2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
53 unsigned id
; /* kernel internal index number */
54 unsigned nr
; /* number of io_events */
59 unsigned compat_features
;
60 unsigned incompat_features
;
61 unsigned header_length
; /* size of aio_ring */
64 struct io_event io_events
[0];
65 }; /* 128 bytes + ring size */
67 #define AIO_RING_PAGES 8
72 struct kioctx
*table
[];
76 unsigned reqs_available
;
80 struct percpu_ref users
;
83 unsigned long user_id
;
85 struct __percpu kioctx_cpu
*cpu
;
88 * For percpu reqs_available, number of slots we move to/from global
93 * This is what userspace passed to io_setup(), it's not used for
94 * anything but counting against the global max_reqs quota.
96 * The real limit is nr_events - 1, which will be larger (see
101 /* Size of ringbuffer, in units of struct io_event */
104 unsigned long mmap_base
;
105 unsigned long mmap_size
;
107 struct page
**ring_pages
;
110 struct rcu_head rcu_head
;
111 struct work_struct free_work
;
115 * This counts the number of available slots in the ringbuffer,
116 * so we avoid overflowing it: it's decremented (if positive)
117 * when allocating a kiocb and incremented when the resulting
118 * io_event is pulled off the ringbuffer.
120 * We batch accesses to it with a percpu version.
122 atomic_t reqs_available
;
123 } ____cacheline_aligned_in_smp
;
127 struct list_head active_reqs
; /* used for cancellation */
128 } ____cacheline_aligned_in_smp
;
131 struct mutex ring_lock
;
132 wait_queue_head_t wait
;
133 } ____cacheline_aligned_in_smp
;
137 spinlock_t completion_lock
;
138 } ____cacheline_aligned_in_smp
;
140 struct page
*internal_pages
[AIO_RING_PAGES
];
141 struct file
*aio_ring_file
;
146 /*------ sysctl variables----*/
147 static DEFINE_SPINLOCK(aio_nr_lock
);
148 unsigned long aio_nr
; /* current system wide number of aio requests */
149 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
150 /*----end sysctl variables---*/
152 static struct kmem_cache
*kiocb_cachep
;
153 static struct kmem_cache
*kioctx_cachep
;
155 static struct vfsmount
*aio_mnt
;
157 static const struct file_operations aio_ring_fops
;
158 static const struct address_space_operations aio_ctx_aops
;
160 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
162 struct qstr
this = QSTR_INIT("[aio]", 5);
165 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
167 return ERR_PTR(-ENOMEM
);
169 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
170 inode
->i_mapping
->private_data
= ctx
;
171 inode
->i_size
= PAGE_SIZE
* nr_pages
;
173 path
.dentry
= d_alloc_pseudo(aio_mnt
->mnt_sb
, &this);
176 return ERR_PTR(-ENOMEM
);
178 path
.mnt
= mntget(aio_mnt
);
180 d_instantiate(path
.dentry
, inode
);
181 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
, &aio_ring_fops
);
187 file
->f_flags
= O_RDWR
;
188 file
->private_data
= ctx
;
192 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
193 int flags
, const char *dev_name
, void *data
)
195 static const struct dentry_operations ops
= {
196 .d_dname
= simple_dname
,
198 return mount_pseudo(fs_type
, "aio:", NULL
, &ops
, 0xa10a10a1);
202 * Creates the slab caches used by the aio routines, panic on
203 * failure as this is done early during the boot sequence.
205 static int __init
aio_setup(void)
207 static struct file_system_type aio_fs
= {
210 .kill_sb
= kill_anon_super
,
212 aio_mnt
= kern_mount(&aio_fs
);
214 panic("Failed to create aio fs mount.");
216 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
217 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
219 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page
));
223 __initcall(aio_setup
);
225 static void put_aio_ring_file(struct kioctx
*ctx
)
227 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
229 truncate_setsize(aio_ring_file
->f_inode
, 0);
231 /* Prevent further access to the kioctx from migratepages */
232 spin_lock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
233 aio_ring_file
->f_inode
->i_mapping
->private_data
= NULL
;
234 ctx
->aio_ring_file
= NULL
;
235 spin_unlock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
241 static void aio_free_ring(struct kioctx
*ctx
)
245 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
246 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
247 page_count(ctx
->ring_pages
[i
]));
248 put_page(ctx
->ring_pages
[i
]);
251 put_aio_ring_file(ctx
);
253 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
)
254 kfree(ctx
->ring_pages
);
257 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
259 vma
->vm_ops
= &generic_file_vm_ops
;
263 static const struct file_operations aio_ring_fops
= {
264 .mmap
= aio_ring_mmap
,
267 static int aio_set_page_dirty(struct page
*page
)
272 #if IS_ENABLED(CONFIG_MIGRATION)
273 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
274 struct page
*old
, enum migrate_mode mode
)
280 /* Writeback must be complete */
281 BUG_ON(PageWriteback(old
));
284 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
);
285 if (rc
!= MIGRATEPAGE_SUCCESS
) {
292 /* We can potentially race against kioctx teardown here. Use the
293 * address_space's private data lock to protect the mapping's
296 spin_lock(&mapping
->private_lock
);
297 ctx
= mapping
->private_data
;
300 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
301 migrate_page_copy(new, old
);
303 if (idx
< (pgoff_t
)ctx
->nr_pages
)
304 ctx
->ring_pages
[idx
] = new;
305 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
308 spin_unlock(&mapping
->private_lock
);
314 static const struct address_space_operations aio_ctx_aops
= {
315 .set_page_dirty
= aio_set_page_dirty
,
316 #if IS_ENABLED(CONFIG_MIGRATION)
317 .migratepage
= aio_migratepage
,
321 static int aio_setup_ring(struct kioctx
*ctx
)
323 struct aio_ring
*ring
;
324 unsigned nr_events
= ctx
->max_reqs
;
325 struct mm_struct
*mm
= current
->mm
;
326 unsigned long size
, populate
;
331 /* Compensate for the ring buffer's head/tail overlap entry */
332 nr_events
+= 2; /* 1 is required, 2 for good luck */
334 size
= sizeof(struct aio_ring
);
335 size
+= sizeof(struct io_event
) * nr_events
;
337 nr_pages
= PFN_UP(size
);
341 file
= aio_private_file(ctx
, nr_pages
);
343 ctx
->aio_ring_file
= NULL
;
347 for (i
= 0; i
< nr_pages
; i
++) {
349 page
= find_or_create_page(file
->f_inode
->i_mapping
,
350 i
, GFP_HIGHUSER
| __GFP_ZERO
);
353 pr_debug("pid(%d) page[%d]->count=%d\n",
354 current
->pid
, i
, page_count(page
));
355 SetPageUptodate(page
);
359 ctx
->aio_ring_file
= file
;
360 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
361 / sizeof(struct io_event
);
363 ctx
->ring_pages
= ctx
->internal_pages
;
364 if (nr_pages
> AIO_RING_PAGES
) {
365 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
367 if (!ctx
->ring_pages
)
371 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
372 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
374 down_write(&mm
->mmap_sem
);
375 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
376 PROT_READ
| PROT_WRITE
,
377 MAP_SHARED
| MAP_POPULATE
, 0, &populate
);
378 if (IS_ERR((void *)ctx
->mmap_base
)) {
379 up_write(&mm
->mmap_sem
);
385 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
387 /* We must do this while still holding mmap_sem for write, as we
388 * need to be protected against userspace attempting to mremap()
389 * or munmap() the ring buffer.
391 ctx
->nr_pages
= get_user_pages(current
, mm
, ctx
->mmap_base
, nr_pages
,
392 1, 0, ctx
->ring_pages
, NULL
);
394 /* Dropping the reference here is safe as the page cache will hold
395 * onto the pages for us. It is also required so that page migration
396 * can unmap the pages and get the right reference count.
398 for (i
= 0; i
< ctx
->nr_pages
; i
++)
399 put_page(ctx
->ring_pages
[i
]);
401 up_write(&mm
->mmap_sem
);
403 if (unlikely(ctx
->nr_pages
!= nr_pages
)) {
408 ctx
->user_id
= ctx
->mmap_base
;
409 ctx
->nr_events
= nr_events
; /* trusted copy */
411 ring
= kmap_atomic(ctx
->ring_pages
[0]);
412 ring
->nr
= nr_events
; /* user copy */
414 ring
->head
= ring
->tail
= 0;
415 ring
->magic
= AIO_RING_MAGIC
;
416 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
417 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
418 ring
->header_length
= sizeof(struct aio_ring
);
420 flush_dcache_page(ctx
->ring_pages
[0]);
425 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
426 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
427 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
429 void kiocb_set_cancel_fn(struct kiocb
*req
, kiocb_cancel_fn
*cancel
)
431 struct kioctx
*ctx
= req
->ki_ctx
;
434 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
436 if (!req
->ki_list
.next
)
437 list_add(&req
->ki_list
, &ctx
->active_reqs
);
439 req
->ki_cancel
= cancel
;
441 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
443 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
445 static int kiocb_cancel(struct kioctx
*ctx
, struct kiocb
*kiocb
)
447 kiocb_cancel_fn
*old
, *cancel
;
450 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
451 * actually has a cancel function, hence the cmpxchg()
454 cancel
= ACCESS_ONCE(kiocb
->ki_cancel
);
456 if (!cancel
|| cancel
== KIOCB_CANCELLED
)
460 cancel
= cmpxchg(&kiocb
->ki_cancel
, old
, KIOCB_CANCELLED
);
461 } while (cancel
!= old
);
463 return cancel(kiocb
);
466 static void free_ioctx_rcu(struct rcu_head
*head
)
468 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
470 free_percpu(ctx
->cpu
);
471 kmem_cache_free(kioctx_cachep
, ctx
);
475 * When this function runs, the kioctx has been removed from the "hash table"
476 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
477 * now it's safe to cancel any that need to be.
479 static void free_ioctx(struct work_struct
*work
)
481 struct kioctx
*ctx
= container_of(work
, struct kioctx
, free_work
);
482 struct aio_ring
*ring
;
487 spin_lock_irq(&ctx
->ctx_lock
);
489 while (!list_empty(&ctx
->active_reqs
)) {
490 req
= list_first_entry(&ctx
->active_reqs
,
491 struct kiocb
, ki_list
);
493 list_del_init(&req
->ki_list
);
494 kiocb_cancel(ctx
, req
);
497 spin_unlock_irq(&ctx
->ctx_lock
);
499 for_each_possible_cpu(cpu
) {
500 struct kioctx_cpu
*kcpu
= per_cpu_ptr(ctx
->cpu
, cpu
);
502 atomic_add(kcpu
->reqs_available
, &ctx
->reqs_available
);
503 kcpu
->reqs_available
= 0;
507 prepare_to_wait(&ctx
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
509 ring
= kmap_atomic(ctx
->ring_pages
[0]);
510 avail
= (ring
->head
<= ring
->tail
)
511 ? ring
->tail
- ring
->head
512 : ctx
->nr_events
- ring
->head
+ ring
->tail
;
514 atomic_add(avail
, &ctx
->reqs_available
);
515 ring
->head
= ring
->tail
;
518 if (atomic_read(&ctx
->reqs_available
) >= ctx
->nr_events
- 1)
523 finish_wait(&ctx
->wait
, &wait
);
525 WARN_ON(atomic_read(&ctx
->reqs_available
) > ctx
->nr_events
- 1);
529 pr_debug("freeing %p\n", ctx
);
532 * Here the call_rcu() is between the wait_event() for reqs_active to
533 * hit 0, and freeing the ioctx.
535 * aio_complete() decrements reqs_active, but it has to touch the ioctx
536 * after to issue a wakeup so we use rcu.
538 call_rcu(&ctx
->rcu_head
, free_ioctx_rcu
);
541 static void free_ioctx_ref(struct percpu_ref
*ref
)
543 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
545 INIT_WORK(&ctx
->free_work
, free_ioctx
);
546 schedule_work(&ctx
->free_work
);
549 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
552 struct kioctx_table
*table
, *old
;
553 struct aio_ring
*ring
;
555 spin_lock(&mm
->ioctx_lock
);
557 table
= rcu_dereference(mm
->ioctx_table
);
561 for (i
= 0; i
< table
->nr
; i
++)
562 if (!table
->table
[i
]) {
564 table
->table
[i
] = ctx
;
566 spin_unlock(&mm
->ioctx_lock
);
568 ring
= kmap_atomic(ctx
->ring_pages
[0]);
574 new_nr
= (table
? table
->nr
: 1) * 4;
577 spin_unlock(&mm
->ioctx_lock
);
579 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
586 spin_lock(&mm
->ioctx_lock
);
588 old
= rcu_dereference(mm
->ioctx_table
);
591 rcu_assign_pointer(mm
->ioctx_table
, table
);
592 } else if (table
->nr
> old
->nr
) {
593 memcpy(table
->table
, old
->table
,
594 old
->nr
* sizeof(struct kioctx
*));
596 rcu_assign_pointer(mm
->ioctx_table
, table
);
606 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
608 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
610 struct mm_struct
*mm
= current
->mm
;
615 * We keep track of the number of available ringbuffer slots, to prevent
616 * overflow (reqs_available), and we also use percpu counters for this.
618 * So since up to half the slots might be on other cpu's percpu counters
619 * and unavailable, double nr_events so userspace sees what they
620 * expected: additionally, we move req_batch slots to/from percpu
621 * counters at a time, so make sure that isn't 0:
623 nr_events
= max(nr_events
, num_possible_cpus() * 4);
626 /* Prevent overflows */
627 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
628 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
629 pr_debug("ENOMEM: nr_events too high\n");
630 return ERR_PTR(-EINVAL
);
633 if (!nr_events
|| (unsigned long)nr_events
> (aio_max_nr
* 2UL))
634 return ERR_PTR(-EAGAIN
);
636 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
638 return ERR_PTR(-ENOMEM
);
640 ctx
->max_reqs
= nr_events
;
642 if (percpu_ref_init(&ctx
->users
, free_ioctx_ref
))
645 spin_lock_init(&ctx
->ctx_lock
);
646 spin_lock_init(&ctx
->completion_lock
);
647 mutex_init(&ctx
->ring_lock
);
648 init_waitqueue_head(&ctx
->wait
);
650 INIT_LIST_HEAD(&ctx
->active_reqs
);
652 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
656 if (aio_setup_ring(ctx
) < 0)
659 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
660 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
661 if (ctx
->req_batch
< 1)
664 /* limit the number of system wide aios */
665 spin_lock(&aio_nr_lock
);
666 if (aio_nr
+ nr_events
> (aio_max_nr
* 2UL) ||
667 aio_nr
+ nr_events
< aio_nr
) {
668 spin_unlock(&aio_nr_lock
);
671 aio_nr
+= ctx
->max_reqs
;
672 spin_unlock(&aio_nr_lock
);
674 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
676 err
= ioctx_add_table(ctx
, mm
);
678 goto out_cleanup_put
;
680 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
681 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
685 percpu_ref_put(&ctx
->users
);
690 free_percpu(ctx
->cpu
);
692 free_percpu(ctx
->users
.pcpu_count
);
694 put_aio_ring_file(ctx
);
695 kmem_cache_free(kioctx_cachep
, ctx
);
696 pr_debug("error allocating ioctx %d\n", err
);
701 * Cancels all outstanding aio requests on an aio context. Used
702 * when the processes owning a context have all exited to encourage
703 * the rapid destruction of the kioctx.
705 static void kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
)
707 if (!atomic_xchg(&ctx
->dead
, 1)) {
708 struct kioctx_table
*table
;
710 spin_lock(&mm
->ioctx_lock
);
712 table
= rcu_dereference(mm
->ioctx_table
);
714 WARN_ON(ctx
!= table
->table
[ctx
->id
]);
715 table
->table
[ctx
->id
] = NULL
;
717 spin_unlock(&mm
->ioctx_lock
);
719 /* percpu_ref_kill() will do the necessary call_rcu() */
720 wake_up_all(&ctx
->wait
);
723 * It'd be more correct to do this in free_ioctx(), after all
724 * the outstanding kiocbs have finished - but by then io_destroy
725 * has already returned, so io_setup() could potentially return
726 * -EAGAIN with no ioctxs actually in use (as far as userspace
729 spin_lock(&aio_nr_lock
);
730 BUG_ON(aio_nr
- ctx
->max_reqs
> aio_nr
);
731 aio_nr
-= ctx
->max_reqs
;
732 spin_unlock(&aio_nr_lock
);
735 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
737 percpu_ref_kill(&ctx
->users
);
741 /* wait_on_sync_kiocb:
742 * Waits on the given sync kiocb to complete.
744 ssize_t
wait_on_sync_kiocb(struct kiocb
*req
)
746 while (!req
->ki_ctx
) {
747 set_current_state(TASK_UNINTERRUPTIBLE
);
752 __set_current_state(TASK_RUNNING
);
753 return req
->ki_user_data
;
755 EXPORT_SYMBOL(wait_on_sync_kiocb
);
758 * exit_aio: called when the last user of mm goes away. At this point, there is
759 * no way for any new requests to be submited or any of the io_* syscalls to be
760 * called on the context.
762 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
765 void exit_aio(struct mm_struct
*mm
)
767 struct kioctx_table
*table
;
773 table
= rcu_dereference(mm
->ioctx_table
);
776 if (!table
|| i
>= table
->nr
) {
778 rcu_assign_pointer(mm
->ioctx_table
, NULL
);
784 ctx
= table
->table
[i
++];
790 * We don't need to bother with munmap() here -
791 * exit_mmap(mm) is coming and it'll unmap everything.
792 * Since aio_free_ring() uses non-zero ->mmap_size
793 * as indicator that it needs to unmap the area,
794 * just set it to 0; aio_free_ring() is the only
795 * place that uses ->mmap_size, so it's safe.
803 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
805 struct kioctx_cpu
*kcpu
;
808 kcpu
= this_cpu_ptr(ctx
->cpu
);
810 kcpu
->reqs_available
+= nr
;
811 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
812 kcpu
->reqs_available
-= ctx
->req_batch
;
813 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
819 static bool get_reqs_available(struct kioctx
*ctx
)
821 struct kioctx_cpu
*kcpu
;
825 kcpu
= this_cpu_ptr(ctx
->cpu
);
827 if (!kcpu
->reqs_available
) {
828 int old
, avail
= atomic_read(&ctx
->reqs_available
);
831 if (avail
< ctx
->req_batch
)
835 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
836 avail
, avail
- ctx
->req_batch
);
837 } while (avail
!= old
);
839 kcpu
->reqs_available
+= ctx
->req_batch
;
843 kcpu
->reqs_available
--;
850 * Allocate a slot for an aio request.
851 * Returns NULL if no requests are free.
853 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
857 if (!get_reqs_available(ctx
))
860 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
867 put_reqs_available(ctx
, 1);
871 static void kiocb_free(struct kiocb
*req
)
875 if (req
->ki_eventfd
!= NULL
)
876 eventfd_ctx_put(req
->ki_eventfd
);
877 kmem_cache_free(kiocb_cachep
, req
);
880 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
882 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
883 struct mm_struct
*mm
= current
->mm
;
884 struct kioctx
*ctx
, *ret
= NULL
;
885 struct kioctx_table
*table
;
888 if (get_user(id
, &ring
->id
))
892 table
= rcu_dereference(mm
->ioctx_table
);
894 if (!table
|| id
>= table
->nr
)
897 ctx
= table
->table
[id
];
898 if (ctx
&& ctx
->user_id
== ctx_id
) {
899 percpu_ref_get(&ctx
->users
);
908 * Called when the io request on the given iocb is complete.
910 void aio_complete(struct kiocb
*iocb
, long res
, long res2
)
912 struct kioctx
*ctx
= iocb
->ki_ctx
;
913 struct aio_ring
*ring
;
914 struct io_event
*ev_page
, *event
;
919 * Special case handling for sync iocbs:
920 * - events go directly into the iocb for fast handling
921 * - the sync task with the iocb in its stack holds the single iocb
922 * ref, no other paths have a way to get another ref
923 * - the sync task helpfully left a reference to itself in the iocb
925 if (is_sync_kiocb(iocb
)) {
926 iocb
->ki_user_data
= res
;
928 iocb
->ki_ctx
= ERR_PTR(-EXDEV
);
929 wake_up_process(iocb
->ki_obj
.tsk
);
934 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
935 * need to issue a wakeup after incrementing reqs_available.
939 if (iocb
->ki_list
.next
) {
942 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
943 list_del(&iocb
->ki_list
);
944 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
948 * Add a completion event to the ring buffer. Must be done holding
949 * ctx->completion_lock to prevent other code from messing with the tail
950 * pointer since we might be called from irq context.
952 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
955 pos
= tail
+ AIO_EVENTS_OFFSET
;
957 if (++tail
>= ctx
->nr_events
)
960 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
961 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
963 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
964 event
->data
= iocb
->ki_user_data
;
968 kunmap_atomic(ev_page
);
969 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
971 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
972 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
975 /* after flagging the request as done, we
976 * must never even look at it again
978 smp_wmb(); /* make event visible before updating tail */
982 ring
= kmap_atomic(ctx
->ring_pages
[0]);
985 flush_dcache_page(ctx
->ring_pages
[0]);
987 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
989 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
992 * Check if the user asked us to deliver the result through an
993 * eventfd. The eventfd_signal() function is safe to be called
996 if (iocb
->ki_eventfd
!= NULL
)
997 eventfd_signal(iocb
->ki_eventfd
, 1);
999 /* everything turned out well, dispose of the aiocb. */
1003 * We have to order our ring_info tail store above and test
1004 * of the wait list below outside the wait lock. This is
1005 * like in wake_up_bit() where clearing a bit has to be
1006 * ordered with the unlocked test.
1010 if (waitqueue_active(&ctx
->wait
))
1011 wake_up(&ctx
->wait
);
1015 EXPORT_SYMBOL(aio_complete
);
1018 * Pull an event off of the ioctx's event ring. Returns the number of
1021 static long aio_read_events_ring(struct kioctx
*ctx
,
1022 struct io_event __user
*event
, long nr
)
1024 struct aio_ring
*ring
;
1025 unsigned head
, tail
, pos
;
1029 mutex_lock(&ctx
->ring_lock
);
1031 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1034 kunmap_atomic(ring
);
1036 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1043 struct io_event
*ev
;
1046 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1050 avail
= min(avail
, nr
- ret
);
1051 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
-
1052 ((head
+ AIO_EVENTS_OFFSET
) % AIO_EVENTS_PER_PAGE
));
1054 pos
= head
+ AIO_EVENTS_OFFSET
;
1055 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1056 pos
%= AIO_EVENTS_PER_PAGE
;
1059 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1060 sizeof(*ev
) * avail
);
1063 if (unlikely(copy_ret
)) {
1070 head
%= ctx
->nr_events
;
1073 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1075 kunmap_atomic(ring
);
1076 flush_dcache_page(ctx
->ring_pages
[0]);
1078 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1080 put_reqs_available(ctx
, ret
);
1082 mutex_unlock(&ctx
->ring_lock
);
1087 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1088 struct io_event __user
*event
, long *i
)
1090 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1095 if (unlikely(atomic_read(&ctx
->dead
)))
1101 return ret
< 0 || *i
>= min_nr
;
1104 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1105 struct io_event __user
*event
,
1106 struct timespec __user
*timeout
)
1108 ktime_t until
= { .tv64
= KTIME_MAX
};
1114 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1117 until
= timespec_to_ktime(ts
);
1121 * Note that aio_read_events() is being called as the conditional - i.e.
1122 * we're calling it after prepare_to_wait() has set task state to
1123 * TASK_INTERRUPTIBLE.
1125 * But aio_read_events() can block, and if it blocks it's going to flip
1126 * the task state back to TASK_RUNNING.
1128 * This should be ok, provided it doesn't flip the state back to
1129 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1130 * will only happen if the mutex_lock() call blocks, and we then find
1131 * the ringbuffer empty. So in practice we should be ok, but it's
1132 * something to be aware of when touching this code.
1134 wait_event_interruptible_hrtimeout(ctx
->wait
,
1135 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
), until
);
1137 if (!ret
&& signal_pending(current
))
1144 * Create an aio_context capable of receiving at least nr_events.
1145 * ctxp must not point to an aio_context that already exists, and
1146 * must be initialized to 0 prior to the call. On successful
1147 * creation of the aio_context, *ctxp is filled in with the resulting
1148 * handle. May fail with -EINVAL if *ctxp is not initialized,
1149 * if the specified nr_events exceeds internal limits. May fail
1150 * with -EAGAIN if the specified nr_events exceeds the user's limit
1151 * of available events. May fail with -ENOMEM if insufficient kernel
1152 * resources are available. May fail with -EFAULT if an invalid
1153 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1156 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1158 struct kioctx
*ioctx
= NULL
;
1162 ret
= get_user(ctx
, ctxp
);
1167 if (unlikely(ctx
|| nr_events
== 0)) {
1168 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1173 ioctx
= ioctx_alloc(nr_events
);
1174 ret
= PTR_ERR(ioctx
);
1175 if (!IS_ERR(ioctx
)) {
1176 ret
= put_user(ioctx
->user_id
, ctxp
);
1178 kill_ioctx(current
->mm
, ioctx
);
1179 percpu_ref_put(&ioctx
->users
);
1187 * Destroy the aio_context specified. May cancel any outstanding
1188 * AIOs and block on completion. Will fail with -ENOSYS if not
1189 * implemented. May fail with -EINVAL if the context pointed to
1192 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1194 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1195 if (likely(NULL
!= ioctx
)) {
1196 kill_ioctx(current
->mm
, ioctx
);
1197 percpu_ref_put(&ioctx
->users
);
1200 pr_debug("EINVAL: io_destroy: invalid context id\n");
1204 typedef ssize_t (aio_rw_op
)(struct kiocb
*, const struct iovec
*,
1205 unsigned long, loff_t
);
1207 static ssize_t
aio_setup_vectored_rw(struct kiocb
*kiocb
,
1208 int rw
, char __user
*buf
,
1209 unsigned long *nr_segs
,
1210 struct iovec
**iovec
,
1215 *nr_segs
= kiocb
->ki_nbytes
;
1217 #ifdef CONFIG_COMPAT
1219 ret
= compat_rw_copy_check_uvector(rw
,
1220 (struct compat_iovec __user
*)buf
,
1221 *nr_segs
, 1, *iovec
, iovec
);
1224 ret
= rw_copy_check_uvector(rw
,
1225 (struct iovec __user
*)buf
,
1226 *nr_segs
, 1, *iovec
, iovec
);
1230 /* ki_nbytes now reflect bytes instead of segs */
1231 kiocb
->ki_nbytes
= ret
;
1235 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
,
1236 int rw
, char __user
*buf
,
1237 unsigned long *nr_segs
,
1238 struct iovec
*iovec
)
1240 if (unlikely(!access_ok(!rw
, buf
, kiocb
->ki_nbytes
)))
1243 iovec
->iov_base
= buf
;
1244 iovec
->iov_len
= kiocb
->ki_nbytes
;
1251 * Performs the initial checks and aio retry method
1252 * setup for the kiocb at the time of io submission.
1254 static ssize_t
aio_run_iocb(struct kiocb
*req
, unsigned opcode
,
1255 char __user
*buf
, bool compat
)
1257 struct file
*file
= req
->ki_filp
;
1259 unsigned long nr_segs
;
1263 struct iovec inline_vec
, *iovec
= &inline_vec
;
1266 case IOCB_CMD_PREAD
:
1267 case IOCB_CMD_PREADV
:
1270 rw_op
= file
->f_op
->aio_read
;
1273 case IOCB_CMD_PWRITE
:
1274 case IOCB_CMD_PWRITEV
:
1277 rw_op
= file
->f_op
->aio_write
;
1280 if (unlikely(!(file
->f_mode
& mode
)))
1286 ret
= (opcode
== IOCB_CMD_PREADV
||
1287 opcode
== IOCB_CMD_PWRITEV
)
1288 ? aio_setup_vectored_rw(req
, rw
, buf
, &nr_segs
,
1290 : aio_setup_single_vector(req
, rw
, buf
, &nr_segs
,
1295 ret
= rw_verify_area(rw
, file
, &req
->ki_pos
, req
->ki_nbytes
);
1297 if (iovec
!= &inline_vec
)
1302 req
->ki_nbytes
= ret
;
1304 /* XXX: move/kill - rw_verify_area()? */
1305 /* This matches the pread()/pwrite() logic */
1306 if (req
->ki_pos
< 0) {
1312 file_start_write(file
);
1314 ret
= rw_op(req
, iovec
, nr_segs
, req
->ki_pos
);
1317 file_end_write(file
);
1320 case IOCB_CMD_FDSYNC
:
1321 if (!file
->f_op
->aio_fsync
)
1324 ret
= file
->f_op
->aio_fsync(req
, 1);
1327 case IOCB_CMD_FSYNC
:
1328 if (!file
->f_op
->aio_fsync
)
1331 ret
= file
->f_op
->aio_fsync(req
, 0);
1335 pr_debug("EINVAL: no operation provided\n");
1339 if (iovec
!= &inline_vec
)
1342 if (ret
!= -EIOCBQUEUED
) {
1344 * There's no easy way to restart the syscall since other AIO's
1345 * may be already running. Just fail this IO with EINTR.
1347 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
1348 ret
== -ERESTARTNOHAND
||
1349 ret
== -ERESTART_RESTARTBLOCK
))
1351 aio_complete(req
, ret
, 0);
1357 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1358 struct iocb
*iocb
, bool compat
)
1363 /* enforce forwards compatibility on users */
1364 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1365 pr_debug("EINVAL: reserve field set\n");
1369 /* prevent overflows */
1371 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1372 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1373 ((ssize_t
)iocb
->aio_nbytes
< 0)
1375 pr_debug("EINVAL: io_submit: overflow check\n");
1379 req
= aio_get_req(ctx
);
1383 req
->ki_filp
= fget(iocb
->aio_fildes
);
1384 if (unlikely(!req
->ki_filp
)) {
1389 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1391 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1392 * instance of the file* now. The file descriptor must be
1393 * an eventfd() fd, and will be signaled for each completed
1394 * event using the eventfd_signal() function.
1396 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1397 if (IS_ERR(req
->ki_eventfd
)) {
1398 ret
= PTR_ERR(req
->ki_eventfd
);
1399 req
->ki_eventfd
= NULL
;
1404 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1405 if (unlikely(ret
)) {
1406 pr_debug("EFAULT: aio_key\n");
1410 req
->ki_obj
.user
= user_iocb
;
1411 req
->ki_user_data
= iocb
->aio_data
;
1412 req
->ki_pos
= iocb
->aio_offset
;
1413 req
->ki_nbytes
= iocb
->aio_nbytes
;
1415 ret
= aio_run_iocb(req
, iocb
->aio_lio_opcode
,
1416 (char __user
*)(unsigned long)iocb
->aio_buf
,
1423 put_reqs_available(ctx
, 1);
1428 long do_io_submit(aio_context_t ctx_id
, long nr
,
1429 struct iocb __user
*__user
*iocbpp
, bool compat
)
1434 struct blk_plug plug
;
1436 if (unlikely(nr
< 0))
1439 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1440 nr
= LONG_MAX
/sizeof(*iocbpp
);
1442 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1445 ctx
= lookup_ioctx(ctx_id
);
1446 if (unlikely(!ctx
)) {
1447 pr_debug("EINVAL: invalid context id\n");
1451 blk_start_plug(&plug
);
1454 * AKPM: should this return a partial result if some of the IOs were
1455 * successfully submitted?
1457 for (i
=0; i
<nr
; i
++) {
1458 struct iocb __user
*user_iocb
;
1461 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1466 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1471 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, compat
);
1475 blk_finish_plug(&plug
);
1477 percpu_ref_put(&ctx
->users
);
1482 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1483 * the number of iocbs queued. May return -EINVAL if the aio_context
1484 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1485 * *iocbpp[0] is not properly initialized, if the operation specified
1486 * is invalid for the file descriptor in the iocb. May fail with
1487 * -EFAULT if any of the data structures point to invalid data. May
1488 * fail with -EBADF if the file descriptor specified in the first
1489 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1490 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1491 * fail with -ENOSYS if not implemented.
1493 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1494 struct iocb __user
* __user
*, iocbpp
)
1496 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1500 * Finds a given iocb for cancellation.
1502 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1505 struct list_head
*pos
;
1507 assert_spin_locked(&ctx
->ctx_lock
);
1509 if (key
!= KIOCB_KEY
)
1512 /* TODO: use a hash or array, this sucks. */
1513 list_for_each(pos
, &ctx
->active_reqs
) {
1514 struct kiocb
*kiocb
= list_kiocb(pos
);
1515 if (kiocb
->ki_obj
.user
== iocb
)
1522 * Attempts to cancel an iocb previously passed to io_submit. If
1523 * the operation is successfully cancelled, the resulting event is
1524 * copied into the memory pointed to by result without being placed
1525 * into the completion queue and 0 is returned. May fail with
1526 * -EFAULT if any of the data structures pointed to are invalid.
1527 * May fail with -EINVAL if aio_context specified by ctx_id is
1528 * invalid. May fail with -EAGAIN if the iocb specified was not
1529 * cancelled. Will fail with -ENOSYS if not implemented.
1531 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1532 struct io_event __user
*, result
)
1535 struct kiocb
*kiocb
;
1539 ret
= get_user(key
, &iocb
->aio_key
);
1543 ctx
= lookup_ioctx(ctx_id
);
1547 spin_lock_irq(&ctx
->ctx_lock
);
1549 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1551 ret
= kiocb_cancel(ctx
, kiocb
);
1555 spin_unlock_irq(&ctx
->ctx_lock
);
1559 * The result argument is no longer used - the io_event is
1560 * always delivered via the ring buffer. -EINPROGRESS indicates
1561 * cancellation is progress:
1566 percpu_ref_put(&ctx
->users
);
1572 * Attempts to read at least min_nr events and up to nr events from
1573 * the completion queue for the aio_context specified by ctx_id. If
1574 * it succeeds, the number of read events is returned. May fail with
1575 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1576 * out of range, if timeout is out of range. May fail with -EFAULT
1577 * if any of the memory specified is invalid. May return 0 or
1578 * < min_nr if the timeout specified by timeout has elapsed
1579 * before sufficient events are available, where timeout == NULL
1580 * specifies an infinite timeout. Note that the timeout pointed to by
1581 * timeout is relative. Will fail with -ENOSYS if not implemented.
1583 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1586 struct io_event __user
*, events
,
1587 struct timespec __user
*, timeout
)
1589 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1592 if (likely(ioctx
)) {
1593 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1594 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1595 percpu_ref_put(&ioctx
->users
);