sparc32: Remove unused declarations in srmmu.c
[linux-2.6.git] / arch / sparc / mm / srmmu.c
blobdc398e5c71a4c64e941f45544cdeb87af9eae449
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
51 #include <asm/btfixup.h>
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 struct ctx_list *ctx_list_pool;
59 struct ctx_list ctx_free;
60 struct ctx_list ctx_used;
62 extern struct resource sparc_iomap;
64 extern unsigned long last_valid_pfn;
66 static pgd_t *srmmu_swapper_pg_dir;
68 #ifdef CONFIG_SMP
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END }
74 #endif
76 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
77 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
79 int flush_page_for_dma_global = 1;
81 #ifdef CONFIG_SMP
82 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
83 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
84 #endif
86 char *srmmu_name;
88 ctxd_t *srmmu_ctx_table_phys;
89 static ctxd_t *srmmu_context_table;
91 int viking_mxcc_present;
92 static DEFINE_SPINLOCK(srmmu_context_spinlock);
94 static int is_hypersparc;
96 static int srmmu_cache_pagetables;
98 /* these will be initialized in srmmu_nocache_calcsize() */
99 static unsigned long srmmu_nocache_size;
100 static unsigned long srmmu_nocache_end;
102 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
103 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
105 /* The context table is a nocache user with the biggest alignment needs. */
106 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
108 void *srmmu_nocache_pool;
109 void *srmmu_nocache_bitmap;
110 static struct bit_map srmmu_nocache_map;
112 static inline int srmmu_pte_none(pte_t pte)
113 { return !(pte_val(pte) & 0xFFFFFFF); }
115 static inline int srmmu_pmd_none(pmd_t pmd)
116 { return !(pmd_val(pmd) & 0xFFFFFFF); }
118 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
119 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
121 static inline pte_t srmmu_pte_mkclean(pte_t pte)
122 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
124 static inline pte_t srmmu_pte_mkold(pte_t pte)
125 { return __pte(pte_val(pte) & ~SRMMU_REF);}
127 /* XXX should we hyper_flush_whole_icache here - Anton */
128 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
129 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
131 void pmd_set(pmd_t *pmdp, pte_t *ptep)
133 unsigned long ptp; /* Physical address, shifted right by 4 */
134 int i;
136 ptp = __nocache_pa((unsigned long) ptep) >> 4;
137 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
138 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
139 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
143 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
145 unsigned long ptp; /* Physical address, shifted right by 4 */
146 int i;
148 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
149 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
150 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
151 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
155 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
156 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
158 /* to find an entry in a top-level page table... */
159 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
160 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
162 /* Find an entry in the third-level page table.. */
163 pte_t *pte_offset_kernel(pmd_t * dir, unsigned long address)
165 void *pte;
167 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
168 return (pte_t *) pte +
169 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
173 * size: bytes to allocate in the nocache area.
174 * align: bytes, number to align at.
175 * Returns the virtual address of the allocated area.
177 static unsigned long __srmmu_get_nocache(int size, int align)
179 int offset;
181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 printk("Size 0x%x too small for nocache request\n", size);
183 size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
186 printk("Size 0x%x unaligned int nocache request\n", size);
187 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
189 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
191 offset = bit_map_string_get(&srmmu_nocache_map,
192 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
193 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
194 if (offset == -1) {
195 printk("srmmu: out of nocache %d: %d/%d\n",
196 size, (int) srmmu_nocache_size,
197 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
198 return 0;
201 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
204 unsigned long srmmu_get_nocache(int size, int align)
206 unsigned long tmp;
208 tmp = __srmmu_get_nocache(size, align);
210 if (tmp)
211 memset((void *)tmp, 0, size);
213 return tmp;
216 void srmmu_free_nocache(unsigned long vaddr, int size)
218 int offset;
220 if (vaddr < SRMMU_NOCACHE_VADDR) {
221 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
222 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
223 BUG();
225 if (vaddr+size > srmmu_nocache_end) {
226 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
227 vaddr, srmmu_nocache_end);
228 BUG();
230 if (!is_power_of_2(size)) {
231 printk("Size 0x%x is not a power of 2\n", size);
232 BUG();
234 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
235 printk("Size 0x%x is too small\n", size);
236 BUG();
238 if (vaddr & (size-1)) {
239 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
240 BUG();
243 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
244 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
246 bit_map_clear(&srmmu_nocache_map, offset, size);
249 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
250 unsigned long end);
252 extern unsigned long probe_memory(void); /* in fault.c */
255 * Reserve nocache dynamically proportionally to the amount of
256 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
258 static void srmmu_nocache_calcsize(void)
260 unsigned long sysmemavail = probe_memory() / 1024;
261 int srmmu_nocache_npages;
263 srmmu_nocache_npages =
264 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
266 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
267 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
268 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
269 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
271 /* anything above 1280 blows up */
272 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
273 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
275 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
276 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
279 static void __init srmmu_nocache_init(void)
281 unsigned int bitmap_bits;
282 pgd_t *pgd;
283 pmd_t *pmd;
284 pte_t *pte;
285 unsigned long paddr, vaddr;
286 unsigned long pteval;
288 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
290 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
291 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
292 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
294 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
295 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
297 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
298 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
299 init_mm.pgd = srmmu_swapper_pg_dir;
301 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
303 paddr = __pa((unsigned long)srmmu_nocache_pool);
304 vaddr = SRMMU_NOCACHE_VADDR;
306 while (vaddr < srmmu_nocache_end) {
307 pgd = pgd_offset_k(vaddr);
308 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
313 if (srmmu_cache_pagetables)
314 pteval |= SRMMU_CACHE;
316 set_pte(__nocache_fix(pte), __pte(pteval));
318 vaddr += PAGE_SIZE;
319 paddr += PAGE_SIZE;
322 flush_cache_all();
323 flush_tlb_all();
326 pgd_t *get_pgd_fast(void)
328 pgd_t *pgd = NULL;
330 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331 if (pgd) {
332 pgd_t *init = pgd_offset_k(0);
333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
338 return pgd;
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
349 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
351 unsigned long pte;
352 struct page *page;
354 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
355 return NULL;
356 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
357 pgtable_page_ctor(page);
358 return page;
361 void pte_free(struct mm_struct *mm, pgtable_t pte)
363 unsigned long p;
365 pgtable_page_dtor(pte);
366 p = (unsigned long)page_address(pte); /* Cached address (for test) */
367 if (p == 0)
368 BUG();
369 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
370 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
371 srmmu_free_nocache(p, PTE_SIZE);
376 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
378 struct ctx_list *ctxp;
380 ctxp = ctx_free.next;
381 if(ctxp != &ctx_free) {
382 remove_from_ctx_list(ctxp);
383 add_to_used_ctxlist(ctxp);
384 mm->context = ctxp->ctx_number;
385 ctxp->ctx_mm = mm;
386 return;
388 ctxp = ctx_used.next;
389 if(ctxp->ctx_mm == old_mm)
390 ctxp = ctxp->next;
391 if(ctxp == &ctx_used)
392 panic("out of mmu contexts");
393 flush_cache_mm(ctxp->ctx_mm);
394 flush_tlb_mm(ctxp->ctx_mm);
395 remove_from_ctx_list(ctxp);
396 add_to_used_ctxlist(ctxp);
397 ctxp->ctx_mm->context = NO_CONTEXT;
398 ctxp->ctx_mm = mm;
399 mm->context = ctxp->ctx_number;
402 static inline void free_context(int context)
404 struct ctx_list *ctx_old;
406 ctx_old = ctx_list_pool + context;
407 remove_from_ctx_list(ctx_old);
408 add_to_free_ctxlist(ctx_old);
412 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
413 struct task_struct *tsk)
415 if(mm->context == NO_CONTEXT) {
416 spin_lock(&srmmu_context_spinlock);
417 alloc_context(old_mm, mm);
418 spin_unlock(&srmmu_context_spinlock);
419 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
422 if (sparc_cpu_model == sparc_leon)
423 leon_switch_mm();
425 if (is_hypersparc)
426 hyper_flush_whole_icache();
428 srmmu_set_context(mm->context);
431 /* Low level IO area allocation on the SRMMU. */
432 static inline void srmmu_mapioaddr(unsigned long physaddr,
433 unsigned long virt_addr, int bus_type)
435 pgd_t *pgdp;
436 pmd_t *pmdp;
437 pte_t *ptep;
438 unsigned long tmp;
440 physaddr &= PAGE_MASK;
441 pgdp = pgd_offset_k(virt_addr);
442 pmdp = pmd_offset(pgdp, virt_addr);
443 ptep = pte_offset_kernel(pmdp, virt_addr);
444 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
447 * I need to test whether this is consistent over all
448 * sun4m's. The bus_type represents the upper 4 bits of
449 * 36-bit physical address on the I/O space lines...
451 tmp |= (bus_type << 28);
452 tmp |= SRMMU_PRIV;
453 __flush_page_to_ram(virt_addr);
454 set_pte(ptep, __pte(tmp));
457 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
458 unsigned long xva, unsigned int len)
460 while (len != 0) {
461 len -= PAGE_SIZE;
462 srmmu_mapioaddr(xpa, xva, bus);
463 xva += PAGE_SIZE;
464 xpa += PAGE_SIZE;
466 flush_tlb_all();
469 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
471 pgd_t *pgdp;
472 pmd_t *pmdp;
473 pte_t *ptep;
475 pgdp = pgd_offset_k(virt_addr);
476 pmdp = pmd_offset(pgdp, virt_addr);
477 ptep = pte_offset_kernel(pmdp, virt_addr);
479 /* No need to flush uncacheable page. */
480 __pte_clear(ptep);
483 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
485 while (len != 0) {
486 len -= PAGE_SIZE;
487 srmmu_unmapioaddr(virt_addr);
488 virt_addr += PAGE_SIZE;
490 flush_tlb_all();
494 * On the SRMMU we do not have the problems with limited tlb entries
495 * for mapping kernel pages, so we just take things from the free page
496 * pool. As a side effect we are putting a little too much pressure
497 * on the gfp() subsystem. This setup also makes the logic of the
498 * iommu mapping code a lot easier as we can transparently handle
499 * mappings on the kernel stack without any special code.
501 struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
503 struct thread_info *ret;
505 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
506 THREAD_INFO_ORDER);
507 #ifdef CONFIG_DEBUG_STACK_USAGE
508 if (ret)
509 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
510 #endif /* DEBUG_STACK_USAGE */
512 return ret;
515 void free_thread_info(struct thread_info *ti)
517 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
520 /* tsunami.S */
521 extern void tsunami_flush_cache_all(void);
522 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
523 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
524 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
525 extern void tsunami_flush_page_to_ram(unsigned long page);
526 extern void tsunami_flush_page_for_dma(unsigned long page);
527 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
528 extern void tsunami_flush_tlb_all(void);
529 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
530 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
531 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
532 extern void tsunami_setup_blockops(void);
534 /* swift.S */
535 extern void swift_flush_cache_all(void);
536 extern void swift_flush_cache_mm(struct mm_struct *mm);
537 extern void swift_flush_cache_range(struct vm_area_struct *vma,
538 unsigned long start, unsigned long end);
539 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
540 extern void swift_flush_page_to_ram(unsigned long page);
541 extern void swift_flush_page_for_dma(unsigned long page);
542 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
543 extern void swift_flush_tlb_all(void);
544 extern void swift_flush_tlb_mm(struct mm_struct *mm);
545 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
546 unsigned long start, unsigned long end);
547 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
549 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
550 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
552 int cctx, ctx1;
554 page &= PAGE_MASK;
555 if ((ctx1 = vma->vm_mm->context) != -1) {
556 cctx = srmmu_get_context();
557 /* Is context # ever different from current context? P3 */
558 if (cctx != ctx1) {
559 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
560 srmmu_set_context(ctx1);
561 swift_flush_page(page);
562 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
563 "r" (page), "i" (ASI_M_FLUSH_PROBE));
564 srmmu_set_context(cctx);
565 } else {
566 /* Rm. prot. bits from virt. c. */
567 /* swift_flush_cache_all(); */
568 /* swift_flush_cache_page(vma, page); */
569 swift_flush_page(page);
571 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
572 "r" (page), "i" (ASI_M_FLUSH_PROBE));
573 /* same as above: srmmu_flush_tlb_page() */
577 #endif
580 * The following are all MBUS based SRMMU modules, and therefore could
581 * be found in a multiprocessor configuration. On the whole, these
582 * chips seems to be much more touchy about DVMA and page tables
583 * with respect to cache coherency.
586 /* Cypress flushes. */
587 static void cypress_flush_cache_all(void)
589 volatile unsigned long cypress_sucks;
590 unsigned long faddr, tagval;
592 flush_user_windows();
593 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
594 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
595 "=r" (tagval) :
596 "r" (faddr), "r" (0x40000),
597 "i" (ASI_M_DATAC_TAG));
599 /* If modified and valid, kick it. */
600 if((tagval & 0x60) == 0x60)
601 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
605 static void cypress_flush_cache_mm(struct mm_struct *mm)
607 register unsigned long a, b, c, d, e, f, g;
608 unsigned long flags, faddr;
609 int octx;
611 FLUSH_BEGIN(mm)
612 flush_user_windows();
613 local_irq_save(flags);
614 octx = srmmu_get_context();
615 srmmu_set_context(mm->context);
616 a = 0x20; b = 0x40; c = 0x60;
617 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
619 faddr = (0x10000 - 0x100);
620 goto inside;
621 do {
622 faddr -= 0x100;
623 inside:
624 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
625 "sta %%g0, [%0 + %2] %1\n\t"
626 "sta %%g0, [%0 + %3] %1\n\t"
627 "sta %%g0, [%0 + %4] %1\n\t"
628 "sta %%g0, [%0 + %5] %1\n\t"
629 "sta %%g0, [%0 + %6] %1\n\t"
630 "sta %%g0, [%0 + %7] %1\n\t"
631 "sta %%g0, [%0 + %8] %1\n\t" : :
632 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
633 "r" (a), "r" (b), "r" (c), "r" (d),
634 "r" (e), "r" (f), "r" (g));
635 } while(faddr);
636 srmmu_set_context(octx);
637 local_irq_restore(flags);
638 FLUSH_END
641 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
643 struct mm_struct *mm = vma->vm_mm;
644 register unsigned long a, b, c, d, e, f, g;
645 unsigned long flags, faddr;
646 int octx;
648 FLUSH_BEGIN(mm)
649 flush_user_windows();
650 local_irq_save(flags);
651 octx = srmmu_get_context();
652 srmmu_set_context(mm->context);
653 a = 0x20; b = 0x40; c = 0x60;
654 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
656 start &= SRMMU_REAL_PMD_MASK;
657 while(start < end) {
658 faddr = (start + (0x10000 - 0x100));
659 goto inside;
660 do {
661 faddr -= 0x100;
662 inside:
663 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
664 "sta %%g0, [%0 + %2] %1\n\t"
665 "sta %%g0, [%0 + %3] %1\n\t"
666 "sta %%g0, [%0 + %4] %1\n\t"
667 "sta %%g0, [%0 + %5] %1\n\t"
668 "sta %%g0, [%0 + %6] %1\n\t"
669 "sta %%g0, [%0 + %7] %1\n\t"
670 "sta %%g0, [%0 + %8] %1\n\t" : :
671 "r" (faddr),
672 "i" (ASI_M_FLUSH_SEG),
673 "r" (a), "r" (b), "r" (c), "r" (d),
674 "r" (e), "r" (f), "r" (g));
675 } while (faddr != start);
676 start += SRMMU_REAL_PMD_SIZE;
678 srmmu_set_context(octx);
679 local_irq_restore(flags);
680 FLUSH_END
683 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
685 register unsigned long a, b, c, d, e, f, g;
686 struct mm_struct *mm = vma->vm_mm;
687 unsigned long flags, line;
688 int octx;
690 FLUSH_BEGIN(mm)
691 flush_user_windows();
692 local_irq_save(flags);
693 octx = srmmu_get_context();
694 srmmu_set_context(mm->context);
695 a = 0x20; b = 0x40; c = 0x60;
696 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
698 page &= PAGE_MASK;
699 line = (page + PAGE_SIZE) - 0x100;
700 goto inside;
701 do {
702 line -= 0x100;
703 inside:
704 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
705 "sta %%g0, [%0 + %2] %1\n\t"
706 "sta %%g0, [%0 + %3] %1\n\t"
707 "sta %%g0, [%0 + %4] %1\n\t"
708 "sta %%g0, [%0 + %5] %1\n\t"
709 "sta %%g0, [%0 + %6] %1\n\t"
710 "sta %%g0, [%0 + %7] %1\n\t"
711 "sta %%g0, [%0 + %8] %1\n\t" : :
712 "r" (line),
713 "i" (ASI_M_FLUSH_PAGE),
714 "r" (a), "r" (b), "r" (c), "r" (d),
715 "r" (e), "r" (f), "r" (g));
716 } while(line != page);
717 srmmu_set_context(octx);
718 local_irq_restore(flags);
719 FLUSH_END
722 /* Cypress is copy-back, at least that is how we configure it. */
723 static void cypress_flush_page_to_ram(unsigned long page)
725 register unsigned long a, b, c, d, e, f, g;
726 unsigned long line;
728 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
729 page &= PAGE_MASK;
730 line = (page + PAGE_SIZE) - 0x100;
731 goto inside;
732 do {
733 line -= 0x100;
734 inside:
735 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
736 "sta %%g0, [%0 + %2] %1\n\t"
737 "sta %%g0, [%0 + %3] %1\n\t"
738 "sta %%g0, [%0 + %4] %1\n\t"
739 "sta %%g0, [%0 + %5] %1\n\t"
740 "sta %%g0, [%0 + %6] %1\n\t"
741 "sta %%g0, [%0 + %7] %1\n\t"
742 "sta %%g0, [%0 + %8] %1\n\t" : :
743 "r" (line),
744 "i" (ASI_M_FLUSH_PAGE),
745 "r" (a), "r" (b), "r" (c), "r" (d),
746 "r" (e), "r" (f), "r" (g));
747 } while(line != page);
750 /* Cypress is also IO cache coherent. */
751 static void cypress_flush_page_for_dma(unsigned long page)
755 /* Cypress has unified L2 VIPT, from which both instructions and data
756 * are stored. It does not have an onboard icache of any sort, therefore
757 * no flush is necessary.
759 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
763 static void cypress_flush_tlb_all(void)
765 srmmu_flush_whole_tlb();
768 static void cypress_flush_tlb_mm(struct mm_struct *mm)
770 FLUSH_BEGIN(mm)
771 __asm__ __volatile__(
772 "lda [%0] %3, %%g5\n\t"
773 "sta %2, [%0] %3\n\t"
774 "sta %%g0, [%1] %4\n\t"
775 "sta %%g5, [%0] %3\n"
776 : /* no outputs */
777 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
778 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
779 : "g5");
780 FLUSH_END
783 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
785 struct mm_struct *mm = vma->vm_mm;
786 unsigned long size;
788 FLUSH_BEGIN(mm)
789 start &= SRMMU_PGDIR_MASK;
790 size = SRMMU_PGDIR_ALIGN(end) - start;
791 __asm__ __volatile__(
792 "lda [%0] %5, %%g5\n\t"
793 "sta %1, [%0] %5\n"
794 "1:\n\t"
795 "subcc %3, %4, %3\n\t"
796 "bne 1b\n\t"
797 " sta %%g0, [%2 + %3] %6\n\t"
798 "sta %%g5, [%0] %5\n"
799 : /* no outputs */
800 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
801 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
802 "i" (ASI_M_FLUSH_PROBE)
803 : "g5", "cc");
804 FLUSH_END
807 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
809 struct mm_struct *mm = vma->vm_mm;
811 FLUSH_BEGIN(mm)
812 __asm__ __volatile__(
813 "lda [%0] %3, %%g5\n\t"
814 "sta %1, [%0] %3\n\t"
815 "sta %%g0, [%2] %4\n\t"
816 "sta %%g5, [%0] %3\n"
817 : /* no outputs */
818 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
819 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
820 : "g5");
821 FLUSH_END
824 /* viking.S */
825 extern void viking_flush_cache_all(void);
826 extern void viking_flush_cache_mm(struct mm_struct *mm);
827 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
828 unsigned long end);
829 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
830 extern void viking_flush_page_to_ram(unsigned long page);
831 extern void viking_flush_page_for_dma(unsigned long page);
832 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
833 extern void viking_flush_page(unsigned long page);
834 extern void viking_mxcc_flush_page(unsigned long page);
835 extern void viking_flush_tlb_all(void);
836 extern void viking_flush_tlb_mm(struct mm_struct *mm);
837 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
838 unsigned long end);
839 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
840 unsigned long page);
841 extern void sun4dsmp_flush_tlb_all(void);
842 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
843 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
844 unsigned long end);
845 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
846 unsigned long page);
848 /* hypersparc.S */
849 extern void hypersparc_flush_cache_all(void);
850 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
851 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
852 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
853 extern void hypersparc_flush_page_to_ram(unsigned long page);
854 extern void hypersparc_flush_page_for_dma(unsigned long page);
855 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
856 extern void hypersparc_flush_tlb_all(void);
857 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
858 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
859 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
860 extern void hypersparc_setup_blockops(void);
863 * NOTE: All of this startup code assumes the low 16mb (approx.) of
864 * kernel mappings are done with one single contiguous chunk of
865 * ram. On small ram machines (classics mainly) we only get
866 * around 8mb mapped for us.
869 static void __init early_pgtable_allocfail(char *type)
871 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
872 prom_halt();
875 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
876 unsigned long end)
878 pgd_t *pgdp;
879 pmd_t *pmdp;
880 pte_t *ptep;
882 while(start < end) {
883 pgdp = pgd_offset_k(start);
884 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
885 pmdp = (pmd_t *) __srmmu_get_nocache(
886 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
887 if (pmdp == NULL)
888 early_pgtable_allocfail("pmd");
889 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
890 pgd_set(__nocache_fix(pgdp), pmdp);
892 pmdp = pmd_offset(__nocache_fix(pgdp), start);
893 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
894 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
895 if (ptep == NULL)
896 early_pgtable_allocfail("pte");
897 memset(__nocache_fix(ptep), 0, PTE_SIZE);
898 pmd_set(__nocache_fix(pmdp), ptep);
900 if (start > (0xffffffffUL - PMD_SIZE))
901 break;
902 start = (start + PMD_SIZE) & PMD_MASK;
906 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
907 unsigned long end)
909 pgd_t *pgdp;
910 pmd_t *pmdp;
911 pte_t *ptep;
913 while(start < end) {
914 pgdp = pgd_offset_k(start);
915 if (pgd_none(*pgdp)) {
916 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
917 if (pmdp == NULL)
918 early_pgtable_allocfail("pmd");
919 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
920 pgd_set(pgdp, pmdp);
922 pmdp = pmd_offset(pgdp, start);
923 if(srmmu_pmd_none(*pmdp)) {
924 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
925 PTE_SIZE);
926 if (ptep == NULL)
927 early_pgtable_allocfail("pte");
928 memset(ptep, 0, PTE_SIZE);
929 pmd_set(pmdp, ptep);
931 if (start > (0xffffffffUL - PMD_SIZE))
932 break;
933 start = (start + PMD_SIZE) & PMD_MASK;
938 * This is much cleaner than poking around physical address space
939 * looking at the prom's page table directly which is what most
940 * other OS's do. Yuck... this is much better.
942 static void __init srmmu_inherit_prom_mappings(unsigned long start,
943 unsigned long end)
945 pgd_t *pgdp;
946 pmd_t *pmdp;
947 pte_t *ptep;
948 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
949 unsigned long prompte;
951 while(start <= end) {
952 if (start == 0)
953 break; /* probably wrap around */
954 if(start == 0xfef00000)
955 start = KADB_DEBUGGER_BEGVM;
956 if(!(prompte = srmmu_hwprobe(start))) {
957 start += PAGE_SIZE;
958 continue;
961 /* A red snapper, see what it really is. */
962 what = 0;
964 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
965 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
966 what = 1;
969 if(!(start & ~(SRMMU_PGDIR_MASK))) {
970 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
971 prompte)
972 what = 2;
975 pgdp = pgd_offset_k(start);
976 if(what == 2) {
977 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
978 start += SRMMU_PGDIR_SIZE;
979 continue;
981 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
982 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
983 if (pmdp == NULL)
984 early_pgtable_allocfail("pmd");
985 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
986 pgd_set(__nocache_fix(pgdp), pmdp);
988 pmdp = pmd_offset(__nocache_fix(pgdp), start);
989 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
990 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
991 PTE_SIZE);
992 if (ptep == NULL)
993 early_pgtable_allocfail("pte");
994 memset(__nocache_fix(ptep), 0, PTE_SIZE);
995 pmd_set(__nocache_fix(pmdp), ptep);
997 if(what == 1) {
999 * We bend the rule where all 16 PTPs in a pmd_t point
1000 * inside the same PTE page, and we leak a perfectly
1001 * good hardware PTE piece. Alternatives seem worse.
1003 unsigned int x; /* Index of HW PMD in soft cluster */
1004 x = (start >> PMD_SHIFT) & 15;
1005 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1006 start += SRMMU_REAL_PMD_SIZE;
1007 continue;
1009 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
1010 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1011 start += PAGE_SIZE;
1015 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1017 /* Create a third-level SRMMU 16MB page mapping. */
1018 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1020 pgd_t *pgdp = pgd_offset_k(vaddr);
1021 unsigned long big_pte;
1023 big_pte = KERNEL_PTE(phys_base >> 4);
1024 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1027 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1028 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1030 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1031 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1032 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1033 /* Map "low" memory only */
1034 const unsigned long min_vaddr = PAGE_OFFSET;
1035 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1037 if (vstart < min_vaddr || vstart >= max_vaddr)
1038 return vstart;
1040 if (vend > max_vaddr || vend < min_vaddr)
1041 vend = max_vaddr;
1043 while(vstart < vend) {
1044 do_large_mapping(vstart, pstart);
1045 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1047 return vstart;
1050 static inline void memprobe_error(char *msg)
1052 prom_printf(msg);
1053 prom_printf("Halting now...\n");
1054 prom_halt();
1057 static inline void map_kernel(void)
1059 int i;
1061 if (phys_base > 0) {
1062 do_large_mapping(PAGE_OFFSET, phys_base);
1065 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1066 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1070 /* Paging initialization on the Sparc Reference MMU. */
1071 extern void sparc_context_init(int);
1073 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1075 extern unsigned long bootmem_init(unsigned long *pages_avail);
1077 void __init srmmu_paging_init(void)
1079 int i;
1080 phandle cpunode;
1081 char node_str[128];
1082 pgd_t *pgd;
1083 pmd_t *pmd;
1084 pte_t *pte;
1085 unsigned long pages_avail;
1087 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1089 if (sparc_cpu_model == sun4d)
1090 num_contexts = 65536; /* We know it is Viking */
1091 else {
1092 /* Find the number of contexts on the srmmu. */
1093 cpunode = prom_getchild(prom_root_node);
1094 num_contexts = 0;
1095 while(cpunode != 0) {
1096 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1097 if(!strcmp(node_str, "cpu")) {
1098 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1099 break;
1101 cpunode = prom_getsibling(cpunode);
1105 if(!num_contexts) {
1106 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1107 prom_halt();
1110 pages_avail = 0;
1111 last_valid_pfn = bootmem_init(&pages_avail);
1113 srmmu_nocache_calcsize();
1114 srmmu_nocache_init();
1115 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1116 map_kernel();
1118 /* ctx table has to be physically aligned to its size */
1119 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1120 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1122 for(i = 0; i < num_contexts; i++)
1123 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1125 flush_cache_all();
1126 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1127 #ifdef CONFIG_SMP
1128 /* Stop from hanging here... */
1129 local_flush_tlb_all();
1130 #else
1131 flush_tlb_all();
1132 #endif
1133 poke_srmmu();
1135 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1136 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1138 srmmu_allocate_ptable_skeleton(
1139 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1140 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1142 pgd = pgd_offset_k(PKMAP_BASE);
1143 pmd = pmd_offset(pgd, PKMAP_BASE);
1144 pte = pte_offset_kernel(pmd, PKMAP_BASE);
1145 pkmap_page_table = pte;
1147 flush_cache_all();
1148 flush_tlb_all();
1150 sparc_context_init(num_contexts);
1152 kmap_init();
1155 unsigned long zones_size[MAX_NR_ZONES];
1156 unsigned long zholes_size[MAX_NR_ZONES];
1157 unsigned long npages;
1158 int znum;
1160 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1161 zones_size[znum] = zholes_size[znum] = 0;
1163 npages = max_low_pfn - pfn_base;
1165 zones_size[ZONE_DMA] = npages;
1166 zholes_size[ZONE_DMA] = npages - pages_avail;
1168 npages = highend_pfn - max_low_pfn;
1169 zones_size[ZONE_HIGHMEM] = npages;
1170 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1172 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1176 void mmu_info(struct seq_file *m)
1178 seq_printf(m,
1179 "MMU type\t: %s\n"
1180 "contexts\t: %d\n"
1181 "nocache total\t: %ld\n"
1182 "nocache used\t: %d\n",
1183 srmmu_name,
1184 num_contexts,
1185 srmmu_nocache_size,
1186 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1189 void destroy_context(struct mm_struct *mm)
1192 if(mm->context != NO_CONTEXT) {
1193 flush_cache_mm(mm);
1194 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1195 flush_tlb_mm(mm);
1196 spin_lock(&srmmu_context_spinlock);
1197 free_context(mm->context);
1198 spin_unlock(&srmmu_context_spinlock);
1199 mm->context = NO_CONTEXT;
1203 /* Init various srmmu chip types. */
1204 static void __init srmmu_is_bad(void)
1206 prom_printf("Could not determine SRMMU chip type.\n");
1207 prom_halt();
1210 static void __init init_vac_layout(void)
1212 phandle nd;
1213 int cache_lines;
1214 char node_str[128];
1215 #ifdef CONFIG_SMP
1216 int cpu = 0;
1217 unsigned long max_size = 0;
1218 unsigned long min_line_size = 0x10000000;
1219 #endif
1221 nd = prom_getchild(prom_root_node);
1222 while((nd = prom_getsibling(nd)) != 0) {
1223 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1224 if(!strcmp(node_str, "cpu")) {
1225 vac_line_size = prom_getint(nd, "cache-line-size");
1226 if (vac_line_size == -1) {
1227 prom_printf("can't determine cache-line-size, "
1228 "halting.\n");
1229 prom_halt();
1231 cache_lines = prom_getint(nd, "cache-nlines");
1232 if (cache_lines == -1) {
1233 prom_printf("can't determine cache-nlines, halting.\n");
1234 prom_halt();
1237 vac_cache_size = cache_lines * vac_line_size;
1238 #ifdef CONFIG_SMP
1239 if(vac_cache_size > max_size)
1240 max_size = vac_cache_size;
1241 if(vac_line_size < min_line_size)
1242 min_line_size = vac_line_size;
1243 //FIXME: cpus not contiguous!!
1244 cpu++;
1245 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1246 break;
1247 #else
1248 break;
1249 #endif
1252 if(nd == 0) {
1253 prom_printf("No CPU nodes found, halting.\n");
1254 prom_halt();
1256 #ifdef CONFIG_SMP
1257 vac_cache_size = max_size;
1258 vac_line_size = min_line_size;
1259 #endif
1260 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1261 (int)vac_cache_size, (int)vac_line_size);
1264 static void __cpuinit poke_hypersparc(void)
1266 volatile unsigned long clear;
1267 unsigned long mreg = srmmu_get_mmureg();
1269 hyper_flush_unconditional_combined();
1271 mreg &= ~(HYPERSPARC_CWENABLE);
1272 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1273 mreg |= (HYPERSPARC_CMODE);
1275 srmmu_set_mmureg(mreg);
1277 #if 0 /* XXX I think this is bad news... -DaveM */
1278 hyper_clear_all_tags();
1279 #endif
1281 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1282 hyper_flush_whole_icache();
1283 clear = srmmu_get_faddr();
1284 clear = srmmu_get_fstatus();
1287 static void __init init_hypersparc(void)
1289 srmmu_name = "ROSS HyperSparc";
1290 srmmu_modtype = HyperSparc;
1292 init_vac_layout();
1294 is_hypersparc = 1;
1296 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1297 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1298 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1299 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1301 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1302 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1303 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1304 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1306 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1307 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1308 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1311 poke_srmmu = poke_hypersparc;
1313 hypersparc_setup_blockops();
1316 static void __cpuinit poke_cypress(void)
1318 unsigned long mreg = srmmu_get_mmureg();
1319 unsigned long faddr, tagval;
1320 volatile unsigned long cypress_sucks;
1321 volatile unsigned long clear;
1323 clear = srmmu_get_faddr();
1324 clear = srmmu_get_fstatus();
1326 if (!(mreg & CYPRESS_CENABLE)) {
1327 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1328 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1329 "sta %%g0, [%0] %2\n\t" : :
1330 "r" (faddr), "r" (0x40000),
1331 "i" (ASI_M_DATAC_TAG));
1333 } else {
1334 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1335 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1336 "=r" (tagval) :
1337 "r" (faddr), "r" (0x40000),
1338 "i" (ASI_M_DATAC_TAG));
1340 /* If modified and valid, kick it. */
1341 if((tagval & 0x60) == 0x60)
1342 cypress_sucks = *(unsigned long *)
1343 (0xf0020000 + faddr);
1347 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1348 clear = srmmu_get_faddr();
1349 clear = srmmu_get_fstatus();
1351 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1352 srmmu_set_mmureg(mreg);
1355 static void __init init_cypress_common(void)
1357 init_vac_layout();
1359 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1360 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1361 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1362 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1364 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1365 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1366 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1367 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1370 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1371 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1372 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1374 poke_srmmu = poke_cypress;
1377 static void __init init_cypress_604(void)
1379 srmmu_name = "ROSS Cypress-604(UP)";
1380 srmmu_modtype = Cypress;
1381 init_cypress_common();
1384 static void __init init_cypress_605(unsigned long mrev)
1386 srmmu_name = "ROSS Cypress-605(MP)";
1387 if(mrev == 0xe) {
1388 srmmu_modtype = Cypress_vE;
1389 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1390 } else {
1391 if(mrev == 0xd) {
1392 srmmu_modtype = Cypress_vD;
1393 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1394 } else {
1395 srmmu_modtype = Cypress;
1398 init_cypress_common();
1401 static void __cpuinit poke_swift(void)
1403 unsigned long mreg;
1405 /* Clear any crap from the cache or else... */
1406 swift_flush_cache_all();
1408 /* Enable I & D caches */
1409 mreg = srmmu_get_mmureg();
1410 mreg |= (SWIFT_IE | SWIFT_DE);
1412 * The Swift branch folding logic is completely broken. At
1413 * trap time, if things are just right, if can mistakenly
1414 * think that a trap is coming from kernel mode when in fact
1415 * it is coming from user mode (it mis-executes the branch in
1416 * the trap code). So you see things like crashme completely
1417 * hosing your machine which is completely unacceptable. Turn
1418 * this shit off... nice job Fujitsu.
1420 mreg &= ~(SWIFT_BF);
1421 srmmu_set_mmureg(mreg);
1424 #define SWIFT_MASKID_ADDR 0x10003018
1425 static void __init init_swift(void)
1427 unsigned long swift_rev;
1429 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1430 "srl %0, 0x18, %0\n\t" :
1431 "=r" (swift_rev) :
1432 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1433 srmmu_name = "Fujitsu Swift";
1434 switch(swift_rev) {
1435 case 0x11:
1436 case 0x20:
1437 case 0x23:
1438 case 0x30:
1439 srmmu_modtype = Swift_lots_o_bugs;
1440 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1442 * Gee george, I wonder why Sun is so hush hush about
1443 * this hardware bug... really braindamage stuff going
1444 * on here. However I think we can find a way to avoid
1445 * all of the workaround overhead under Linux. Basically,
1446 * any page fault can cause kernel pages to become user
1447 * accessible (the mmu gets confused and clears some of
1448 * the ACC bits in kernel ptes). Aha, sounds pretty
1449 * horrible eh? But wait, after extensive testing it appears
1450 * that if you use pgd_t level large kernel pte's (like the
1451 * 4MB pages on the Pentium) the bug does not get tripped
1452 * at all. This avoids almost all of the major overhead.
1453 * Welcome to a world where your vendor tells you to,
1454 * "apply this kernel patch" instead of "sorry for the
1455 * broken hardware, send it back and we'll give you
1456 * properly functioning parts"
1458 break;
1459 case 0x25:
1460 case 0x31:
1461 srmmu_modtype = Swift_bad_c;
1462 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1464 * You see Sun allude to this hardware bug but never
1465 * admit things directly, they'll say things like,
1466 * "the Swift chip cache problems" or similar.
1468 break;
1469 default:
1470 srmmu_modtype = Swift_ok;
1471 break;
1474 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1475 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1476 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1477 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1480 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1481 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1489 flush_page_for_dma_global = 0;
1492 * Are you now convinced that the Swift is one of the
1493 * biggest VLSI abortions of all time? Bravo Fujitsu!
1494 * Fujitsu, the !#?!%$'d up processor people. I bet if
1495 * you examined the microcode of the Swift you'd find
1496 * XXX's all over the place.
1498 poke_srmmu = poke_swift;
1501 static void turbosparc_flush_cache_all(void)
1503 flush_user_windows();
1504 turbosparc_idflash_clear();
1507 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1509 FLUSH_BEGIN(mm)
1510 flush_user_windows();
1511 turbosparc_idflash_clear();
1512 FLUSH_END
1515 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1517 FLUSH_BEGIN(vma->vm_mm)
1518 flush_user_windows();
1519 turbosparc_idflash_clear();
1520 FLUSH_END
1523 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1525 FLUSH_BEGIN(vma->vm_mm)
1526 flush_user_windows();
1527 if (vma->vm_flags & VM_EXEC)
1528 turbosparc_flush_icache();
1529 turbosparc_flush_dcache();
1530 FLUSH_END
1533 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1534 static void turbosparc_flush_page_to_ram(unsigned long page)
1536 #ifdef TURBOSPARC_WRITEBACK
1537 volatile unsigned long clear;
1539 if (srmmu_hwprobe(page))
1540 turbosparc_flush_page_cache(page);
1541 clear = srmmu_get_fstatus();
1542 #endif
1545 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1549 static void turbosparc_flush_page_for_dma(unsigned long page)
1551 turbosparc_flush_dcache();
1554 static void turbosparc_flush_tlb_all(void)
1556 srmmu_flush_whole_tlb();
1559 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1561 FLUSH_BEGIN(mm)
1562 srmmu_flush_whole_tlb();
1563 FLUSH_END
1566 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1568 FLUSH_BEGIN(vma->vm_mm)
1569 srmmu_flush_whole_tlb();
1570 FLUSH_END
1573 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1575 FLUSH_BEGIN(vma->vm_mm)
1576 srmmu_flush_whole_tlb();
1577 FLUSH_END
1581 static void __cpuinit poke_turbosparc(void)
1583 unsigned long mreg = srmmu_get_mmureg();
1584 unsigned long ccreg;
1586 /* Clear any crap from the cache or else... */
1587 turbosparc_flush_cache_all();
1588 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1589 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1590 srmmu_set_mmureg(mreg);
1592 ccreg = turbosparc_get_ccreg();
1594 #ifdef TURBOSPARC_WRITEBACK
1595 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1596 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1597 /* Write-back D-cache, emulate VLSI
1598 * abortion number three, not number one */
1599 #else
1600 /* For now let's play safe, optimize later */
1601 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1602 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1603 ccreg &= ~(TURBOSPARC_uS2);
1604 /* Emulate VLSI abortion number three, not number one */
1605 #endif
1607 switch (ccreg & 7) {
1608 case 0: /* No SE cache */
1609 case 7: /* Test mode */
1610 break;
1611 default:
1612 ccreg |= (TURBOSPARC_SCENABLE);
1614 turbosparc_set_ccreg (ccreg);
1616 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1617 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1618 srmmu_set_mmureg(mreg);
1621 static void __init init_turbosparc(void)
1623 srmmu_name = "Fujitsu TurboSparc";
1624 srmmu_modtype = TurboSparc;
1626 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1627 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1628 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1629 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1631 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1632 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1633 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1634 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1636 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1638 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1639 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1641 poke_srmmu = poke_turbosparc;
1644 static void __cpuinit poke_tsunami(void)
1646 unsigned long mreg = srmmu_get_mmureg();
1648 tsunami_flush_icache();
1649 tsunami_flush_dcache();
1650 mreg &= ~TSUNAMI_ITD;
1651 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1652 srmmu_set_mmureg(mreg);
1655 static void __init init_tsunami(void)
1658 * Tsunami's pretty sane, Sun and TI actually got it
1659 * somewhat right this time. Fujitsu should have
1660 * taken some lessons from them.
1663 srmmu_name = "TI Tsunami";
1664 srmmu_modtype = Tsunami;
1666 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1667 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1668 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1669 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1673 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1674 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1675 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1677 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1678 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1679 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1681 poke_srmmu = poke_tsunami;
1683 tsunami_setup_blockops();
1686 static void __cpuinit poke_viking(void)
1688 unsigned long mreg = srmmu_get_mmureg();
1689 static int smp_catch;
1691 if(viking_mxcc_present) {
1692 unsigned long mxcc_control = mxcc_get_creg();
1694 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1695 mxcc_control &= ~(MXCC_CTL_RRC);
1696 mxcc_set_creg(mxcc_control);
1699 * We don't need memory parity checks.
1700 * XXX This is a mess, have to dig out later. ecd.
1701 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1704 /* We do cache ptables on MXCC. */
1705 mreg |= VIKING_TCENABLE;
1706 } else {
1707 unsigned long bpreg;
1709 mreg &= ~(VIKING_TCENABLE);
1710 if(smp_catch++) {
1711 /* Must disable mixed-cmd mode here for other cpu's. */
1712 bpreg = viking_get_bpreg();
1713 bpreg &= ~(VIKING_ACTION_MIX);
1714 viking_set_bpreg(bpreg);
1716 /* Just in case PROM does something funny. */
1717 msi_set_sync();
1721 mreg |= VIKING_SPENABLE;
1722 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1723 mreg |= VIKING_SBENABLE;
1724 mreg &= ~(VIKING_ACENABLE);
1725 srmmu_set_mmureg(mreg);
1728 static void __init init_viking(void)
1730 unsigned long mreg = srmmu_get_mmureg();
1732 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1733 if(mreg & VIKING_MMODE) {
1734 srmmu_name = "TI Viking";
1735 viking_mxcc_present = 0;
1736 msi_set_sync();
1739 * We need this to make sure old viking takes no hits
1740 * on it's cache for dma snoops to workaround the
1741 * "load from non-cacheable memory" interrupt bug.
1742 * This is only necessary because of the new way in
1743 * which we use the IOMMU.
1745 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1747 flush_page_for_dma_global = 0;
1748 } else {
1749 srmmu_name = "TI Viking/MXCC";
1750 viking_mxcc_present = 1;
1752 srmmu_cache_pagetables = 1;
1754 /* MXCC vikings lack the DMA snooping bug. */
1755 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1758 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1759 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1760 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1761 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1763 #ifdef CONFIG_SMP
1764 if (sparc_cpu_model == sun4d) {
1765 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1766 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1767 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1768 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1769 } else
1770 #endif
1772 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1773 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1774 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1775 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1778 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1779 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1781 poke_srmmu = poke_viking;
1784 #ifdef CONFIG_SPARC_LEON
1786 void __init poke_leonsparc(void)
1790 void __init init_leon(void)
1793 srmmu_name = "LEON";
1795 BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1796 BTFIXUPCALL_NORM);
1797 BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
1798 BTFIXUPCALL_NORM);
1799 BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
1800 BTFIXUPCALL_NORM);
1801 BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
1802 BTFIXUPCALL_NORM);
1803 BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
1804 BTFIXUPCALL_NORM);
1806 BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1807 BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1808 BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1809 BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1811 BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
1812 BTFIXUPCALL_NOP);
1813 BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
1815 poke_srmmu = poke_leonsparc;
1817 srmmu_cache_pagetables = 0;
1819 leon_flush_during_switch = leon_flush_needed();
1821 #endif
1823 /* Probe for the srmmu chip version. */
1824 static void __init get_srmmu_type(void)
1826 unsigned long mreg, psr;
1827 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1829 srmmu_modtype = SRMMU_INVAL_MOD;
1830 hwbug_bitmask = 0;
1832 mreg = srmmu_get_mmureg(); psr = get_psr();
1833 mod_typ = (mreg & 0xf0000000) >> 28;
1834 mod_rev = (mreg & 0x0f000000) >> 24;
1835 psr_typ = (psr >> 28) & 0xf;
1836 psr_vers = (psr >> 24) & 0xf;
1838 /* First, check for sparc-leon. */
1839 if (sparc_cpu_model == sparc_leon) {
1840 init_leon();
1841 return;
1844 /* Second, check for HyperSparc or Cypress. */
1845 if(mod_typ == 1) {
1846 switch(mod_rev) {
1847 case 7:
1848 /* UP or MP Hypersparc */
1849 init_hypersparc();
1850 break;
1851 case 0:
1852 case 2:
1853 /* Uniprocessor Cypress */
1854 init_cypress_604();
1855 break;
1856 case 10:
1857 case 11:
1858 case 12:
1859 /* _REALLY OLD_ Cypress MP chips... */
1860 case 13:
1861 case 14:
1862 case 15:
1863 /* MP Cypress mmu/cache-controller */
1864 init_cypress_605(mod_rev);
1865 break;
1866 default:
1867 /* Some other Cypress revision, assume a 605. */
1868 init_cypress_605(mod_rev);
1869 break;
1871 return;
1875 * Now Fujitsu TurboSparc. It might happen that it is
1876 * in Swift emulation mode, so we will check later...
1878 if (psr_typ == 0 && psr_vers == 5) {
1879 init_turbosparc();
1880 return;
1883 /* Next check for Fujitsu Swift. */
1884 if(psr_typ == 0 && psr_vers == 4) {
1885 phandle cpunode;
1886 char node_str[128];
1888 /* Look if it is not a TurboSparc emulating Swift... */
1889 cpunode = prom_getchild(prom_root_node);
1890 while((cpunode = prom_getsibling(cpunode)) != 0) {
1891 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1892 if(!strcmp(node_str, "cpu")) {
1893 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1894 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1895 init_turbosparc();
1896 return;
1898 break;
1902 init_swift();
1903 return;
1906 /* Now the Viking family of srmmu. */
1907 if(psr_typ == 4 &&
1908 ((psr_vers == 0) ||
1909 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1910 init_viking();
1911 return;
1914 /* Finally the Tsunami. */
1915 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1916 init_tsunami();
1917 return;
1920 /* Oh well */
1921 srmmu_is_bad();
1924 #ifdef CONFIG_SMP
1925 /* Local cross-calls. */
1926 static void smp_flush_page_for_dma(unsigned long page)
1928 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
1929 local_flush_page_for_dma(page);
1932 #endif
1934 /* Load up routines and constants for sun4m and sun4d mmu */
1935 void __init load_mmu(void)
1937 extern void ld_mmu_iommu(void);
1938 extern void ld_mmu_iounit(void);
1940 /* Functions */
1941 get_srmmu_type();
1943 #ifdef CONFIG_SMP
1944 /* El switcheroo... */
1946 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
1947 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
1948 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
1949 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
1950 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
1951 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
1952 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
1953 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
1954 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
1955 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
1956 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
1958 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
1959 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
1960 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
1961 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
1962 if (sparc_cpu_model != sun4d &&
1963 sparc_cpu_model != sparc_leon) {
1964 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
1965 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
1966 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
1967 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
1971 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
1973 if (poke_srmmu == poke_viking) {
1974 /* Avoid unnecessary cross calls. */
1975 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1976 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1977 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1978 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1979 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1980 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1981 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1983 #endif
1985 if (sparc_cpu_model == sun4d)
1986 ld_mmu_iounit();
1987 else
1988 ld_mmu_iommu();
1989 #ifdef CONFIG_SMP
1990 if (sparc_cpu_model == sun4d)
1991 sun4d_init_smp();
1992 else if (sparc_cpu_model == sparc_leon)
1993 leon_init_smp();
1994 else
1995 sun4m_init_smp();
1996 #endif
1997 btfixup();