[PATCH] mv643xx_eth_showsram: Added information message when using the SRAM
[linux-2.6.git] / drivers / net / mv643xx_eth.c
blob8fbba21d975bc4ad7cbde8dcb9d1998acf3501a3
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani (lachwani@pmc-sierra.com)
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/tcp.h>
36 #include <linux/udp.h>
37 #include <linux/etherdevice.h>
39 #include <linux/bitops.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <asm/io.h>
43 #include <asm/types.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/delay.h>
47 #include "mv643xx_eth.h"
50 * The first part is the high level driver of the gigE ethernet ports.
53 /* Constants */
54 #define VLAN_HLEN 4
55 #define FCS_LEN 4
56 #define WRAP NET_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
57 #define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
59 #define INT_CAUSE_UNMASK_ALL 0x0007ffff
60 #define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff
61 #define INT_CAUSE_MASK_ALL 0x00000000
62 #define INT_CAUSE_MASK_ALL_EXT 0x00000000
63 #define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
64 #define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
66 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
67 #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
68 #else
69 #define MAX_DESCS_PER_SKB 1
70 #endif
72 #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
73 #define PHY_WAIT_MICRO_SECONDS 10
75 /* Static function declarations */
76 static int eth_port_link_is_up(unsigned int eth_port_num);
77 static void eth_port_uc_addr_get(struct net_device *dev,
78 unsigned char *MacAddr);
79 static int mv643xx_eth_real_open(struct net_device *);
80 static int mv643xx_eth_real_stop(struct net_device *);
81 static int mv643xx_eth_change_mtu(struct net_device *, int);
82 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
83 static void eth_port_init_mac_tables(unsigned int eth_port_num);
84 #ifdef MV643XX_NAPI
85 static int mv643xx_poll(struct net_device *dev, int *budget);
86 #endif
87 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
88 static int ethernet_phy_detect(unsigned int eth_port_num);
89 static struct ethtool_ops mv643xx_ethtool_ops;
91 static char mv643xx_driver_name[] = "mv643xx_eth";
92 static char mv643xx_driver_version[] = "1.0";
94 static void __iomem *mv643xx_eth_shared_base;
96 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
97 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
99 static inline u32 mv_read(int offset)
101 void __iomem *reg_base;
103 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
105 return readl(reg_base + offset);
108 static inline void mv_write(int offset, u32 data)
110 void __iomem *reg_base;
112 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
113 writel(data, reg_base + offset);
117 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
119 * Input : pointer to ethernet interface network device structure
120 * new mtu size
121 * Output : 0 upon success, -EINVAL upon failure
123 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
125 struct mv643xx_private *mp = netdev_priv(dev);
126 unsigned long flags;
128 spin_lock_irqsave(&mp->lock, flags);
130 if ((new_mtu > 9500) || (new_mtu < 64)) {
131 spin_unlock_irqrestore(&mp->lock, flags);
132 return -EINVAL;
135 dev->mtu = new_mtu;
137 * Stop then re-open the interface. This will allocate RX skb's with
138 * the new MTU.
139 * There is a possible danger that the open will not successed, due
140 * to memory is full, which might fail the open function.
142 if (netif_running(dev)) {
143 if (mv643xx_eth_real_stop(dev))
144 printk(KERN_ERR
145 "%s: Fatal error on stopping device\n",
146 dev->name);
147 if (mv643xx_eth_real_open(dev))
148 printk(KERN_ERR
149 "%s: Fatal error on opening device\n",
150 dev->name);
153 spin_unlock_irqrestore(&mp->lock, flags);
154 return 0;
158 * mv643xx_eth_rx_task
160 * Fills / refills RX queue on a certain gigabit ethernet port
162 * Input : pointer to ethernet interface network device structure
163 * Output : N/A
165 static void mv643xx_eth_rx_task(void *data)
167 struct net_device *dev = (struct net_device *)data;
168 struct mv643xx_private *mp = netdev_priv(dev);
169 struct pkt_info pkt_info;
170 struct sk_buff *skb;
172 if (test_and_set_bit(0, &mp->rx_task_busy))
173 panic("%s: Error in test_set_bit / clear_bit", dev->name);
175 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
176 skb = dev_alloc_skb(RX_SKB_SIZE);
177 if (!skb)
178 break;
179 mp->rx_ring_skbs++;
180 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
181 pkt_info.byte_cnt = RX_SKB_SIZE;
182 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
183 DMA_FROM_DEVICE);
184 pkt_info.return_info = skb;
185 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
186 printk(KERN_ERR
187 "%s: Error allocating RX Ring\n", dev->name);
188 break;
190 skb_reserve(skb, 2);
192 clear_bit(0, &mp->rx_task_busy);
194 * If RX ring is empty of SKB, set a timer to try allocating
195 * again in a later time .
197 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
198 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
199 /* After 100mSec */
200 mp->timeout.expires = jiffies + (HZ / 10);
201 add_timer(&mp->timeout);
202 mp->rx_timer_flag = 1;
204 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
205 else {
206 /* Return interrupts */
207 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
208 INT_CAUSE_UNMASK_ALL);
210 #endif
214 * mv643xx_eth_rx_task_timer_wrapper
216 * Timer routine to wake up RX queue filling task. This function is
217 * used only in case the RX queue is empty, and all alloc_skb has
218 * failed (due to out of memory event).
220 * Input : pointer to ethernet interface network device structure
221 * Output : N/A
223 static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
225 struct net_device *dev = (struct net_device *)data;
226 struct mv643xx_private *mp = netdev_priv(dev);
228 mp->rx_timer_flag = 0;
229 mv643xx_eth_rx_task((void *)data);
233 * mv643xx_eth_update_mac_address
235 * Update the MAC address of the port in the address table
237 * Input : pointer to ethernet interface network device structure
238 * Output : N/A
240 static void mv643xx_eth_update_mac_address(struct net_device *dev)
242 struct mv643xx_private *mp = netdev_priv(dev);
243 unsigned int port_num = mp->port_num;
245 eth_port_init_mac_tables(port_num);
246 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
247 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
251 * mv643xx_eth_set_rx_mode
253 * Change from promiscuos to regular rx mode
255 * Input : pointer to ethernet interface network device structure
256 * Output : N/A
258 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
260 struct mv643xx_private *mp = netdev_priv(dev);
262 if (dev->flags & IFF_PROMISC)
263 mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
264 else
265 mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
267 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
271 * mv643xx_eth_set_mac_address
273 * Change the interface's mac address.
274 * No special hardware thing should be done because interface is always
275 * put in promiscuous mode.
277 * Input : pointer to ethernet interface network device structure and
278 * a pointer to the designated entry to be added to the cache.
279 * Output : zero upon success, negative upon failure
281 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
283 int i;
285 for (i = 0; i < 6; i++)
286 /* +2 is for the offset of the HW addr type */
287 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
288 mv643xx_eth_update_mac_address(dev);
289 return 0;
293 * mv643xx_eth_tx_timeout
295 * Called upon a timeout on transmitting a packet
297 * Input : pointer to ethernet interface network device structure.
298 * Output : N/A
300 static void mv643xx_eth_tx_timeout(struct net_device *dev)
302 struct mv643xx_private *mp = netdev_priv(dev);
304 printk(KERN_INFO "%s: TX timeout ", dev->name);
306 /* Do the reset outside of interrupt context */
307 schedule_work(&mp->tx_timeout_task);
311 * mv643xx_eth_tx_timeout_task
313 * Actual routine to reset the adapter when a timeout on Tx has occurred
315 static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
317 struct mv643xx_private *mp = netdev_priv(dev);
319 netif_device_detach(dev);
320 eth_port_reset(mp->port_num);
321 eth_port_start(mp);
322 netif_device_attach(dev);
326 * mv643xx_eth_free_tx_queue
328 * Input : dev - a pointer to the required interface
330 * Output : 0 if was able to release skb , nonzero otherwise
332 static int mv643xx_eth_free_tx_queue(struct net_device *dev,
333 unsigned int eth_int_cause_ext)
335 struct mv643xx_private *mp = netdev_priv(dev);
336 struct net_device_stats *stats = &mp->stats;
337 struct pkt_info pkt_info;
338 int released = 1;
340 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
341 return released;
343 spin_lock(&mp->lock);
345 /* Check only queue 0 */
346 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
347 if (pkt_info.cmd_sts & BIT0) {
348 printk("%s: Error in TX\n", dev->name);
349 stats->tx_errors++;
353 * If return_info is different than 0, release the skb.
354 * The case where return_info is not 0 is only in case
355 * when transmitted a scatter/gather packet, where only
356 * last skb releases the whole chain.
358 if (pkt_info.return_info) {
359 if (skb_shinfo(pkt_info.return_info)->nr_frags)
360 dma_unmap_page(NULL, pkt_info.buf_ptr,
361 pkt_info.byte_cnt,
362 DMA_TO_DEVICE);
363 else
364 dma_unmap_single(NULL, pkt_info.buf_ptr,
365 pkt_info.byte_cnt,
366 DMA_TO_DEVICE);
368 dev_kfree_skb_irq(pkt_info.return_info);
369 released = 0;
370 } else
371 dma_unmap_page(NULL, pkt_info.buf_ptr,
372 pkt_info.byte_cnt, DMA_TO_DEVICE);
375 spin_unlock(&mp->lock);
377 return released;
381 * mv643xx_eth_receive
383 * This function is forward packets that are received from the port's
384 * queues toward kernel core or FastRoute them to another interface.
386 * Input : dev - a pointer to the required interface
387 * max - maximum number to receive (0 means unlimted)
389 * Output : number of served packets
391 #ifdef MV643XX_NAPI
392 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
393 #else
394 static int mv643xx_eth_receive_queue(struct net_device *dev)
395 #endif
397 struct mv643xx_private *mp = netdev_priv(dev);
398 struct net_device_stats *stats = &mp->stats;
399 unsigned int received_packets = 0;
400 struct sk_buff *skb;
401 struct pkt_info pkt_info;
403 #ifdef MV643XX_NAPI
404 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
405 #else
406 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
407 #endif
408 mp->rx_ring_skbs--;
409 received_packets++;
411 /* Update statistics. Note byte count includes 4 byte CRC count */
412 stats->rx_packets++;
413 stats->rx_bytes += pkt_info.byte_cnt;
414 skb = pkt_info.return_info;
416 * In case received a packet without first / last bits on OR
417 * the error summary bit is on, the packets needs to be dropeed.
419 if (((pkt_info.cmd_sts
420 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
421 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
422 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
423 stats->rx_dropped++;
424 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
425 ETH_RX_LAST_DESC)) !=
426 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
427 if (net_ratelimit())
428 printk(KERN_ERR
429 "%s: Received packet spread "
430 "on multiple descriptors\n",
431 dev->name);
433 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
434 stats->rx_errors++;
436 dev_kfree_skb_irq(skb);
437 } else {
439 * The -4 is for the CRC in the trailer of the
440 * received packet
442 skb_put(skb, pkt_info.byte_cnt - 4);
443 skb->dev = dev;
445 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
446 skb->ip_summed = CHECKSUM_UNNECESSARY;
447 skb->csum = htons(
448 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
450 skb->protocol = eth_type_trans(skb, dev);
451 #ifdef MV643XX_NAPI
452 netif_receive_skb(skb);
453 #else
454 netif_rx(skb);
455 #endif
459 return received_packets;
463 * mv643xx_eth_int_handler
465 * Main interrupt handler for the gigbit ethernet ports
467 * Input : irq - irq number (not used)
468 * dev_id - a pointer to the required interface's data structure
469 * regs - not used
470 * Output : N/A
473 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
474 struct pt_regs *regs)
476 struct net_device *dev = (struct net_device *)dev_id;
477 struct mv643xx_private *mp = netdev_priv(dev);
478 u32 eth_int_cause, eth_int_cause_ext = 0;
479 unsigned int port_num = mp->port_num;
481 /* Read interrupt cause registers */
482 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
483 INT_CAUSE_UNMASK_ALL;
485 if (eth_int_cause & BIT1)
486 eth_int_cause_ext = mv_read(
487 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
488 INT_CAUSE_UNMASK_ALL_EXT;
490 #ifdef MV643XX_NAPI
491 if (!(eth_int_cause & 0x0007fffd)) {
492 /* Dont ack the Rx interrupt */
493 #endif
495 * Clear specific ethernet port intrerrupt registers by
496 * acknowleding relevant bits.
498 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
499 ~eth_int_cause);
500 if (eth_int_cause_ext != 0x0)
501 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
502 (port_num), ~eth_int_cause_ext);
504 /* UDP change : We may need this */
505 if ((eth_int_cause_ext & 0x0000ffff) &&
506 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
507 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
508 netif_wake_queue(dev);
509 #ifdef MV643XX_NAPI
510 } else {
511 if (netif_rx_schedule_prep(dev)) {
512 /* Mask all the interrupts */
513 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
514 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG
515 (port_num), 0);
516 __netif_rx_schedule(dev);
518 #else
519 if (eth_int_cause & (BIT2 | BIT11))
520 mv643xx_eth_receive_queue(dev, 0);
523 * After forwarded received packets to upper layer, add a task
524 * in an interrupts enabled context that refills the RX ring
525 * with skb's.
527 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
528 /* Unmask all interrupts on ethernet port */
529 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
530 INT_CAUSE_MASK_ALL);
531 queue_task(&mp->rx_task, &tq_immediate);
532 mark_bh(IMMEDIATE_BH);
533 #else
534 mp->rx_task.func(dev);
535 #endif
536 #endif
538 /* PHY status changed */
539 if (eth_int_cause_ext & (BIT16 | BIT20)) {
540 if (eth_port_link_is_up(port_num)) {
541 netif_carrier_on(dev);
542 netif_wake_queue(dev);
543 /* Start TX queue */
544 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
545 (port_num), 1);
546 } else {
547 netif_carrier_off(dev);
548 netif_stop_queue(dev);
553 * If no real interrupt occured, exit.
554 * This can happen when using gigE interrupt coalescing mechanism.
556 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
557 return IRQ_NONE;
559 return IRQ_HANDLED;
562 #ifdef MV643XX_COAL
565 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
567 * DESCRIPTION:
568 * This routine sets the RX coalescing interrupt mechanism parameter.
569 * This parameter is a timeout counter, that counts in 64 t_clk
570 * chunks ; that when timeout event occurs a maskable interrupt
571 * occurs.
572 * The parameter is calculated using the tClk of the MV-643xx chip
573 * , and the required delay of the interrupt in usec.
575 * INPUT:
576 * unsigned int eth_port_num Ethernet port number
577 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
578 * unsigned int delay Delay in usec
580 * OUTPUT:
581 * Interrupt coalescing mechanism value is set in MV-643xx chip.
583 * RETURN:
584 * The interrupt coalescing value set in the gigE port.
587 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
588 unsigned int t_clk, unsigned int delay)
590 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
592 /* Set RX Coalescing mechanism */
593 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
594 ((coal & 0x3fff) << 8) |
595 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
596 & 0xffc000ff));
598 return coal;
600 #endif
603 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
605 * DESCRIPTION:
606 * This routine sets the TX coalescing interrupt mechanism parameter.
607 * This parameter is a timeout counter, that counts in 64 t_clk
608 * chunks ; that when timeout event occurs a maskable interrupt
609 * occurs.
610 * The parameter is calculated using the t_cLK frequency of the
611 * MV-643xx chip and the required delay in the interrupt in uSec
613 * INPUT:
614 * unsigned int eth_port_num Ethernet port number
615 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
616 * unsigned int delay Delay in uSeconds
618 * OUTPUT:
619 * Interrupt coalescing mechanism value is set in MV-643xx chip.
621 * RETURN:
622 * The interrupt coalescing value set in the gigE port.
625 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
626 unsigned int t_clk, unsigned int delay)
628 unsigned int coal;
629 coal = ((t_clk / 1000000) * delay) / 64;
630 /* Set TX Coalescing mechanism */
631 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
632 coal << 4);
633 return coal;
637 * mv643xx_eth_open
639 * This function is called when openning the network device. The function
640 * should initialize all the hardware, initialize cyclic Rx/Tx
641 * descriptors chain and buffers and allocate an IRQ to the network
642 * device.
644 * Input : a pointer to the network device structure
646 * Output : zero of success , nonzero if fails.
649 static int mv643xx_eth_open(struct net_device *dev)
651 struct mv643xx_private *mp = netdev_priv(dev);
652 unsigned int port_num = mp->port_num;
653 int err;
655 spin_lock_irq(&mp->lock);
657 err = request_irq(dev->irq, mv643xx_eth_int_handler,
658 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
660 if (err) {
661 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
662 port_num);
663 err = -EAGAIN;
664 goto out;
667 if (mv643xx_eth_real_open(dev)) {
668 printk("%s: Error opening interface\n", dev->name);
669 err = -EBUSY;
670 goto out_free;
673 spin_unlock_irq(&mp->lock);
675 return 0;
677 out_free:
678 free_irq(dev->irq, dev);
680 out:
681 spin_unlock_irq(&mp->lock);
683 return err;
687 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
689 * DESCRIPTION:
690 * This function prepares a Rx chained list of descriptors and packet
691 * buffers in a form of a ring. The routine must be called after port
692 * initialization routine and before port start routine.
693 * The Ethernet SDMA engine uses CPU bus addresses to access the various
694 * devices in the system (i.e. DRAM). This function uses the ethernet
695 * struct 'virtual to physical' routine (set by the user) to set the ring
696 * with physical addresses.
698 * INPUT:
699 * struct mv643xx_private *mp Ethernet Port Control srtuct.
701 * OUTPUT:
702 * The routine updates the Ethernet port control struct with information
703 * regarding the Rx descriptors and buffers.
705 * RETURN:
706 * None.
708 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
710 volatile struct eth_rx_desc *p_rx_desc;
711 int rx_desc_num = mp->rx_ring_size;
712 int i;
714 /* initialize the next_desc_ptr links in the Rx descriptors ring */
715 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
716 for (i = 0; i < rx_desc_num; i++) {
717 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
718 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
721 /* Save Rx desc pointer to driver struct. */
722 mp->rx_curr_desc_q = 0;
723 mp->rx_used_desc_q = 0;
725 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
727 /* Add the queue to the list of RX queues of this port */
728 mp->port_rx_queue_command |= 1;
732 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
734 * DESCRIPTION:
735 * This function prepares a Tx chained list of descriptors and packet
736 * buffers in a form of a ring. The routine must be called after port
737 * initialization routine and before port start routine.
738 * The Ethernet SDMA engine uses CPU bus addresses to access the various
739 * devices in the system (i.e. DRAM). This function uses the ethernet
740 * struct 'virtual to physical' routine (set by the user) to set the ring
741 * with physical addresses.
743 * INPUT:
744 * struct mv643xx_private *mp Ethernet Port Control srtuct.
746 * OUTPUT:
747 * The routine updates the Ethernet port control struct with information
748 * regarding the Tx descriptors and buffers.
750 * RETURN:
751 * None.
753 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
755 int tx_desc_num = mp->tx_ring_size;
756 struct eth_tx_desc *p_tx_desc;
757 int i;
759 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
760 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
761 for (i = 0; i < tx_desc_num; i++) {
762 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
763 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
766 mp->tx_curr_desc_q = 0;
767 mp->tx_used_desc_q = 0;
768 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
769 mp->tx_first_desc_q = 0;
770 #endif
772 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
774 /* Add the queue to the list of Tx queues of this port */
775 mp->port_tx_queue_command |= 1;
778 /* Helper function for mv643xx_eth_open */
779 static int mv643xx_eth_real_open(struct net_device *dev)
781 struct mv643xx_private *mp = netdev_priv(dev);
782 unsigned int port_num = mp->port_num;
783 unsigned int size;
785 /* Stop RX Queues */
786 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
788 /* Clear the ethernet port interrupts */
789 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
790 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
792 /* Unmask RX buffer and TX end interrupt */
793 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
794 INT_CAUSE_UNMASK_ALL);
796 /* Unmask phy and link status changes interrupts */
797 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
798 INT_CAUSE_UNMASK_ALL_EXT);
800 /* Set the MAC Address */
801 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
803 eth_port_init(mp);
805 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
807 memset(&mp->timeout, 0, sizeof(struct timer_list));
808 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
809 mp->timeout.data = (unsigned long)dev;
811 mp->rx_task_busy = 0;
812 mp->rx_timer_flag = 0;
814 /* Allocate RX and TX skb rings */
815 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
816 GFP_KERNEL);
817 if (!mp->rx_skb) {
818 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
819 return -ENOMEM;
821 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
822 GFP_KERNEL);
823 if (!mp->tx_skb) {
824 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
825 kfree(mp->rx_skb);
826 return -ENOMEM;
829 /* Allocate TX ring */
830 mp->tx_ring_skbs = 0;
831 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
832 mp->tx_desc_area_size = size;
834 if (mp->tx_sram_size) {
835 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
836 mp->tx_sram_size);
837 mp->tx_desc_dma = mp->tx_sram_addr;
838 } else
839 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
840 &mp->tx_desc_dma,
841 GFP_KERNEL);
843 if (!mp->p_tx_desc_area) {
844 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
845 dev->name, size);
846 kfree(mp->rx_skb);
847 kfree(mp->tx_skb);
848 return -ENOMEM;
850 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
851 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
853 ether_init_tx_desc_ring(mp);
855 /* Allocate RX ring */
856 mp->rx_ring_skbs = 0;
857 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
858 mp->rx_desc_area_size = size;
860 if (mp->rx_sram_size) {
861 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
862 mp->rx_sram_size);
863 mp->rx_desc_dma = mp->rx_sram_addr;
864 } else
865 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
866 &mp->rx_desc_dma,
867 GFP_KERNEL);
869 if (!mp->p_rx_desc_area) {
870 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
871 dev->name, size);
872 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
873 dev->name);
874 if (mp->rx_sram_size)
875 iounmap(mp->p_rx_desc_area);
876 else
877 dma_free_coherent(NULL, mp->tx_desc_area_size,
878 mp->p_tx_desc_area, mp->tx_desc_dma);
879 kfree(mp->rx_skb);
880 kfree(mp->tx_skb);
881 return -ENOMEM;
883 memset((void *)mp->p_rx_desc_area, 0, size);
885 ether_init_rx_desc_ring(mp);
887 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
889 eth_port_start(mp);
891 /* Interrupt Coalescing */
893 #ifdef MV643XX_COAL
894 mp->rx_int_coal =
895 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
896 #endif
898 mp->tx_int_coal =
899 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
901 netif_start_queue(dev);
903 return 0;
906 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
908 struct mv643xx_private *mp = netdev_priv(dev);
909 unsigned int port_num = mp->port_num;
910 unsigned int curr;
912 /* Stop Tx Queues */
913 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
915 /* Free outstanding skb's on TX rings */
916 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
917 if (mp->tx_skb[curr]) {
918 dev_kfree_skb(mp->tx_skb[curr]);
919 mp->tx_ring_skbs--;
922 if (mp->tx_ring_skbs)
923 printk("%s: Error on Tx descriptor free - could not free %d"
924 " descriptors\n", dev->name, mp->tx_ring_skbs);
926 /* Free TX ring */
927 if (mp->tx_sram_size)
928 iounmap(mp->p_tx_desc_area);
929 else
930 dma_free_coherent(NULL, mp->tx_desc_area_size,
931 mp->p_tx_desc_area, mp->tx_desc_dma);
934 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
936 struct mv643xx_private *mp = netdev_priv(dev);
937 unsigned int port_num = mp->port_num;
938 int curr;
940 /* Stop RX Queues */
941 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
943 /* Free preallocated skb's on RX rings */
944 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
945 if (mp->rx_skb[curr]) {
946 dev_kfree_skb(mp->rx_skb[curr]);
947 mp->rx_ring_skbs--;
951 if (mp->rx_ring_skbs)
952 printk(KERN_ERR
953 "%s: Error in freeing Rx Ring. %d skb's still"
954 " stuck in RX Ring - ignoring them\n", dev->name,
955 mp->rx_ring_skbs);
956 /* Free RX ring */
957 if (mp->rx_sram_size)
958 iounmap(mp->p_rx_desc_area);
959 else
960 dma_free_coherent(NULL, mp->rx_desc_area_size,
961 mp->p_rx_desc_area, mp->rx_desc_dma);
965 * mv643xx_eth_stop
967 * This function is used when closing the network device.
968 * It updates the hardware,
969 * release all memory that holds buffers and descriptors and release the IRQ.
970 * Input : a pointer to the device structure
971 * Output : zero if success , nonzero if fails
974 /* Helper function for mv643xx_eth_stop */
976 static int mv643xx_eth_real_stop(struct net_device *dev)
978 struct mv643xx_private *mp = netdev_priv(dev);
979 unsigned int port_num = mp->port_num;
981 netif_carrier_off(dev);
982 netif_stop_queue(dev);
984 mv643xx_eth_free_tx_rings(dev);
985 mv643xx_eth_free_rx_rings(dev);
987 eth_port_reset(mp->port_num);
989 /* Disable ethernet port interrupts */
990 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
991 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
993 /* Mask RX buffer and TX end interrupt */
994 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
996 /* Mask phy and link status changes interrupts */
997 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0);
999 return 0;
1002 static int mv643xx_eth_stop(struct net_device *dev)
1004 struct mv643xx_private *mp = netdev_priv(dev);
1006 spin_lock_irq(&mp->lock);
1008 mv643xx_eth_real_stop(dev);
1010 free_irq(dev->irq, dev);
1011 spin_unlock_irq(&mp->lock);
1013 return 0;
1016 #ifdef MV643XX_NAPI
1017 static void mv643xx_tx(struct net_device *dev)
1019 struct mv643xx_private *mp = netdev_priv(dev);
1020 struct pkt_info pkt_info;
1022 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
1023 if (pkt_info.return_info) {
1024 if (skb_shinfo(pkt_info.return_info)->nr_frags)
1025 dma_unmap_page(NULL, pkt_info.buf_ptr,
1026 pkt_info.byte_cnt,
1027 DMA_TO_DEVICE);
1028 else
1029 dma_unmap_single(NULL, pkt_info.buf_ptr,
1030 pkt_info.byte_cnt,
1031 DMA_TO_DEVICE);
1033 dev_kfree_skb_irq(pkt_info.return_info);
1034 } else
1035 dma_unmap_page(NULL, pkt_info.buf_ptr,
1036 pkt_info.byte_cnt, DMA_TO_DEVICE);
1039 if (netif_queue_stopped(dev) &&
1040 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
1041 netif_wake_queue(dev);
1045 * mv643xx_poll
1047 * This function is used in case of NAPI
1049 static int mv643xx_poll(struct net_device *dev, int *budget)
1051 struct mv643xx_private *mp = netdev_priv(dev);
1052 int done = 1, orig_budget, work_done;
1053 unsigned int port_num = mp->port_num;
1054 unsigned long flags;
1056 #ifdef MV643XX_TX_FAST_REFILL
1057 if (++mp->tx_clean_threshold > 5) {
1058 spin_lock_irqsave(&mp->lock, flags);
1059 mv643xx_tx(dev);
1060 mp->tx_clean_threshold = 0;
1061 spin_unlock_irqrestore(&mp->lock, flags);
1063 #endif
1065 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1066 != (u32) mp->rx_used_desc_q) {
1067 orig_budget = *budget;
1068 if (orig_budget > dev->quota)
1069 orig_budget = dev->quota;
1070 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1071 mp->rx_task.func(dev);
1072 *budget -= work_done;
1073 dev->quota -= work_done;
1074 if (work_done >= orig_budget)
1075 done = 0;
1078 if (done) {
1079 spin_lock_irqsave(&mp->lock, flags);
1080 __netif_rx_complete(dev);
1081 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1082 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1083 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1084 INT_CAUSE_UNMASK_ALL);
1085 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1086 INT_CAUSE_UNMASK_ALL_EXT);
1087 spin_unlock_irqrestore(&mp->lock, flags);
1090 return done ? 0 : 1;
1092 #endif
1095 * mv643xx_eth_start_xmit
1097 * This function is queues a packet in the Tx descriptor for
1098 * required port.
1100 * Input : skb - a pointer to socket buffer
1101 * dev - a pointer to the required port
1103 * Output : zero upon success
1105 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1107 struct mv643xx_private *mp = netdev_priv(dev);
1108 struct net_device_stats *stats = &mp->stats;
1109 ETH_FUNC_RET_STATUS status;
1110 unsigned long flags;
1111 struct pkt_info pkt_info;
1113 if (netif_queue_stopped(dev)) {
1114 printk(KERN_ERR
1115 "%s: Tried sending packet when interface is stopped\n",
1116 dev->name);
1117 return 1;
1120 /* This is a hard error, log it. */
1121 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1122 (skb_shinfo(skb)->nr_frags + 1)) {
1123 netif_stop_queue(dev);
1124 printk(KERN_ERR
1125 "%s: Bug in mv643xx_eth - Trying to transmit when"
1126 " queue full !\n", dev->name);
1127 return 1;
1130 /* Paranoid check - this shouldn't happen */
1131 if (skb == NULL) {
1132 stats->tx_dropped++;
1133 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1134 return 1;
1137 spin_lock_irqsave(&mp->lock, flags);
1139 /* Update packet info data structure -- DMA owned, first last */
1140 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1141 if (!skb_shinfo(skb)->nr_frags) {
1142 linear:
1143 if (skb->ip_summed != CHECKSUM_HW) {
1144 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1145 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1146 ETH_TX_FIRST_DESC |
1147 ETH_TX_LAST_DESC |
1148 5 << ETH_TX_IHL_SHIFT;
1149 pkt_info.l4i_chk = 0;
1150 } else {
1152 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1153 ETH_TX_FIRST_DESC |
1154 ETH_TX_LAST_DESC |
1155 ETH_GEN_TCP_UDP_CHECKSUM |
1156 ETH_GEN_IP_V_4_CHECKSUM |
1157 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1158 /* CPU already calculated pseudo header checksum. */
1159 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1160 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1161 pkt_info.l4i_chk = skb->h.uh->check;
1162 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1163 pkt_info.l4i_chk = skb->h.th->check;
1164 else {
1165 printk(KERN_ERR
1166 "%s: chksum proto != TCP or UDP\n",
1167 dev->name);
1168 spin_unlock_irqrestore(&mp->lock, flags);
1169 return 1;
1172 pkt_info.byte_cnt = skb->len;
1173 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1174 DMA_TO_DEVICE);
1175 pkt_info.return_info = skb;
1176 status = eth_port_send(mp, &pkt_info);
1177 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1178 printk(KERN_ERR "%s: Error on transmitting packet\n",
1179 dev->name);
1180 stats->tx_bytes += pkt_info.byte_cnt;
1181 } else {
1182 unsigned int frag;
1184 /* Since hardware can't handle unaligned fragments smaller
1185 * than 9 bytes, if we find any, we linearize the skb
1186 * and start again. When I've seen it, it's always been
1187 * the first frag (probably near the end of the page),
1188 * but we check all frags to be safe.
1190 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1191 skb_frag_t *fragp;
1193 fragp = &skb_shinfo(skb)->frags[frag];
1194 if (fragp->size <= 8 && fragp->page_offset & 0x7) {
1195 skb_linearize(skb, GFP_ATOMIC);
1196 printk(KERN_DEBUG "%s: unaligned tiny fragment"
1197 "%d of %d, fixed\n",
1198 dev->name, frag,
1199 skb_shinfo(skb)->nr_frags);
1200 goto linear;
1204 /* first frag which is skb header */
1205 pkt_info.byte_cnt = skb_headlen(skb);
1206 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1207 skb_headlen(skb),
1208 DMA_TO_DEVICE);
1209 pkt_info.l4i_chk = 0;
1210 pkt_info.return_info = 0;
1212 if (skb->ip_summed != CHECKSUM_HW)
1213 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1214 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1215 5 << ETH_TX_IHL_SHIFT;
1216 else {
1217 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1218 ETH_GEN_TCP_UDP_CHECKSUM |
1219 ETH_GEN_IP_V_4_CHECKSUM |
1220 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1221 /* CPU already calculated pseudo header checksum. */
1222 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1223 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1224 pkt_info.l4i_chk = skb->h.uh->check;
1225 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1226 pkt_info.l4i_chk = skb->h.th->check;
1227 else {
1228 printk(KERN_ERR
1229 "%s: chksum proto != TCP or UDP\n",
1230 dev->name);
1231 spin_unlock_irqrestore(&mp->lock, flags);
1232 return 1;
1236 status = eth_port_send(mp, &pkt_info);
1237 if (status != ETH_OK) {
1238 if ((status == ETH_ERROR))
1239 printk(KERN_ERR
1240 "%s: Error on transmitting packet\n",
1241 dev->name);
1242 if (status == ETH_QUEUE_FULL)
1243 printk("Error on Queue Full \n");
1244 if (status == ETH_QUEUE_LAST_RESOURCE)
1245 printk("Tx resource error \n");
1247 stats->tx_bytes += pkt_info.byte_cnt;
1249 /* Check for the remaining frags */
1250 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1251 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1252 pkt_info.l4i_chk = 0x0000;
1253 pkt_info.cmd_sts = 0x00000000;
1255 /* Last Frag enables interrupt and frees the skb */
1256 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1257 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1258 ETH_TX_LAST_DESC;
1259 pkt_info.return_info = skb;
1260 } else {
1261 pkt_info.return_info = 0;
1263 pkt_info.l4i_chk = 0;
1264 pkt_info.byte_cnt = this_frag->size;
1266 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1267 this_frag->page_offset,
1268 this_frag->size,
1269 DMA_TO_DEVICE);
1271 status = eth_port_send(mp, &pkt_info);
1273 if (status != ETH_OK) {
1274 if ((status == ETH_ERROR))
1275 printk(KERN_ERR "%s: Error on "
1276 "transmitting packet\n",
1277 dev->name);
1279 if (status == ETH_QUEUE_LAST_RESOURCE)
1280 printk("Tx resource error \n");
1282 if (status == ETH_QUEUE_FULL)
1283 printk("Queue is full \n");
1285 stats->tx_bytes += pkt_info.byte_cnt;
1288 #else
1289 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1290 ETH_TX_LAST_DESC;
1291 pkt_info.l4i_chk = 0;
1292 pkt_info.byte_cnt = skb->len;
1293 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1294 DMA_TO_DEVICE);
1295 pkt_info.return_info = skb;
1296 status = eth_port_send(mp, &pkt_info);
1297 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1298 printk(KERN_ERR "%s: Error on transmitting packet\n",
1299 dev->name);
1300 stats->tx_bytes += pkt_info.byte_cnt;
1301 #endif
1303 /* Check if TX queue can handle another skb. If not, then
1304 * signal higher layers to stop requesting TX
1306 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1308 * Stop getting skb's from upper layers.
1309 * Getting skb's from upper layers will be enabled again after
1310 * packets are released.
1312 netif_stop_queue(dev);
1314 /* Update statistics and start of transmittion time */
1315 stats->tx_packets++;
1316 dev->trans_start = jiffies;
1318 spin_unlock_irqrestore(&mp->lock, flags);
1320 return 0; /* success */
1324 * mv643xx_eth_get_stats
1326 * Returns a pointer to the interface statistics.
1328 * Input : dev - a pointer to the required interface
1330 * Output : a pointer to the interface's statistics
1333 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1335 struct mv643xx_private *mp = netdev_priv(dev);
1337 return &mp->stats;
1340 #ifdef CONFIG_NET_POLL_CONTROLLER
1341 static inline void mv643xx_enable_irq(struct mv643xx_private *mp)
1343 int port_num = mp->port_num;
1344 unsigned long flags;
1346 spin_lock_irqsave(&mp->lock, flags);
1347 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1348 INT_CAUSE_UNMASK_ALL);
1349 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1350 INT_CAUSE_UNMASK_ALL_EXT);
1351 spin_unlock_irqrestore(&mp->lock, flags);
1354 static inline void mv643xx_disable_irq(struct mv643xx_private *mp)
1356 int port_num = mp->port_num;
1357 unsigned long flags;
1359 spin_lock_irqsave(&mp->lock, flags);
1360 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1361 INT_CAUSE_MASK_ALL);
1362 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1363 INT_CAUSE_MASK_ALL_EXT);
1364 spin_unlock_irqrestore(&mp->lock, flags);
1367 static void mv643xx_netpoll(struct net_device *netdev)
1369 struct mv643xx_private *mp = netdev_priv(netdev);
1371 mv643xx_disable_irq(mp);
1372 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
1373 mv643xx_enable_irq(mp);
1375 #endif
1378 * mv643xx_eth_probe
1380 * First function called after registering the network device.
1381 * It's purpose is to initialize the device as an ethernet device,
1382 * fill the ethernet device structure with pointers * to functions,
1383 * and set the MAC address of the interface
1385 * Input : struct device *
1386 * Output : -ENOMEM if failed , 0 if success
1388 static int mv643xx_eth_probe(struct device *ddev)
1390 struct platform_device *pdev = to_platform_device(ddev);
1391 struct mv643xx_eth_platform_data *pd;
1392 int port_num = pdev->id;
1393 struct mv643xx_private *mp;
1394 struct net_device *dev;
1395 u8 *p;
1396 struct resource *res;
1397 int err;
1399 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1400 if (!dev)
1401 return -ENOMEM;
1403 dev_set_drvdata(ddev, dev);
1405 mp = netdev_priv(dev);
1407 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1408 BUG_ON(!res);
1409 dev->irq = res->start;
1411 mp->port_num = port_num;
1413 dev->open = mv643xx_eth_open;
1414 dev->stop = mv643xx_eth_stop;
1415 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1416 dev->get_stats = mv643xx_eth_get_stats;
1417 dev->set_mac_address = mv643xx_eth_set_mac_address;
1418 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1420 /* No need to Tx Timeout */
1421 dev->tx_timeout = mv643xx_eth_tx_timeout;
1422 #ifdef MV643XX_NAPI
1423 dev->poll = mv643xx_poll;
1424 dev->weight = 64;
1425 #endif
1427 #ifdef CONFIG_NET_POLL_CONTROLLER
1428 dev->poll_controller = mv643xx_netpoll;
1429 #endif
1431 dev->watchdog_timeo = 2 * HZ;
1432 dev->tx_queue_len = mp->tx_ring_size;
1433 dev->base_addr = 0;
1434 dev->change_mtu = mv643xx_eth_change_mtu;
1435 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1437 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1438 #ifdef MAX_SKB_FRAGS
1440 * Zero copy can only work if we use Discovery II memory. Else, we will
1441 * have to map the buffers to ISA memory which is only 16 MB
1443 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM;
1444 #endif
1445 #endif
1447 /* Configure the timeout task */
1448 INIT_WORK(&mp->tx_timeout_task,
1449 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1451 spin_lock_init(&mp->lock);
1453 /* set default config values */
1454 eth_port_uc_addr_get(dev, dev->dev_addr);
1455 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1456 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1457 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1458 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1459 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1460 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1462 pd = pdev->dev.platform_data;
1463 if (pd) {
1464 if (pd->mac_addr != NULL)
1465 memcpy(dev->dev_addr, pd->mac_addr, 6);
1467 if (pd->phy_addr || pd->force_phy_addr)
1468 ethernet_phy_set(port_num, pd->phy_addr);
1470 if (pd->port_config || pd->force_port_config)
1471 mp->port_config = pd->port_config;
1473 if (pd->port_config_extend || pd->force_port_config_extend)
1474 mp->port_config_extend = pd->port_config_extend;
1476 if (pd->port_sdma_config || pd->force_port_sdma_config)
1477 mp->port_sdma_config = pd->port_sdma_config;
1479 if (pd->port_serial_control || pd->force_port_serial_control)
1480 mp->port_serial_control = pd->port_serial_control;
1482 if (pd->rx_queue_size)
1483 mp->rx_ring_size = pd->rx_queue_size;
1485 if (pd->tx_queue_size)
1486 mp->tx_ring_size = pd->tx_queue_size;
1488 if (pd->tx_sram_size) {
1489 mp->tx_sram_size = pd->tx_sram_size;
1490 mp->tx_sram_addr = pd->tx_sram_addr;
1493 if (pd->rx_sram_size) {
1494 mp->rx_sram_size = pd->rx_sram_size;
1495 mp->rx_sram_addr = pd->rx_sram_addr;
1499 err = ethernet_phy_detect(port_num);
1500 if (err) {
1501 pr_debug("MV643xx ethernet port %d: "
1502 "No PHY detected at addr %d\n",
1503 port_num, ethernet_phy_get(port_num));
1504 return err;
1507 err = register_netdev(dev);
1508 if (err)
1509 goto out;
1511 p = dev->dev_addr;
1512 printk(KERN_NOTICE
1513 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1514 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1516 if (dev->features & NETIF_F_SG)
1517 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1519 if (dev->features & NETIF_F_IP_CSUM)
1520 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1521 dev->name);
1523 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1524 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1525 #endif
1527 #ifdef MV643XX_COAL
1528 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1529 dev->name);
1530 #endif
1532 #ifdef MV643XX_NAPI
1533 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1534 #endif
1536 if (mp->tx_sram_size > 0)
1537 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1539 return 0;
1541 out:
1542 free_netdev(dev);
1544 return err;
1547 static int mv643xx_eth_remove(struct device *ddev)
1549 struct net_device *dev = dev_get_drvdata(ddev);
1551 unregister_netdev(dev);
1552 flush_scheduled_work();
1554 free_netdev(dev);
1555 dev_set_drvdata(ddev, NULL);
1556 return 0;
1559 static int mv643xx_eth_shared_probe(struct device *ddev)
1561 struct platform_device *pdev = to_platform_device(ddev);
1562 struct resource *res;
1564 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1566 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1567 if (res == NULL)
1568 return -ENODEV;
1570 mv643xx_eth_shared_base = ioremap(res->start,
1571 MV643XX_ETH_SHARED_REGS_SIZE);
1572 if (mv643xx_eth_shared_base == NULL)
1573 return -ENOMEM;
1575 return 0;
1579 static int mv643xx_eth_shared_remove(struct device *ddev)
1581 iounmap(mv643xx_eth_shared_base);
1582 mv643xx_eth_shared_base = NULL;
1584 return 0;
1587 static struct device_driver mv643xx_eth_driver = {
1588 .name = MV643XX_ETH_NAME,
1589 .bus = &platform_bus_type,
1590 .probe = mv643xx_eth_probe,
1591 .remove = mv643xx_eth_remove,
1594 static struct device_driver mv643xx_eth_shared_driver = {
1595 .name = MV643XX_ETH_SHARED_NAME,
1596 .bus = &platform_bus_type,
1597 .probe = mv643xx_eth_shared_probe,
1598 .remove = mv643xx_eth_shared_remove,
1602 * mv643xx_init_module
1604 * Registers the network drivers into the Linux kernel
1606 * Input : N/A
1608 * Output : N/A
1610 static int __init mv643xx_init_module(void)
1612 int rc;
1614 rc = driver_register(&mv643xx_eth_shared_driver);
1615 if (!rc) {
1616 rc = driver_register(&mv643xx_eth_driver);
1617 if (rc)
1618 driver_unregister(&mv643xx_eth_shared_driver);
1620 return rc;
1624 * mv643xx_cleanup_module
1626 * Registers the network drivers into the Linux kernel
1628 * Input : N/A
1630 * Output : N/A
1632 static void __exit mv643xx_cleanup_module(void)
1634 driver_unregister(&mv643xx_eth_driver);
1635 driver_unregister(&mv643xx_eth_shared_driver);
1638 module_init(mv643xx_init_module);
1639 module_exit(mv643xx_cleanup_module);
1641 MODULE_LICENSE("GPL");
1642 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1643 " and Dale Farnsworth");
1644 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1647 * The second part is the low level driver of the gigE ethernet ports.
1651 * Marvell's Gigabit Ethernet controller low level driver
1653 * DESCRIPTION:
1654 * This file introduce low level API to Marvell's Gigabit Ethernet
1655 * controller. This Gigabit Ethernet Controller driver API controls
1656 * 1) Operations (i.e. port init, start, reset etc').
1657 * 2) Data flow (i.e. port send, receive etc').
1658 * Each Gigabit Ethernet port is controlled via
1659 * struct mv643xx_private.
1660 * This struct includes user configuration information as well as
1661 * driver internal data needed for its operations.
1663 * Supported Features:
1664 * - This low level driver is OS independent. Allocating memory for
1665 * the descriptor rings and buffers are not within the scope of
1666 * this driver.
1667 * - The user is free from Rx/Tx queue managing.
1668 * - This low level driver introduce functionality API that enable
1669 * the to operate Marvell's Gigabit Ethernet Controller in a
1670 * convenient way.
1671 * - Simple Gigabit Ethernet port operation API.
1672 * - Simple Gigabit Ethernet port data flow API.
1673 * - Data flow and operation API support per queue functionality.
1674 * - Support cached descriptors for better performance.
1675 * - Enable access to all four DRAM banks and internal SRAM memory
1676 * spaces.
1677 * - PHY access and control API.
1678 * - Port control register configuration API.
1679 * - Full control over Unicast and Multicast MAC configurations.
1681 * Operation flow:
1683 * Initialization phase
1684 * This phase complete the initialization of the the
1685 * mv643xx_private struct.
1686 * User information regarding port configuration has to be set
1687 * prior to calling the port initialization routine.
1689 * In this phase any port Tx/Rx activity is halted, MIB counters
1690 * are cleared, PHY address is set according to user parameter and
1691 * access to DRAM and internal SRAM memory spaces.
1693 * Driver ring initialization
1694 * Allocating memory for the descriptor rings and buffers is not
1695 * within the scope of this driver. Thus, the user is required to
1696 * allocate memory for the descriptors ring and buffers. Those
1697 * memory parameters are used by the Rx and Tx ring initialization
1698 * routines in order to curve the descriptor linked list in a form
1699 * of a ring.
1700 * Note: Pay special attention to alignment issues when using
1701 * cached descriptors/buffers. In this phase the driver store
1702 * information in the mv643xx_private struct regarding each queue
1703 * ring.
1705 * Driver start
1706 * This phase prepares the Ethernet port for Rx and Tx activity.
1707 * It uses the information stored in the mv643xx_private struct to
1708 * initialize the various port registers.
1710 * Data flow:
1711 * All packet references to/from the driver are done using
1712 * struct pkt_info.
1713 * This struct is a unified struct used with Rx and Tx operations.
1714 * This way the user is not required to be familiar with neither
1715 * Tx nor Rx descriptors structures.
1716 * The driver's descriptors rings are management by indexes.
1717 * Those indexes controls the ring resources and used to indicate
1718 * a SW resource error:
1719 * 'current'
1720 * This index points to the current available resource for use. For
1721 * example in Rx process this index will point to the descriptor
1722 * that will be passed to the user upon calling the receive
1723 * routine. In Tx process, this index will point to the descriptor
1724 * that will be assigned with the user packet info and transmitted.
1725 * 'used'
1726 * This index points to the descriptor that need to restore its
1727 * resources. For example in Rx process, using the Rx buffer return
1728 * API will attach the buffer returned in packet info to the
1729 * descriptor pointed by 'used'. In Tx process, using the Tx
1730 * descriptor return will merely return the user packet info with
1731 * the command status of the transmitted buffer pointed by the
1732 * 'used' index. Nevertheless, it is essential to use this routine
1733 * to update the 'used' index.
1734 * 'first'
1735 * This index supports Tx Scatter-Gather. It points to the first
1736 * descriptor of a packet assembled of multiple buffers. For
1737 * example when in middle of Such packet we have a Tx resource
1738 * error the 'curr' index get the value of 'first' to indicate
1739 * that the ring returned to its state before trying to transmit
1740 * this packet.
1742 * Receive operation:
1743 * The eth_port_receive API set the packet information struct,
1744 * passed by the caller, with received information from the
1745 * 'current' SDMA descriptor.
1746 * It is the user responsibility to return this resource back
1747 * to the Rx descriptor ring to enable the reuse of this source.
1748 * Return Rx resource is done using the eth_rx_return_buff API.
1750 * Transmit operation:
1751 * The eth_port_send API supports Scatter-Gather which enables to
1752 * send a packet spanned over multiple buffers. This means that
1753 * for each packet info structure given by the user and put into
1754 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1755 * bit will be set in the packet info command status field. This
1756 * API also consider restriction regarding buffer alignments and
1757 * sizes.
1758 * The user must return a Tx resource after ensuring the buffer
1759 * has been transmitted to enable the Tx ring indexes to update.
1761 * BOARD LAYOUT
1762 * This device is on-board. No jumper diagram is necessary.
1764 * EXTERNAL INTERFACE
1766 * Prior to calling the initialization routine eth_port_init() the user
1767 * must set the following fields under mv643xx_private struct:
1768 * port_num User Ethernet port number.
1769 * port_mac_addr[6] User defined port MAC address.
1770 * port_config User port configuration value.
1771 * port_config_extend User port config extend value.
1772 * port_sdma_config User port SDMA config value.
1773 * port_serial_control User port serial control value.
1775 * This driver data flow is done using the struct pkt_info which
1776 * is a unified struct for Rx and Tx operations:
1778 * byte_cnt Tx/Rx descriptor buffer byte count.
1779 * l4i_chk CPU provided TCP Checksum. For Tx operation
1780 * only.
1781 * cmd_sts Tx/Rx descriptor command status.
1782 * buf_ptr Tx/Rx descriptor buffer pointer.
1783 * return_info Tx/Rx user resource return information.
1786 /* defines */
1787 /* SDMA command macros */
1788 #define ETH_ENABLE_TX_QUEUE(eth_port) \
1789 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1791 /* locals */
1793 /* PHY routines */
1794 static int ethernet_phy_get(unsigned int eth_port_num);
1795 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1797 /* Ethernet Port routines */
1798 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1799 int option);
1802 * eth_port_init - Initialize the Ethernet port driver
1804 * DESCRIPTION:
1805 * This function prepares the ethernet port to start its activity:
1806 * 1) Completes the ethernet port driver struct initialization toward port
1807 * start routine.
1808 * 2) Resets the device to a quiescent state in case of warm reboot.
1809 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1810 * 4) Clean MAC tables. The reset status of those tables is unknown.
1811 * 5) Set PHY address.
1812 * Note: Call this routine prior to eth_port_start routine and after
1813 * setting user values in the user fields of Ethernet port control
1814 * struct.
1816 * INPUT:
1817 * struct mv643xx_private *mp Ethernet port control struct
1819 * OUTPUT:
1820 * See description.
1822 * RETURN:
1823 * None.
1825 static void eth_port_init(struct mv643xx_private *mp)
1827 mp->port_rx_queue_command = 0;
1828 mp->port_tx_queue_command = 0;
1830 mp->rx_resource_err = 0;
1831 mp->tx_resource_err = 0;
1833 eth_port_reset(mp->port_num);
1835 eth_port_init_mac_tables(mp->port_num);
1837 ethernet_phy_reset(mp->port_num);
1841 * eth_port_start - Start the Ethernet port activity.
1843 * DESCRIPTION:
1844 * This routine prepares the Ethernet port for Rx and Tx activity:
1845 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1846 * has been initialized a descriptor's ring (using
1847 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1848 * 2. Initialize and enable the Ethernet configuration port by writing to
1849 * the port's configuration and command registers.
1850 * 3. Initialize and enable the SDMA by writing to the SDMA's
1851 * configuration and command registers. After completing these steps,
1852 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1854 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1855 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1856 * and ether_init_rx_desc_ring for Rx queues).
1858 * INPUT:
1859 * struct mv643xx_private *mp Ethernet port control struct
1861 * OUTPUT:
1862 * Ethernet port is ready to receive and transmit.
1864 * RETURN:
1865 * None.
1867 static void eth_port_start(struct mv643xx_private *mp)
1869 unsigned int port_num = mp->port_num;
1870 int tx_curr_desc, rx_curr_desc;
1872 /* Assignment of Tx CTRP of given queue */
1873 tx_curr_desc = mp->tx_curr_desc_q;
1874 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1875 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1877 /* Assignment of Rx CRDP of given queue */
1878 rx_curr_desc = mp->rx_curr_desc_q;
1879 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1880 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1882 /* Add the assigned Ethernet address to the port's address table */
1883 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1885 /* Assign port configuration and command. */
1886 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1888 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1889 mp->port_config_extend);
1892 /* Increase the Rx side buffer size if supporting GigE */
1893 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1894 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1895 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1896 else
1897 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1898 mp->port_serial_control);
1900 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1901 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1902 MV643XX_ETH_SERIAL_PORT_ENABLE);
1904 /* Assign port SDMA configuration */
1905 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1906 mp->port_sdma_config);
1908 /* Enable port Rx. */
1909 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1910 mp->port_rx_queue_command);
1912 /* Disable port bandwidth limits by clearing MTU register */
1913 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1917 * eth_port_uc_addr_set - This function Set the port Unicast address.
1919 * DESCRIPTION:
1920 * This function Set the port Ethernet MAC address.
1922 * INPUT:
1923 * unsigned int eth_port_num Port number.
1924 * char * p_addr Address to be set
1926 * OUTPUT:
1927 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1928 * To set the unicast table with the proper information.
1930 * RETURN:
1931 * N/A.
1934 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1935 unsigned char *p_addr)
1937 unsigned int mac_h;
1938 unsigned int mac_l;
1940 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1941 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1942 (p_addr[3] << 0);
1944 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1945 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1947 /* Accept frames of this address */
1948 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1950 return;
1954 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1955 * (MAC address) from the ethernet hw registers.
1957 * DESCRIPTION:
1958 * This function retrieves the port Ethernet MAC address.
1960 * INPUT:
1961 * unsigned int eth_port_num Port number.
1962 * char *MacAddr pointer where the MAC address is stored
1964 * OUTPUT:
1965 * Copy the MAC address to the location pointed to by MacAddr
1967 * RETURN:
1968 * N/A.
1971 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1973 struct mv643xx_private *mp = netdev_priv(dev);
1974 unsigned int mac_h;
1975 unsigned int mac_l;
1977 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1978 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1980 p_addr[0] = (mac_h >> 24) & 0xff;
1981 p_addr[1] = (mac_h >> 16) & 0xff;
1982 p_addr[2] = (mac_h >> 8) & 0xff;
1983 p_addr[3] = mac_h & 0xff;
1984 p_addr[4] = (mac_l >> 8) & 0xff;
1985 p_addr[5] = mac_l & 0xff;
1989 * eth_port_uc_addr - This function Set the port unicast address table
1991 * DESCRIPTION:
1992 * This function locates the proper entry in the Unicast table for the
1993 * specified MAC nibble and sets its properties according to function
1994 * parameters.
1996 * INPUT:
1997 * unsigned int eth_port_num Port number.
1998 * unsigned char uc_nibble Unicast MAC Address last nibble.
1999 * int option 0 = Add, 1 = remove address.
2001 * OUTPUT:
2002 * This function add/removes MAC addresses from the port unicast address
2003 * table.
2005 * RETURN:
2006 * true is output succeeded.
2007 * false if option parameter is invalid.
2010 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
2011 int option)
2013 unsigned int unicast_reg;
2014 unsigned int tbl_offset;
2015 unsigned int reg_offset;
2017 /* Locate the Unicast table entry */
2018 uc_nibble = (0xf & uc_nibble);
2019 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
2020 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
2022 switch (option) {
2023 case REJECT_MAC_ADDR:
2024 /* Clear accepts frame bit at given unicast DA table entry */
2025 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2026 (eth_port_num) + tbl_offset));
2028 unicast_reg &= (0x0E << (8 * reg_offset));
2030 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2031 (eth_port_num) + tbl_offset), unicast_reg);
2032 break;
2034 case ACCEPT_MAC_ADDR:
2035 /* Set accepts frame bit at unicast DA filter table entry */
2036 unicast_reg =
2037 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2038 (eth_port_num) + tbl_offset));
2040 unicast_reg |= (0x01 << (8 * reg_offset));
2042 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2043 (eth_port_num) + tbl_offset), unicast_reg);
2045 break;
2047 default:
2048 return 0;
2051 return 1;
2055 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2057 * DESCRIPTION:
2058 * Go through all the DA filter tables (Unicast, Special Multicast &
2059 * Other Multicast) and set each entry to 0.
2061 * INPUT:
2062 * unsigned int eth_port_num Ethernet Port number.
2064 * OUTPUT:
2065 * Multicast and Unicast packets are rejected.
2067 * RETURN:
2068 * None.
2070 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2072 int table_index;
2074 /* Clear DA filter unicast table (Ex_dFUT) */
2075 for (table_index = 0; table_index <= 0xC; table_index += 4)
2076 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2077 (eth_port_num) + table_index), 0);
2079 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2080 /* Clear DA filter special multicast table (Ex_dFSMT) */
2081 mv_write((MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2082 (eth_port_num) + table_index), 0);
2083 /* Clear DA filter other multicast table (Ex_dFOMT) */
2084 mv_write((MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2085 (eth_port_num) + table_index), 0);
2090 * eth_clear_mib_counters - Clear all MIB counters
2092 * DESCRIPTION:
2093 * This function clears all MIB counters of a specific ethernet port.
2094 * A read from the MIB counter will reset the counter.
2096 * INPUT:
2097 * unsigned int eth_port_num Ethernet Port number.
2099 * OUTPUT:
2100 * After reading all MIB counters, the counters resets.
2102 * RETURN:
2103 * MIB counter value.
2106 static void eth_clear_mib_counters(unsigned int eth_port_num)
2108 int i;
2110 /* Perform dummy reads from MIB counters */
2111 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2112 i += 4)
2113 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2116 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2118 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2121 static void eth_update_mib_counters(struct mv643xx_private *mp)
2123 struct mv643xx_mib_counters *p = &mp->mib_counters;
2124 int offset;
2126 p->good_octets_received +=
2127 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2128 p->good_octets_received +=
2129 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2131 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2132 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2133 offset += 4)
2134 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2136 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2137 p->good_octets_sent +=
2138 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2140 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2141 offset <= ETH_MIB_LATE_COLLISION;
2142 offset += 4)
2143 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2147 * ethernet_phy_detect - Detect whether a phy is present
2149 * DESCRIPTION:
2150 * This function tests whether there is a PHY present on
2151 * the specified port.
2153 * INPUT:
2154 * unsigned int eth_port_num Ethernet Port number.
2156 * OUTPUT:
2157 * None
2159 * RETURN:
2160 * 0 on success
2161 * -ENODEV on failure
2164 static int ethernet_phy_detect(unsigned int port_num)
2166 unsigned int phy_reg_data0;
2167 int auto_neg;
2169 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2170 auto_neg = phy_reg_data0 & 0x1000;
2171 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2172 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2174 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2175 if ((phy_reg_data0 & 0x1000) == auto_neg)
2176 return -ENODEV; /* change didn't take */
2178 phy_reg_data0 ^= 0x1000;
2179 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2180 return 0;
2184 * ethernet_phy_get - Get the ethernet port PHY address.
2186 * DESCRIPTION:
2187 * This routine returns the given ethernet port PHY address.
2189 * INPUT:
2190 * unsigned int eth_port_num Ethernet Port number.
2192 * OUTPUT:
2193 * None.
2195 * RETURN:
2196 * PHY address.
2199 static int ethernet_phy_get(unsigned int eth_port_num)
2201 unsigned int reg_data;
2203 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2205 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2209 * ethernet_phy_set - Set the ethernet port PHY address.
2211 * DESCRIPTION:
2212 * This routine sets the given ethernet port PHY address.
2214 * INPUT:
2215 * unsigned int eth_port_num Ethernet Port number.
2216 * int phy_addr PHY address.
2218 * OUTPUT:
2219 * None.
2221 * RETURN:
2222 * None.
2225 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2227 u32 reg_data;
2228 int addr_shift = 5 * eth_port_num;
2230 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2231 reg_data &= ~(0x1f << addr_shift);
2232 reg_data |= (phy_addr & 0x1f) << addr_shift;
2233 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2237 * ethernet_phy_reset - Reset Ethernet port PHY.
2239 * DESCRIPTION:
2240 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2242 * INPUT:
2243 * unsigned int eth_port_num Ethernet Port number.
2245 * OUTPUT:
2246 * The PHY is reset.
2248 * RETURN:
2249 * None.
2252 static void ethernet_phy_reset(unsigned int eth_port_num)
2254 unsigned int phy_reg_data;
2256 /* Reset the PHY */
2257 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2258 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2259 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2263 * eth_port_reset - Reset Ethernet port
2265 * DESCRIPTION:
2266 * This routine resets the chip by aborting any SDMA engine activity and
2267 * clearing the MIB counters. The Receiver and the Transmit unit are in
2268 * idle state after this command is performed and the port is disabled.
2270 * INPUT:
2271 * unsigned int eth_port_num Ethernet Port number.
2273 * OUTPUT:
2274 * Channel activity is halted.
2276 * RETURN:
2277 * None.
2280 static void eth_port_reset(unsigned int port_num)
2282 unsigned int reg_data;
2284 /* Stop Tx port activity. Check port Tx activity. */
2285 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2287 if (reg_data & 0xFF) {
2288 /* Issue stop command for active channels only */
2289 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2290 (reg_data << 8));
2292 /* Wait for all Tx activity to terminate. */
2293 /* Check port cause register that all Tx queues are stopped */
2294 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2295 & 0xFF)
2296 udelay(10);
2299 /* Stop Rx port activity. Check port Rx activity. */
2300 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2302 if (reg_data & 0xFF) {
2303 /* Issue stop command for active channels only */
2304 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2305 (reg_data << 8));
2307 /* Wait for all Rx activity to terminate. */
2308 /* Check port cause register that all Rx queues are stopped */
2309 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2310 & 0xFF)
2311 udelay(10);
2314 /* Clear all MIB counters */
2315 eth_clear_mib_counters(port_num);
2317 /* Reset the Enable bit in the Configuration Register */
2318 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2319 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2320 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2324 static int eth_port_autoneg_supported(unsigned int eth_port_num)
2326 unsigned int phy_reg_data0;
2328 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2330 return phy_reg_data0 & 0x1000;
2333 static int eth_port_link_is_up(unsigned int eth_port_num)
2335 unsigned int phy_reg_data1;
2337 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2339 if (eth_port_autoneg_supported(eth_port_num)) {
2340 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2341 return 1;
2342 } else if (phy_reg_data1 & 0x4) /* link up */
2343 return 1;
2345 return 0;
2349 * eth_port_read_smi_reg - Read PHY registers
2351 * DESCRIPTION:
2352 * This routine utilize the SMI interface to interact with the PHY in
2353 * order to perform PHY register read.
2355 * INPUT:
2356 * unsigned int port_num Ethernet Port number.
2357 * unsigned int phy_reg PHY register address offset.
2358 * unsigned int *value Register value buffer.
2360 * OUTPUT:
2361 * Write the value of a specified PHY register into given buffer.
2363 * RETURN:
2364 * false if the PHY is busy or read data is not in valid state.
2365 * true otherwise.
2368 static void eth_port_read_smi_reg(unsigned int port_num,
2369 unsigned int phy_reg, unsigned int *value)
2371 int phy_addr = ethernet_phy_get(port_num);
2372 unsigned long flags;
2373 int i;
2375 /* the SMI register is a shared resource */
2376 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2378 /* wait for the SMI register to become available */
2379 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2380 if (i == PHY_WAIT_ITERATIONS) {
2381 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2382 goto out;
2384 udelay(PHY_WAIT_MICRO_SECONDS);
2387 mv_write(MV643XX_ETH_SMI_REG,
2388 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2390 /* now wait for the data to be valid */
2391 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2392 if (i == PHY_WAIT_ITERATIONS) {
2393 printk("mv643xx PHY read timeout, port %d\n", port_num);
2394 goto out;
2396 udelay(PHY_WAIT_MICRO_SECONDS);
2399 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2400 out:
2401 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2405 * eth_port_write_smi_reg - Write to PHY registers
2407 * DESCRIPTION:
2408 * This routine utilize the SMI interface to interact with the PHY in
2409 * order to perform writes to PHY registers.
2411 * INPUT:
2412 * unsigned int eth_port_num Ethernet Port number.
2413 * unsigned int phy_reg PHY register address offset.
2414 * unsigned int value Register value.
2416 * OUTPUT:
2417 * Write the given value to the specified PHY register.
2419 * RETURN:
2420 * false if the PHY is busy.
2421 * true otherwise.
2424 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2425 unsigned int phy_reg, unsigned int value)
2427 int phy_addr;
2428 int i;
2429 unsigned long flags;
2431 phy_addr = ethernet_phy_get(eth_port_num);
2433 /* the SMI register is a shared resource */
2434 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2436 /* wait for the SMI register to become available */
2437 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2438 if (i == PHY_WAIT_ITERATIONS) {
2439 printk("mv643xx PHY busy timeout, port %d\n",
2440 eth_port_num);
2441 goto out;
2443 udelay(PHY_WAIT_MICRO_SECONDS);
2446 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2447 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2448 out:
2449 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2453 * eth_port_send - Send an Ethernet packet
2455 * DESCRIPTION:
2456 * This routine send a given packet described by p_pktinfo parameter. It
2457 * supports transmitting of a packet spaned over multiple buffers. The
2458 * routine updates 'curr' and 'first' indexes according to the packet
2459 * segment passed to the routine. In case the packet segment is first,
2460 * the 'first' index is update. In any case, the 'curr' index is updated.
2461 * If the routine get into Tx resource error it assigns 'curr' index as
2462 * 'first'. This way the function can abort Tx process of multiple
2463 * descriptors per packet.
2465 * INPUT:
2466 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2467 * struct pkt_info *p_pkt_info User packet buffer.
2469 * OUTPUT:
2470 * Tx ring 'curr' and 'first' indexes are updated.
2472 * RETURN:
2473 * ETH_QUEUE_FULL in case of Tx resource error.
2474 * ETH_ERROR in case the routine can not access Tx desc ring.
2475 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2476 * ETH_OK otherwise.
2479 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2481 * Modified to include the first descriptor pointer in case of SG
2483 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2484 struct pkt_info *p_pkt_info)
2486 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2487 struct eth_tx_desc *current_descriptor;
2488 struct eth_tx_desc *first_descriptor;
2489 u32 command;
2491 /* Do not process Tx ring in case of Tx ring resource error */
2492 if (mp->tx_resource_err)
2493 return ETH_QUEUE_FULL;
2496 * The hardware requires that each buffer that is <= 8 bytes
2497 * in length must be aligned on an 8 byte boundary.
2499 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2500 printk(KERN_ERR
2501 "mv643xx_eth port %d: packet size <= 8 problem\n",
2502 mp->port_num);
2503 return ETH_ERROR;
2506 mp->tx_ring_skbs++;
2507 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2509 /* Get the Tx Desc ring indexes */
2510 tx_desc_curr = mp->tx_curr_desc_q;
2511 tx_desc_used = mp->tx_used_desc_q;
2513 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2515 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2517 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2518 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2519 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2520 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2522 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2523 ETH_BUFFER_OWNED_BY_DMA;
2524 if (command & ETH_TX_FIRST_DESC) {
2525 tx_first_desc = tx_desc_curr;
2526 mp->tx_first_desc_q = tx_first_desc;
2527 first_descriptor = current_descriptor;
2528 mp->tx_first_command = command;
2529 } else {
2530 tx_first_desc = mp->tx_first_desc_q;
2531 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2532 BUG_ON(first_descriptor == NULL);
2533 current_descriptor->cmd_sts = command;
2536 if (command & ETH_TX_LAST_DESC) {
2537 wmb();
2538 first_descriptor->cmd_sts = mp->tx_first_command;
2540 wmb();
2541 ETH_ENABLE_TX_QUEUE(mp->port_num);
2544 * Finish Tx packet. Update first desc in case of Tx resource
2545 * error */
2546 tx_first_desc = tx_next_desc;
2547 mp->tx_first_desc_q = tx_first_desc;
2550 /* Check for ring index overlap in the Tx desc ring */
2551 if (tx_next_desc == tx_desc_used) {
2552 mp->tx_resource_err = 1;
2553 mp->tx_curr_desc_q = tx_first_desc;
2555 return ETH_QUEUE_LAST_RESOURCE;
2558 mp->tx_curr_desc_q = tx_next_desc;
2560 return ETH_OK;
2562 #else
2563 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2564 struct pkt_info *p_pkt_info)
2566 int tx_desc_curr;
2567 int tx_desc_used;
2568 struct eth_tx_desc *current_descriptor;
2569 unsigned int command_status;
2571 /* Do not process Tx ring in case of Tx ring resource error */
2572 if (mp->tx_resource_err)
2573 return ETH_QUEUE_FULL;
2575 mp->tx_ring_skbs++;
2576 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2578 /* Get the Tx Desc ring indexes */
2579 tx_desc_curr = mp->tx_curr_desc_q;
2580 tx_desc_used = mp->tx_used_desc_q;
2581 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2583 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2584 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2585 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2586 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2588 /* Set last desc with DMA ownership and interrupt enable. */
2589 wmb();
2590 current_descriptor->cmd_sts = command_status |
2591 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2593 wmb();
2594 ETH_ENABLE_TX_QUEUE(mp->port_num);
2596 /* Finish Tx packet. Update first desc in case of Tx resource error */
2597 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2599 /* Update the current descriptor */
2600 mp->tx_curr_desc_q = tx_desc_curr;
2602 /* Check for ring index overlap in the Tx desc ring */
2603 if (tx_desc_curr == tx_desc_used) {
2604 mp->tx_resource_err = 1;
2605 return ETH_QUEUE_LAST_RESOURCE;
2608 return ETH_OK;
2610 #endif
2613 * eth_tx_return_desc - Free all used Tx descriptors
2615 * DESCRIPTION:
2616 * This routine returns the transmitted packet information to the caller.
2617 * It uses the 'first' index to support Tx desc return in case a transmit
2618 * of a packet spanned over multiple buffer still in process.
2619 * In case the Tx queue was in "resource error" condition, where there are
2620 * no available Tx resources, the function resets the resource error flag.
2622 * INPUT:
2623 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2624 * struct pkt_info *p_pkt_info User packet buffer.
2626 * OUTPUT:
2627 * Tx ring 'first' and 'used' indexes are updated.
2629 * RETURN:
2630 * ETH_ERROR in case the routine can not access Tx desc ring.
2631 * ETH_RETRY in case there is transmission in process.
2632 * ETH_END_OF_JOB if the routine has nothing to release.
2633 * ETH_OK otherwise.
2636 static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2637 struct pkt_info *p_pkt_info)
2639 int tx_desc_used;
2640 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2641 int tx_busy_desc = mp->tx_first_desc_q;
2642 #else
2643 int tx_busy_desc = mp->tx_curr_desc_q;
2644 #endif
2645 struct eth_tx_desc *p_tx_desc_used;
2646 unsigned int command_status;
2648 /* Get the Tx Desc ring indexes */
2649 tx_desc_used = mp->tx_used_desc_q;
2651 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2653 /* Sanity check */
2654 if (p_tx_desc_used == NULL)
2655 return ETH_ERROR;
2657 /* Stop release. About to overlap the current available Tx descriptor */
2658 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err)
2659 return ETH_END_OF_JOB;
2661 command_status = p_tx_desc_used->cmd_sts;
2663 /* Still transmitting... */
2664 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2665 return ETH_RETRY;
2667 /* Pass the packet information to the caller */
2668 p_pkt_info->cmd_sts = command_status;
2669 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
2670 mp->tx_skb[tx_desc_used] = NULL;
2672 /* Update the next descriptor to release. */
2673 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2675 /* Any Tx return cancels the Tx resource error status */
2676 mp->tx_resource_err = 0;
2678 BUG_ON(mp->tx_ring_skbs == 0);
2679 mp->tx_ring_skbs--;
2681 return ETH_OK;
2685 * eth_port_receive - Get received information from Rx ring.
2687 * DESCRIPTION:
2688 * This routine returns the received data to the caller. There is no
2689 * data copying during routine operation. All information is returned
2690 * using pointer to packet information struct passed from the caller.
2691 * If the routine exhausts Rx ring resources then the resource error flag
2692 * is set.
2694 * INPUT:
2695 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2696 * struct pkt_info *p_pkt_info User packet buffer.
2698 * OUTPUT:
2699 * Rx ring current and used indexes are updated.
2701 * RETURN:
2702 * ETH_ERROR in case the routine can not access Rx desc ring.
2703 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2704 * ETH_END_OF_JOB if there is no received data.
2705 * ETH_OK otherwise.
2707 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2708 struct pkt_info *p_pkt_info)
2710 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2711 volatile struct eth_rx_desc *p_rx_desc;
2712 unsigned int command_status;
2714 /* Do not process Rx ring in case of Rx ring resource error */
2715 if (mp->rx_resource_err)
2716 return ETH_QUEUE_FULL;
2718 /* Get the Rx Desc ring 'curr and 'used' indexes */
2719 rx_curr_desc = mp->rx_curr_desc_q;
2720 rx_used_desc = mp->rx_used_desc_q;
2722 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2724 /* The following parameters are used to save readings from memory */
2725 command_status = p_rx_desc->cmd_sts;
2726 rmb();
2728 /* Nothing to receive... */
2729 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2730 return ETH_END_OF_JOB;
2732 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2733 p_pkt_info->cmd_sts = command_status;
2734 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2735 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2736 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2738 /* Clean the return info field to indicate that the packet has been */
2739 /* moved to the upper layers */
2740 mp->rx_skb[rx_curr_desc] = NULL;
2742 /* Update current index in data structure */
2743 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2744 mp->rx_curr_desc_q = rx_next_curr_desc;
2746 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2747 if (rx_next_curr_desc == rx_used_desc)
2748 mp->rx_resource_err = 1;
2750 return ETH_OK;
2754 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2756 * DESCRIPTION:
2757 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2758 * next 'used' descriptor and attached the returned buffer to it.
2759 * In case the Rx ring was in "resource error" condition, where there are
2760 * no available Rx resources, the function resets the resource error flag.
2762 * INPUT:
2763 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2764 * struct pkt_info *p_pkt_info Information on returned buffer.
2766 * OUTPUT:
2767 * New available Rx resource in Rx descriptor ring.
2769 * RETURN:
2770 * ETH_ERROR in case the routine can not access Rx desc ring.
2771 * ETH_OK otherwise.
2773 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2774 struct pkt_info *p_pkt_info)
2776 int used_rx_desc; /* Where to return Rx resource */
2777 volatile struct eth_rx_desc *p_used_rx_desc;
2779 /* Get 'used' Rx descriptor */
2780 used_rx_desc = mp->rx_used_desc_q;
2781 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2783 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2784 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2785 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2787 /* Flush the write pipe */
2789 /* Return the descriptor to DMA ownership */
2790 wmb();
2791 p_used_rx_desc->cmd_sts =
2792 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2793 wmb();
2795 /* Move the used descriptor pointer to the next descriptor */
2796 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2798 /* Any Rx return cancels the Rx resource error status */
2799 mp->rx_resource_err = 0;
2801 return ETH_OK;
2804 /************* Begin ethtool support *************************/
2806 struct mv643xx_stats {
2807 char stat_string[ETH_GSTRING_LEN];
2808 int sizeof_stat;
2809 int stat_offset;
2812 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2813 offsetof(struct mv643xx_private, m)
2815 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2816 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2817 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2818 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2819 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2820 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2821 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2822 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2823 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2824 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2825 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2826 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2827 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2828 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2829 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2830 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2831 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2832 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2833 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2834 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2835 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2836 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2837 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2838 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2839 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2840 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2841 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2842 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2843 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2844 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2845 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2846 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2847 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2848 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2849 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2850 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2851 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2852 { "collision", MV643XX_STAT(mib_counters.collision) },
2853 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2856 #define MV643XX_STATS_LEN \
2857 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2859 static int
2860 mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2862 struct mv643xx_private *mp = netdev->priv;
2863 int port_num = mp->port_num;
2864 int autoneg = eth_port_autoneg_supported(port_num);
2865 int mode_10_bit;
2866 int auto_duplex;
2867 int half_duplex = 0;
2868 int full_duplex = 0;
2869 int auto_speed;
2870 int speed_10 = 0;
2871 int speed_100 = 0;
2872 int speed_1000 = 0;
2874 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2875 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
2877 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
2879 if (mode_10_bit) {
2880 ecmd->supported = SUPPORTED_10baseT_Half;
2881 } else {
2882 ecmd->supported = (SUPPORTED_10baseT_Half |
2883 SUPPORTED_10baseT_Full |
2884 SUPPORTED_100baseT_Half |
2885 SUPPORTED_100baseT_Full |
2886 SUPPORTED_1000baseT_Full |
2887 (autoneg ? SUPPORTED_Autoneg : 0) |
2888 SUPPORTED_TP);
2890 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
2891 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
2893 ecmd->advertising = ADVERTISED_TP;
2895 if (autoneg) {
2896 ecmd->advertising |= ADVERTISED_Autoneg;
2898 if (auto_duplex) {
2899 half_duplex = 1;
2900 full_duplex = 1;
2901 } else {
2902 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
2903 full_duplex = 1;
2904 else
2905 half_duplex = 1;
2908 if (auto_speed) {
2909 speed_10 = 1;
2910 speed_100 = 1;
2911 speed_1000 = 1;
2912 } else {
2913 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
2914 speed_1000 = 1;
2915 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
2916 speed_100 = 1;
2917 else
2918 speed_10 = 1;
2921 if (speed_10 & half_duplex)
2922 ecmd->advertising |= ADVERTISED_10baseT_Half;
2923 if (speed_10 & full_duplex)
2924 ecmd->advertising |= ADVERTISED_10baseT_Full;
2925 if (speed_100 & half_duplex)
2926 ecmd->advertising |= ADVERTISED_100baseT_Half;
2927 if (speed_100 & full_duplex)
2928 ecmd->advertising |= ADVERTISED_100baseT_Full;
2929 if (speed_1000)
2930 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2934 ecmd->port = PORT_TP;
2935 ecmd->phy_address = ethernet_phy_get(port_num);
2937 ecmd->transceiver = XCVR_EXTERNAL;
2939 if (netif_carrier_ok(netdev)) {
2940 if (mode_10_bit)
2941 ecmd->speed = SPEED_10;
2942 else {
2943 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
2944 ecmd->speed = SPEED_1000;
2945 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
2946 ecmd->speed = SPEED_100;
2947 else
2948 ecmd->speed = SPEED_10;
2951 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
2952 ecmd->duplex = DUPLEX_FULL;
2953 else
2954 ecmd->duplex = DUPLEX_HALF;
2955 } else {
2956 ecmd->speed = -1;
2957 ecmd->duplex = -1;
2960 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2961 return 0;
2964 static void
2965 mv643xx_get_drvinfo(struct net_device *netdev,
2966 struct ethtool_drvinfo *drvinfo)
2968 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2969 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2970 strncpy(drvinfo->fw_version, "N/A", 32);
2971 strncpy(drvinfo->bus_info, "mv643xx", 32);
2972 drvinfo->n_stats = MV643XX_STATS_LEN;
2975 static int
2976 mv643xx_get_stats_count(struct net_device *netdev)
2978 return MV643XX_STATS_LEN;
2981 static void
2982 mv643xx_get_ethtool_stats(struct net_device *netdev,
2983 struct ethtool_stats *stats, uint64_t *data)
2985 struct mv643xx_private *mp = netdev->priv;
2986 int i;
2988 eth_update_mib_counters(mp);
2990 for(i = 0; i < MV643XX_STATS_LEN; i++) {
2991 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2992 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2993 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2997 static void
2998 mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
3000 int i;
3002 switch(stringset) {
3003 case ETH_SS_STATS:
3004 for (i=0; i < MV643XX_STATS_LEN; i++) {
3005 memcpy(data + i * ETH_GSTRING_LEN,
3006 mv643xx_gstrings_stats[i].stat_string,
3007 ETH_GSTRING_LEN);
3009 break;
3013 static struct ethtool_ops mv643xx_ethtool_ops = {
3014 .get_settings = mv643xx_get_settings,
3015 .get_drvinfo = mv643xx_get_drvinfo,
3016 .get_link = ethtool_op_get_link,
3017 .get_sg = ethtool_op_get_sg,
3018 .set_sg = ethtool_op_set_sg,
3019 .get_strings = mv643xx_get_strings,
3020 .get_stats_count = mv643xx_get_stats_count,
3021 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3024 /************* End ethtool support *************************/