Staging: pata_rdc: convert code to work in 2.6.29
[linux-2.6.git] / fs / btrfs / volumes.c
blob3ab80e9cd76767a674e3005185ee99f3afa53433
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
34 struct map_lookup {
35 u64 type;
36 int io_align;
37 int io_width;
38 int stripe_len;
39 int sector_size;
40 int num_stripes;
41 int sub_stripes;
42 struct btrfs_bio_stripe stripes[];
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 (sizeof(struct btrfs_bio_stripe) * (n)))
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
56 void btrfs_lock_volumes(void)
58 mutex_lock(&uuid_mutex);
61 void btrfs_unlock_volumes(void)
63 mutex_unlock(&uuid_mutex);
66 static void lock_chunks(struct btrfs_root *root)
68 mutex_lock(&root->fs_info->chunk_mutex);
71 static void unlock_chunks(struct btrfs_root *root)
73 mutex_unlock(&root->fs_info->chunk_mutex);
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
78 struct btrfs_device *device;
79 WARN_ON(fs_devices->opened);
80 while (!list_empty(&fs_devices->devices)) {
81 device = list_entry(fs_devices->devices.next,
82 struct btrfs_device, dev_list);
83 list_del(&device->dev_list);
84 kfree(device->name);
85 kfree(device);
87 kfree(fs_devices);
90 int btrfs_cleanup_fs_uuids(void)
92 struct btrfs_fs_devices *fs_devices;
94 while (!list_empty(&fs_uuids)) {
95 fs_devices = list_entry(fs_uuids.next,
96 struct btrfs_fs_devices, list);
97 list_del(&fs_devices->list);
98 free_fs_devices(fs_devices);
100 return 0;
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104 u64 devid, u8 *uuid)
106 struct btrfs_device *dev;
108 list_for_each_entry(dev, head, dev_list) {
109 if (dev->devid == devid &&
110 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
111 return dev;
114 return NULL;
117 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
119 struct btrfs_fs_devices *fs_devices;
121 list_for_each_entry(fs_devices, &fs_uuids, list) {
122 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 return fs_devices;
125 return NULL;
128 static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 struct bio *head, struct bio *tail)
132 struct bio *old_head;
134 old_head = pending_bios->head;
135 pending_bios->head = head;
136 if (pending_bios->tail)
137 tail->bi_next = old_head;
138 else
139 pending_bios->tail = tail;
143 * we try to collect pending bios for a device so we don't get a large
144 * number of procs sending bios down to the same device. This greatly
145 * improves the schedulers ability to collect and merge the bios.
147 * But, it also turns into a long list of bios to process and that is sure
148 * to eventually make the worker thread block. The solution here is to
149 * make some progress and then put this work struct back at the end of
150 * the list if the block device is congested. This way, multiple devices
151 * can make progress from a single worker thread.
153 static noinline int run_scheduled_bios(struct btrfs_device *device)
155 struct bio *pending;
156 struct backing_dev_info *bdi;
157 struct btrfs_fs_info *fs_info;
158 struct btrfs_pending_bios *pending_bios;
159 struct bio *tail;
160 struct bio *cur;
161 int again = 0;
162 unsigned long num_run;
163 unsigned long num_sync_run;
164 unsigned long batch_run = 0;
165 unsigned long limit;
166 unsigned long last_waited = 0;
167 int force_reg = 0;
169 bdi = blk_get_backing_dev_info(device->bdev);
170 fs_info = device->dev_root->fs_info;
171 limit = btrfs_async_submit_limit(fs_info);
172 limit = limit * 2 / 3;
174 /* we want to make sure that every time we switch from the sync
175 * list to the normal list, we unplug
177 num_sync_run = 0;
179 loop:
180 spin_lock(&device->io_lock);
182 loop_lock:
183 num_run = 0;
185 /* take all the bios off the list at once and process them
186 * later on (without the lock held). But, remember the
187 * tail and other pointers so the bios can be properly reinserted
188 * into the list if we hit congestion
190 if (!force_reg && device->pending_sync_bios.head) {
191 pending_bios = &device->pending_sync_bios;
192 force_reg = 1;
193 } else {
194 pending_bios = &device->pending_bios;
195 force_reg = 0;
198 pending = pending_bios->head;
199 tail = pending_bios->tail;
200 WARN_ON(pending && !tail);
203 * if pending was null this time around, no bios need processing
204 * at all and we can stop. Otherwise it'll loop back up again
205 * and do an additional check so no bios are missed.
207 * device->running_pending is used to synchronize with the
208 * schedule_bio code.
210 if (device->pending_sync_bios.head == NULL &&
211 device->pending_bios.head == NULL) {
212 again = 0;
213 device->running_pending = 0;
214 } else {
215 again = 1;
216 device->running_pending = 1;
219 pending_bios->head = NULL;
220 pending_bios->tail = NULL;
222 spin_unlock(&device->io_lock);
225 * if we're doing the regular priority list, make sure we unplug
226 * for any high prio bios we've sent down
228 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
229 num_sync_run = 0;
230 blk_run_backing_dev(bdi, NULL);
233 while (pending) {
235 rmb();
236 /* we want to work on both lists, but do more bios on the
237 * sync list than the regular list
239 if ((num_run > 32 &&
240 pending_bios != &device->pending_sync_bios &&
241 device->pending_sync_bios.head) ||
242 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
243 device->pending_bios.head)) {
244 spin_lock(&device->io_lock);
245 requeue_list(pending_bios, pending, tail);
246 goto loop_lock;
249 cur = pending;
250 pending = pending->bi_next;
251 cur->bi_next = NULL;
252 atomic_dec(&fs_info->nr_async_bios);
254 if (atomic_read(&fs_info->nr_async_bios) < limit &&
255 waitqueue_active(&fs_info->async_submit_wait))
256 wake_up(&fs_info->async_submit_wait);
258 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
259 submit_bio(cur->bi_rw, cur);
260 num_run++;
261 batch_run++;
263 if (bio_sync(cur))
264 num_sync_run++;
266 if (need_resched()) {
267 if (num_sync_run) {
268 blk_run_backing_dev(bdi, NULL);
269 num_sync_run = 0;
271 cond_resched();
275 * we made progress, there is more work to do and the bdi
276 * is now congested. Back off and let other work structs
277 * run instead
279 if (pending && bdi_write_congested(bdi) && batch_run > 32 &&
280 fs_info->fs_devices->open_devices > 1) {
281 struct io_context *ioc;
283 ioc = current->io_context;
286 * the main goal here is that we don't want to
287 * block if we're going to be able to submit
288 * more requests without blocking.
290 * This code does two great things, it pokes into
291 * the elevator code from a filesystem _and_
292 * it makes assumptions about how batching works.
294 if (ioc && ioc->nr_batch_requests > 0 &&
295 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
296 (last_waited == 0 ||
297 ioc->last_waited == last_waited)) {
299 * we want to go through our batch of
300 * requests and stop. So, we copy out
301 * the ioc->last_waited time and test
302 * against it before looping
304 last_waited = ioc->last_waited;
305 if (need_resched()) {
306 if (num_sync_run) {
307 blk_run_backing_dev(bdi, NULL);
308 num_sync_run = 0;
310 cond_resched();
312 continue;
314 spin_lock(&device->io_lock);
315 requeue_list(pending_bios, pending, tail);
316 device->running_pending = 1;
318 spin_unlock(&device->io_lock);
319 btrfs_requeue_work(&device->work);
320 goto done;
324 if (num_sync_run) {
325 num_sync_run = 0;
326 blk_run_backing_dev(bdi, NULL);
329 cond_resched();
330 if (again)
331 goto loop;
333 spin_lock(&device->io_lock);
334 if (device->pending_bios.head || device->pending_sync_bios.head)
335 goto loop_lock;
336 spin_unlock(&device->io_lock);
339 * IO has already been through a long path to get here. Checksumming,
340 * async helper threads, perhaps compression. We've done a pretty
341 * good job of collecting a batch of IO and should just unplug
342 * the device right away.
344 * This will help anyone who is waiting on the IO, they might have
345 * already unplugged, but managed to do so before the bio they
346 * cared about found its way down here.
348 blk_run_backing_dev(bdi, NULL);
349 done:
350 return 0;
353 static void pending_bios_fn(struct btrfs_work *work)
355 struct btrfs_device *device;
357 device = container_of(work, struct btrfs_device, work);
358 run_scheduled_bios(device);
361 static noinline int device_list_add(const char *path,
362 struct btrfs_super_block *disk_super,
363 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
365 struct btrfs_device *device;
366 struct btrfs_fs_devices *fs_devices;
367 u64 found_transid = btrfs_super_generation(disk_super);
369 fs_devices = find_fsid(disk_super->fsid);
370 if (!fs_devices) {
371 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
372 if (!fs_devices)
373 return -ENOMEM;
374 INIT_LIST_HEAD(&fs_devices->devices);
375 INIT_LIST_HEAD(&fs_devices->alloc_list);
376 list_add(&fs_devices->list, &fs_uuids);
377 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
378 fs_devices->latest_devid = devid;
379 fs_devices->latest_trans = found_transid;
380 mutex_init(&fs_devices->device_list_mutex);
381 device = NULL;
382 } else {
383 device = __find_device(&fs_devices->devices, devid,
384 disk_super->dev_item.uuid);
386 if (!device) {
387 if (fs_devices->opened)
388 return -EBUSY;
390 device = kzalloc(sizeof(*device), GFP_NOFS);
391 if (!device) {
392 /* we can safely leave the fs_devices entry around */
393 return -ENOMEM;
395 device->devid = devid;
396 device->work.func = pending_bios_fn;
397 memcpy(device->uuid, disk_super->dev_item.uuid,
398 BTRFS_UUID_SIZE);
399 device->barriers = 1;
400 spin_lock_init(&device->io_lock);
401 device->name = kstrdup(path, GFP_NOFS);
402 if (!device->name) {
403 kfree(device);
404 return -ENOMEM;
406 INIT_LIST_HEAD(&device->dev_alloc_list);
408 mutex_lock(&fs_devices->device_list_mutex);
409 list_add(&device->dev_list, &fs_devices->devices);
410 mutex_unlock(&fs_devices->device_list_mutex);
412 device->fs_devices = fs_devices;
413 fs_devices->num_devices++;
416 if (found_transid > fs_devices->latest_trans) {
417 fs_devices->latest_devid = devid;
418 fs_devices->latest_trans = found_transid;
420 *fs_devices_ret = fs_devices;
421 return 0;
424 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
426 struct btrfs_fs_devices *fs_devices;
427 struct btrfs_device *device;
428 struct btrfs_device *orig_dev;
430 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
431 if (!fs_devices)
432 return ERR_PTR(-ENOMEM);
434 INIT_LIST_HEAD(&fs_devices->devices);
435 INIT_LIST_HEAD(&fs_devices->alloc_list);
436 INIT_LIST_HEAD(&fs_devices->list);
437 mutex_init(&fs_devices->device_list_mutex);
438 fs_devices->latest_devid = orig->latest_devid;
439 fs_devices->latest_trans = orig->latest_trans;
440 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
442 mutex_lock(&orig->device_list_mutex);
443 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
444 device = kzalloc(sizeof(*device), GFP_NOFS);
445 if (!device)
446 goto error;
448 device->name = kstrdup(orig_dev->name, GFP_NOFS);
449 if (!device->name)
450 goto error;
452 device->devid = orig_dev->devid;
453 device->work.func = pending_bios_fn;
454 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
455 device->barriers = 1;
456 spin_lock_init(&device->io_lock);
457 INIT_LIST_HEAD(&device->dev_list);
458 INIT_LIST_HEAD(&device->dev_alloc_list);
460 list_add(&device->dev_list, &fs_devices->devices);
461 device->fs_devices = fs_devices;
462 fs_devices->num_devices++;
464 mutex_unlock(&orig->device_list_mutex);
465 return fs_devices;
466 error:
467 mutex_unlock(&orig->device_list_mutex);
468 free_fs_devices(fs_devices);
469 return ERR_PTR(-ENOMEM);
472 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
474 struct btrfs_device *device, *next;
476 mutex_lock(&uuid_mutex);
477 again:
478 mutex_lock(&fs_devices->device_list_mutex);
479 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
480 if (device->in_fs_metadata)
481 continue;
483 if (device->bdev) {
484 close_bdev_exclusive(device->bdev, device->mode);
485 device->bdev = NULL;
486 fs_devices->open_devices--;
488 if (device->writeable) {
489 list_del_init(&device->dev_alloc_list);
490 device->writeable = 0;
491 fs_devices->rw_devices--;
493 list_del_init(&device->dev_list);
494 fs_devices->num_devices--;
495 kfree(device->name);
496 kfree(device);
498 mutex_unlock(&fs_devices->device_list_mutex);
500 if (fs_devices->seed) {
501 fs_devices = fs_devices->seed;
502 goto again;
505 mutex_unlock(&uuid_mutex);
506 return 0;
509 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
511 struct btrfs_device *device;
513 if (--fs_devices->opened > 0)
514 return 0;
516 list_for_each_entry(device, &fs_devices->devices, dev_list) {
517 if (device->bdev) {
518 close_bdev_exclusive(device->bdev, device->mode);
519 fs_devices->open_devices--;
521 if (device->writeable) {
522 list_del_init(&device->dev_alloc_list);
523 fs_devices->rw_devices--;
526 device->bdev = NULL;
527 device->writeable = 0;
528 device->in_fs_metadata = 0;
530 WARN_ON(fs_devices->open_devices);
531 WARN_ON(fs_devices->rw_devices);
532 fs_devices->opened = 0;
533 fs_devices->seeding = 0;
535 return 0;
538 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
540 struct btrfs_fs_devices *seed_devices = NULL;
541 int ret;
543 mutex_lock(&uuid_mutex);
544 ret = __btrfs_close_devices(fs_devices);
545 if (!fs_devices->opened) {
546 seed_devices = fs_devices->seed;
547 fs_devices->seed = NULL;
549 mutex_unlock(&uuid_mutex);
551 while (seed_devices) {
552 fs_devices = seed_devices;
553 seed_devices = fs_devices->seed;
554 __btrfs_close_devices(fs_devices);
555 free_fs_devices(fs_devices);
557 return ret;
560 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
561 fmode_t flags, void *holder)
563 struct block_device *bdev;
564 struct list_head *head = &fs_devices->devices;
565 struct btrfs_device *device;
566 struct block_device *latest_bdev = NULL;
567 struct buffer_head *bh;
568 struct btrfs_super_block *disk_super;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571 u64 devid;
572 int seeding = 1;
573 int ret = 0;
575 list_for_each_entry(device, head, dev_list) {
576 if (device->bdev)
577 continue;
578 if (!device->name)
579 continue;
581 bdev = open_bdev_exclusive(device->name, flags, holder);
582 if (IS_ERR(bdev)) {
583 printk(KERN_INFO "open %s failed\n", device->name);
584 goto error;
586 set_blocksize(bdev, 4096);
588 bh = btrfs_read_dev_super(bdev);
589 if (!bh)
590 goto error_close;
592 disk_super = (struct btrfs_super_block *)bh->b_data;
593 devid = le64_to_cpu(disk_super->dev_item.devid);
594 if (devid != device->devid)
595 goto error_brelse;
597 if (memcmp(device->uuid, disk_super->dev_item.uuid,
598 BTRFS_UUID_SIZE))
599 goto error_brelse;
601 device->generation = btrfs_super_generation(disk_super);
602 if (!latest_transid || device->generation > latest_transid) {
603 latest_devid = devid;
604 latest_transid = device->generation;
605 latest_bdev = bdev;
608 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
609 device->writeable = 0;
610 } else {
611 device->writeable = !bdev_read_only(bdev);
612 seeding = 0;
615 device->bdev = bdev;
616 device->in_fs_metadata = 0;
617 device->mode = flags;
619 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
620 fs_devices->rotating = 1;
622 fs_devices->open_devices++;
623 if (device->writeable) {
624 fs_devices->rw_devices++;
625 list_add(&device->dev_alloc_list,
626 &fs_devices->alloc_list);
628 continue;
630 error_brelse:
631 brelse(bh);
632 error_close:
633 close_bdev_exclusive(bdev, FMODE_READ);
634 error:
635 continue;
637 if (fs_devices->open_devices == 0) {
638 ret = -EIO;
639 goto out;
641 fs_devices->seeding = seeding;
642 fs_devices->opened = 1;
643 fs_devices->latest_bdev = latest_bdev;
644 fs_devices->latest_devid = latest_devid;
645 fs_devices->latest_trans = latest_transid;
646 fs_devices->total_rw_bytes = 0;
647 out:
648 return ret;
651 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
652 fmode_t flags, void *holder)
654 int ret;
656 mutex_lock(&uuid_mutex);
657 if (fs_devices->opened) {
658 fs_devices->opened++;
659 ret = 0;
660 } else {
661 ret = __btrfs_open_devices(fs_devices, flags, holder);
663 mutex_unlock(&uuid_mutex);
664 return ret;
667 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
668 struct btrfs_fs_devices **fs_devices_ret)
670 struct btrfs_super_block *disk_super;
671 struct block_device *bdev;
672 struct buffer_head *bh;
673 int ret;
674 u64 devid;
675 u64 transid;
677 mutex_lock(&uuid_mutex);
679 bdev = open_bdev_exclusive(path, flags, holder);
681 if (IS_ERR(bdev)) {
682 ret = PTR_ERR(bdev);
683 goto error;
686 ret = set_blocksize(bdev, 4096);
687 if (ret)
688 goto error_close;
689 bh = btrfs_read_dev_super(bdev);
690 if (!bh) {
691 ret = -EIO;
692 goto error_close;
694 disk_super = (struct btrfs_super_block *)bh->b_data;
695 devid = le64_to_cpu(disk_super->dev_item.devid);
696 transid = btrfs_super_generation(disk_super);
697 if (disk_super->label[0])
698 printk(KERN_INFO "device label %s ", disk_super->label);
699 else {
700 /* FIXME, make a readl uuid parser */
701 printk(KERN_INFO "device fsid %llx-%llx ",
702 *(unsigned long long *)disk_super->fsid,
703 *(unsigned long long *)(disk_super->fsid + 8));
705 printk(KERN_CONT "devid %llu transid %llu %s\n",
706 (unsigned long long)devid, (unsigned long long)transid, path);
707 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
709 brelse(bh);
710 error_close:
711 close_bdev_exclusive(bdev, flags);
712 error:
713 mutex_unlock(&uuid_mutex);
714 return ret;
718 * this uses a pretty simple search, the expectation is that it is
719 * called very infrequently and that a given device has a small number
720 * of extents
722 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
723 struct btrfs_device *device,
724 u64 num_bytes, u64 *start)
726 struct btrfs_key key;
727 struct btrfs_root *root = device->dev_root;
728 struct btrfs_dev_extent *dev_extent = NULL;
729 struct btrfs_path *path;
730 u64 hole_size = 0;
731 u64 last_byte = 0;
732 u64 search_start = 0;
733 u64 search_end = device->total_bytes;
734 int ret;
735 int slot = 0;
736 int start_found;
737 struct extent_buffer *l;
739 path = btrfs_alloc_path();
740 if (!path)
741 return -ENOMEM;
742 path->reada = 2;
743 start_found = 0;
745 /* FIXME use last free of some kind */
747 /* we don't want to overwrite the superblock on the drive,
748 * so we make sure to start at an offset of at least 1MB
750 search_start = max((u64)1024 * 1024, search_start);
752 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
753 search_start = max(root->fs_info->alloc_start, search_start);
755 key.objectid = device->devid;
756 key.offset = search_start;
757 key.type = BTRFS_DEV_EXTENT_KEY;
758 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
759 if (ret < 0)
760 goto error;
761 ret = btrfs_previous_item(root, path, 0, key.type);
762 if (ret < 0)
763 goto error;
764 l = path->nodes[0];
765 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
766 while (1) {
767 l = path->nodes[0];
768 slot = path->slots[0];
769 if (slot >= btrfs_header_nritems(l)) {
770 ret = btrfs_next_leaf(root, path);
771 if (ret == 0)
772 continue;
773 if (ret < 0)
774 goto error;
775 no_more_items:
776 if (!start_found) {
777 if (search_start >= search_end) {
778 ret = -ENOSPC;
779 goto error;
781 *start = search_start;
782 start_found = 1;
783 goto check_pending;
785 *start = last_byte > search_start ?
786 last_byte : search_start;
787 if (search_end <= *start) {
788 ret = -ENOSPC;
789 goto error;
791 goto check_pending;
793 btrfs_item_key_to_cpu(l, &key, slot);
795 if (key.objectid < device->devid)
796 goto next;
798 if (key.objectid > device->devid)
799 goto no_more_items;
801 if (key.offset >= search_start && key.offset > last_byte &&
802 start_found) {
803 if (last_byte < search_start)
804 last_byte = search_start;
805 hole_size = key.offset - last_byte;
806 if (key.offset > last_byte &&
807 hole_size >= num_bytes) {
808 *start = last_byte;
809 goto check_pending;
812 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
813 goto next;
815 start_found = 1;
816 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
817 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
818 next:
819 path->slots[0]++;
820 cond_resched();
822 check_pending:
823 /* we have to make sure we didn't find an extent that has already
824 * been allocated by the map tree or the original allocation
826 BUG_ON(*start < search_start);
828 if (*start + num_bytes > search_end) {
829 ret = -ENOSPC;
830 goto error;
832 /* check for pending inserts here */
833 ret = 0;
835 error:
836 btrfs_free_path(path);
837 return ret;
840 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
841 struct btrfs_device *device,
842 u64 start)
844 int ret;
845 struct btrfs_path *path;
846 struct btrfs_root *root = device->dev_root;
847 struct btrfs_key key;
848 struct btrfs_key found_key;
849 struct extent_buffer *leaf = NULL;
850 struct btrfs_dev_extent *extent = NULL;
852 path = btrfs_alloc_path();
853 if (!path)
854 return -ENOMEM;
856 key.objectid = device->devid;
857 key.offset = start;
858 key.type = BTRFS_DEV_EXTENT_KEY;
860 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
861 if (ret > 0) {
862 ret = btrfs_previous_item(root, path, key.objectid,
863 BTRFS_DEV_EXTENT_KEY);
864 BUG_ON(ret);
865 leaf = path->nodes[0];
866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
867 extent = btrfs_item_ptr(leaf, path->slots[0],
868 struct btrfs_dev_extent);
869 BUG_ON(found_key.offset > start || found_key.offset +
870 btrfs_dev_extent_length(leaf, extent) < start);
871 ret = 0;
872 } else if (ret == 0) {
873 leaf = path->nodes[0];
874 extent = btrfs_item_ptr(leaf, path->slots[0],
875 struct btrfs_dev_extent);
877 BUG_ON(ret);
879 if (device->bytes_used > 0)
880 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
881 ret = btrfs_del_item(trans, root, path);
882 BUG_ON(ret);
884 btrfs_free_path(path);
885 return ret;
888 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
889 struct btrfs_device *device,
890 u64 chunk_tree, u64 chunk_objectid,
891 u64 chunk_offset, u64 start, u64 num_bytes)
893 int ret;
894 struct btrfs_path *path;
895 struct btrfs_root *root = device->dev_root;
896 struct btrfs_dev_extent *extent;
897 struct extent_buffer *leaf;
898 struct btrfs_key key;
900 WARN_ON(!device->in_fs_metadata);
901 path = btrfs_alloc_path();
902 if (!path)
903 return -ENOMEM;
905 key.objectid = device->devid;
906 key.offset = start;
907 key.type = BTRFS_DEV_EXTENT_KEY;
908 ret = btrfs_insert_empty_item(trans, root, path, &key,
909 sizeof(*extent));
910 BUG_ON(ret);
912 leaf = path->nodes[0];
913 extent = btrfs_item_ptr(leaf, path->slots[0],
914 struct btrfs_dev_extent);
915 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
916 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
917 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
919 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
920 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
921 BTRFS_UUID_SIZE);
923 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
924 btrfs_mark_buffer_dirty(leaf);
925 btrfs_free_path(path);
926 return ret;
929 static noinline int find_next_chunk(struct btrfs_root *root,
930 u64 objectid, u64 *offset)
932 struct btrfs_path *path;
933 int ret;
934 struct btrfs_key key;
935 struct btrfs_chunk *chunk;
936 struct btrfs_key found_key;
938 path = btrfs_alloc_path();
939 BUG_ON(!path);
941 key.objectid = objectid;
942 key.offset = (u64)-1;
943 key.type = BTRFS_CHUNK_ITEM_KEY;
945 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
946 if (ret < 0)
947 goto error;
949 BUG_ON(ret == 0);
951 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
952 if (ret) {
953 *offset = 0;
954 } else {
955 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
956 path->slots[0]);
957 if (found_key.objectid != objectid)
958 *offset = 0;
959 else {
960 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
961 struct btrfs_chunk);
962 *offset = found_key.offset +
963 btrfs_chunk_length(path->nodes[0], chunk);
966 ret = 0;
967 error:
968 btrfs_free_path(path);
969 return ret;
972 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
974 int ret;
975 struct btrfs_key key;
976 struct btrfs_key found_key;
977 struct btrfs_path *path;
979 root = root->fs_info->chunk_root;
981 path = btrfs_alloc_path();
982 if (!path)
983 return -ENOMEM;
985 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
986 key.type = BTRFS_DEV_ITEM_KEY;
987 key.offset = (u64)-1;
989 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
990 if (ret < 0)
991 goto error;
993 BUG_ON(ret == 0);
995 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
996 BTRFS_DEV_ITEM_KEY);
997 if (ret) {
998 *objectid = 1;
999 } else {
1000 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1001 path->slots[0]);
1002 *objectid = found_key.offset + 1;
1004 ret = 0;
1005 error:
1006 btrfs_free_path(path);
1007 return ret;
1011 * the device information is stored in the chunk root
1012 * the btrfs_device struct should be fully filled in
1014 int btrfs_add_device(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root,
1016 struct btrfs_device *device)
1018 int ret;
1019 struct btrfs_path *path;
1020 struct btrfs_dev_item *dev_item;
1021 struct extent_buffer *leaf;
1022 struct btrfs_key key;
1023 unsigned long ptr;
1025 root = root->fs_info->chunk_root;
1027 path = btrfs_alloc_path();
1028 if (!path)
1029 return -ENOMEM;
1031 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1032 key.type = BTRFS_DEV_ITEM_KEY;
1033 key.offset = device->devid;
1035 ret = btrfs_insert_empty_item(trans, root, path, &key,
1036 sizeof(*dev_item));
1037 if (ret)
1038 goto out;
1040 leaf = path->nodes[0];
1041 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1043 btrfs_set_device_id(leaf, dev_item, device->devid);
1044 btrfs_set_device_generation(leaf, dev_item, 0);
1045 btrfs_set_device_type(leaf, dev_item, device->type);
1046 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1047 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1048 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1049 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1050 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1051 btrfs_set_device_group(leaf, dev_item, 0);
1052 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1053 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1054 btrfs_set_device_start_offset(leaf, dev_item, 0);
1056 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1057 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1058 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1059 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1060 btrfs_mark_buffer_dirty(leaf);
1062 ret = 0;
1063 out:
1064 btrfs_free_path(path);
1065 return ret;
1068 static int btrfs_rm_dev_item(struct btrfs_root *root,
1069 struct btrfs_device *device)
1071 int ret;
1072 struct btrfs_path *path;
1073 struct btrfs_key key;
1074 struct btrfs_trans_handle *trans;
1076 root = root->fs_info->chunk_root;
1078 path = btrfs_alloc_path();
1079 if (!path)
1080 return -ENOMEM;
1082 trans = btrfs_start_transaction(root, 1);
1083 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1084 key.type = BTRFS_DEV_ITEM_KEY;
1085 key.offset = device->devid;
1086 lock_chunks(root);
1088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089 if (ret < 0)
1090 goto out;
1092 if (ret > 0) {
1093 ret = -ENOENT;
1094 goto out;
1097 ret = btrfs_del_item(trans, root, path);
1098 if (ret)
1099 goto out;
1100 out:
1101 btrfs_free_path(path);
1102 unlock_chunks(root);
1103 btrfs_commit_transaction(trans, root);
1104 return ret;
1107 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1109 struct btrfs_device *device;
1110 struct btrfs_device *next_device;
1111 struct block_device *bdev;
1112 struct buffer_head *bh = NULL;
1113 struct btrfs_super_block *disk_super;
1114 u64 all_avail;
1115 u64 devid;
1116 u64 num_devices;
1117 u8 *dev_uuid;
1118 int ret = 0;
1120 mutex_lock(&uuid_mutex);
1121 mutex_lock(&root->fs_info->volume_mutex);
1123 all_avail = root->fs_info->avail_data_alloc_bits |
1124 root->fs_info->avail_system_alloc_bits |
1125 root->fs_info->avail_metadata_alloc_bits;
1127 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1128 root->fs_info->fs_devices->rw_devices <= 4) {
1129 printk(KERN_ERR "btrfs: unable to go below four devices "
1130 "on raid10\n");
1131 ret = -EINVAL;
1132 goto out;
1135 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1136 root->fs_info->fs_devices->rw_devices <= 2) {
1137 printk(KERN_ERR "btrfs: unable to go below two "
1138 "devices on raid1\n");
1139 ret = -EINVAL;
1140 goto out;
1143 if (strcmp(device_path, "missing") == 0) {
1144 struct list_head *devices;
1145 struct btrfs_device *tmp;
1147 device = NULL;
1148 devices = &root->fs_info->fs_devices->devices;
1149 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1150 list_for_each_entry(tmp, devices, dev_list) {
1151 if (tmp->in_fs_metadata && !tmp->bdev) {
1152 device = tmp;
1153 break;
1156 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1157 bdev = NULL;
1158 bh = NULL;
1159 disk_super = NULL;
1160 if (!device) {
1161 printk(KERN_ERR "btrfs: no missing devices found to "
1162 "remove\n");
1163 goto out;
1165 } else {
1166 bdev = open_bdev_exclusive(device_path, FMODE_READ,
1167 root->fs_info->bdev_holder);
1168 if (IS_ERR(bdev)) {
1169 ret = PTR_ERR(bdev);
1170 goto out;
1173 set_blocksize(bdev, 4096);
1174 bh = btrfs_read_dev_super(bdev);
1175 if (!bh) {
1176 ret = -EIO;
1177 goto error_close;
1179 disk_super = (struct btrfs_super_block *)bh->b_data;
1180 devid = le64_to_cpu(disk_super->dev_item.devid);
1181 dev_uuid = disk_super->dev_item.uuid;
1182 device = btrfs_find_device(root, devid, dev_uuid,
1183 disk_super->fsid);
1184 if (!device) {
1185 ret = -ENOENT;
1186 goto error_brelse;
1190 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1191 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1192 "device\n");
1193 ret = -EINVAL;
1194 goto error_brelse;
1197 if (device->writeable) {
1198 list_del_init(&device->dev_alloc_list);
1199 root->fs_info->fs_devices->rw_devices--;
1202 ret = btrfs_shrink_device(device, 0);
1203 if (ret)
1204 goto error_brelse;
1206 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1207 if (ret)
1208 goto error_brelse;
1210 device->in_fs_metadata = 0;
1213 * the device list mutex makes sure that we don't change
1214 * the device list while someone else is writing out all
1215 * the device supers.
1217 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1218 list_del_init(&device->dev_list);
1219 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1221 device->fs_devices->num_devices--;
1223 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1224 struct btrfs_device, dev_list);
1225 if (device->bdev == root->fs_info->sb->s_bdev)
1226 root->fs_info->sb->s_bdev = next_device->bdev;
1227 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1228 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1230 if (device->bdev) {
1231 close_bdev_exclusive(device->bdev, device->mode);
1232 device->bdev = NULL;
1233 device->fs_devices->open_devices--;
1236 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1237 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1239 if (device->fs_devices->open_devices == 0) {
1240 struct btrfs_fs_devices *fs_devices;
1241 fs_devices = root->fs_info->fs_devices;
1242 while (fs_devices) {
1243 if (fs_devices->seed == device->fs_devices)
1244 break;
1245 fs_devices = fs_devices->seed;
1247 fs_devices->seed = device->fs_devices->seed;
1248 device->fs_devices->seed = NULL;
1249 __btrfs_close_devices(device->fs_devices);
1250 free_fs_devices(device->fs_devices);
1254 * at this point, the device is zero sized. We want to
1255 * remove it from the devices list and zero out the old super
1257 if (device->writeable) {
1258 /* make sure this device isn't detected as part of
1259 * the FS anymore
1261 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1262 set_buffer_dirty(bh);
1263 sync_dirty_buffer(bh);
1266 kfree(device->name);
1267 kfree(device);
1268 ret = 0;
1270 error_brelse:
1271 brelse(bh);
1272 error_close:
1273 if (bdev)
1274 close_bdev_exclusive(bdev, FMODE_READ);
1275 out:
1276 mutex_unlock(&root->fs_info->volume_mutex);
1277 mutex_unlock(&uuid_mutex);
1278 return ret;
1282 * does all the dirty work required for changing file system's UUID.
1284 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1285 struct btrfs_root *root)
1287 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1288 struct btrfs_fs_devices *old_devices;
1289 struct btrfs_fs_devices *seed_devices;
1290 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1291 struct btrfs_device *device;
1292 u64 super_flags;
1294 BUG_ON(!mutex_is_locked(&uuid_mutex));
1295 if (!fs_devices->seeding)
1296 return -EINVAL;
1298 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1299 if (!seed_devices)
1300 return -ENOMEM;
1302 old_devices = clone_fs_devices(fs_devices);
1303 if (IS_ERR(old_devices)) {
1304 kfree(seed_devices);
1305 return PTR_ERR(old_devices);
1308 list_add(&old_devices->list, &fs_uuids);
1310 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1311 seed_devices->opened = 1;
1312 INIT_LIST_HEAD(&seed_devices->devices);
1313 INIT_LIST_HEAD(&seed_devices->alloc_list);
1314 mutex_init(&seed_devices->device_list_mutex);
1315 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1316 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1317 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1318 device->fs_devices = seed_devices;
1321 fs_devices->seeding = 0;
1322 fs_devices->num_devices = 0;
1323 fs_devices->open_devices = 0;
1324 fs_devices->seed = seed_devices;
1326 generate_random_uuid(fs_devices->fsid);
1327 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1328 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1329 super_flags = btrfs_super_flags(disk_super) &
1330 ~BTRFS_SUPER_FLAG_SEEDING;
1331 btrfs_set_super_flags(disk_super, super_flags);
1333 return 0;
1337 * strore the expected generation for seed devices in device items.
1339 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1340 struct btrfs_root *root)
1342 struct btrfs_path *path;
1343 struct extent_buffer *leaf;
1344 struct btrfs_dev_item *dev_item;
1345 struct btrfs_device *device;
1346 struct btrfs_key key;
1347 u8 fs_uuid[BTRFS_UUID_SIZE];
1348 u8 dev_uuid[BTRFS_UUID_SIZE];
1349 u64 devid;
1350 int ret;
1352 path = btrfs_alloc_path();
1353 if (!path)
1354 return -ENOMEM;
1356 root = root->fs_info->chunk_root;
1357 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1358 key.offset = 0;
1359 key.type = BTRFS_DEV_ITEM_KEY;
1361 while (1) {
1362 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1363 if (ret < 0)
1364 goto error;
1366 leaf = path->nodes[0];
1367 next_slot:
1368 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1369 ret = btrfs_next_leaf(root, path);
1370 if (ret > 0)
1371 break;
1372 if (ret < 0)
1373 goto error;
1374 leaf = path->nodes[0];
1375 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1376 btrfs_release_path(root, path);
1377 continue;
1380 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1381 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1382 key.type != BTRFS_DEV_ITEM_KEY)
1383 break;
1385 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1386 struct btrfs_dev_item);
1387 devid = btrfs_device_id(leaf, dev_item);
1388 read_extent_buffer(leaf, dev_uuid,
1389 (unsigned long)btrfs_device_uuid(dev_item),
1390 BTRFS_UUID_SIZE);
1391 read_extent_buffer(leaf, fs_uuid,
1392 (unsigned long)btrfs_device_fsid(dev_item),
1393 BTRFS_UUID_SIZE);
1394 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1395 BUG_ON(!device);
1397 if (device->fs_devices->seeding) {
1398 btrfs_set_device_generation(leaf, dev_item,
1399 device->generation);
1400 btrfs_mark_buffer_dirty(leaf);
1403 path->slots[0]++;
1404 goto next_slot;
1406 ret = 0;
1407 error:
1408 btrfs_free_path(path);
1409 return ret;
1412 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1414 struct btrfs_trans_handle *trans;
1415 struct btrfs_device *device;
1416 struct block_device *bdev;
1417 struct list_head *devices;
1418 struct super_block *sb = root->fs_info->sb;
1419 u64 total_bytes;
1420 int seeding_dev = 0;
1421 int ret = 0;
1423 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1424 return -EINVAL;
1426 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1427 if (!bdev)
1428 return -EIO;
1430 if (root->fs_info->fs_devices->seeding) {
1431 seeding_dev = 1;
1432 down_write(&sb->s_umount);
1433 mutex_lock(&uuid_mutex);
1436 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1437 mutex_lock(&root->fs_info->volume_mutex);
1439 devices = &root->fs_info->fs_devices->devices;
1441 * we have the volume lock, so we don't need the extra
1442 * device list mutex while reading the list here.
1444 list_for_each_entry(device, devices, dev_list) {
1445 if (device->bdev == bdev) {
1446 ret = -EEXIST;
1447 goto error;
1451 device = kzalloc(sizeof(*device), GFP_NOFS);
1452 if (!device) {
1453 /* we can safely leave the fs_devices entry around */
1454 ret = -ENOMEM;
1455 goto error;
1458 device->name = kstrdup(device_path, GFP_NOFS);
1459 if (!device->name) {
1460 kfree(device);
1461 ret = -ENOMEM;
1462 goto error;
1465 ret = find_next_devid(root, &device->devid);
1466 if (ret) {
1467 kfree(device);
1468 goto error;
1471 trans = btrfs_start_transaction(root, 1);
1472 lock_chunks(root);
1474 device->barriers = 1;
1475 device->writeable = 1;
1476 device->work.func = pending_bios_fn;
1477 generate_random_uuid(device->uuid);
1478 spin_lock_init(&device->io_lock);
1479 device->generation = trans->transid;
1480 device->io_width = root->sectorsize;
1481 device->io_align = root->sectorsize;
1482 device->sector_size = root->sectorsize;
1483 device->total_bytes = i_size_read(bdev->bd_inode);
1484 device->disk_total_bytes = device->total_bytes;
1485 device->dev_root = root->fs_info->dev_root;
1486 device->bdev = bdev;
1487 device->in_fs_metadata = 1;
1488 device->mode = 0;
1489 set_blocksize(device->bdev, 4096);
1491 if (seeding_dev) {
1492 sb->s_flags &= ~MS_RDONLY;
1493 ret = btrfs_prepare_sprout(trans, root);
1494 BUG_ON(ret);
1497 device->fs_devices = root->fs_info->fs_devices;
1500 * we don't want write_supers to jump in here with our device
1501 * half setup
1503 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1504 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1505 list_add(&device->dev_alloc_list,
1506 &root->fs_info->fs_devices->alloc_list);
1507 root->fs_info->fs_devices->num_devices++;
1508 root->fs_info->fs_devices->open_devices++;
1509 root->fs_info->fs_devices->rw_devices++;
1510 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1512 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1513 root->fs_info->fs_devices->rotating = 1;
1515 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1516 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1517 total_bytes + device->total_bytes);
1519 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1520 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1521 total_bytes + 1);
1522 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1524 if (seeding_dev) {
1525 ret = init_first_rw_device(trans, root, device);
1526 BUG_ON(ret);
1527 ret = btrfs_finish_sprout(trans, root);
1528 BUG_ON(ret);
1529 } else {
1530 ret = btrfs_add_device(trans, root, device);
1534 * we've got more storage, clear any full flags on the space
1535 * infos
1537 btrfs_clear_space_info_full(root->fs_info);
1539 unlock_chunks(root);
1540 btrfs_commit_transaction(trans, root);
1542 if (seeding_dev) {
1543 mutex_unlock(&uuid_mutex);
1544 up_write(&sb->s_umount);
1546 ret = btrfs_relocate_sys_chunks(root);
1547 BUG_ON(ret);
1549 out:
1550 mutex_unlock(&root->fs_info->volume_mutex);
1551 return ret;
1552 error:
1553 close_bdev_exclusive(bdev, 0);
1554 if (seeding_dev) {
1555 mutex_unlock(&uuid_mutex);
1556 up_write(&sb->s_umount);
1558 goto out;
1561 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1562 struct btrfs_device *device)
1564 int ret;
1565 struct btrfs_path *path;
1566 struct btrfs_root *root;
1567 struct btrfs_dev_item *dev_item;
1568 struct extent_buffer *leaf;
1569 struct btrfs_key key;
1571 root = device->dev_root->fs_info->chunk_root;
1573 path = btrfs_alloc_path();
1574 if (!path)
1575 return -ENOMEM;
1577 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1578 key.type = BTRFS_DEV_ITEM_KEY;
1579 key.offset = device->devid;
1581 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1582 if (ret < 0)
1583 goto out;
1585 if (ret > 0) {
1586 ret = -ENOENT;
1587 goto out;
1590 leaf = path->nodes[0];
1591 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1593 btrfs_set_device_id(leaf, dev_item, device->devid);
1594 btrfs_set_device_type(leaf, dev_item, device->type);
1595 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1596 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1597 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1598 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1599 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1600 btrfs_mark_buffer_dirty(leaf);
1602 out:
1603 btrfs_free_path(path);
1604 return ret;
1607 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1608 struct btrfs_device *device, u64 new_size)
1610 struct btrfs_super_block *super_copy =
1611 &device->dev_root->fs_info->super_copy;
1612 u64 old_total = btrfs_super_total_bytes(super_copy);
1613 u64 diff = new_size - device->total_bytes;
1615 if (!device->writeable)
1616 return -EACCES;
1617 if (new_size <= device->total_bytes)
1618 return -EINVAL;
1620 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1621 device->fs_devices->total_rw_bytes += diff;
1623 device->total_bytes = new_size;
1624 btrfs_clear_space_info_full(device->dev_root->fs_info);
1626 return btrfs_update_device(trans, device);
1629 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1630 struct btrfs_device *device, u64 new_size)
1632 int ret;
1633 lock_chunks(device->dev_root);
1634 ret = __btrfs_grow_device(trans, device, new_size);
1635 unlock_chunks(device->dev_root);
1636 return ret;
1639 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1640 struct btrfs_root *root,
1641 u64 chunk_tree, u64 chunk_objectid,
1642 u64 chunk_offset)
1644 int ret;
1645 struct btrfs_path *path;
1646 struct btrfs_key key;
1648 root = root->fs_info->chunk_root;
1649 path = btrfs_alloc_path();
1650 if (!path)
1651 return -ENOMEM;
1653 key.objectid = chunk_objectid;
1654 key.offset = chunk_offset;
1655 key.type = BTRFS_CHUNK_ITEM_KEY;
1657 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1658 BUG_ON(ret);
1660 ret = btrfs_del_item(trans, root, path);
1661 BUG_ON(ret);
1663 btrfs_free_path(path);
1664 return 0;
1667 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1668 chunk_offset)
1670 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1671 struct btrfs_disk_key *disk_key;
1672 struct btrfs_chunk *chunk;
1673 u8 *ptr;
1674 int ret = 0;
1675 u32 num_stripes;
1676 u32 array_size;
1677 u32 len = 0;
1678 u32 cur;
1679 struct btrfs_key key;
1681 array_size = btrfs_super_sys_array_size(super_copy);
1683 ptr = super_copy->sys_chunk_array;
1684 cur = 0;
1686 while (cur < array_size) {
1687 disk_key = (struct btrfs_disk_key *)ptr;
1688 btrfs_disk_key_to_cpu(&key, disk_key);
1690 len = sizeof(*disk_key);
1692 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1693 chunk = (struct btrfs_chunk *)(ptr + len);
1694 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1695 len += btrfs_chunk_item_size(num_stripes);
1696 } else {
1697 ret = -EIO;
1698 break;
1700 if (key.objectid == chunk_objectid &&
1701 key.offset == chunk_offset) {
1702 memmove(ptr, ptr + len, array_size - (cur + len));
1703 array_size -= len;
1704 btrfs_set_super_sys_array_size(super_copy, array_size);
1705 } else {
1706 ptr += len;
1707 cur += len;
1710 return ret;
1713 static int btrfs_relocate_chunk(struct btrfs_root *root,
1714 u64 chunk_tree, u64 chunk_objectid,
1715 u64 chunk_offset)
1717 struct extent_map_tree *em_tree;
1718 struct btrfs_root *extent_root;
1719 struct btrfs_trans_handle *trans;
1720 struct extent_map *em;
1721 struct map_lookup *map;
1722 int ret;
1723 int i;
1725 root = root->fs_info->chunk_root;
1726 extent_root = root->fs_info->extent_root;
1727 em_tree = &root->fs_info->mapping_tree.map_tree;
1729 /* step one, relocate all the extents inside this chunk */
1730 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1731 BUG_ON(ret);
1733 trans = btrfs_start_transaction(root, 1);
1734 BUG_ON(!trans);
1736 lock_chunks(root);
1739 * step two, delete the device extents and the
1740 * chunk tree entries
1742 spin_lock(&em_tree->lock);
1743 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1744 spin_unlock(&em_tree->lock);
1746 BUG_ON(em->start > chunk_offset ||
1747 em->start + em->len < chunk_offset);
1748 map = (struct map_lookup *)em->bdev;
1750 for (i = 0; i < map->num_stripes; i++) {
1751 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1752 map->stripes[i].physical);
1753 BUG_ON(ret);
1755 if (map->stripes[i].dev) {
1756 ret = btrfs_update_device(trans, map->stripes[i].dev);
1757 BUG_ON(ret);
1760 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1761 chunk_offset);
1763 BUG_ON(ret);
1765 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1766 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1767 BUG_ON(ret);
1770 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1771 BUG_ON(ret);
1773 spin_lock(&em_tree->lock);
1774 remove_extent_mapping(em_tree, em);
1775 spin_unlock(&em_tree->lock);
1777 kfree(map);
1778 em->bdev = NULL;
1780 /* once for the tree */
1781 free_extent_map(em);
1782 /* once for us */
1783 free_extent_map(em);
1785 unlock_chunks(root);
1786 btrfs_end_transaction(trans, root);
1787 return 0;
1790 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1792 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1793 struct btrfs_path *path;
1794 struct extent_buffer *leaf;
1795 struct btrfs_chunk *chunk;
1796 struct btrfs_key key;
1797 struct btrfs_key found_key;
1798 u64 chunk_tree = chunk_root->root_key.objectid;
1799 u64 chunk_type;
1800 int ret;
1802 path = btrfs_alloc_path();
1803 if (!path)
1804 return -ENOMEM;
1806 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1807 key.offset = (u64)-1;
1808 key.type = BTRFS_CHUNK_ITEM_KEY;
1810 while (1) {
1811 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1812 if (ret < 0)
1813 goto error;
1814 BUG_ON(ret == 0);
1816 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1817 key.type);
1818 if (ret < 0)
1819 goto error;
1820 if (ret > 0)
1821 break;
1823 leaf = path->nodes[0];
1824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1826 chunk = btrfs_item_ptr(leaf, path->slots[0],
1827 struct btrfs_chunk);
1828 chunk_type = btrfs_chunk_type(leaf, chunk);
1829 btrfs_release_path(chunk_root, path);
1831 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1832 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1833 found_key.objectid,
1834 found_key.offset);
1835 BUG_ON(ret);
1838 if (found_key.offset == 0)
1839 break;
1840 key.offset = found_key.offset - 1;
1842 ret = 0;
1843 error:
1844 btrfs_free_path(path);
1845 return ret;
1848 static u64 div_factor(u64 num, int factor)
1850 if (factor == 10)
1851 return num;
1852 num *= factor;
1853 do_div(num, 10);
1854 return num;
1857 int btrfs_balance(struct btrfs_root *dev_root)
1859 int ret;
1860 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1861 struct btrfs_device *device;
1862 u64 old_size;
1863 u64 size_to_free;
1864 struct btrfs_path *path;
1865 struct btrfs_key key;
1866 struct btrfs_chunk *chunk;
1867 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1868 struct btrfs_trans_handle *trans;
1869 struct btrfs_key found_key;
1871 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1872 return -EROFS;
1874 mutex_lock(&dev_root->fs_info->volume_mutex);
1875 dev_root = dev_root->fs_info->dev_root;
1877 /* step one make some room on all the devices */
1878 list_for_each_entry(device, devices, dev_list) {
1879 old_size = device->total_bytes;
1880 size_to_free = div_factor(old_size, 1);
1881 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1882 if (!device->writeable ||
1883 device->total_bytes - device->bytes_used > size_to_free)
1884 continue;
1886 ret = btrfs_shrink_device(device, old_size - size_to_free);
1887 BUG_ON(ret);
1889 trans = btrfs_start_transaction(dev_root, 1);
1890 BUG_ON(!trans);
1892 ret = btrfs_grow_device(trans, device, old_size);
1893 BUG_ON(ret);
1895 btrfs_end_transaction(trans, dev_root);
1898 /* step two, relocate all the chunks */
1899 path = btrfs_alloc_path();
1900 BUG_ON(!path);
1902 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1903 key.offset = (u64)-1;
1904 key.type = BTRFS_CHUNK_ITEM_KEY;
1906 while (1) {
1907 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1908 if (ret < 0)
1909 goto error;
1912 * this shouldn't happen, it means the last relocate
1913 * failed
1915 if (ret == 0)
1916 break;
1918 ret = btrfs_previous_item(chunk_root, path, 0,
1919 BTRFS_CHUNK_ITEM_KEY);
1920 if (ret)
1921 break;
1923 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1924 path->slots[0]);
1925 if (found_key.objectid != key.objectid)
1926 break;
1928 chunk = btrfs_item_ptr(path->nodes[0],
1929 path->slots[0],
1930 struct btrfs_chunk);
1931 key.offset = found_key.offset;
1932 /* chunk zero is special */
1933 if (key.offset == 0)
1934 break;
1936 btrfs_release_path(chunk_root, path);
1937 ret = btrfs_relocate_chunk(chunk_root,
1938 chunk_root->root_key.objectid,
1939 found_key.objectid,
1940 found_key.offset);
1941 BUG_ON(ret);
1943 ret = 0;
1944 error:
1945 btrfs_free_path(path);
1946 mutex_unlock(&dev_root->fs_info->volume_mutex);
1947 return ret;
1951 * shrinking a device means finding all of the device extents past
1952 * the new size, and then following the back refs to the chunks.
1953 * The chunk relocation code actually frees the device extent
1955 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1957 struct btrfs_trans_handle *trans;
1958 struct btrfs_root *root = device->dev_root;
1959 struct btrfs_dev_extent *dev_extent = NULL;
1960 struct btrfs_path *path;
1961 u64 length;
1962 u64 chunk_tree;
1963 u64 chunk_objectid;
1964 u64 chunk_offset;
1965 int ret;
1966 int slot;
1967 struct extent_buffer *l;
1968 struct btrfs_key key;
1969 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1970 u64 old_total = btrfs_super_total_bytes(super_copy);
1971 u64 diff = device->total_bytes - new_size;
1973 if (new_size >= device->total_bytes)
1974 return -EINVAL;
1976 path = btrfs_alloc_path();
1977 if (!path)
1978 return -ENOMEM;
1980 trans = btrfs_start_transaction(root, 1);
1981 if (!trans) {
1982 ret = -ENOMEM;
1983 goto done;
1986 path->reada = 2;
1988 lock_chunks(root);
1990 device->total_bytes = new_size;
1991 if (device->writeable)
1992 device->fs_devices->total_rw_bytes -= diff;
1993 unlock_chunks(root);
1994 btrfs_end_transaction(trans, root);
1996 key.objectid = device->devid;
1997 key.offset = (u64)-1;
1998 key.type = BTRFS_DEV_EXTENT_KEY;
2000 while (1) {
2001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2002 if (ret < 0)
2003 goto done;
2005 ret = btrfs_previous_item(root, path, 0, key.type);
2006 if (ret < 0)
2007 goto done;
2008 if (ret) {
2009 ret = 0;
2010 goto done;
2013 l = path->nodes[0];
2014 slot = path->slots[0];
2015 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2017 if (key.objectid != device->devid)
2018 goto done;
2020 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2021 length = btrfs_dev_extent_length(l, dev_extent);
2023 if (key.offset + length <= new_size)
2024 break;
2026 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2027 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2028 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2029 btrfs_release_path(root, path);
2031 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2032 chunk_offset);
2033 if (ret)
2034 goto done;
2037 /* Shrinking succeeded, else we would be at "done". */
2038 trans = btrfs_start_transaction(root, 1);
2039 if (!trans) {
2040 ret = -ENOMEM;
2041 goto done;
2043 lock_chunks(root);
2045 device->disk_total_bytes = new_size;
2046 /* Now btrfs_update_device() will change the on-disk size. */
2047 ret = btrfs_update_device(trans, device);
2048 if (ret) {
2049 unlock_chunks(root);
2050 btrfs_end_transaction(trans, root);
2051 goto done;
2053 WARN_ON(diff > old_total);
2054 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2055 unlock_chunks(root);
2056 btrfs_end_transaction(trans, root);
2057 done:
2058 btrfs_free_path(path);
2059 return ret;
2062 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2063 struct btrfs_root *root,
2064 struct btrfs_key *key,
2065 struct btrfs_chunk *chunk, int item_size)
2067 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2068 struct btrfs_disk_key disk_key;
2069 u32 array_size;
2070 u8 *ptr;
2072 array_size = btrfs_super_sys_array_size(super_copy);
2073 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2074 return -EFBIG;
2076 ptr = super_copy->sys_chunk_array + array_size;
2077 btrfs_cpu_key_to_disk(&disk_key, key);
2078 memcpy(ptr, &disk_key, sizeof(disk_key));
2079 ptr += sizeof(disk_key);
2080 memcpy(ptr, chunk, item_size);
2081 item_size += sizeof(disk_key);
2082 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2083 return 0;
2086 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2087 int num_stripes, int sub_stripes)
2089 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2090 return calc_size;
2091 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2092 return calc_size * (num_stripes / sub_stripes);
2093 else
2094 return calc_size * num_stripes;
2097 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2098 struct btrfs_root *extent_root,
2099 struct map_lookup **map_ret,
2100 u64 *num_bytes, u64 *stripe_size,
2101 u64 start, u64 type)
2103 struct btrfs_fs_info *info = extent_root->fs_info;
2104 struct btrfs_device *device = NULL;
2105 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2106 struct list_head *cur;
2107 struct map_lookup *map = NULL;
2108 struct extent_map_tree *em_tree;
2109 struct extent_map *em;
2110 struct list_head private_devs;
2111 int min_stripe_size = 1 * 1024 * 1024;
2112 u64 calc_size = 1024 * 1024 * 1024;
2113 u64 max_chunk_size = calc_size;
2114 u64 min_free;
2115 u64 avail;
2116 u64 max_avail = 0;
2117 u64 dev_offset;
2118 int num_stripes = 1;
2119 int min_stripes = 1;
2120 int sub_stripes = 0;
2121 int looped = 0;
2122 int ret;
2123 int index;
2124 int stripe_len = 64 * 1024;
2126 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2127 (type & BTRFS_BLOCK_GROUP_DUP)) {
2128 WARN_ON(1);
2129 type &= ~BTRFS_BLOCK_GROUP_DUP;
2131 if (list_empty(&fs_devices->alloc_list))
2132 return -ENOSPC;
2134 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2135 num_stripes = fs_devices->rw_devices;
2136 min_stripes = 2;
2138 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2139 num_stripes = 2;
2140 min_stripes = 2;
2142 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2143 num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2144 if (num_stripes < 2)
2145 return -ENOSPC;
2146 min_stripes = 2;
2148 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2149 num_stripes = fs_devices->rw_devices;
2150 if (num_stripes < 4)
2151 return -ENOSPC;
2152 num_stripes &= ~(u32)1;
2153 sub_stripes = 2;
2154 min_stripes = 4;
2157 if (type & BTRFS_BLOCK_GROUP_DATA) {
2158 max_chunk_size = 10 * calc_size;
2159 min_stripe_size = 64 * 1024 * 1024;
2160 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2161 max_chunk_size = 4 * calc_size;
2162 min_stripe_size = 32 * 1024 * 1024;
2163 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2164 calc_size = 8 * 1024 * 1024;
2165 max_chunk_size = calc_size * 2;
2166 min_stripe_size = 1 * 1024 * 1024;
2169 /* we don't want a chunk larger than 10% of writeable space */
2170 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2171 max_chunk_size);
2173 again:
2174 if (!map || map->num_stripes != num_stripes) {
2175 kfree(map);
2176 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2177 if (!map)
2178 return -ENOMEM;
2179 map->num_stripes = num_stripes;
2182 if (calc_size * num_stripes > max_chunk_size) {
2183 calc_size = max_chunk_size;
2184 do_div(calc_size, num_stripes);
2185 do_div(calc_size, stripe_len);
2186 calc_size *= stripe_len;
2188 /* we don't want tiny stripes */
2189 calc_size = max_t(u64, min_stripe_size, calc_size);
2191 do_div(calc_size, stripe_len);
2192 calc_size *= stripe_len;
2194 cur = fs_devices->alloc_list.next;
2195 index = 0;
2197 if (type & BTRFS_BLOCK_GROUP_DUP)
2198 min_free = calc_size * 2;
2199 else
2200 min_free = calc_size;
2203 * we add 1MB because we never use the first 1MB of the device, unless
2204 * we've looped, then we are likely allocating the maximum amount of
2205 * space left already
2207 if (!looped)
2208 min_free += 1024 * 1024;
2210 INIT_LIST_HEAD(&private_devs);
2211 while (index < num_stripes) {
2212 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2213 BUG_ON(!device->writeable);
2214 if (device->total_bytes > device->bytes_used)
2215 avail = device->total_bytes - device->bytes_used;
2216 else
2217 avail = 0;
2218 cur = cur->next;
2220 if (device->in_fs_metadata && avail >= min_free) {
2221 ret = find_free_dev_extent(trans, device,
2222 min_free, &dev_offset);
2223 if (ret == 0) {
2224 list_move_tail(&device->dev_alloc_list,
2225 &private_devs);
2226 map->stripes[index].dev = device;
2227 map->stripes[index].physical = dev_offset;
2228 index++;
2229 if (type & BTRFS_BLOCK_GROUP_DUP) {
2230 map->stripes[index].dev = device;
2231 map->stripes[index].physical =
2232 dev_offset + calc_size;
2233 index++;
2236 } else if (device->in_fs_metadata && avail > max_avail)
2237 max_avail = avail;
2238 if (cur == &fs_devices->alloc_list)
2239 break;
2241 list_splice(&private_devs, &fs_devices->alloc_list);
2242 if (index < num_stripes) {
2243 if (index >= min_stripes) {
2244 num_stripes = index;
2245 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2246 num_stripes /= sub_stripes;
2247 num_stripes *= sub_stripes;
2249 looped = 1;
2250 goto again;
2252 if (!looped && max_avail > 0) {
2253 looped = 1;
2254 calc_size = max_avail;
2255 goto again;
2257 kfree(map);
2258 return -ENOSPC;
2260 map->sector_size = extent_root->sectorsize;
2261 map->stripe_len = stripe_len;
2262 map->io_align = stripe_len;
2263 map->io_width = stripe_len;
2264 map->type = type;
2265 map->num_stripes = num_stripes;
2266 map->sub_stripes = sub_stripes;
2268 *map_ret = map;
2269 *stripe_size = calc_size;
2270 *num_bytes = chunk_bytes_by_type(type, calc_size,
2271 num_stripes, sub_stripes);
2273 em = alloc_extent_map(GFP_NOFS);
2274 if (!em) {
2275 kfree(map);
2276 return -ENOMEM;
2278 em->bdev = (struct block_device *)map;
2279 em->start = start;
2280 em->len = *num_bytes;
2281 em->block_start = 0;
2282 em->block_len = em->len;
2284 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2285 spin_lock(&em_tree->lock);
2286 ret = add_extent_mapping(em_tree, em);
2287 spin_unlock(&em_tree->lock);
2288 BUG_ON(ret);
2289 free_extent_map(em);
2291 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2292 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2293 start, *num_bytes);
2294 BUG_ON(ret);
2296 index = 0;
2297 while (index < map->num_stripes) {
2298 device = map->stripes[index].dev;
2299 dev_offset = map->stripes[index].physical;
2301 ret = btrfs_alloc_dev_extent(trans, device,
2302 info->chunk_root->root_key.objectid,
2303 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2304 start, dev_offset, calc_size);
2305 BUG_ON(ret);
2306 index++;
2309 return 0;
2312 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *extent_root,
2314 struct map_lookup *map, u64 chunk_offset,
2315 u64 chunk_size, u64 stripe_size)
2317 u64 dev_offset;
2318 struct btrfs_key key;
2319 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2320 struct btrfs_device *device;
2321 struct btrfs_chunk *chunk;
2322 struct btrfs_stripe *stripe;
2323 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2324 int index = 0;
2325 int ret;
2327 chunk = kzalloc(item_size, GFP_NOFS);
2328 if (!chunk)
2329 return -ENOMEM;
2331 index = 0;
2332 while (index < map->num_stripes) {
2333 device = map->stripes[index].dev;
2334 device->bytes_used += stripe_size;
2335 ret = btrfs_update_device(trans, device);
2336 BUG_ON(ret);
2337 index++;
2340 index = 0;
2341 stripe = &chunk->stripe;
2342 while (index < map->num_stripes) {
2343 device = map->stripes[index].dev;
2344 dev_offset = map->stripes[index].physical;
2346 btrfs_set_stack_stripe_devid(stripe, device->devid);
2347 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2348 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2349 stripe++;
2350 index++;
2353 btrfs_set_stack_chunk_length(chunk, chunk_size);
2354 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2355 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2356 btrfs_set_stack_chunk_type(chunk, map->type);
2357 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2358 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2359 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2360 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2361 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2363 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2364 key.type = BTRFS_CHUNK_ITEM_KEY;
2365 key.offset = chunk_offset;
2367 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2368 BUG_ON(ret);
2370 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2371 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2372 item_size);
2373 BUG_ON(ret);
2375 kfree(chunk);
2376 return 0;
2380 * Chunk allocation falls into two parts. The first part does works
2381 * that make the new allocated chunk useable, but not do any operation
2382 * that modifies the chunk tree. The second part does the works that
2383 * require modifying the chunk tree. This division is important for the
2384 * bootstrap process of adding storage to a seed btrfs.
2386 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2387 struct btrfs_root *extent_root, u64 type)
2389 u64 chunk_offset;
2390 u64 chunk_size;
2391 u64 stripe_size;
2392 struct map_lookup *map;
2393 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2394 int ret;
2396 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2397 &chunk_offset);
2398 if (ret)
2399 return ret;
2401 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2402 &stripe_size, chunk_offset, type);
2403 if (ret)
2404 return ret;
2406 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2407 chunk_size, stripe_size);
2408 BUG_ON(ret);
2409 return 0;
2412 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2413 struct btrfs_root *root,
2414 struct btrfs_device *device)
2416 u64 chunk_offset;
2417 u64 sys_chunk_offset;
2418 u64 chunk_size;
2419 u64 sys_chunk_size;
2420 u64 stripe_size;
2421 u64 sys_stripe_size;
2422 u64 alloc_profile;
2423 struct map_lookup *map;
2424 struct map_lookup *sys_map;
2425 struct btrfs_fs_info *fs_info = root->fs_info;
2426 struct btrfs_root *extent_root = fs_info->extent_root;
2427 int ret;
2429 ret = find_next_chunk(fs_info->chunk_root,
2430 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2431 BUG_ON(ret);
2433 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2434 (fs_info->metadata_alloc_profile &
2435 fs_info->avail_metadata_alloc_bits);
2436 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2438 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2439 &stripe_size, chunk_offset, alloc_profile);
2440 BUG_ON(ret);
2442 sys_chunk_offset = chunk_offset + chunk_size;
2444 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2445 (fs_info->system_alloc_profile &
2446 fs_info->avail_system_alloc_bits);
2447 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2449 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2450 &sys_chunk_size, &sys_stripe_size,
2451 sys_chunk_offset, alloc_profile);
2452 BUG_ON(ret);
2454 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2455 BUG_ON(ret);
2458 * Modifying chunk tree needs allocating new blocks from both
2459 * system block group and metadata block group. So we only can
2460 * do operations require modifying the chunk tree after both
2461 * block groups were created.
2463 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2464 chunk_size, stripe_size);
2465 BUG_ON(ret);
2467 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2468 sys_chunk_offset, sys_chunk_size,
2469 sys_stripe_size);
2470 BUG_ON(ret);
2471 return 0;
2474 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2476 struct extent_map *em;
2477 struct map_lookup *map;
2478 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2479 int readonly = 0;
2480 int i;
2482 spin_lock(&map_tree->map_tree.lock);
2483 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2484 spin_unlock(&map_tree->map_tree.lock);
2485 if (!em)
2486 return 1;
2488 map = (struct map_lookup *)em->bdev;
2489 for (i = 0; i < map->num_stripes; i++) {
2490 if (!map->stripes[i].dev->writeable) {
2491 readonly = 1;
2492 break;
2495 free_extent_map(em);
2496 return readonly;
2499 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2501 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2504 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2506 struct extent_map *em;
2508 while (1) {
2509 spin_lock(&tree->map_tree.lock);
2510 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2511 if (em)
2512 remove_extent_mapping(&tree->map_tree, em);
2513 spin_unlock(&tree->map_tree.lock);
2514 if (!em)
2515 break;
2516 kfree(em->bdev);
2517 /* once for us */
2518 free_extent_map(em);
2519 /* once for the tree */
2520 free_extent_map(em);
2524 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2526 struct extent_map *em;
2527 struct map_lookup *map;
2528 struct extent_map_tree *em_tree = &map_tree->map_tree;
2529 int ret;
2531 spin_lock(&em_tree->lock);
2532 em = lookup_extent_mapping(em_tree, logical, len);
2533 spin_unlock(&em_tree->lock);
2534 BUG_ON(!em);
2536 BUG_ON(em->start > logical || em->start + em->len < logical);
2537 map = (struct map_lookup *)em->bdev;
2538 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2539 ret = map->num_stripes;
2540 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2541 ret = map->sub_stripes;
2542 else
2543 ret = 1;
2544 free_extent_map(em);
2545 return ret;
2548 static int find_live_mirror(struct map_lookup *map, int first, int num,
2549 int optimal)
2551 int i;
2552 if (map->stripes[optimal].dev->bdev)
2553 return optimal;
2554 for (i = first; i < first + num; i++) {
2555 if (map->stripes[i].dev->bdev)
2556 return i;
2558 /* we couldn't find one that doesn't fail. Just return something
2559 * and the io error handling code will clean up eventually
2561 return optimal;
2564 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2565 u64 logical, u64 *length,
2566 struct btrfs_multi_bio **multi_ret,
2567 int mirror_num, struct page *unplug_page)
2569 struct extent_map *em;
2570 struct map_lookup *map;
2571 struct extent_map_tree *em_tree = &map_tree->map_tree;
2572 u64 offset;
2573 u64 stripe_offset;
2574 u64 stripe_nr;
2575 int stripes_allocated = 8;
2576 int stripes_required = 1;
2577 int stripe_index;
2578 int i;
2579 int num_stripes;
2580 int max_errors = 0;
2581 struct btrfs_multi_bio *multi = NULL;
2583 if (multi_ret && !(rw & (1 << BIO_RW)))
2584 stripes_allocated = 1;
2585 again:
2586 if (multi_ret) {
2587 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2588 GFP_NOFS);
2589 if (!multi)
2590 return -ENOMEM;
2592 atomic_set(&multi->error, 0);
2595 spin_lock(&em_tree->lock);
2596 em = lookup_extent_mapping(em_tree, logical, *length);
2597 spin_unlock(&em_tree->lock);
2599 if (!em && unplug_page)
2600 return 0;
2602 if (!em) {
2603 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2604 (unsigned long long)logical,
2605 (unsigned long long)*length);
2606 BUG();
2609 BUG_ON(em->start > logical || em->start + em->len < logical);
2610 map = (struct map_lookup *)em->bdev;
2611 offset = logical - em->start;
2613 if (mirror_num > map->num_stripes)
2614 mirror_num = 0;
2616 /* if our multi bio struct is too small, back off and try again */
2617 if (rw & (1 << BIO_RW)) {
2618 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2619 BTRFS_BLOCK_GROUP_DUP)) {
2620 stripes_required = map->num_stripes;
2621 max_errors = 1;
2622 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2623 stripes_required = map->sub_stripes;
2624 max_errors = 1;
2627 if (multi_ret && (rw & (1 << BIO_RW)) &&
2628 stripes_allocated < stripes_required) {
2629 stripes_allocated = map->num_stripes;
2630 free_extent_map(em);
2631 kfree(multi);
2632 goto again;
2634 stripe_nr = offset;
2636 * stripe_nr counts the total number of stripes we have to stride
2637 * to get to this block
2639 do_div(stripe_nr, map->stripe_len);
2641 stripe_offset = stripe_nr * map->stripe_len;
2642 BUG_ON(offset < stripe_offset);
2644 /* stripe_offset is the offset of this block in its stripe*/
2645 stripe_offset = offset - stripe_offset;
2647 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2648 BTRFS_BLOCK_GROUP_RAID10 |
2649 BTRFS_BLOCK_GROUP_DUP)) {
2650 /* we limit the length of each bio to what fits in a stripe */
2651 *length = min_t(u64, em->len - offset,
2652 map->stripe_len - stripe_offset);
2653 } else {
2654 *length = em->len - offset;
2657 if (!multi_ret && !unplug_page)
2658 goto out;
2660 num_stripes = 1;
2661 stripe_index = 0;
2662 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2663 if (unplug_page || (rw & (1 << BIO_RW)))
2664 num_stripes = map->num_stripes;
2665 else if (mirror_num)
2666 stripe_index = mirror_num - 1;
2667 else {
2668 stripe_index = find_live_mirror(map, 0,
2669 map->num_stripes,
2670 current->pid % map->num_stripes);
2673 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2674 if (rw & (1 << BIO_RW))
2675 num_stripes = map->num_stripes;
2676 else if (mirror_num)
2677 stripe_index = mirror_num - 1;
2679 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2680 int factor = map->num_stripes / map->sub_stripes;
2682 stripe_index = do_div(stripe_nr, factor);
2683 stripe_index *= map->sub_stripes;
2685 if (unplug_page || (rw & (1 << BIO_RW)))
2686 num_stripes = map->sub_stripes;
2687 else if (mirror_num)
2688 stripe_index += mirror_num - 1;
2689 else {
2690 stripe_index = find_live_mirror(map, stripe_index,
2691 map->sub_stripes, stripe_index +
2692 current->pid % map->sub_stripes);
2694 } else {
2696 * after this do_div call, stripe_nr is the number of stripes
2697 * on this device we have to walk to find the data, and
2698 * stripe_index is the number of our device in the stripe array
2700 stripe_index = do_div(stripe_nr, map->num_stripes);
2702 BUG_ON(stripe_index >= map->num_stripes);
2704 for (i = 0; i < num_stripes; i++) {
2705 if (unplug_page) {
2706 struct btrfs_device *device;
2707 struct backing_dev_info *bdi;
2709 device = map->stripes[stripe_index].dev;
2710 if (device->bdev) {
2711 bdi = blk_get_backing_dev_info(device->bdev);
2712 if (bdi->unplug_io_fn)
2713 bdi->unplug_io_fn(bdi, unplug_page);
2715 } else {
2716 multi->stripes[i].physical =
2717 map->stripes[stripe_index].physical +
2718 stripe_offset + stripe_nr * map->stripe_len;
2719 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2721 stripe_index++;
2723 if (multi_ret) {
2724 *multi_ret = multi;
2725 multi->num_stripes = num_stripes;
2726 multi->max_errors = max_errors;
2728 out:
2729 free_extent_map(em);
2730 return 0;
2733 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2734 u64 logical, u64 *length,
2735 struct btrfs_multi_bio **multi_ret, int mirror_num)
2737 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2738 mirror_num, NULL);
2741 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2742 u64 chunk_start, u64 physical, u64 devid,
2743 u64 **logical, int *naddrs, int *stripe_len)
2745 struct extent_map_tree *em_tree = &map_tree->map_tree;
2746 struct extent_map *em;
2747 struct map_lookup *map;
2748 u64 *buf;
2749 u64 bytenr;
2750 u64 length;
2751 u64 stripe_nr;
2752 int i, j, nr = 0;
2754 spin_lock(&em_tree->lock);
2755 em = lookup_extent_mapping(em_tree, chunk_start, 1);
2756 spin_unlock(&em_tree->lock);
2758 BUG_ON(!em || em->start != chunk_start);
2759 map = (struct map_lookup *)em->bdev;
2761 length = em->len;
2762 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2763 do_div(length, map->num_stripes / map->sub_stripes);
2764 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2765 do_div(length, map->num_stripes);
2767 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2768 BUG_ON(!buf);
2770 for (i = 0; i < map->num_stripes; i++) {
2771 if (devid && map->stripes[i].dev->devid != devid)
2772 continue;
2773 if (map->stripes[i].physical > physical ||
2774 map->stripes[i].physical + length <= physical)
2775 continue;
2777 stripe_nr = physical - map->stripes[i].physical;
2778 do_div(stripe_nr, map->stripe_len);
2780 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2781 stripe_nr = stripe_nr * map->num_stripes + i;
2782 do_div(stripe_nr, map->sub_stripes);
2783 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2784 stripe_nr = stripe_nr * map->num_stripes + i;
2786 bytenr = chunk_start + stripe_nr * map->stripe_len;
2787 WARN_ON(nr >= map->num_stripes);
2788 for (j = 0; j < nr; j++) {
2789 if (buf[j] == bytenr)
2790 break;
2792 if (j == nr) {
2793 WARN_ON(nr >= map->num_stripes);
2794 buf[nr++] = bytenr;
2798 for (i = 0; i > nr; i++) {
2799 struct btrfs_multi_bio *multi;
2800 struct btrfs_bio_stripe *stripe;
2801 int ret;
2803 length = 1;
2804 ret = btrfs_map_block(map_tree, WRITE, buf[i],
2805 &length, &multi, 0);
2806 BUG_ON(ret);
2808 stripe = multi->stripes;
2809 for (j = 0; j < multi->num_stripes; j++) {
2810 if (stripe->physical >= physical &&
2811 physical < stripe->physical + length)
2812 break;
2814 BUG_ON(j >= multi->num_stripes);
2815 kfree(multi);
2818 *logical = buf;
2819 *naddrs = nr;
2820 *stripe_len = map->stripe_len;
2822 free_extent_map(em);
2823 return 0;
2826 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2827 u64 logical, struct page *page)
2829 u64 length = PAGE_CACHE_SIZE;
2830 return __btrfs_map_block(map_tree, READ, logical, &length,
2831 NULL, 0, page);
2834 static void end_bio_multi_stripe(struct bio *bio, int err)
2836 struct btrfs_multi_bio *multi = bio->bi_private;
2837 int is_orig_bio = 0;
2839 if (err)
2840 atomic_inc(&multi->error);
2842 if (bio == multi->orig_bio)
2843 is_orig_bio = 1;
2845 if (atomic_dec_and_test(&multi->stripes_pending)) {
2846 if (!is_orig_bio) {
2847 bio_put(bio);
2848 bio = multi->orig_bio;
2850 bio->bi_private = multi->private;
2851 bio->bi_end_io = multi->end_io;
2852 /* only send an error to the higher layers if it is
2853 * beyond the tolerance of the multi-bio
2855 if (atomic_read(&multi->error) > multi->max_errors) {
2856 err = -EIO;
2857 } else if (err) {
2859 * this bio is actually up to date, we didn't
2860 * go over the max number of errors
2862 set_bit(BIO_UPTODATE, &bio->bi_flags);
2863 err = 0;
2865 kfree(multi);
2867 bio_endio(bio, err);
2868 } else if (!is_orig_bio) {
2869 bio_put(bio);
2873 struct async_sched {
2874 struct bio *bio;
2875 int rw;
2876 struct btrfs_fs_info *info;
2877 struct btrfs_work work;
2881 * see run_scheduled_bios for a description of why bios are collected for
2882 * async submit.
2884 * This will add one bio to the pending list for a device and make sure
2885 * the work struct is scheduled.
2887 static noinline int schedule_bio(struct btrfs_root *root,
2888 struct btrfs_device *device,
2889 int rw, struct bio *bio)
2891 int should_queue = 1;
2892 struct btrfs_pending_bios *pending_bios;
2894 /* don't bother with additional async steps for reads, right now */
2895 if (!(rw & (1 << BIO_RW))) {
2896 bio_get(bio);
2897 submit_bio(rw, bio);
2898 bio_put(bio);
2899 return 0;
2903 * nr_async_bios allows us to reliably return congestion to the
2904 * higher layers. Otherwise, the async bio makes it appear we have
2905 * made progress against dirty pages when we've really just put it
2906 * on a queue for later
2908 atomic_inc(&root->fs_info->nr_async_bios);
2909 WARN_ON(bio->bi_next);
2910 bio->bi_next = NULL;
2911 bio->bi_rw |= rw;
2913 spin_lock(&device->io_lock);
2914 if (bio_sync(bio))
2915 pending_bios = &device->pending_sync_bios;
2916 else
2917 pending_bios = &device->pending_bios;
2919 if (pending_bios->tail)
2920 pending_bios->tail->bi_next = bio;
2922 pending_bios->tail = bio;
2923 if (!pending_bios->head)
2924 pending_bios->head = bio;
2925 if (device->running_pending)
2926 should_queue = 0;
2928 spin_unlock(&device->io_lock);
2930 if (should_queue)
2931 btrfs_queue_worker(&root->fs_info->submit_workers,
2932 &device->work);
2933 return 0;
2936 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2937 int mirror_num, int async_submit)
2939 struct btrfs_mapping_tree *map_tree;
2940 struct btrfs_device *dev;
2941 struct bio *first_bio = bio;
2942 u64 logical = (u64)bio->bi_sector << 9;
2943 u64 length = 0;
2944 u64 map_length;
2945 struct btrfs_multi_bio *multi = NULL;
2946 int ret;
2947 int dev_nr = 0;
2948 int total_devs = 1;
2950 length = bio->bi_size;
2951 map_tree = &root->fs_info->mapping_tree;
2952 map_length = length;
2954 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2955 mirror_num);
2956 BUG_ON(ret);
2958 total_devs = multi->num_stripes;
2959 if (map_length < length) {
2960 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2961 "len %llu\n", (unsigned long long)logical,
2962 (unsigned long long)length,
2963 (unsigned long long)map_length);
2964 BUG();
2966 multi->end_io = first_bio->bi_end_io;
2967 multi->private = first_bio->bi_private;
2968 multi->orig_bio = first_bio;
2969 atomic_set(&multi->stripes_pending, multi->num_stripes);
2971 while (dev_nr < total_devs) {
2972 if (total_devs > 1) {
2973 if (dev_nr < total_devs - 1) {
2974 bio = bio_clone(first_bio, GFP_NOFS);
2975 BUG_ON(!bio);
2976 } else {
2977 bio = first_bio;
2979 bio->bi_private = multi;
2980 bio->bi_end_io = end_bio_multi_stripe;
2982 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2983 dev = multi->stripes[dev_nr].dev;
2984 BUG_ON(rw == WRITE && !dev->writeable);
2985 if (dev && dev->bdev) {
2986 bio->bi_bdev = dev->bdev;
2987 if (async_submit)
2988 schedule_bio(root, dev, rw, bio);
2989 else
2990 submit_bio(rw, bio);
2991 } else {
2992 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2993 bio->bi_sector = logical >> 9;
2994 bio_endio(bio, -EIO);
2996 dev_nr++;
2998 if (total_devs == 1)
2999 kfree(multi);
3000 return 0;
3003 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3004 u8 *uuid, u8 *fsid)
3006 struct btrfs_device *device;
3007 struct btrfs_fs_devices *cur_devices;
3009 cur_devices = root->fs_info->fs_devices;
3010 while (cur_devices) {
3011 if (!fsid ||
3012 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3013 device = __find_device(&cur_devices->devices,
3014 devid, uuid);
3015 if (device)
3016 return device;
3018 cur_devices = cur_devices->seed;
3020 return NULL;
3023 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3024 u64 devid, u8 *dev_uuid)
3026 struct btrfs_device *device;
3027 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3029 device = kzalloc(sizeof(*device), GFP_NOFS);
3030 if (!device)
3031 return NULL;
3032 list_add(&device->dev_list,
3033 &fs_devices->devices);
3034 device->barriers = 1;
3035 device->dev_root = root->fs_info->dev_root;
3036 device->devid = devid;
3037 device->work.func = pending_bios_fn;
3038 device->fs_devices = fs_devices;
3039 fs_devices->num_devices++;
3040 spin_lock_init(&device->io_lock);
3041 INIT_LIST_HEAD(&device->dev_alloc_list);
3042 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3043 return device;
3046 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3047 struct extent_buffer *leaf,
3048 struct btrfs_chunk *chunk)
3050 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3051 struct map_lookup *map;
3052 struct extent_map *em;
3053 u64 logical;
3054 u64 length;
3055 u64 devid;
3056 u8 uuid[BTRFS_UUID_SIZE];
3057 int num_stripes;
3058 int ret;
3059 int i;
3061 logical = key->offset;
3062 length = btrfs_chunk_length(leaf, chunk);
3064 spin_lock(&map_tree->map_tree.lock);
3065 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3066 spin_unlock(&map_tree->map_tree.lock);
3068 /* already mapped? */
3069 if (em && em->start <= logical && em->start + em->len > logical) {
3070 free_extent_map(em);
3071 return 0;
3072 } else if (em) {
3073 free_extent_map(em);
3076 em = alloc_extent_map(GFP_NOFS);
3077 if (!em)
3078 return -ENOMEM;
3079 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3080 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3081 if (!map) {
3082 free_extent_map(em);
3083 return -ENOMEM;
3086 em->bdev = (struct block_device *)map;
3087 em->start = logical;
3088 em->len = length;
3089 em->block_start = 0;
3090 em->block_len = em->len;
3092 map->num_stripes = num_stripes;
3093 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3094 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3095 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3096 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3097 map->type = btrfs_chunk_type(leaf, chunk);
3098 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3099 for (i = 0; i < num_stripes; i++) {
3100 map->stripes[i].physical =
3101 btrfs_stripe_offset_nr(leaf, chunk, i);
3102 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3103 read_extent_buffer(leaf, uuid, (unsigned long)
3104 btrfs_stripe_dev_uuid_nr(chunk, i),
3105 BTRFS_UUID_SIZE);
3106 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3107 NULL);
3108 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3109 kfree(map);
3110 free_extent_map(em);
3111 return -EIO;
3113 if (!map->stripes[i].dev) {
3114 map->stripes[i].dev =
3115 add_missing_dev(root, devid, uuid);
3116 if (!map->stripes[i].dev) {
3117 kfree(map);
3118 free_extent_map(em);
3119 return -EIO;
3122 map->stripes[i].dev->in_fs_metadata = 1;
3125 spin_lock(&map_tree->map_tree.lock);
3126 ret = add_extent_mapping(&map_tree->map_tree, em);
3127 spin_unlock(&map_tree->map_tree.lock);
3128 BUG_ON(ret);
3129 free_extent_map(em);
3131 return 0;
3134 static int fill_device_from_item(struct extent_buffer *leaf,
3135 struct btrfs_dev_item *dev_item,
3136 struct btrfs_device *device)
3138 unsigned long ptr;
3140 device->devid = btrfs_device_id(leaf, dev_item);
3141 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3142 device->total_bytes = device->disk_total_bytes;
3143 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3144 device->type = btrfs_device_type(leaf, dev_item);
3145 device->io_align = btrfs_device_io_align(leaf, dev_item);
3146 device->io_width = btrfs_device_io_width(leaf, dev_item);
3147 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3149 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3150 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3152 return 0;
3155 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3157 struct btrfs_fs_devices *fs_devices;
3158 int ret;
3160 mutex_lock(&uuid_mutex);
3162 fs_devices = root->fs_info->fs_devices->seed;
3163 while (fs_devices) {
3164 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3165 ret = 0;
3166 goto out;
3168 fs_devices = fs_devices->seed;
3171 fs_devices = find_fsid(fsid);
3172 if (!fs_devices) {
3173 ret = -ENOENT;
3174 goto out;
3177 fs_devices = clone_fs_devices(fs_devices);
3178 if (IS_ERR(fs_devices)) {
3179 ret = PTR_ERR(fs_devices);
3180 goto out;
3183 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3184 root->fs_info->bdev_holder);
3185 if (ret)
3186 goto out;
3188 if (!fs_devices->seeding) {
3189 __btrfs_close_devices(fs_devices);
3190 free_fs_devices(fs_devices);
3191 ret = -EINVAL;
3192 goto out;
3195 fs_devices->seed = root->fs_info->fs_devices->seed;
3196 root->fs_info->fs_devices->seed = fs_devices;
3197 out:
3198 mutex_unlock(&uuid_mutex);
3199 return ret;
3202 static int read_one_dev(struct btrfs_root *root,
3203 struct extent_buffer *leaf,
3204 struct btrfs_dev_item *dev_item)
3206 struct btrfs_device *device;
3207 u64 devid;
3208 int ret;
3209 u8 fs_uuid[BTRFS_UUID_SIZE];
3210 u8 dev_uuid[BTRFS_UUID_SIZE];
3212 devid = btrfs_device_id(leaf, dev_item);
3213 read_extent_buffer(leaf, dev_uuid,
3214 (unsigned long)btrfs_device_uuid(dev_item),
3215 BTRFS_UUID_SIZE);
3216 read_extent_buffer(leaf, fs_uuid,
3217 (unsigned long)btrfs_device_fsid(dev_item),
3218 BTRFS_UUID_SIZE);
3220 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3221 ret = open_seed_devices(root, fs_uuid);
3222 if (ret && !btrfs_test_opt(root, DEGRADED))
3223 return ret;
3226 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3227 if (!device || !device->bdev) {
3228 if (!btrfs_test_opt(root, DEGRADED))
3229 return -EIO;
3231 if (!device) {
3232 printk(KERN_WARNING "warning devid %llu missing\n",
3233 (unsigned long long)devid);
3234 device = add_missing_dev(root, devid, dev_uuid);
3235 if (!device)
3236 return -ENOMEM;
3240 if (device->fs_devices != root->fs_info->fs_devices) {
3241 BUG_ON(device->writeable);
3242 if (device->generation !=
3243 btrfs_device_generation(leaf, dev_item))
3244 return -EINVAL;
3247 fill_device_from_item(leaf, dev_item, device);
3248 device->dev_root = root->fs_info->dev_root;
3249 device->in_fs_metadata = 1;
3250 if (device->writeable)
3251 device->fs_devices->total_rw_bytes += device->total_bytes;
3252 ret = 0;
3253 return ret;
3256 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3258 struct btrfs_dev_item *dev_item;
3260 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3261 dev_item);
3262 return read_one_dev(root, buf, dev_item);
3265 int btrfs_read_sys_array(struct btrfs_root *root)
3267 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3268 struct extent_buffer *sb;
3269 struct btrfs_disk_key *disk_key;
3270 struct btrfs_chunk *chunk;
3271 u8 *ptr;
3272 unsigned long sb_ptr;
3273 int ret = 0;
3274 u32 num_stripes;
3275 u32 array_size;
3276 u32 len = 0;
3277 u32 cur;
3278 struct btrfs_key key;
3280 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3281 BTRFS_SUPER_INFO_SIZE);
3282 if (!sb)
3283 return -ENOMEM;
3284 btrfs_set_buffer_uptodate(sb);
3285 btrfs_set_buffer_lockdep_class(sb, 0);
3287 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3288 array_size = btrfs_super_sys_array_size(super_copy);
3290 ptr = super_copy->sys_chunk_array;
3291 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3292 cur = 0;
3294 while (cur < array_size) {
3295 disk_key = (struct btrfs_disk_key *)ptr;
3296 btrfs_disk_key_to_cpu(&key, disk_key);
3298 len = sizeof(*disk_key); ptr += len;
3299 sb_ptr += len;
3300 cur += len;
3302 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3303 chunk = (struct btrfs_chunk *)sb_ptr;
3304 ret = read_one_chunk(root, &key, sb, chunk);
3305 if (ret)
3306 break;
3307 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3308 len = btrfs_chunk_item_size(num_stripes);
3309 } else {
3310 ret = -EIO;
3311 break;
3313 ptr += len;
3314 sb_ptr += len;
3315 cur += len;
3317 free_extent_buffer(sb);
3318 return ret;
3321 int btrfs_read_chunk_tree(struct btrfs_root *root)
3323 struct btrfs_path *path;
3324 struct extent_buffer *leaf;
3325 struct btrfs_key key;
3326 struct btrfs_key found_key;
3327 int ret;
3328 int slot;
3330 root = root->fs_info->chunk_root;
3332 path = btrfs_alloc_path();
3333 if (!path)
3334 return -ENOMEM;
3336 /* first we search for all of the device items, and then we
3337 * read in all of the chunk items. This way we can create chunk
3338 * mappings that reference all of the devices that are afound
3340 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3341 key.offset = 0;
3342 key.type = 0;
3343 again:
3344 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3345 while (1) {
3346 leaf = path->nodes[0];
3347 slot = path->slots[0];
3348 if (slot >= btrfs_header_nritems(leaf)) {
3349 ret = btrfs_next_leaf(root, path);
3350 if (ret == 0)
3351 continue;
3352 if (ret < 0)
3353 goto error;
3354 break;
3356 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3357 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3358 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3359 break;
3360 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3361 struct btrfs_dev_item *dev_item;
3362 dev_item = btrfs_item_ptr(leaf, slot,
3363 struct btrfs_dev_item);
3364 ret = read_one_dev(root, leaf, dev_item);
3365 if (ret)
3366 goto error;
3368 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3369 struct btrfs_chunk *chunk;
3370 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3371 ret = read_one_chunk(root, &found_key, leaf, chunk);
3372 if (ret)
3373 goto error;
3375 path->slots[0]++;
3377 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3378 key.objectid = 0;
3379 btrfs_release_path(root, path);
3380 goto again;
3382 ret = 0;
3383 error:
3384 btrfs_free_path(path);
3385 return ret;