perf: Complete software pmu grouping
[linux-2.6.git] / include / linux / perf_event.h
blob165287fd2cc47a721cd380031d4bbef7aa21122b
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
36 PERF_TYPE_MAX, /* non-ABI */
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
44 enum perf_hw_id {
46 * Common hardware events, generalized by the kernel:
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
56 PERF_COUNT_HW_MAX, /* non-ABI */
60 * Generalized hardware cache events:
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
66 enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
77 enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
85 enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
98 enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
109 PERF_COUNT_SW_MAX, /* non-ABI */
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
116 enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
152 enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
164 * Hardware event_id to monitor via a performance monitoring event:
166 struct perf_event_attr {
169 * Major type: hardware/software/tracepoint/etc.
171 __u32 type;
174 * Size of the attr structure, for fwd/bwd compat.
176 __u32 size;
179 * Type specific configuration information.
181 __u64 config;
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
188 __u64 sample_type;
189 __u64 read_format;
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
207 * precise_ip:
209 * 0 - SAMPLE_IP can have arbitrary skid
210 * 1 - SAMPLE_IP must have constant skid
211 * 2 - SAMPLE_IP requested to have 0 skid
212 * 3 - SAMPLE_IP must have 0 skid
214 * See also PERF_RECORD_MISC_EXACT_IP
216 precise_ip : 2, /* skid constraint */
217 mmap_data : 1, /* non-exec mmap data */
219 __reserved_1 : 46;
221 union {
222 __u32 wakeup_events; /* wakeup every n events */
223 __u32 wakeup_watermark; /* bytes before wakeup */
226 __u32 bp_type;
227 __u64 bp_addr;
228 __u64 bp_len;
232 * Ioctls that can be done on a perf event fd:
234 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
235 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
236 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
237 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
238 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
239 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
240 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
242 enum perf_event_ioc_flags {
243 PERF_IOC_FLAG_GROUP = 1U << 0,
247 * Structure of the page that can be mapped via mmap
249 struct perf_event_mmap_page {
250 __u32 version; /* version number of this structure */
251 __u32 compat_version; /* lowest version this is compat with */
254 * Bits needed to read the hw events in user-space.
256 * u32 seq;
257 * s64 count;
259 * do {
260 * seq = pc->lock;
262 * barrier()
263 * if (pc->index) {
264 * count = pmc_read(pc->index - 1);
265 * count += pc->offset;
266 * } else
267 * goto regular_read;
269 * barrier();
270 * } while (pc->lock != seq);
272 * NOTE: for obvious reason this only works on self-monitoring
273 * processes.
275 __u32 lock; /* seqlock for synchronization */
276 __u32 index; /* hardware event identifier */
277 __s64 offset; /* add to hardware event value */
278 __u64 time_enabled; /* time event active */
279 __u64 time_running; /* time event on cpu */
282 * Hole for extension of the self monitor capabilities
285 __u64 __reserved[123]; /* align to 1k */
288 * Control data for the mmap() data buffer.
290 * User-space reading the @data_head value should issue an rmb(), on
291 * SMP capable platforms, after reading this value -- see
292 * perf_event_wakeup().
294 * When the mapping is PROT_WRITE the @data_tail value should be
295 * written by userspace to reflect the last read data. In this case
296 * the kernel will not over-write unread data.
298 __u64 data_head; /* head in the data section */
299 __u64 data_tail; /* user-space written tail */
302 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
303 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
304 #define PERF_RECORD_MISC_KERNEL (1 << 0)
305 #define PERF_RECORD_MISC_USER (2 << 0)
306 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
307 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
308 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
311 * Indicates that the content of PERF_SAMPLE_IP points to
312 * the actual instruction that triggered the event. See also
313 * perf_event_attr::precise_ip.
315 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
317 * Reserve the last bit to indicate some extended misc field
319 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
321 struct perf_event_header {
322 __u32 type;
323 __u16 misc;
324 __u16 size;
327 enum perf_event_type {
330 * The MMAP events record the PROT_EXEC mappings so that we can
331 * correlate userspace IPs to code. They have the following structure:
333 * struct {
334 * struct perf_event_header header;
336 * u32 pid, tid;
337 * u64 addr;
338 * u64 len;
339 * u64 pgoff;
340 * char filename[];
341 * };
343 PERF_RECORD_MMAP = 1,
346 * struct {
347 * struct perf_event_header header;
348 * u64 id;
349 * u64 lost;
350 * };
352 PERF_RECORD_LOST = 2,
355 * struct {
356 * struct perf_event_header header;
358 * u32 pid, tid;
359 * char comm[];
360 * };
362 PERF_RECORD_COMM = 3,
365 * struct {
366 * struct perf_event_header header;
367 * u32 pid, ppid;
368 * u32 tid, ptid;
369 * u64 time;
370 * };
372 PERF_RECORD_EXIT = 4,
375 * struct {
376 * struct perf_event_header header;
377 * u64 time;
378 * u64 id;
379 * u64 stream_id;
380 * };
382 PERF_RECORD_THROTTLE = 5,
383 PERF_RECORD_UNTHROTTLE = 6,
386 * struct {
387 * struct perf_event_header header;
388 * u32 pid, ppid;
389 * u32 tid, ptid;
390 * u64 time;
391 * };
393 PERF_RECORD_FORK = 7,
396 * struct {
397 * struct perf_event_header header;
398 * u32 pid, tid;
400 * struct read_format values;
401 * };
403 PERF_RECORD_READ = 8,
406 * struct {
407 * struct perf_event_header header;
409 * { u64 ip; } && PERF_SAMPLE_IP
410 * { u32 pid, tid; } && PERF_SAMPLE_TID
411 * { u64 time; } && PERF_SAMPLE_TIME
412 * { u64 addr; } && PERF_SAMPLE_ADDR
413 * { u64 id; } && PERF_SAMPLE_ID
414 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
415 * { u32 cpu, res; } && PERF_SAMPLE_CPU
416 * { u64 period; } && PERF_SAMPLE_PERIOD
418 * { struct read_format values; } && PERF_SAMPLE_READ
420 * { u64 nr,
421 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
424 * # The RAW record below is opaque data wrt the ABI
426 * # That is, the ABI doesn't make any promises wrt to
427 * # the stability of its content, it may vary depending
428 * # on event, hardware, kernel version and phase of
429 * # the moon.
431 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
434 * { u32 size;
435 * char data[size];}&& PERF_SAMPLE_RAW
436 * };
438 PERF_RECORD_SAMPLE = 9,
440 PERF_RECORD_MAX, /* non-ABI */
443 enum perf_callchain_context {
444 PERF_CONTEXT_HV = (__u64)-32,
445 PERF_CONTEXT_KERNEL = (__u64)-128,
446 PERF_CONTEXT_USER = (__u64)-512,
448 PERF_CONTEXT_GUEST = (__u64)-2048,
449 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
450 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
452 PERF_CONTEXT_MAX = (__u64)-4095,
455 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
456 #define PERF_FLAG_FD_OUTPUT (1U << 1)
458 #ifdef __KERNEL__
460 * Kernel-internal data types and definitions:
463 #ifdef CONFIG_PERF_EVENTS
464 # include <asm/perf_event.h>
465 # include <asm/local64.h>
466 #endif
468 struct perf_guest_info_callbacks {
469 int (*is_in_guest) (void);
470 int (*is_user_mode) (void);
471 unsigned long (*get_guest_ip) (void);
474 #ifdef CONFIG_HAVE_HW_BREAKPOINT
475 #include <asm/hw_breakpoint.h>
476 #endif
478 #include <linux/list.h>
479 #include <linux/mutex.h>
480 #include <linux/rculist.h>
481 #include <linux/rcupdate.h>
482 #include <linux/spinlock.h>
483 #include <linux/hrtimer.h>
484 #include <linux/fs.h>
485 #include <linux/pid_namespace.h>
486 #include <linux/workqueue.h>
487 #include <linux/ftrace.h>
488 #include <linux/cpu.h>
489 #include <asm/atomic.h>
490 #include <asm/local.h>
492 #define PERF_MAX_STACK_DEPTH 255
494 struct perf_callchain_entry {
495 __u64 nr;
496 __u64 ip[PERF_MAX_STACK_DEPTH];
499 struct perf_raw_record {
500 u32 size;
501 void *data;
504 struct perf_branch_entry {
505 __u64 from;
506 __u64 to;
507 __u64 flags;
510 struct perf_branch_stack {
511 __u64 nr;
512 struct perf_branch_entry entries[0];
515 struct task_struct;
518 * struct hw_perf_event - performance event hardware details:
520 struct hw_perf_event {
521 #ifdef CONFIG_PERF_EVENTS
522 union {
523 struct { /* hardware */
524 u64 config;
525 u64 last_tag;
526 unsigned long config_base;
527 unsigned long event_base;
528 int idx;
529 int last_cpu;
531 struct { /* software */
532 struct hrtimer hrtimer;
534 #ifdef CONFIG_HAVE_HW_BREAKPOINT
535 struct { /* breakpoint */
536 struct arch_hw_breakpoint info;
537 struct list_head bp_list;
539 #endif
541 int state;
542 local64_t prev_count;
543 u64 sample_period;
544 u64 last_period;
545 local64_t period_left;
546 u64 interrupts;
548 u64 freq_time_stamp;
549 u64 freq_count_stamp;
550 #endif
554 * hw_perf_event::state flags
556 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
557 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
558 #define PERF_HES_ARCH 0x04
560 struct perf_event;
563 * Common implementation detail of pmu::{start,commit,cancel}_txn
565 #define PERF_EVENT_TXN 0x1
568 * struct pmu - generic performance monitoring unit
570 struct pmu {
571 struct list_head entry;
573 int * __percpu pmu_disable_count;
574 struct perf_cpu_context * __percpu pmu_cpu_context;
575 int task_ctx_nr;
578 * Fully disable/enable this PMU, can be used to protect from the PMI
579 * as well as for lazy/batch writing of the MSRs.
581 void (*pmu_enable) (struct pmu *pmu); /* optional */
582 void (*pmu_disable) (struct pmu *pmu); /* optional */
585 * Try and initialize the event for this PMU.
586 * Should return -ENOENT when the @event doesn't match this PMU.
588 int (*event_init) (struct perf_event *event);
590 #define PERF_EF_START 0x01 /* start the counter when adding */
591 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
592 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
595 * Adds/Removes a counter to/from the PMU, can be done inside
596 * a transaction, see the ->*_txn() methods.
598 int (*add) (struct perf_event *event, int flags);
599 void (*del) (struct perf_event *event, int flags);
602 * Starts/Stops a counter present on the PMU. The PMI handler
603 * should stop the counter when perf_event_overflow() returns
604 * !0. ->start() will be used to continue.
606 void (*start) (struct perf_event *event, int flags);
607 void (*stop) (struct perf_event *event, int flags);
610 * Updates the counter value of the event.
612 void (*read) (struct perf_event *event);
615 * Group events scheduling is treated as a transaction, add
616 * group events as a whole and perform one schedulability test.
617 * If the test fails, roll back the whole group
619 * Start the transaction, after this ->add() doesn't need to
620 * do schedulability tests.
622 void (*start_txn) (struct pmu *pmu); /* optional */
624 * If ->start_txn() disabled the ->add() schedulability test
625 * then ->commit_txn() is required to perform one. On success
626 * the transaction is closed. On error the transaction is kept
627 * open until ->cancel_txn() is called.
629 int (*commit_txn) (struct pmu *pmu); /* optional */
631 * Will cancel the transaction, assumes ->del() is called
632 * for each successfull ->add() during the transaction.
634 void (*cancel_txn) (struct pmu *pmu); /* optional */
638 * enum perf_event_active_state - the states of a event
640 enum perf_event_active_state {
641 PERF_EVENT_STATE_ERROR = -2,
642 PERF_EVENT_STATE_OFF = -1,
643 PERF_EVENT_STATE_INACTIVE = 0,
644 PERF_EVENT_STATE_ACTIVE = 1,
647 struct file;
649 #define PERF_BUFFER_WRITABLE 0x01
651 struct perf_buffer {
652 atomic_t refcount;
653 struct rcu_head rcu_head;
654 #ifdef CONFIG_PERF_USE_VMALLOC
655 struct work_struct work;
656 int page_order; /* allocation order */
657 #endif
658 int nr_pages; /* nr of data pages */
659 int writable; /* are we writable */
661 atomic_t poll; /* POLL_ for wakeups */
663 local_t head; /* write position */
664 local_t nest; /* nested writers */
665 local_t events; /* event limit */
666 local_t wakeup; /* wakeup stamp */
667 local_t lost; /* nr records lost */
669 long watermark; /* wakeup watermark */
671 struct perf_event_mmap_page *user_page;
672 void *data_pages[0];
675 struct perf_pending_entry {
676 struct perf_pending_entry *next;
677 void (*func)(struct perf_pending_entry *);
680 struct perf_sample_data;
682 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
683 struct perf_sample_data *,
684 struct pt_regs *regs);
686 enum perf_group_flag {
687 PERF_GROUP_SOFTWARE = 0x1,
690 #define SWEVENT_HLIST_BITS 8
691 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
693 struct swevent_hlist {
694 struct hlist_head heads[SWEVENT_HLIST_SIZE];
695 struct rcu_head rcu_head;
698 #define PERF_ATTACH_CONTEXT 0x01
699 #define PERF_ATTACH_GROUP 0x02
702 * struct perf_event - performance event kernel representation:
704 struct perf_event {
705 #ifdef CONFIG_PERF_EVENTS
706 struct list_head group_entry;
707 struct list_head event_entry;
708 struct list_head sibling_list;
709 struct hlist_node hlist_entry;
710 int nr_siblings;
711 int group_flags;
712 struct perf_event *group_leader;
713 struct pmu *pmu;
715 enum perf_event_active_state state;
716 unsigned int attach_state;
717 local64_t count;
718 atomic64_t child_count;
721 * These are the total time in nanoseconds that the event
722 * has been enabled (i.e. eligible to run, and the task has
723 * been scheduled in, if this is a per-task event)
724 * and running (scheduled onto the CPU), respectively.
726 * They are computed from tstamp_enabled, tstamp_running and
727 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
729 u64 total_time_enabled;
730 u64 total_time_running;
733 * These are timestamps used for computing total_time_enabled
734 * and total_time_running when the event is in INACTIVE or
735 * ACTIVE state, measured in nanoseconds from an arbitrary point
736 * in time.
737 * tstamp_enabled: the notional time when the event was enabled
738 * tstamp_running: the notional time when the event was scheduled on
739 * tstamp_stopped: in INACTIVE state, the notional time when the
740 * event was scheduled off.
742 u64 tstamp_enabled;
743 u64 tstamp_running;
744 u64 tstamp_stopped;
746 struct perf_event_attr attr;
747 struct hw_perf_event hw;
749 struct perf_event_context *ctx;
750 struct file *filp;
753 * These accumulate total time (in nanoseconds) that children
754 * events have been enabled and running, respectively.
756 atomic64_t child_total_time_enabled;
757 atomic64_t child_total_time_running;
760 * Protect attach/detach and child_list:
762 struct mutex child_mutex;
763 struct list_head child_list;
764 struct perf_event *parent;
766 int oncpu;
767 int cpu;
769 struct list_head owner_entry;
770 struct task_struct *owner;
772 /* mmap bits */
773 struct mutex mmap_mutex;
774 atomic_t mmap_count;
775 int mmap_locked;
776 struct user_struct *mmap_user;
777 struct perf_buffer *buffer;
779 /* poll related */
780 wait_queue_head_t waitq;
781 struct fasync_struct *fasync;
783 /* delayed work for NMIs and such */
784 int pending_wakeup;
785 int pending_kill;
786 int pending_disable;
787 struct perf_pending_entry pending;
789 atomic_t event_limit;
791 void (*destroy)(struct perf_event *);
792 struct rcu_head rcu_head;
794 struct pid_namespace *ns;
795 u64 id;
797 perf_overflow_handler_t overflow_handler;
799 #ifdef CONFIG_EVENT_TRACING
800 struct ftrace_event_call *tp_event;
801 struct event_filter *filter;
802 #endif
804 #endif /* CONFIG_PERF_EVENTS */
807 enum perf_event_context_type {
808 task_context,
809 cpu_context,
813 * struct perf_event_context - event context structure
815 * Used as a container for task events and CPU events as well:
817 struct perf_event_context {
818 enum perf_event_context_type type;
819 struct pmu *pmu;
821 * Protect the states of the events in the list,
822 * nr_active, and the list:
824 raw_spinlock_t lock;
826 * Protect the list of events. Locking either mutex or lock
827 * is sufficient to ensure the list doesn't change; to change
828 * the list you need to lock both the mutex and the spinlock.
830 struct mutex mutex;
832 struct list_head pinned_groups;
833 struct list_head flexible_groups;
834 struct list_head event_list;
835 int nr_events;
836 int nr_active;
837 int is_active;
838 int nr_stat;
839 atomic_t refcount;
840 struct task_struct *task;
843 * Context clock, runs when context enabled.
845 u64 time;
846 u64 timestamp;
849 * These fields let us detect when two contexts have both
850 * been cloned (inherited) from a common ancestor.
852 struct perf_event_context *parent_ctx;
853 u64 parent_gen;
854 u64 generation;
855 int pin_count;
856 struct rcu_head rcu_head;
860 * Number of contexts where an event can trigger:
861 * task, softirq, hardirq, nmi.
863 #define PERF_NR_CONTEXTS 4
866 * struct perf_event_cpu_context - per cpu event context structure
868 struct perf_cpu_context {
869 struct perf_event_context ctx;
870 struct perf_event_context *task_ctx;
871 int active_oncpu;
872 int exclusive;
873 u64 timer_interval;
874 struct hrtimer timer;
877 struct perf_output_handle {
878 struct perf_event *event;
879 struct perf_buffer *buffer;
880 unsigned long wakeup;
881 unsigned long size;
882 void *addr;
883 int page;
884 int nmi;
885 int sample;
888 #ifdef CONFIG_PERF_EVENTS
890 extern int perf_pmu_register(struct pmu *pmu);
891 extern void perf_pmu_unregister(struct pmu *pmu);
893 extern void perf_event_task_sched_in(struct task_struct *task);
894 extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
895 extern int perf_event_init_task(struct task_struct *child);
896 extern void perf_event_exit_task(struct task_struct *child);
897 extern void perf_event_free_task(struct task_struct *task);
898 extern void perf_event_delayed_put(struct task_struct *task);
899 extern void set_perf_event_pending(void);
900 extern void perf_event_do_pending(void);
901 extern void perf_event_print_debug(void);
902 extern void perf_pmu_disable(struct pmu *pmu);
903 extern void perf_pmu_enable(struct pmu *pmu);
904 extern int perf_event_task_disable(void);
905 extern int perf_event_task_enable(void);
906 extern void perf_event_update_userpage(struct perf_event *event);
907 extern int perf_event_release_kernel(struct perf_event *event);
908 extern struct perf_event *
909 perf_event_create_kernel_counter(struct perf_event_attr *attr,
910 int cpu,
911 struct task_struct *task,
912 perf_overflow_handler_t callback);
913 extern u64 perf_event_read_value(struct perf_event *event,
914 u64 *enabled, u64 *running);
916 struct perf_sample_data {
917 u64 type;
919 u64 ip;
920 struct {
921 u32 pid;
922 u32 tid;
923 } tid_entry;
924 u64 time;
925 u64 addr;
926 u64 id;
927 u64 stream_id;
928 struct {
929 u32 cpu;
930 u32 reserved;
931 } cpu_entry;
932 u64 period;
933 struct perf_callchain_entry *callchain;
934 struct perf_raw_record *raw;
937 static inline
938 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
940 data->addr = addr;
941 data->raw = NULL;
944 extern void perf_output_sample(struct perf_output_handle *handle,
945 struct perf_event_header *header,
946 struct perf_sample_data *data,
947 struct perf_event *event);
948 extern void perf_prepare_sample(struct perf_event_header *header,
949 struct perf_sample_data *data,
950 struct perf_event *event,
951 struct pt_regs *regs);
953 extern int perf_event_overflow(struct perf_event *event, int nmi,
954 struct perf_sample_data *data,
955 struct pt_regs *regs);
958 * Return 1 for a software event, 0 for a hardware event
960 static inline int is_software_event(struct perf_event *event)
962 return event->pmu->task_ctx_nr == perf_sw_context;
965 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
967 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
969 #ifndef perf_arch_fetch_caller_regs
970 static inline void
971 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
972 #endif
975 * Take a snapshot of the regs. Skip ip and frame pointer to
976 * the nth caller. We only need a few of the regs:
977 * - ip for PERF_SAMPLE_IP
978 * - cs for user_mode() tests
979 * - bp for callchains
980 * - eflags, for future purposes, just in case
982 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
984 memset(regs, 0, sizeof(*regs));
986 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
989 static inline void
990 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
992 if (atomic_read(&perf_swevent_enabled[event_id])) {
993 struct pt_regs hot_regs;
995 if (!regs) {
996 perf_fetch_caller_regs(&hot_regs);
997 regs = &hot_regs;
999 __perf_sw_event(event_id, nr, nmi, regs, addr);
1003 extern void perf_event_mmap(struct vm_area_struct *vma);
1004 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1005 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1006 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1008 extern void perf_event_comm(struct task_struct *tsk);
1009 extern void perf_event_fork(struct task_struct *tsk);
1011 /* Callchains */
1012 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1014 extern void perf_callchain_user(struct perf_callchain_entry *entry,
1015 struct pt_regs *regs);
1016 extern void perf_callchain_kernel(struct perf_callchain_entry *entry,
1017 struct pt_regs *regs);
1020 static inline void
1021 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1023 if (entry->nr < PERF_MAX_STACK_DEPTH)
1024 entry->ip[entry->nr++] = ip;
1027 extern int sysctl_perf_event_paranoid;
1028 extern int sysctl_perf_event_mlock;
1029 extern int sysctl_perf_event_sample_rate;
1031 static inline bool perf_paranoid_tracepoint_raw(void)
1033 return sysctl_perf_event_paranoid > -1;
1036 static inline bool perf_paranoid_cpu(void)
1038 return sysctl_perf_event_paranoid > 0;
1041 static inline bool perf_paranoid_kernel(void)
1043 return sysctl_perf_event_paranoid > 1;
1046 extern void perf_event_init(void);
1047 extern void perf_tp_event(u64 addr, u64 count, void *record,
1048 int entry_size, struct pt_regs *regs,
1049 struct hlist_head *head, int rctx);
1050 extern void perf_bp_event(struct perf_event *event, void *data);
1052 #ifndef perf_misc_flags
1053 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
1054 PERF_RECORD_MISC_KERNEL)
1055 #define perf_instruction_pointer(regs) instruction_pointer(regs)
1056 #endif
1058 extern int perf_output_begin(struct perf_output_handle *handle,
1059 struct perf_event *event, unsigned int size,
1060 int nmi, int sample);
1061 extern void perf_output_end(struct perf_output_handle *handle);
1062 extern void perf_output_copy(struct perf_output_handle *handle,
1063 const void *buf, unsigned int len);
1064 extern int perf_swevent_get_recursion_context(void);
1065 extern void perf_swevent_put_recursion_context(int rctx);
1066 extern void perf_event_enable(struct perf_event *event);
1067 extern void perf_event_disable(struct perf_event *event);
1068 #else
1069 static inline void
1070 perf_event_task_sched_in(struct task_struct *task) { }
1071 static inline void
1072 perf_event_task_sched_out(struct task_struct *task,
1073 struct task_struct *next) { }
1074 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1075 static inline void perf_event_exit_task(struct task_struct *child) { }
1076 static inline void perf_event_free_task(struct task_struct *task) { }
1077 static inline void perf_event_delayed_put(struct task_struct *task) { }
1078 static inline void perf_event_do_pending(void) { }
1079 static inline void perf_event_print_debug(void) { }
1080 static inline int perf_event_task_disable(void) { return -EINVAL; }
1081 static inline int perf_event_task_enable(void) { return -EINVAL; }
1083 static inline void
1084 perf_sw_event(u32 event_id, u64 nr, int nmi,
1085 struct pt_regs *regs, u64 addr) { }
1086 static inline void
1087 perf_bp_event(struct perf_event *event, void *data) { }
1089 static inline int perf_register_guest_info_callbacks
1090 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1091 static inline int perf_unregister_guest_info_callbacks
1092 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1094 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1095 static inline void perf_event_comm(struct task_struct *tsk) { }
1096 static inline void perf_event_fork(struct task_struct *tsk) { }
1097 static inline void perf_event_init(void) { }
1098 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1099 static inline void perf_swevent_put_recursion_context(int rctx) { }
1100 static inline void perf_event_enable(struct perf_event *event) { }
1101 static inline void perf_event_disable(struct perf_event *event) { }
1102 #endif
1104 #define perf_output_put(handle, x) \
1105 perf_output_copy((handle), &(x), sizeof(x))
1108 * This has to have a higher priority than migration_notifier in sched.c.
1110 #define perf_cpu_notifier(fn) \
1111 do { \
1112 static struct notifier_block fn##_nb __cpuinitdata = \
1113 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1114 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1115 (void *)(unsigned long)smp_processor_id()); \
1116 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1117 (void *)(unsigned long)smp_processor_id()); \
1118 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1119 (void *)(unsigned long)smp_processor_id()); \
1120 register_cpu_notifier(&fn##_nb); \
1121 } while (0)
1123 #endif /* __KERNEL__ */
1124 #endif /* _LINUX_PERF_EVENT_H */