1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
55 #include <linux/slab.h>
56 #include <net/sock.h> /* For skb_set_owner_w */
58 #include <net/sctp/sctp.h>
59 #include <net/sctp/sm.h>
61 /* Declare internal functions here. */
62 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
63 static void sctp_check_transmitted(struct sctp_outq
*q
,
64 struct list_head
*transmitted_queue
,
65 struct sctp_transport
*transport
,
66 struct sctp_sackhdr
*sack
,
67 __u32
*highest_new_tsn
);
69 static void sctp_mark_missing(struct sctp_outq
*q
,
70 struct list_head
*transmitted_queue
,
71 struct sctp_transport
*transport
,
72 __u32 highest_new_tsn
,
73 int count_of_newacks
);
75 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
77 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
);
79 /* Add data to the front of the queue. */
80 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
81 struct sctp_chunk
*ch
)
83 list_add(&ch
->list
, &q
->out_chunk_list
);
84 q
->out_qlen
+= ch
->skb
->len
;
87 /* Take data from the front of the queue. */
88 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
90 struct sctp_chunk
*ch
= NULL
;
92 if (!list_empty(&q
->out_chunk_list
)) {
93 struct list_head
*entry
= q
->out_chunk_list
.next
;
95 ch
= list_entry(entry
, struct sctp_chunk
, list
);
97 q
->out_qlen
-= ch
->skb
->len
;
101 /* Add data chunk to the end of the queue. */
102 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
103 struct sctp_chunk
*ch
)
105 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
106 q
->out_qlen
+= ch
->skb
->len
;
110 * SFR-CACC algorithm:
111 * D) If count_of_newacks is greater than or equal to 2
112 * and t was not sent to the current primary then the
113 * sender MUST NOT increment missing report count for t.
115 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
116 struct sctp_transport
*transport
,
117 int count_of_newacks
)
119 if (count_of_newacks
>=2 && transport
!= primary
)
125 * SFR-CACC algorithm:
126 * F) If count_of_newacks is less than 2, let d be the
127 * destination to which t was sent. If cacc_saw_newack
128 * is 0 for destination d, then the sender MUST NOT
129 * increment missing report count for t.
131 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
132 int count_of_newacks
)
134 if (count_of_newacks
< 2 &&
135 (transport
&& !transport
->cacc
.cacc_saw_newack
))
141 * SFR-CACC algorithm:
142 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
143 * execute steps C, D, F.
145 * C has been implemented in sctp_outq_sack
147 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
148 struct sctp_transport
*transport
,
149 int count_of_newacks
)
151 if (!primary
->cacc
.cycling_changeover
) {
152 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
154 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
162 * SFR-CACC algorithm:
163 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
164 * than next_tsn_at_change of the current primary, then
165 * the sender MUST NOT increment missing report count
168 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
170 if (primary
->cacc
.cycling_changeover
&&
171 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
177 * SFR-CACC algorithm:
178 * 3) If the missing report count for TSN t is to be
179 * incremented according to [RFC2960] and
180 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
181 * then the sender MUST further execute steps 3.1 and
182 * 3.2 to determine if the missing report count for
183 * TSN t SHOULD NOT be incremented.
185 * 3.3) If 3.1 and 3.2 do not dictate that the missing
186 * report count for t should not be incremented, then
187 * the sender SHOULD increment missing report count for
188 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
190 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
191 struct sctp_transport
*transport
,
192 int count_of_newacks
,
195 if (primary
->cacc
.changeover_active
&&
196 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
) ||
197 sctp_cacc_skip_3_2(primary
, tsn
)))
202 /* Initialize an existing sctp_outq. This does the boring stuff.
203 * You still need to define handlers if you really want to DO
204 * something with this structure...
206 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
209 INIT_LIST_HEAD(&q
->out_chunk_list
);
210 INIT_LIST_HEAD(&q
->control_chunk_list
);
211 INIT_LIST_HEAD(&q
->retransmit
);
212 INIT_LIST_HEAD(&q
->sacked
);
213 INIT_LIST_HEAD(&q
->abandoned
);
216 q
->outstanding_bytes
= 0;
224 /* Free the outqueue structure and any related pending chunks.
226 void sctp_outq_teardown(struct sctp_outq
*q
)
228 struct sctp_transport
*transport
;
229 struct list_head
*lchunk
, *temp
;
230 struct sctp_chunk
*chunk
, *tmp
;
232 /* Throw away unacknowledged chunks. */
233 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
235 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
236 chunk
= list_entry(lchunk
, struct sctp_chunk
,
238 /* Mark as part of a failed message. */
239 sctp_chunk_fail(chunk
, q
->error
);
240 sctp_chunk_free(chunk
);
244 /* Throw away chunks that have been gap ACKed. */
245 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
246 list_del_init(lchunk
);
247 chunk
= list_entry(lchunk
, struct sctp_chunk
,
249 sctp_chunk_fail(chunk
, q
->error
);
250 sctp_chunk_free(chunk
);
253 /* Throw away any chunks in the retransmit queue. */
254 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
255 list_del_init(lchunk
);
256 chunk
= list_entry(lchunk
, struct sctp_chunk
,
258 sctp_chunk_fail(chunk
, q
->error
);
259 sctp_chunk_free(chunk
);
262 /* Throw away any chunks that are in the abandoned queue. */
263 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
264 list_del_init(lchunk
);
265 chunk
= list_entry(lchunk
, struct sctp_chunk
,
267 sctp_chunk_fail(chunk
, q
->error
);
268 sctp_chunk_free(chunk
);
271 /* Throw away any leftover data chunks. */
272 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
274 /* Mark as send failure. */
275 sctp_chunk_fail(chunk
, q
->error
);
276 sctp_chunk_free(chunk
);
281 /* Throw away any leftover control chunks. */
282 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
283 list_del_init(&chunk
->list
);
284 sctp_chunk_free(chunk
);
288 /* Free the outqueue structure and any related pending chunks. */
289 void sctp_outq_free(struct sctp_outq
*q
)
291 /* Throw away leftover chunks. */
292 sctp_outq_teardown(q
);
294 /* If we were kmalloc()'d, free the memory. */
299 /* Put a new chunk in an sctp_outq. */
300 int sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
304 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
305 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
306 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
309 /* If it is data, queue it up, otherwise, send it
312 if (sctp_chunk_is_data(chunk
)) {
313 /* Is it OK to queue data chunks? */
314 /* From 9. Termination of Association
316 * When either endpoint performs a shutdown, the
317 * association on each peer will stop accepting new
318 * data from its user and only deliver data in queue
319 * at the time of sending or receiving the SHUTDOWN
322 switch (q
->asoc
->state
) {
323 case SCTP_STATE_CLOSED
:
324 case SCTP_STATE_SHUTDOWN_PENDING
:
325 case SCTP_STATE_SHUTDOWN_SENT
:
326 case SCTP_STATE_SHUTDOWN_RECEIVED
:
327 case SCTP_STATE_SHUTDOWN_ACK_SENT
:
328 /* Cannot send after transport endpoint shutdown */
333 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
334 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
335 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
338 sctp_outq_tail_data(q
, chunk
);
339 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
340 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS
);
342 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS
);
347 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
348 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);
355 error
= sctp_outq_flush(q
, 0);
360 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
361 * and the abandoned list are in ascending order.
363 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
365 struct list_head
*pos
;
366 struct sctp_chunk
*nchunk
, *lchunk
;
370 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
371 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
373 list_for_each(pos
, head
) {
374 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
375 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
376 if (TSN_lt(ntsn
, ltsn
)) {
377 list_add(new, pos
->prev
);
383 list_add_tail(new, head
);
386 /* Mark all the eligible packets on a transport for retransmission. */
387 void sctp_retransmit_mark(struct sctp_outq
*q
,
388 struct sctp_transport
*transport
,
391 struct list_head
*lchunk
, *ltemp
;
392 struct sctp_chunk
*chunk
;
394 /* Walk through the specified transmitted queue. */
395 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
396 chunk
= list_entry(lchunk
, struct sctp_chunk
,
399 /* If the chunk is abandoned, move it to abandoned list. */
400 if (sctp_chunk_abandoned(chunk
)) {
401 list_del_init(lchunk
);
402 sctp_insert_list(&q
->abandoned
, lchunk
);
404 /* If this chunk has not been previousely acked,
405 * stop considering it 'outstanding'. Our peer
406 * will most likely never see it since it will
407 * not be retransmitted
409 if (!chunk
->tsn_gap_acked
) {
410 if (chunk
->transport
)
411 chunk
->transport
->flight_size
-=
412 sctp_data_size(chunk
);
413 q
->outstanding_bytes
-= sctp_data_size(chunk
);
414 q
->asoc
->peer
.rwnd
+= (sctp_data_size(chunk
) +
415 sizeof(struct sk_buff
));
420 /* If we are doing retransmission due to a timeout or pmtu
421 * discovery, only the chunks that are not yet acked should
422 * be added to the retransmit queue.
424 if ((reason
== SCTP_RTXR_FAST_RTX
&&
425 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
426 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
427 /* RFC 2960 6.2.1 Processing a Received SACK
429 * C) Any time a DATA chunk is marked for
430 * retransmission (via either T3-rtx timer expiration
431 * (Section 6.3.3) or via fast retransmit
432 * (Section 7.2.4)), add the data size of those
433 * chunks to the rwnd.
435 q
->asoc
->peer
.rwnd
+= (sctp_data_size(chunk
) +
436 sizeof(struct sk_buff
));
437 q
->outstanding_bytes
-= sctp_data_size(chunk
);
438 if (chunk
->transport
)
439 transport
->flight_size
-= sctp_data_size(chunk
);
441 /* sctpimpguide-05 Section 2.8.2
442 * M5) If a T3-rtx timer expires, the
443 * 'TSN.Missing.Report' of all affected TSNs is set
446 chunk
->tsn_missing_report
= 0;
448 /* If a chunk that is being used for RTT measurement
449 * has to be retransmitted, we cannot use this chunk
450 * anymore for RTT measurements. Reset rto_pending so
451 * that a new RTT measurement is started when a new
452 * data chunk is sent.
454 if (chunk
->rtt_in_progress
) {
455 chunk
->rtt_in_progress
= 0;
456 transport
->rto_pending
= 0;
459 /* Move the chunk to the retransmit queue. The chunks
460 * on the retransmit queue are always kept in order.
462 list_del_init(lchunk
);
463 sctp_insert_list(&q
->retransmit
, lchunk
);
467 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
468 "cwnd: %d, ssthresh: %d, flight_size: %d, "
469 "pba: %d\n", __func__
,
471 transport
->cwnd
, transport
->ssthresh
,
472 transport
->flight_size
,
473 transport
->partial_bytes_acked
);
477 /* Mark all the eligible packets on a transport for retransmission and force
480 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
481 sctp_retransmit_reason_t reason
)
486 case SCTP_RTXR_T3_RTX
:
487 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS
);
488 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
489 /* Update the retran path if the T3-rtx timer has expired for
490 * the current retran path.
492 if (transport
== transport
->asoc
->peer
.retran_path
)
493 sctp_assoc_update_retran_path(transport
->asoc
);
494 transport
->asoc
->rtx_data_chunks
+=
495 transport
->asoc
->unack_data
;
497 case SCTP_RTXR_FAST_RTX
:
498 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS
);
499 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
502 case SCTP_RTXR_PMTUD
:
503 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS
);
505 case SCTP_RTXR_T1_RTX
:
506 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS
);
507 transport
->asoc
->init_retries
++;
513 sctp_retransmit_mark(q
, transport
, reason
);
515 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
516 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
517 * following the procedures outlined in C1 - C5.
519 if (reason
== SCTP_RTXR_T3_RTX
)
520 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
522 /* Flush the queues only on timeout, since fast_rtx is only
523 * triggered during sack processing and the queue
524 * will be flushed at the end.
526 if (reason
!= SCTP_RTXR_FAST_RTX
)
527 error
= sctp_outq_flush(q
, /* rtx_timeout */ 1);
530 q
->asoc
->base
.sk
->sk_err
= -error
;
534 * Transmit DATA chunks on the retransmit queue. Upon return from
535 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
536 * need to be transmitted by the caller.
537 * We assume that pkt->transport has already been set.
539 * The return value is a normal kernel error return value.
541 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
542 int rtx_timeout
, int *start_timer
)
544 struct list_head
*lqueue
;
545 struct sctp_transport
*transport
= pkt
->transport
;
547 struct sctp_chunk
*chunk
, *chunk1
;
553 lqueue
= &q
->retransmit
;
554 fast_rtx
= q
->fast_rtx
;
556 /* This loop handles time-out retransmissions, fast retransmissions,
557 * and retransmissions due to opening of whindow.
559 * RFC 2960 6.3.3 Handle T3-rtx Expiration
561 * E3) Determine how many of the earliest (i.e., lowest TSN)
562 * outstanding DATA chunks for the address for which the
563 * T3-rtx has expired will fit into a single packet, subject
564 * to the MTU constraint for the path corresponding to the
565 * destination transport address to which the retransmission
566 * is being sent (this may be different from the address for
567 * which the timer expires [see Section 6.4]). Call this value
568 * K. Bundle and retransmit those K DATA chunks in a single
569 * packet to the destination endpoint.
571 * [Just to be painfully clear, if we are retransmitting
572 * because a timeout just happened, we should send only ONE
573 * packet of retransmitted data.]
575 * For fast retransmissions we also send only ONE packet. However,
576 * if we are just flushing the queue due to open window, we'll
577 * try to send as much as possible.
579 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
580 /* If the chunk is abandoned, move it to abandoned list. */
581 if (sctp_chunk_abandoned(chunk
)) {
582 list_del_init(&chunk
->transmitted_list
);
583 sctp_insert_list(&q
->abandoned
,
584 &chunk
->transmitted_list
);
588 /* Make sure that Gap Acked TSNs are not retransmitted. A
589 * simple approach is just to move such TSNs out of the
590 * way and into a 'transmitted' queue and skip to the
593 if (chunk
->tsn_gap_acked
) {
594 list_del(&chunk
->transmitted_list
);
595 list_add_tail(&chunk
->transmitted_list
,
596 &transport
->transmitted
);
600 /* If we are doing fast retransmit, ignore non-fast_rtransmit
603 if (fast_rtx
&& !chunk
->fast_retransmit
)
607 /* Attempt to append this chunk to the packet. */
608 status
= sctp_packet_append_chunk(pkt
, chunk
);
611 case SCTP_XMIT_PMTU_FULL
:
612 if (!pkt
->has_data
&& !pkt
->has_cookie_echo
) {
613 /* If this packet did not contain DATA then
614 * retransmission did not happen, so do it
615 * again. We'll ignore the error here since
616 * control chunks are already freed so there
617 * is nothing we can do.
619 sctp_packet_transmit(pkt
);
623 /* Send this packet. */
624 error
= sctp_packet_transmit(pkt
);
626 /* If we are retransmitting, we should only
627 * send a single packet.
628 * Otherwise, try appending this chunk again.
630 if (rtx_timeout
|| fast_rtx
)
635 /* Bundle next chunk in the next round. */
638 case SCTP_XMIT_RWND_FULL
:
639 /* Send this packet. */
640 error
= sctp_packet_transmit(pkt
);
642 /* Stop sending DATA as there is no more room
648 case SCTP_XMIT_NAGLE_DELAY
:
649 /* Send this packet. */
650 error
= sctp_packet_transmit(pkt
);
652 /* Stop sending DATA because of nagle delay. */
657 /* The append was successful, so add this chunk to
658 * the transmitted list.
660 list_del(&chunk
->transmitted_list
);
661 list_add_tail(&chunk
->transmitted_list
,
662 &transport
->transmitted
);
664 /* Mark the chunk as ineligible for fast retransmit
665 * after it is retransmitted.
667 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
668 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
674 /* Set the timer if there were no errors */
675 if (!error
&& !timer
)
682 /* If we are here due to a retransmit timeout or a fast
683 * retransmit and if there are any chunks left in the retransmit
684 * queue that could not fit in the PMTU sized packet, they need
685 * to be marked as ineligible for a subsequent fast retransmit.
687 if (rtx_timeout
|| fast_rtx
) {
688 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
689 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
690 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
694 *start_timer
= timer
;
696 /* Clear fast retransmit hint */
703 /* Cork the outqueue so queued chunks are really queued. */
704 int sctp_outq_uncork(struct sctp_outq
*q
)
709 error
= sctp_outq_flush(q
, 0);
715 * Try to flush an outqueue.
717 * Description: Send everything in q which we legally can, subject to
718 * congestion limitations.
719 * * Note: This function can be called from multiple contexts so appropriate
720 * locking concerns must be made. Today we use the sock lock to protect
723 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
)
725 struct sctp_packet
*packet
;
726 struct sctp_packet singleton
;
727 struct sctp_association
*asoc
= q
->asoc
;
728 __u16 sport
= asoc
->base
.bind_addr
.port
;
729 __u16 dport
= asoc
->peer
.port
;
730 __u32 vtag
= asoc
->peer
.i
.init_tag
;
731 struct sctp_transport
*transport
= NULL
;
732 struct sctp_transport
*new_transport
;
733 struct sctp_chunk
*chunk
, *tmp
;
739 /* These transports have chunks to send. */
740 struct list_head transport_list
;
741 struct list_head
*ltransport
;
743 INIT_LIST_HEAD(&transport_list
);
749 * When bundling control chunks with DATA chunks, an
750 * endpoint MUST place control chunks first in the outbound
751 * SCTP packet. The transmitter MUST transmit DATA chunks
752 * within a SCTP packet in increasing order of TSN.
756 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
758 * F1) This means that until such time as the ASCONF
759 * containing the add is acknowledged, the sender MUST
760 * NOT use the new IP address as a source for ANY SCTP
761 * packet except on carrying an ASCONF Chunk.
763 if (asoc
->src_out_of_asoc_ok
&&
764 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF
)
767 list_del_init(&chunk
->list
);
769 /* Pick the right transport to use. */
770 new_transport
= chunk
->transport
;
772 if (!new_transport
) {
774 * If we have a prior transport pointer, see if
775 * the destination address of the chunk
776 * matches the destination address of the
777 * current transport. If not a match, then
778 * try to look up the transport with a given
779 * destination address. We do this because
780 * after processing ASCONFs, we may have new
781 * transports created.
784 sctp_cmp_addr_exact(&chunk
->dest
,
786 new_transport
= transport
;
788 new_transport
= sctp_assoc_lookup_paddr(asoc
,
791 /* if we still don't have a new transport, then
792 * use the current active path.
795 new_transport
= asoc
->peer
.active_path
;
796 } else if ((new_transport
->state
== SCTP_INACTIVE
) ||
797 (new_transport
->state
== SCTP_UNCONFIRMED
)) {
798 /* If the chunk is Heartbeat or Heartbeat Ack,
799 * send it to chunk->transport, even if it's
802 * 3.3.6 Heartbeat Acknowledgement:
804 * A HEARTBEAT ACK is always sent to the source IP
805 * address of the IP datagram containing the
806 * HEARTBEAT chunk to which this ack is responding.
809 * ASCONF_ACKs also must be sent to the source.
811 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
812 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
&&
813 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF_ACK
)
814 new_transport
= asoc
->peer
.active_path
;
817 /* Are we switching transports?
818 * Take care of transport locks.
820 if (new_transport
!= transport
) {
821 transport
= new_transport
;
822 if (list_empty(&transport
->send_ready
)) {
823 list_add_tail(&transport
->send_ready
,
826 packet
= &transport
->packet
;
827 sctp_packet_config(packet
, vtag
,
828 asoc
->peer
.ecn_capable
);
831 switch (chunk
->chunk_hdr
->type
) {
835 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
836 * COMPLETE with any other chunks. [Send them immediately.]
839 case SCTP_CID_INIT_ACK
:
840 case SCTP_CID_SHUTDOWN_COMPLETE
:
841 sctp_packet_init(&singleton
, transport
, sport
, dport
);
842 sctp_packet_config(&singleton
, vtag
, 0);
843 sctp_packet_append_chunk(&singleton
, chunk
);
844 error
= sctp_packet_transmit(&singleton
);
850 if (sctp_test_T_bit(chunk
)) {
851 packet
->vtag
= asoc
->c
.my_vtag
;
853 /* The following chunks are "response" chunks, i.e.
854 * they are generated in response to something we
855 * received. If we are sending these, then we can
856 * send only 1 packet containing these chunks.
858 case SCTP_CID_HEARTBEAT_ACK
:
859 case SCTP_CID_SHUTDOWN_ACK
:
860 case SCTP_CID_COOKIE_ACK
:
861 case SCTP_CID_COOKIE_ECHO
:
863 case SCTP_CID_ECN_CWR
:
864 case SCTP_CID_ASCONF_ACK
:
869 case SCTP_CID_HEARTBEAT
:
870 case SCTP_CID_SHUTDOWN
:
871 case SCTP_CID_ECN_ECNE
:
872 case SCTP_CID_ASCONF
:
873 case SCTP_CID_FWD_TSN
:
874 status
= sctp_packet_transmit_chunk(packet
, chunk
,
876 if (status
!= SCTP_XMIT_OK
) {
877 /* put the chunk back */
878 list_add(&chunk
->list
, &q
->control_chunk_list
);
879 } else if (chunk
->chunk_hdr
->type
== SCTP_CID_FWD_TSN
) {
880 /* PR-SCTP C5) If a FORWARD TSN is sent, the
881 * sender MUST assure that at least one T3-rtx
884 sctp_transport_reset_timers(transport
);
889 /* We built a chunk with an illegal type! */
894 if (q
->asoc
->src_out_of_asoc_ok
)
897 /* Is it OK to send data chunks? */
898 switch (asoc
->state
) {
899 case SCTP_STATE_COOKIE_ECHOED
:
900 /* Only allow bundling when this packet has a COOKIE-ECHO
903 if (!packet
|| !packet
->has_cookie_echo
)
907 case SCTP_STATE_ESTABLISHED
:
908 case SCTP_STATE_SHUTDOWN_PENDING
:
909 case SCTP_STATE_SHUTDOWN_RECEIVED
:
911 * RFC 2960 6.1 Transmission of DATA Chunks
913 * C) When the time comes for the sender to transmit,
914 * before sending new DATA chunks, the sender MUST
915 * first transmit any outstanding DATA chunks which
916 * are marked for retransmission (limited by the
919 if (!list_empty(&q
->retransmit
)) {
920 if (asoc
->peer
.retran_path
->state
== SCTP_UNCONFIRMED
)
922 if (transport
== asoc
->peer
.retran_path
)
925 /* Switch transports & prepare the packet. */
927 transport
= asoc
->peer
.retran_path
;
929 if (list_empty(&transport
->send_ready
)) {
930 list_add_tail(&transport
->send_ready
,
934 packet
= &transport
->packet
;
935 sctp_packet_config(packet
, vtag
,
936 asoc
->peer
.ecn_capable
);
938 error
= sctp_outq_flush_rtx(q
, packet
,
939 rtx_timeout
, &start_timer
);
942 sctp_transport_reset_timers(transport
);
944 /* This can happen on COOKIE-ECHO resend. Only
945 * one chunk can get bundled with a COOKIE-ECHO.
947 if (packet
->has_cookie_echo
)
950 /* Don't send new data if there is still data
951 * waiting to retransmit.
953 if (!list_empty(&q
->retransmit
))
957 /* Apply Max.Burst limitation to the current transport in
958 * case it will be used for new data. We are going to
959 * rest it before we return, but we want to apply the limit
960 * to the currently queued data.
963 sctp_transport_burst_limited(transport
);
965 /* Finally, transmit new packets. */
966 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
967 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
970 if (chunk
->sinfo
.sinfo_stream
>=
971 asoc
->c
.sinit_num_ostreams
) {
973 /* Mark as failed send. */
974 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
975 sctp_chunk_free(chunk
);
979 /* Has this chunk expired? */
980 if (sctp_chunk_abandoned(chunk
)) {
981 sctp_chunk_fail(chunk
, 0);
982 sctp_chunk_free(chunk
);
986 /* If there is a specified transport, use it.
987 * Otherwise, we want to use the active path.
989 new_transport
= chunk
->transport
;
990 if (!new_transport
||
991 ((new_transport
->state
== SCTP_INACTIVE
) ||
992 (new_transport
->state
== SCTP_UNCONFIRMED
)))
993 new_transport
= asoc
->peer
.active_path
;
994 if (new_transport
->state
== SCTP_UNCONFIRMED
)
997 /* Change packets if necessary. */
998 if (new_transport
!= transport
) {
999 transport
= new_transport
;
1001 /* Schedule to have this transport's
1004 if (list_empty(&transport
->send_ready
)) {
1005 list_add_tail(&transport
->send_ready
,
1009 packet
= &transport
->packet
;
1010 sctp_packet_config(packet
, vtag
,
1011 asoc
->peer
.ecn_capable
);
1012 /* We've switched transports, so apply the
1013 * Burst limit to the new transport.
1015 sctp_transport_burst_limited(transport
);
1018 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
1020 chunk
&& chunk
->chunk_hdr
?
1021 sctp_cname(SCTP_ST_CHUNK(
1022 chunk
->chunk_hdr
->type
))
1025 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
1026 "%p skb->users %d.\n",
1027 ntohl(chunk
->subh
.data_hdr
->tsn
),
1028 chunk
->skb
?chunk
->skb
->head
: NULL
,
1030 atomic_read(&chunk
->skb
->users
) : -1);
1032 /* Add the chunk to the packet. */
1033 status
= sctp_packet_transmit_chunk(packet
, chunk
, 0);
1036 case SCTP_XMIT_PMTU_FULL
:
1037 case SCTP_XMIT_RWND_FULL
:
1038 case SCTP_XMIT_NAGLE_DELAY
:
1039 /* We could not append this chunk, so put
1040 * the chunk back on the output queue.
1042 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1043 "not transmit TSN: 0x%x, status: %d\n",
1044 ntohl(chunk
->subh
.data_hdr
->tsn
),
1046 sctp_outq_head_data(q
, chunk
);
1047 goto sctp_flush_out
;
1051 /* The sender is in the SHUTDOWN-PENDING state,
1052 * The sender MAY set the I-bit in the DATA
1055 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
)
1056 chunk
->chunk_hdr
->flags
|= SCTP_DATA_SACK_IMM
;
1064 /* BUG: We assume that the sctp_packet_transmit()
1065 * call below will succeed all the time and add the
1066 * chunk to the transmitted list and restart the
1068 * It is possible that the call can fail under OOM
1071 * Is this really a problem? Won't this behave
1074 list_add_tail(&chunk
->transmitted_list
,
1075 &transport
->transmitted
);
1077 sctp_transport_reset_timers(transport
);
1081 /* Only let one DATA chunk get bundled with a
1082 * COOKIE-ECHO chunk.
1084 if (packet
->has_cookie_echo
)
1085 goto sctp_flush_out
;
1096 /* Before returning, examine all the transports touched in
1097 * this call. Right now, we bluntly force clear all the
1098 * transports. Things might change after we implement Nagle.
1099 * But such an examination is still required.
1103 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
1104 struct sctp_transport
*t
= list_entry(ltransport
,
1105 struct sctp_transport
,
1107 packet
= &t
->packet
;
1108 if (!sctp_packet_empty(packet
))
1109 error
= sctp_packet_transmit(packet
);
1111 /* Clear the burst limited state, if any */
1112 sctp_transport_burst_reset(t
);
1118 /* Update unack_data based on the incoming SACK chunk */
1119 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1120 struct sctp_sackhdr
*sack
)
1122 sctp_sack_variable_t
*frags
;
1126 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1128 frags
= sack
->variable
;
1129 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1130 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1131 ntohs(frags
[i
].gab
.start
) + 1));
1134 assoc
->unack_data
= unack_data
;
1137 /* This is where we REALLY process a SACK.
1139 * Process the SACK against the outqueue. Mostly, this just frees
1140 * things off the transmitted queue.
1142 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_sackhdr
*sack
)
1144 struct sctp_association
*asoc
= q
->asoc
;
1145 struct sctp_transport
*transport
;
1146 struct sctp_chunk
*tchunk
= NULL
;
1147 struct list_head
*lchunk
, *transport_list
, *temp
;
1148 sctp_sack_variable_t
*frags
= sack
->variable
;
1149 __u32 sack_ctsn
, ctsn
, tsn
;
1150 __u32 highest_tsn
, highest_new_tsn
;
1152 unsigned outstanding
;
1153 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1154 int count_of_newacks
= 0;
1158 /* Grab the association's destination address list. */
1159 transport_list
= &asoc
->peer
.transport_addr_list
;
1161 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1162 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1164 * SFR-CACC algorithm:
1165 * On receipt of a SACK the sender SHOULD execute the
1166 * following statements.
1168 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1169 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1170 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1172 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1173 * is set the receiver of the SACK MUST take the following actions:
1175 * A) Initialize the cacc_saw_newack to 0 for all destination
1178 * Only bother if changeover_active is set. Otherwise, this is
1179 * totally suboptimal to do on every SACK.
1181 if (primary
->cacc
.changeover_active
) {
1182 u8 clear_cycling
= 0;
1184 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1185 primary
->cacc
.changeover_active
= 0;
1189 if (clear_cycling
|| gap_ack_blocks
) {
1190 list_for_each_entry(transport
, transport_list
,
1193 transport
->cacc
.cycling_changeover
= 0;
1195 transport
->cacc
.cacc_saw_newack
= 0;
1200 /* Get the highest TSN in the sack. */
1201 highest_tsn
= sack_ctsn
;
1203 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1205 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
))
1206 asoc
->highest_sacked
= highest_tsn
;
1208 highest_new_tsn
= sack_ctsn
;
1210 /* Run through the retransmit queue. Credit bytes received
1211 * and free those chunks that we can.
1213 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, sack
, &highest_new_tsn
);
1215 /* Run through the transmitted queue.
1216 * Credit bytes received and free those chunks which we can.
1218 * This is a MASSIVE candidate for optimization.
1220 list_for_each_entry(transport
, transport_list
, transports
) {
1221 sctp_check_transmitted(q
, &transport
->transmitted
,
1222 transport
, sack
, &highest_new_tsn
);
1224 * SFR-CACC algorithm:
1225 * C) Let count_of_newacks be the number of
1226 * destinations for which cacc_saw_newack is set.
1228 if (transport
->cacc
.cacc_saw_newack
)
1229 count_of_newacks
++;
1232 /* Move the Cumulative TSN Ack Point if appropriate. */
1233 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
)) {
1234 asoc
->ctsn_ack_point
= sack_ctsn
;
1238 if (gap_ack_blocks
) {
1240 if (asoc
->fast_recovery
&& accum_moved
)
1241 highest_new_tsn
= highest_tsn
;
1243 list_for_each_entry(transport
, transport_list
, transports
)
1244 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1245 highest_new_tsn
, count_of_newacks
);
1248 /* Update unack_data field in the assoc. */
1249 sctp_sack_update_unack_data(asoc
, sack
);
1251 ctsn
= asoc
->ctsn_ack_point
;
1253 /* Throw away stuff rotting on the sack queue. */
1254 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1255 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1257 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1258 if (TSN_lte(tsn
, ctsn
)) {
1259 list_del_init(&tchunk
->transmitted_list
);
1260 sctp_chunk_free(tchunk
);
1264 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1265 * number of bytes still outstanding after processing the
1266 * Cumulative TSN Ack and the Gap Ack Blocks.
1269 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1270 outstanding
= q
->outstanding_bytes
;
1272 if (outstanding
< sack_a_rwnd
)
1273 sack_a_rwnd
-= outstanding
;
1277 asoc
->peer
.rwnd
= sack_a_rwnd
;
1279 sctp_generate_fwdtsn(q
, sack_ctsn
);
1281 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1282 __func__
, sack_ctsn
);
1283 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1284 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1285 __func__
, asoc
, ctsn
, asoc
->adv_peer_ack_point
);
1287 /* See if all chunks are acked.
1288 * Make sure the empty queue handler will get run later.
1290 q
->empty
= (list_empty(&q
->out_chunk_list
) &&
1291 list_empty(&q
->retransmit
));
1295 list_for_each_entry(transport
, transport_list
, transports
) {
1296 q
->empty
= q
->empty
&& list_empty(&transport
->transmitted
);
1301 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1306 /* Is the outqueue empty? */
1307 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1312 /********************************************************************
1313 * 2nd Level Abstractions
1314 ********************************************************************/
1316 /* Go through a transport's transmitted list or the association's retransmit
1317 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1318 * The retransmit list will not have an associated transport.
1320 * I added coherent debug information output. --xguo
1322 * Instead of printing 'sacked' or 'kept' for each TSN on the
1323 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1324 * KEPT TSN6-TSN7, etc.
1326 static void sctp_check_transmitted(struct sctp_outq
*q
,
1327 struct list_head
*transmitted_queue
,
1328 struct sctp_transport
*transport
,
1329 struct sctp_sackhdr
*sack
,
1330 __u32
*highest_new_tsn_in_sack
)
1332 struct list_head
*lchunk
;
1333 struct sctp_chunk
*tchunk
;
1334 struct list_head tlist
;
1338 __u8 restart_timer
= 0;
1339 int bytes_acked
= 0;
1340 int migrate_bytes
= 0;
1342 /* These state variables are for coherent debug output. --xguo */
1345 __u32 dbg_ack_tsn
= 0; /* An ACKed TSN range starts here... */
1346 __u32 dbg_last_ack_tsn
= 0; /* ...and finishes here. */
1347 __u32 dbg_kept_tsn
= 0; /* An un-ACKed range starts here... */
1348 __u32 dbg_last_kept_tsn
= 0; /* ...and finishes here. */
1350 /* 0 : The last TSN was ACKed.
1351 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1352 * -1: We need to initialize.
1354 int dbg_prt_state
= -1;
1355 #endif /* SCTP_DEBUG */
1357 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1359 INIT_LIST_HEAD(&tlist
);
1361 /* The while loop will skip empty transmitted queues. */
1362 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1363 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1366 if (sctp_chunk_abandoned(tchunk
)) {
1367 /* Move the chunk to abandoned list. */
1368 sctp_insert_list(&q
->abandoned
, lchunk
);
1370 /* If this chunk has not been acked, stop
1371 * considering it as 'outstanding'.
1373 if (!tchunk
->tsn_gap_acked
) {
1374 if (tchunk
->transport
)
1375 tchunk
->transport
->flight_size
-=
1376 sctp_data_size(tchunk
);
1377 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1382 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1383 if (sctp_acked(sack
, tsn
)) {
1384 /* If this queue is the retransmit queue, the
1385 * retransmit timer has already reclaimed
1386 * the outstanding bytes for this chunk, so only
1387 * count bytes associated with a transport.
1390 /* If this chunk is being used for RTT
1391 * measurement, calculate the RTT and update
1392 * the RTO using this value.
1394 * 6.3.1 C5) Karn's algorithm: RTT measurements
1395 * MUST NOT be made using packets that were
1396 * retransmitted (and thus for which it is
1397 * ambiguous whether the reply was for the
1398 * first instance of the packet or a later
1401 if (!tchunk
->tsn_gap_acked
&&
1402 tchunk
->rtt_in_progress
) {
1403 tchunk
->rtt_in_progress
= 0;
1404 rtt
= jiffies
- tchunk
->sent_at
;
1405 sctp_transport_update_rto(transport
,
1410 /* If the chunk hasn't been marked as ACKED,
1411 * mark it and account bytes_acked if the
1412 * chunk had a valid transport (it will not
1413 * have a transport if ASCONF had deleted it
1414 * while DATA was outstanding).
1416 if (!tchunk
->tsn_gap_acked
) {
1417 tchunk
->tsn_gap_acked
= 1;
1418 *highest_new_tsn_in_sack
= tsn
;
1419 bytes_acked
+= sctp_data_size(tchunk
);
1420 if (!tchunk
->transport
)
1421 migrate_bytes
+= sctp_data_size(tchunk
);
1424 if (TSN_lte(tsn
, sack_ctsn
)) {
1425 /* RFC 2960 6.3.2 Retransmission Timer Rules
1427 * R3) Whenever a SACK is received
1428 * that acknowledges the DATA chunk
1429 * with the earliest outstanding TSN
1430 * for that address, restart T3-rtx
1431 * timer for that address with its
1436 if (!tchunk
->tsn_gap_acked
) {
1438 * SFR-CACC algorithm:
1439 * 2) If the SACK contains gap acks
1440 * and the flag CHANGEOVER_ACTIVE is
1441 * set the receiver of the SACK MUST
1442 * take the following action:
1444 * B) For each TSN t being acked that
1445 * has not been acked in any SACK so
1446 * far, set cacc_saw_newack to 1 for
1447 * the destination that the TSN was
1451 sack
->num_gap_ack_blocks
&&
1452 q
->asoc
->peer
.primary_path
->cacc
.
1454 transport
->cacc
.cacc_saw_newack
1458 list_add_tail(&tchunk
->transmitted_list
,
1461 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1462 * M2) Each time a SACK arrives reporting
1463 * 'Stray DATA chunk(s)' record the highest TSN
1464 * reported as newly acknowledged, call this
1465 * value 'HighestTSNinSack'. A newly
1466 * acknowledged DATA chunk is one not
1467 * previously acknowledged in a SACK.
1469 * When the SCTP sender of data receives a SACK
1470 * chunk that acknowledges, for the first time,
1471 * the receipt of a DATA chunk, all the still
1472 * unacknowledged DATA chunks whose TSN is
1473 * older than that newly acknowledged DATA
1474 * chunk, are qualified as 'Stray DATA chunks'.
1476 list_add_tail(lchunk
, &tlist
);
1480 switch (dbg_prt_state
) {
1481 case 0: /* last TSN was ACKed */
1482 if (dbg_last_ack_tsn
+ 1 == tsn
) {
1483 /* This TSN belongs to the
1484 * current ACK range.
1489 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1490 /* Display the end of the
1493 SCTP_DEBUG_PRINTK_CONT("-%08x",
1497 /* Start a new range. */
1498 SCTP_DEBUG_PRINTK_CONT(",%08x", tsn
);
1502 case 1: /* The last TSN was NOT ACKed. */
1503 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1504 /* Display the end of current range. */
1505 SCTP_DEBUG_PRINTK_CONT("-%08x",
1509 SCTP_DEBUG_PRINTK_CONT("\n");
1511 /* FALL THROUGH... */
1513 /* This is the first-ever TSN we examined. */
1514 /* Start a new range of ACK-ed TSNs. */
1515 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn
);
1520 dbg_last_ack_tsn
= tsn
;
1521 #endif /* SCTP_DEBUG */
1524 if (tchunk
->tsn_gap_acked
) {
1525 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1529 tchunk
->tsn_gap_acked
= 0;
1531 if (tchunk
->transport
)
1532 bytes_acked
-= sctp_data_size(tchunk
);
1534 /* RFC 2960 6.3.2 Retransmission Timer Rules
1536 * R4) Whenever a SACK is received missing a
1537 * TSN that was previously acknowledged via a
1538 * Gap Ack Block, start T3-rtx for the
1539 * destination address to which the DATA
1540 * chunk was originally
1541 * transmitted if it is not already running.
1546 list_add_tail(lchunk
, &tlist
);
1549 /* See the above comments on ACK-ed TSNs. */
1550 switch (dbg_prt_state
) {
1552 if (dbg_last_kept_tsn
+ 1 == tsn
)
1555 if (dbg_last_kept_tsn
!= dbg_kept_tsn
)
1556 SCTP_DEBUG_PRINTK_CONT("-%08x",
1559 SCTP_DEBUG_PRINTK_CONT(",%08x", tsn
);
1564 if (dbg_last_ack_tsn
!= dbg_ack_tsn
)
1565 SCTP_DEBUG_PRINTK_CONT("-%08x",
1567 SCTP_DEBUG_PRINTK_CONT("\n");
1569 /* FALL THROUGH... */
1571 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn
);
1576 dbg_last_kept_tsn
= tsn
;
1577 #endif /* SCTP_DEBUG */
1582 /* Finish off the last range, displaying its ending TSN. */
1583 switch (dbg_prt_state
) {
1585 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1586 SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_ack_tsn
);
1588 SCTP_DEBUG_PRINTK_CONT("\n");
1593 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1594 SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_kept_tsn
);
1596 SCTP_DEBUG_PRINTK_CONT("\n");
1599 #endif /* SCTP_DEBUG */
1602 struct sctp_association
*asoc
= transport
->asoc
;
1604 /* We may have counted DATA that was migrated
1605 * to this transport due to DEL-IP operation.
1606 * Subtract those bytes, since the were never
1607 * send on this transport and shouldn't be
1608 * credited to this transport.
1610 bytes_acked
-= migrate_bytes
;
1612 /* 8.2. When an outstanding TSN is acknowledged,
1613 * the endpoint shall clear the error counter of
1614 * the destination transport address to which the
1615 * DATA chunk was last sent.
1616 * The association's overall error counter is
1619 transport
->error_count
= 0;
1620 transport
->asoc
->overall_error_count
= 0;
1623 * While in SHUTDOWN PENDING, we may have started
1624 * the T5 shutdown guard timer after reaching the
1625 * retransmission limit. Stop that timer as soon
1626 * as the receiver acknowledged any data.
1628 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
&&
1629 del_timer(&asoc
->timers
1630 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD
]))
1631 sctp_association_put(asoc
);
1633 /* Mark the destination transport address as
1634 * active if it is not so marked.
1636 if ((transport
->state
== SCTP_INACTIVE
) ||
1637 (transport
->state
== SCTP_UNCONFIRMED
)) {
1638 sctp_assoc_control_transport(
1642 SCTP_RECEIVED_SACK
);
1645 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1648 transport
->flight_size
-= bytes_acked
;
1649 if (transport
->flight_size
== 0)
1650 transport
->partial_bytes_acked
= 0;
1651 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1653 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1654 * When a sender is doing zero window probing, it
1655 * should not timeout the association if it continues
1656 * to receive new packets from the receiver. The
1657 * reason is that the receiver MAY keep its window
1658 * closed for an indefinite time.
1659 * A sender is doing zero window probing when the
1660 * receiver's advertised window is zero, and there is
1661 * only one data chunk in flight to the receiver.
1663 * Allow the association to timeout while in SHUTDOWN
1664 * PENDING or SHUTDOWN RECEIVED in case the receiver
1665 * stays in zero window mode forever.
1667 if (!q
->asoc
->peer
.rwnd
&&
1668 !list_empty(&tlist
) &&
1669 (sack_ctsn
+2 == q
->asoc
->next_tsn
) &&
1670 q
->asoc
->state
< SCTP_STATE_SHUTDOWN_PENDING
) {
1671 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1672 "window probe: %u\n",
1673 __func__
, sack_ctsn
);
1674 q
->asoc
->overall_error_count
= 0;
1675 transport
->error_count
= 0;
1679 /* RFC 2960 6.3.2 Retransmission Timer Rules
1681 * R2) Whenever all outstanding data sent to an address have
1682 * been acknowledged, turn off the T3-rtx timer of that
1685 if (!transport
->flight_size
) {
1686 if (timer_pending(&transport
->T3_rtx_timer
) &&
1687 del_timer(&transport
->T3_rtx_timer
)) {
1688 sctp_transport_put(transport
);
1690 } else if (restart_timer
) {
1691 if (!mod_timer(&transport
->T3_rtx_timer
,
1692 jiffies
+ transport
->rto
))
1693 sctp_transport_hold(transport
);
1697 list_splice(&tlist
, transmitted_queue
);
1700 /* Mark chunks as missing and consequently may get retransmitted. */
1701 static void sctp_mark_missing(struct sctp_outq
*q
,
1702 struct list_head
*transmitted_queue
,
1703 struct sctp_transport
*transport
,
1704 __u32 highest_new_tsn_in_sack
,
1705 int count_of_newacks
)
1707 struct sctp_chunk
*chunk
;
1709 char do_fast_retransmit
= 0;
1710 struct sctp_association
*asoc
= q
->asoc
;
1711 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1713 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1715 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1717 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1718 * 'Unacknowledged TSN's', if the TSN number of an
1719 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1720 * value, increment the 'TSN.Missing.Report' count on that
1721 * chunk if it has NOT been fast retransmitted or marked for
1722 * fast retransmit already.
1724 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1725 !chunk
->tsn_gap_acked
&&
1726 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1728 /* SFR-CACC may require us to skip marking
1729 * this chunk as missing.
1731 if (!transport
|| !sctp_cacc_skip(primary
,
1733 count_of_newacks
, tsn
)) {
1734 chunk
->tsn_missing_report
++;
1737 "%s: TSN 0x%x missing counter: %d\n",
1739 chunk
->tsn_missing_report
);
1743 * M4) If any DATA chunk is found to have a
1744 * 'TSN.Missing.Report'
1745 * value larger than or equal to 3, mark that chunk for
1746 * retransmission and start the fast retransmit procedure.
1749 if (chunk
->tsn_missing_report
>= 3) {
1750 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1751 do_fast_retransmit
= 1;
1756 if (do_fast_retransmit
)
1757 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1759 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1760 "ssthresh: %d, flight_size: %d, pba: %d\n",
1761 __func__
, transport
, transport
->cwnd
,
1762 transport
->ssthresh
, transport
->flight_size
,
1763 transport
->partial_bytes_acked
);
1767 /* Is the given TSN acked by this packet? */
1768 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1771 sctp_sack_variable_t
*frags
;
1773 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1775 if (TSN_lte(tsn
, ctsn
))
1778 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1781 * These fields contain the Gap Ack Blocks. They are repeated
1782 * for each Gap Ack Block up to the number of Gap Ack Blocks
1783 * defined in the Number of Gap Ack Blocks field. All DATA
1784 * chunks with TSNs greater than or equal to (Cumulative TSN
1785 * Ack + Gap Ack Block Start) and less than or equal to
1786 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1787 * Block are assumed to have been received correctly.
1790 frags
= sack
->variable
;
1792 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); ++i
) {
1793 if (TSN_lte(ntohs(frags
[i
].gab
.start
), gap
) &&
1794 TSN_lte(gap
, ntohs(frags
[i
].gab
.end
)))
1803 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1804 int nskips
, __be16 stream
)
1808 for (i
= 0; i
< nskips
; i
++) {
1809 if (skiplist
[i
].stream
== stream
)
1815 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1816 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1818 struct sctp_association
*asoc
= q
->asoc
;
1819 struct sctp_chunk
*ftsn_chunk
= NULL
;
1820 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1824 struct sctp_chunk
*chunk
;
1825 struct list_head
*lchunk
, *temp
;
1827 if (!asoc
->peer
.prsctp_capable
)
1830 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1833 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1834 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1836 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1837 asoc
->adv_peer_ack_point
= ctsn
;
1839 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1840 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1841 * the chunk next in the out-queue space is marked as "abandoned" as
1842 * shown in the following example:
1844 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1845 * and the Advanced.Peer.Ack.Point is updated to this value:
1847 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1848 * normal SACK processing local advancement
1850 * Adv.Ack.Pt-> 102 acked 102 acked
1851 * 103 abandoned 103 abandoned
1852 * 104 abandoned Adv.Ack.P-> 104 abandoned
1854 * 106 acked 106 acked
1857 * In this example, the data sender successfully advanced the
1858 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1860 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1861 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1863 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1865 /* Remove any chunks in the abandoned queue that are acked by
1868 if (TSN_lte(tsn
, ctsn
)) {
1869 list_del_init(lchunk
);
1870 sctp_chunk_free(chunk
);
1872 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1873 asoc
->adv_peer_ack_point
= tsn
;
1874 if (chunk
->chunk_hdr
->flags
&
1875 SCTP_DATA_UNORDERED
)
1877 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1879 chunk
->subh
.data_hdr
->stream
);
1880 ftsn_skip_arr
[skip_pos
].stream
=
1881 chunk
->subh
.data_hdr
->stream
;
1882 ftsn_skip_arr
[skip_pos
].ssn
=
1883 chunk
->subh
.data_hdr
->ssn
;
1884 if (skip_pos
== nskips
)
1893 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1894 * is greater than the Cumulative TSN ACK carried in the received
1895 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1896 * chunk containing the latest value of the
1897 * "Advanced.Peer.Ack.Point".
1899 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1900 * list each stream and sequence number in the forwarded TSN. This
1901 * information will enable the receiver to easily find any
1902 * stranded TSN's waiting on stream reorder queues. Each stream
1903 * SHOULD only be reported once; this means that if multiple
1904 * abandoned messages occur in the same stream then only the
1905 * highest abandoned stream sequence number is reported. If the
1906 * total size of the FORWARD TSN does NOT fit in a single MTU then
1907 * the sender of the FORWARD TSN SHOULD lower the
1908 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1911 if (asoc
->adv_peer_ack_point
> ctsn
)
1912 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1913 nskips
, &ftsn_skip_arr
[0]);
1916 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1917 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);