt[0] < length1)
463 ctx->digcnt[1]++;
465 if (final)
466 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
468 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
470 /* Start DMA transfer */
471 dmaengine_submit(in_desc);
472 dma_async_issue_pending(dd->dma_lch_in.chan);
474 return -EINPROGRESS;
477 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
478 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
480 if (dd->caps.has_dma)
481 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
482 dma_addr2, length2, final);
483 else
484 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
485 dma_addr2, length2, final);
488 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
490 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
491 int bufcnt;
493 atmel_sha_append_sg(ctx);
494 atmel_sha_fill_padding(ctx, 0);
495 bufcnt = ctx->bufcnt;
496 ctx->bufcnt = 0;
498 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
501 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
502 struct atmel_sha_reqctx *ctx,
503 size_t length, int final)
505 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
506 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
507 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
508 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
509 ctx->block_size);
510 return -EINVAL;
513 ctx->flags &= ~SHA_FLAGS_SG;
515 /* next call does not fail... so no unmap in the case of error */
516 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
519 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
521 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
522 unsigned int final;
523 size_t count;
525 atmel_sha_append_sg(ctx);
527 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
529 dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
530 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
532 if (final)
533 atmel_sha_fill_padding(ctx, 0);
535 if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
536 count = ctx->bufcnt;
537 ctx->bufcnt = 0;
538 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
541 return 0;
544 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
546 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
547 unsigned int length, final, tail;
548 struct scatterlist *sg;
549 unsigned int count;
551 if (!ctx->total)
552 return 0;
554 if (ctx->bufcnt || ctx->offset)
555 return atmel_sha_update_dma_slow(dd);
557 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
558 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
560 sg = ctx->sg;
562 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
563 return atmel_sha_update_dma_slow(dd);
565 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
566 /* size is not ctx->block_size aligned */
567 return atmel_sha_update_dma_slow(dd);
569 length = min(ctx->total, sg->length);
571 if (sg_is_last(sg)) {
572 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
573 /* not last sg must be ctx->block_size aligned */
574 tail = length & (ctx->block_size - 1);
575 length -= tail;
579 ctx->total -= length;
580 ctx->offset = length; /* offset where to start slow */
582 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
584 /* Add padding */
585 if (final) {
586 tail = length & (ctx->block_size - 1);
587 length -= tail;
588 ctx->total += tail;
589 ctx->offset = length; /* offset where to start slow */
591 sg = ctx->sg;
592 atmel_sha_append_sg(ctx);
594 atmel_sha_fill_padding(ctx, length);
596 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
597 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
598 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
599 dev_err(dd->dev, "dma %u bytes error\n",
600 ctx->buflen + ctx->block_size);
601 return -EINVAL;
604 if (length == 0) {
605 ctx->flags &= ~SHA_FLAGS_SG;
606 count = ctx->bufcnt;
607 ctx->bufcnt = 0;
608 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
609 0, final);
610 } else {
611 ctx->sg = sg;
612 if (!dma_map_sg(dd->dev, ctx->sg, 1,
613 DMA_TO_DEVICE)) {
614 dev_err(dd->dev, "dma_map_sg error\n");
615 return -EINVAL;
618 ctx->flags |= SHA_FLAGS_SG;
620 count = ctx->bufcnt;
621 ctx->bufcnt = 0;
622 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
623 length, ctx->dma_addr, count, final);
627 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
628 dev_err(dd->dev, "dma_map_sg error\n");
629 return -EINVAL;
632 ctx->flags |= SHA_FLAGS_SG;
634 /* next call does not fail... so no unmap in the case of error */
635 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
636 0, final);
639 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
641 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
643 if (ctx->flags & SHA_FLAGS_SG) {
644 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
645 if (ctx->sg->length == ctx->offset) {
646 ctx->sg = sg_next(ctx->sg);
647 if (ctx->sg)
648 ctx->offset = 0;
650 if (ctx->flags & SHA_FLAGS_PAD) {
651 dma_unmap_single(dd->dev, ctx->dma_addr,
652 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
654 } else {
655 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
656 ctx->block_size, DMA_TO_DEVICE);
659 return 0;
662 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
664 struct ahash_request *req = dd->req;
665 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
666 int err;
668 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
669 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
671 if (ctx->flags & SHA_FLAGS_CPU)
672 err = atmel_sha_update_cpu(dd);
673 else
674 err = atmel_sha_update_dma_start(dd);
676 /* wait for dma completion before can take more data */
677 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
678 err, ctx->digcnt[1], ctx->digcnt[0]);
680 return err;
683 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
685 struct ahash_request *req = dd->req;
686 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
687 int err = 0;
688 int count;
690 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
691 atmel_sha_fill_padding(ctx, 0);
692 count = ctx->bufcnt;
693 ctx->bufcnt = 0;
694 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
696 /* faster to handle last block with cpu */
697 else {
698 atmel_sha_fill_padding(ctx, 0);
699 count = ctx->bufcnt;
700 ctx->bufcnt = 0;
701 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
704 dev_dbg(dd->dev, "final_req: err: %d\n", err);
706 return err;
709 static void atmel_sha_copy_hash(struct ahash_request *req)
711 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
712 u32 *hash = (u32 *)ctx->digest;
713 int i;
715 if (ctx->flags & SHA_FLAGS_SHA1)
716 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
717 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
718 else if (ctx->flags & SHA_FLAGS_SHA224)
719 for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
720 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
721 else if (ctx->flags & SHA_FLAGS_SHA256)
722 for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
723 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
724 else if (ctx->flags & SHA_FLAGS_SHA384)
725 for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
726 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
727 else
728 for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
729 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
732 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
734 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
736 if (!req->result)
737 return;
739 if (ctx->flags & SHA_FLAGS_SHA1)
740 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
741 else if (ctx->flags & SHA_FLAGS_SHA224)
742 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
743 else if (ctx->flags & SHA_FLAGS_SHA256)
744 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
745 else if (ctx->flags & SHA_FLAGS_SHA384)
746 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
747 else
748 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
751 static int atmel_sha_finish(struct ahash_request *req)
753 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
754 struct atmel_sha_dev *dd = ctx->dd;
755 int err = 0;
757 if (ctx->digcnt[0] || ctx->digcnt[1])
758 atmel_sha_copy_ready_hash(req);
760 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
761 ctx->digcnt[0], ctx->bufcnt);
763 return err;
766 static void atmel_sha_finish_req(struct ahash_request *req, int err)
768 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
769 struct atmel_sha_dev *dd = ctx->dd;
771 if (!err) {
772 atmel_sha_copy_hash(req);
773 if (SHA_FLAGS_FINAL & dd->flags)
774 err = atmel_sha_finish(req);
775 } else {
776 ctx->flags |= SHA_FLAGS_ERROR;
779 /* atomic operation is not needed here */
780 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
781 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
783 clk_disable_unprepare(dd->iclk);
785 if (req->base.complete)
786 req->base.complete(&req->base, err);
788 /* handle new request */
789 tasklet_schedule(&dd->done_task);
792 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
794 clk_prepare_enable(dd->iclk);
796 if (!(SHA_FLAGS_INIT & dd->flags)) {
797 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
798 dd->flags |= SHA_FLAGS_INIT;
799 dd->err = 0;
802 return 0;
805 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
807 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
810 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
812 atmel_sha_hw_init(dd);
814 dd->hw_version = atmel_sha_get_version(dd);
816 dev_info(dd->dev,
817 "version: 0x%x\n", dd->hw_version);
819 clk_disable_unprepare(dd->iclk);
822 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
823 struct ahash_request *req)
825 struct crypto_async_request *async_req, *backlog;
826 struct atmel_sha_reqctx *ctx;
827 unsigned long flags;
828 int err = 0, ret = 0;
830 spin_lock_irqsave(&dd->lock, flags);
831 if (req)
832 ret = ahash_enqueue_request(&dd->queue, req);
834 if (SHA_FLAGS_BUSY & dd->flags) {
835 spin_unlock_irqrestore(&dd->lock, flags);
836 return ret;
839 backlog = crypto_get_backlog(&dd->queue);
840 async_req = crypto_dequeue_request(&dd->queue);
841 if (async_req)
842 dd->flags |= SHA_FLAGS_BUSY;
844 spin_unlock_irqrestore(&dd->lock, flags);
846 if (!async_req)
847 return ret;
849 if (backlog)
850 backlog->complete(backlog, -EINPROGRESS);
852 req = ahash_request_cast(async_req);
853 dd->req = req;
854 ctx = ahash_request_ctx(req);
856 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
857 ctx->op, req->nbytes);
859 err = atmel_sha_hw_init(dd);
861 if (err)
862 goto err1;
864 if (ctx->op == SHA_OP_UPDATE) {
865 err = atmel_sha_update_req(dd);
866 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
867 /* no final() after finup() */
868 err = atmel_sha_final_req(dd);
869 } else if (ctx->op == SHA_OP_FINAL) {
870 err = atmel_sha_final_req(dd);
873 err1:
874 if (err != -EINPROGRESS)
875 /* done_task will not finish it, so do it here */
876 atmel_sha_finish_req(req, err);
878 dev_dbg(dd->dev, "exit, err: %d\n", err);
880 return ret;
883 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
885 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
886 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
887 struct atmel_sha_dev *dd = tctx->dd;
889 ctx->op = op;
891 return atmel_sha_handle_queue(dd, req);
894 static int atmel_sha_update(struct ahash_request *req)
896 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
898 if (!req->nbytes)
899 return 0;
901 ctx->total = req->nbytes;
902 ctx->sg = req->src;
903 ctx->offset = 0;
905 if (ctx->flags & SHA_FLAGS_FINUP) {
906 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
907 /* faster to use CPU for short transfers */
908 ctx->flags |= SHA_FLAGS_CPU;
909 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
910 atmel_sha_append_sg(ctx);
911 return 0;
913 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
916 static int atmel_sha_final(struct ahash_request *req)
918 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
919 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
920 struct atmel_sha_dev *dd = tctx->dd;
922 int err = 0;
924 ctx->flags |= SHA_FLAGS_FINUP;
926 if (ctx->flags & SHA_FLAGS_ERROR)
927 return 0; /* uncompleted hash is not needed */
929 if (ctx->bufcnt) {
930 return atmel_sha_enqueue(req, SHA_OP_FINAL);
931 } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
932 err = atmel_sha_hw_init(dd);
933 if (err)
934 goto err1;
936 dd->flags |= SHA_FLAGS_BUSY;
937 err = atmel_sha_final_req(dd);
938 } else {
939 /* copy ready hash (+ finalize hmac) */
940 return atmel_sha_finish(req);
943 err1:
944 if (err != -EINPROGRESS)
945 /* done_task will not finish it, so do it here */
946 atmel_sha_finish_req(req, err);
948 return err;
951 static int atmel_sha_finup(struct ahash_request *req)
953 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
954 int err1, err2;
956 ctx->flags |= SHA_FLAGS_FINUP;
958 err1 = atmel_sha_update(req);
959 if (err1 == -EINPROGRESS || err1 == -EBUSY)
960 return err1;
963 * final() has to be always called to cleanup resources
964 * even if udpate() failed, except EINPROGRESS
966 err2 = atmel_sha_final(req);
968 return err1 ?: err2;
971 static int atmel_sha_digest(struct ahash_request *req)
973 return atmel_sha_init(req) ?: atmel_sha_finup(req);
976 static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
978 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
979 const char *alg_name = crypto_tfm_alg_name(tfm);
981 /* Allocate a fallback and abort if it failed. */
982 tctx->fallback = crypto_alloc_shash(alg_name, 0,
983 CRYPTO_ALG_NEED_FALLBACK);
984 if (IS_ERR(tctx->fallback)) {
985 pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
986 alg_name);
987 return PTR_ERR(tctx->fallback);
989 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
990 sizeof(struct atmel_sha_reqctx) +
991 SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
993 return 0;
996 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
998 return atmel_sha_cra_init_alg(tfm, NULL);
1001 static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
1003 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
1005 crypto_free_shash(tctx->fallback);
1006 tctx->fallback = NULL;
1009 static struct ahash_alg sha_1_256_algs[] = {
1011 .init = atmel_sha_init,
1012 .update = atmel_sha_update,
1013 .final = atmel_sha_final,
1014 .finup = atmel_sha_finup,
1015 .digest = atmel_sha_digest,
1016 .halg = {
1017 .digestsize = SHA1_DIGEST_SIZE,
1018 .base = {
1019 .cra_name = "sha1",
1020 .cra_driver_name = "atmel-sha1",
1021 .cra_priority = 100,
1022 .cra_flags = CRYPTO_ALG_ASYNC |
1023 CRYPTO_ALG_NEED_FALLBACK,
1024 .cra_blocksize = SHA1_BLOCK_SIZE,
1025 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1026 .cra_alignmask = 0,
1027 .cra_module = THIS_MODULE,
1028 .cra_init = atmel_sha_cra_init,
1029 .cra_exit = atmel_sha_cra_exit,
1034 .init = atmel_sha_init,
1035 .update = atmel_sha_update,
1036 .final = atmel_sha_final,
1037 .finup = atmel_sha_finup,
1038 .digest = atmel_sha_digest,
1039 .halg = {
1040 .digestsize = SHA256_DIGEST_SIZE,
1041 .base = {
1042 .cra_name = "sha256",
1043 .cra_driver_name = "atmel-sha256",
1044 .cra_priority = 100,
1045 .cra_flags = CRYPTO_ALG_ASYNC |
1046 CRYPTO_ALG_NEED_FALLBACK,
1047 .cra_blocksize = SHA256_BLOCK_SIZE,
1048 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1049 .cra_alignmask = 0,
1050 .cra_module = THIS_MODULE,
1051 .cra_init = atmel_sha_cra_init,
1052 .cra_exit = atmel_sha_cra_exit,
1058 static struct ahash_alg sha_224_alg = {
1059 .init = atmel_sha_init,
1060 .update = atmel_sha_update,
1061 .final = atmel_sha_final,
1062 .finup = atmel_sha_finup,
1063 .digest = atmel_sha_digest,
1064 .halg = {
1065 .digestsize = SHA224_DIGEST_SIZE,
1066 .base = {
1067 .cra_name = "sha224",
1068 .cra_driver_name = "atmel-sha224",
1069 .cra_priority = 100,
1070 .cra_flags = CRYPTO_ALG_ASYNC |
1071 CRYPTO_ALG_NEED_FALLBACK,
1072 .cra_blocksize = SHA224_BLOCK_SIZE,
1073 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1074 .cra_alignmask = 0,
1075 .cra_module = THIS_MODULE,
1076 .cra_init = atmel_sha_cra_init,
1077 .cra_exit = atmel_sha_cra_exit,
1082 static struct ahash_alg sha_384_512_algs[] = {
1084 .init = atmel_sha_init,
1085 .update = atmel_sha_update,
1086 .final = atmel_sha_final,
1087 .finup = atmel_sha_finup,
1088 .digest = atmel_sha_digest,
1089 .halg = {
1090 .digestsize = SHA384_DIGEST_SIZE,
1091 .base = {
1092 .cra_name = "sha384",
1093 .cra_driver_name = "atmel-sha384",
1094 .cra_priority = 100,
1095 .cra_flags = CRYPTO_ALG_ASYNC |
1096 CRYPTO_ALG_NEED_FALLBACK,
1097 .cra_blocksize = SHA384_BLOCK_SIZE,
1098 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1099 .cra_alignmask = 0x3,
1100 .cra_module = THIS_MODULE,
1101 .cra_init = atmel_sha_cra_init,
1102 .cra_exit = atmel_sha_cra_exit,
1107 .init = atmel_sha_init,
1108 .update = atmel_sha_update,
1109 .final = atmel_sha_final,
1110 .finup = atmel_sha_finup,
1111 .digest = atmel_sha_digest,
1112 .halg = {
1113 .digestsize = SHA512_DIGEST_SIZE,
1114 .base = {
1115 .cra_name = "sha512",
1116 .cra_driver_name = "atmel-sha512",
1117 .cra_priority = 100,
1118 .cra_flags = CRYPTO_ALG_ASYNC |
1119 CRYPTO_ALG_NEED_FALLBACK,
1120 .cra_blocksize = SHA512_BLOCK_SIZE,
1121 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1122 .cra_alignmask = 0x3,
1123 .cra_module = THIS_MODULE,
1124 .cra_init = atmel_sha_cra_init,
1125 .cra_exit = atmel_sha_cra_exit,
1131 static void atmel_sha_done_task(unsigned long data)
1133 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1134 int err = 0;
1136 if (!(SHA_FLAGS_BUSY & dd->flags)) {
1137 atmel_sha_handle_queue(dd, NULL);
1138 return;
1141 if (SHA_FLAGS_CPU & dd->flags) {
1142 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1143 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1144 goto finish;
1146 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1147 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1148 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1149 atmel_sha_update_dma_stop(dd);
1150 if (dd->err) {
1151 err = dd->err;
1152 goto finish;
1155 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1156 /* hash or semi-hash ready */
1157 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1158 SHA_FLAGS_OUTPUT_READY);
1159 err = atmel_sha_update_dma_start(dd);
1160 if (err != -EINPROGRESS)
1161 goto finish;
1164 return;
1166 finish:
1167 /* finish curent request */
1168 atmel_sha_finish_req(dd->req, err);
1171 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1173 struct atmel_sha_dev *sha_dd = dev_id;
1174 u32 reg;
1176 reg = atmel_sha_read(sha_dd, SHA_ISR);
1177 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1178 atmel_sha_write(sha_dd, SHA_IDR, reg);
1179 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1180 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1181 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1182 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1183 tasklet_schedule(&sha_dd->done_task);
1184 } else {
1185 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1187 return IRQ_HANDLED;
1190 return IRQ_NONE;
1193 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1195 int i;
1197 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1198 crypto_unregister_ahash(&sha_1_256_algs[i]);
1200 if (dd->caps.has_sha224)
1201 crypto_unregister_ahash(&sha_224_alg);
1203 if (dd->caps.has_sha_384_512) {
1204 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1205 crypto_unregister_ahash(&sha_384_512_algs[i]);
1209 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1211 int err, i, j;
1213 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1214 err = crypto_register_ahash(&sha_1_256_algs[i]);
1215 if (err)
1216 goto err_sha_1_256_algs;
1219 if (dd->caps.has_sha224) {
1220 err = crypto_register_ahash(&sha_224_alg);
1221 if (err)
1222 goto err_sha_224_algs;
1225 if (dd->caps.has_sha_384_512) {
1226 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1227 err = crypto_register_ahash(&sha_384_512_algs[i]);
1228 if (err)
1229 goto err_sha_384_512_algs;
1233 return 0;
1235 err_sha_384_512_algs:
1236 for (j = 0; j < i; j++)
1237 crypto_unregister_ahash(&sha_384_512_algs[j]);
1238 crypto_unregister_ahash(&sha_224_alg);
1239 err_sha_224_algs:
1240 i = ARRAY_SIZE(sha_1_256_algs);
1241 err_sha_1_256_algs:
1242 for (j = 0; j < i; j++)
1243 crypto_unregister_ahash(&sha_1_256_algs[j]);
1245 return err;
1248 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1250 struct at_dma_slave *sl = slave;
1252 if (sl && sl->dma_dev == chan->device->dev) {
1253 chan->private = sl;
1254 return true;
1255 } else {
1256 return false;
1260 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1261 struct crypto_platform_data *pdata)
1263 int err = -ENOMEM;
1264 dma_cap_mask_t mask_in;
1266 if (pdata && pdata->dma_slave->rxdata.dma_dev) {
1267 /* Try to grab DMA channel */
1268 dma_cap_zero(mask_in);
1269 dma_cap_set(DMA_SLAVE, mask_in);
1271 dd->dma_lch_in.chan = dma_request_channel(mask_in,
1272 atmel_sha_filter, &pdata->dma_slave->rxdata);
1274 if (!dd->dma_lch_in.chan)
1275 return err;
1277 dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1278 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1279 SHA_REG_DIN(0);
1280 dd->dma_lch_in.dma_conf.src_maxburst = 1;
1281 dd->dma_lch_in.dma_conf.src_addr_width =
1282 DMA_SLAVE_BUSWIDTH_4_BYTES;
1283 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1284 dd->dma_lch_in.dma_conf.dst_addr_width =
1285 DMA_SLAVE_BUSWIDTH_4_BYTES;
1286 dd->dma_lch_in.dma_conf.device_fc = false;
1288 return 0;
1291 return -ENODEV;
1294 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1296 dma_release_channel(dd->dma_lch_in.chan);
1299 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1302 dd->caps.has_dma = 0;
1303 dd->caps.has_dualbuff = 0;
1304 dd->caps.has_sha224 = 0;
1305 dd->caps.has_sha_384_512 = 0;
1307 /* keep only major version number */
1308 switch (dd->hw_version & 0xff0) {
1309 case 0x410:
1310 dd->caps.has_dma = 1;
1311 dd->caps.has_dualbuff = 1;
1312 dd->caps.has_sha224 = 1;
1313 dd->caps.has_sha_384_512 = 1;
1314 break;
1315 case 0x400:
1316 dd->caps.has_dma = 1;
1317 dd->caps.has_dualbuff = 1;
1318 dd->caps.has_sha224 = 1;
1319 break;
1320 case 0x320:
1321 break;
1322 default:
1323 dev_warn(dd->dev,
1324 "Unmanaged sha version, set minimum capabilities\n");
1325 break;
1329 static int atmel_sha_probe(struct platform_device *pdev)
1331 struct atmel_sha_dev *sha_dd;
1332 struct crypto_platform_data *pdata;
1333 struct device *dev = &pdev->dev;
1334 struct resource *sha_res;
1335 unsigned long sha_phys_size;
1336 int err;
1338 sha_dd = kzalloc(sizeof(struct atmel_sha_dev), GFP_KERNEL);
1339 if (sha_dd == NULL) {
1340 dev_err(dev, "unable to alloc data struct.\n");
1341 err = -ENOMEM;
1342 goto sha_dd_err;
1345 sha_dd->dev = dev;
1347 platform_set_drvdata(pdev, sha_dd);
1349 INIT_LIST_HEAD(&sha_dd->list);
1351 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1352 (unsigned long)sha_dd);
1354 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1356 sha_dd->irq = -1;
1358 /* Get the base address */
1359 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1360 if (!sha_res) {
1361 dev_err(dev, "no MEM resource info\n");
1362 err = -ENODEV;
1363 goto res_err;
1365 sha_dd->phys_base = sha_res->start;
1366 sha_phys_size = resource_size(sha_res);
1368 /* Get the IRQ */
1369 sha_dd->irq = platform_get_irq(pdev, 0);
1370 if (sha_dd->irq < 0) {
1371 dev_err(dev, "no IRQ resource info\n");
1372 err = sha_dd->irq;
1373 goto res_err;
1376 err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
1377 sha_dd);
1378 if (err) {
1379 dev_err(dev, "unable to request sha irq.\n");
1380 goto res_err;
1383 /* Initializing the clock */
1384 sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
1385 if (IS_ERR(sha_dd->iclk)) {
1386 dev_err(dev, "clock intialization failed.\n");
1387 err = PTR_ERR(sha_dd->iclk);
1388 goto clk_err;
1391 sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
1392 if (!sha_dd->io_base) {
1393 dev_err(dev, "can't ioremap\n");
1394 err = -ENOMEM;
1395 goto sha_io_err;
1398 atmel_sha_hw_version_init(sha_dd);
1400 atmel_sha_get_cap(sha_dd);
1402 if (sha_dd->caps.has_dma) {
1403 pdata = pdev->dev.platform_data;
1404 if (!pdata) {
1405 dev_err(&pdev->dev, "platform data not available\n");
1406 err = -ENXIO;
1407 goto err_pdata;
1409 err = atmel_sha_dma_init(sha_dd, pdata);
1410 if (err)
1411 goto err_sha_dma;
1414 spin_lock(&atmel_sha.lock);
1415 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1416 spin_unlock(&atmel_sha.lock);
1418 err = atmel_sha_register_algs(sha_dd);
1419 if (err)
1420 goto err_algs;
1422 dev_info(dev, "Atmel SHA1/SHA256\n");
1424 return 0;
1426 err_algs:
1427 spin_lock(&atmel_sha.lock);
1428 list_del(&sha_dd->list);
1429 spin_unlock(&atmel_sha.lock);
1430 if (sha_dd->caps.has_dma)
1431 atmel_sha_dma_cleanup(sha_dd);
1432 err_sha_dma:
1433 err_pdata:
1434 iounmap(sha_dd->io_base);
1435 sha_io_err:
1436 clk_put(sha_dd->iclk);
1437 clk_err:
1438 free_irq(sha_dd->irq, sha_dd);
1439 res_err:
1440 tasklet_kill(&sha_dd->done_task);
1441 kfree(sha_dd);
1442 sha_dd = NULL;
1443 sha_dd_err:
1444 dev_err(dev, "initialization failed.\n");
1446 return err;
1449 static int atmel_sha_remove(struct platform_device *pdev)
1451 static struct atmel_sha_dev *sha_dd;
1453 sha_dd = platform_get_drvdata(pdev);
1454 if (!sha_dd)
1455 return -ENODEV;
1456 spin_lock(&atmel_sha.lock);
1457 list_del(&sha_dd->list);
1458 spin_unlock(&atmel_sha.lock);
1460 atmel_sha_unregister_algs(sha_dd);
1462 tasklet_kill(&sha_dd->done_task);
1464 if (sha_dd->caps.has_dma)
1465 atmel_sha_dma_cleanup(sha_dd);
1467 iounmap(sha_dd->io_base);
1469 clk_put(sha_dd->iclk);
1471 if (sha_dd->irq >= 0)
1472 free_irq(sha_dd->irq, sha_dd);
1474 kfree(sha_dd);
1475 sha_dd = NULL;
1477 return 0;
1480 static struct platform_driver atmel_sha_driver = {
1481 .probe = atmel_sha_probe,
1482 .remove = atmel_sha_remove,
1483 .driver = {
1484 .name = "atmel_sha",
1485 .owner = THIS_MODULE,
1489 module_platform_driver(atmel_sha_driver);
1491 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1492 MODULE_LICENSE("GPL v2");
1493 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");