2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
22 #include <trace/events/kmem.h>
26 enum slab_state slab_state
;
27 LIST_HEAD(slab_caches
);
28 DEFINE_MUTEX(slab_mutex
);
29 struct kmem_cache
*kmem_cache
;
31 #ifdef CONFIG_DEBUG_VM
32 static int kmem_cache_sanity_check(struct mem_cgroup
*memcg
, const char *name
,
35 struct kmem_cache
*s
= NULL
;
37 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
38 size
> KMALLOC_MAX_SIZE
) {
39 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
43 list_for_each_entry(s
, &slab_caches
, list
) {
48 * This happens when the module gets unloaded and doesn't
49 * destroy its slab cache and no-one else reuses the vmalloc
50 * area of the module. Print a warning.
52 res
= probe_kernel_address(s
->name
, tmp
);
54 pr_err("Slab cache with size %d has lost its name\n",
60 * For simplicity, we won't check this in the list of memcg
61 * caches. We have control over memcg naming, and if there
62 * aren't duplicates in the global list, there won't be any
63 * duplicates in the memcg lists as well.
65 if (!memcg
&& !strcmp(s
->name
, name
)) {
66 pr_err("%s (%s): Cache name already exists.\n",
74 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
78 static inline int kmem_cache_sanity_check(struct mem_cgroup
*memcg
,
79 const char *name
, size_t size
)
85 #ifdef CONFIG_MEMCG_KMEM
86 int memcg_update_all_caches(int num_memcgs
)
90 mutex_lock(&slab_mutex
);
92 list_for_each_entry(s
, &slab_caches
, list
) {
93 if (!is_root_cache(s
))
96 ret
= memcg_update_cache_size(s
, num_memcgs
);
98 * See comment in memcontrol.c, memcg_update_cache_size:
99 * Instead of freeing the memory, we'll just leave the caches
100 * up to this point in an updated state.
106 memcg_update_array_size(num_memcgs
);
108 mutex_unlock(&slab_mutex
);
114 * Figure out what the alignment of the objects will be given a set of
115 * flags, a user specified alignment and the size of the objects.
117 unsigned long calculate_alignment(unsigned long flags
,
118 unsigned long align
, unsigned long size
)
121 * If the user wants hardware cache aligned objects then follow that
122 * suggestion if the object is sufficiently large.
124 * The hardware cache alignment cannot override the specified
125 * alignment though. If that is greater then use it.
127 if (flags
& SLAB_HWCACHE_ALIGN
) {
128 unsigned long ralign
= cache_line_size();
129 while (size
<= ralign
/ 2)
131 align
= max(align
, ralign
);
134 if (align
< ARCH_SLAB_MINALIGN
)
135 align
= ARCH_SLAB_MINALIGN
;
137 return ALIGN(align
, sizeof(void *));
142 * kmem_cache_create - Create a cache.
143 * @name: A string which is used in /proc/slabinfo to identify this cache.
144 * @size: The size of objects to be created in this cache.
145 * @align: The required alignment for the objects.
147 * @ctor: A constructor for the objects.
149 * Returns a ptr to the cache on success, NULL on failure.
150 * Cannot be called within a interrupt, but can be interrupted.
151 * The @ctor is run when new pages are allocated by the cache.
155 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
156 * to catch references to uninitialised memory.
158 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
159 * for buffer overruns.
161 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
162 * cacheline. This can be beneficial if you're counting cycles as closely
167 kmem_cache_create_memcg(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
168 size_t align
, unsigned long flags
, void (*ctor
)(void *),
169 struct kmem_cache
*parent_cache
)
171 struct kmem_cache
*s
= NULL
;
175 mutex_lock(&slab_mutex
);
177 if (!kmem_cache_sanity_check(memcg
, name
, size
) == 0)
181 * Some allocators will constraint the set of valid flags to a subset
182 * of all flags. We expect them to define CACHE_CREATE_MASK in this
183 * case, and we'll just provide them with a sanitized version of the
186 flags
&= CACHE_CREATE_MASK
;
188 s
= __kmem_cache_alias(memcg
, name
, size
, align
, flags
, ctor
);
192 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
194 s
->object_size
= s
->size
= size
;
195 s
->align
= calculate_alignment(flags
, align
, size
);
198 if (memcg_register_cache(memcg
, s
, parent_cache
)) {
199 kmem_cache_free(kmem_cache
, s
);
204 s
->name
= kstrdup(name
, GFP_KERNEL
);
206 kmem_cache_free(kmem_cache
, s
);
211 err
= __kmem_cache_create(s
, flags
);
214 list_add(&s
->list
, &slab_caches
);
215 memcg_cache_list_add(memcg
, s
);
218 kmem_cache_free(kmem_cache
, s
);
224 mutex_unlock(&slab_mutex
);
229 if (flags
& SLAB_PANIC
)
230 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
233 printk(KERN_WARNING
"kmem_cache_create(%s) failed with error %d",
245 kmem_cache_create(const char *name
, size_t size
, size_t align
,
246 unsigned long flags
, void (*ctor
)(void *))
248 return kmem_cache_create_memcg(NULL
, name
, size
, align
, flags
, ctor
, NULL
);
250 EXPORT_SYMBOL(kmem_cache_create
);
252 void kmem_cache_destroy(struct kmem_cache
*s
)
254 /* Destroy all the children caches if we aren't a memcg cache */
255 kmem_cache_destroy_memcg_children(s
);
258 mutex_lock(&slab_mutex
);
263 if (!__kmem_cache_shutdown(s
)) {
264 mutex_unlock(&slab_mutex
);
265 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
268 memcg_release_cache(s
);
270 kmem_cache_free(kmem_cache
, s
);
272 list_add(&s
->list
, &slab_caches
);
273 mutex_unlock(&slab_mutex
);
274 printk(KERN_ERR
"kmem_cache_destroy %s: Slab cache still has objects\n",
279 mutex_unlock(&slab_mutex
);
283 EXPORT_SYMBOL(kmem_cache_destroy
);
285 int slab_is_available(void)
287 return slab_state
>= UP
;
291 /* Create a cache during boot when no slab services are available yet */
292 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
298 s
->size
= s
->object_size
= size
;
299 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
300 err
= __kmem_cache_create(s
, flags
);
303 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
306 s
->refcount
= -1; /* Exempt from merging for now */
309 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
312 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
315 panic("Out of memory when creating slab %s\n", name
);
317 create_boot_cache(s
, name
, size
, flags
);
318 list_add(&s
->list
, &slab_caches
);
323 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
324 EXPORT_SYMBOL(kmalloc_caches
);
326 #ifdef CONFIG_ZONE_DMA
327 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
328 EXPORT_SYMBOL(kmalloc_dma_caches
);
332 * Conversion table for small slabs sizes / 8 to the index in the
333 * kmalloc array. This is necessary for slabs < 192 since we have non power
334 * of two cache sizes there. The size of larger slabs can be determined using
337 static s8 size_index
[24] = {
364 static inline int size_index_elem(size_t bytes
)
366 return (bytes
- 1) / 8;
370 * Find the kmem_cache structure that serves a given size of
373 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
377 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
378 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
384 return ZERO_SIZE_PTR
;
386 index
= size_index
[size_index_elem(size
)];
388 index
= fls(size
- 1);
390 #ifdef CONFIG_ZONE_DMA
391 if (unlikely((flags
& GFP_DMA
)))
392 return kmalloc_dma_caches
[index
];
395 return kmalloc_caches
[index
];
399 * Create the kmalloc array. Some of the regular kmalloc arrays
400 * may already have been created because they were needed to
401 * enable allocations for slab creation.
403 void __init
create_kmalloc_caches(unsigned long flags
)
408 * Patch up the size_index table if we have strange large alignment
409 * requirements for the kmalloc array. This is only the case for
410 * MIPS it seems. The standard arches will not generate any code here.
412 * Largest permitted alignment is 256 bytes due to the way we
413 * handle the index determination for the smaller caches.
415 * Make sure that nothing crazy happens if someone starts tinkering
416 * around with ARCH_KMALLOC_MINALIGN
418 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
419 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
421 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
422 int elem
= size_index_elem(i
);
424 if (elem
>= ARRAY_SIZE(size_index
))
426 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
429 if (KMALLOC_MIN_SIZE
>= 64) {
431 * The 96 byte size cache is not used if the alignment
434 for (i
= 64 + 8; i
<= 96; i
+= 8)
435 size_index
[size_index_elem(i
)] = 7;
439 if (KMALLOC_MIN_SIZE
>= 128) {
441 * The 192 byte sized cache is not used if the alignment
442 * is 128 byte. Redirect kmalloc to use the 256 byte cache
445 for (i
= 128 + 8; i
<= 192; i
+= 8)
446 size_index
[size_index_elem(i
)] = 8;
448 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
449 if (!kmalloc_caches
[i
]) {
450 kmalloc_caches
[i
] = create_kmalloc_cache(NULL
,
455 * Caches that are not of the two-to-the-power-of size.
456 * These have to be created immediately after the
457 * earlier power of two caches
459 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
460 kmalloc_caches
[1] = create_kmalloc_cache(NULL
, 96, flags
);
462 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
463 kmalloc_caches
[2] = create_kmalloc_cache(NULL
, 192, flags
);
466 /* Kmalloc array is now usable */
469 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
470 struct kmem_cache
*s
= kmalloc_caches
[i
];
474 n
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", kmalloc_size(i
));
481 #ifdef CONFIG_ZONE_DMA
482 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
483 struct kmem_cache
*s
= kmalloc_caches
[i
];
486 int size
= kmalloc_size(i
);
487 char *n
= kasprintf(GFP_NOWAIT
,
488 "dma-kmalloc-%d", size
);
491 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
492 size
, SLAB_CACHE_DMA
| flags
);
497 #endif /* !CONFIG_SLOB */
499 #ifdef CONFIG_TRACING
500 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
502 void *ret
= kmalloc_order(size
, flags
, order
);
503 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
506 EXPORT_SYMBOL(kmalloc_order_trace
);
509 #ifdef CONFIG_SLABINFO
512 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
514 #define SLABINFO_RIGHTS S_IRUSR
517 void print_slabinfo_header(struct seq_file
*m
)
520 * Output format version, so at least we can change it
521 * without _too_ many complaints.
523 #ifdef CONFIG_DEBUG_SLAB
524 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
526 seq_puts(m
, "slabinfo - version: 2.1\n");
528 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
529 "<objperslab> <pagesperslab>");
530 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
531 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
532 #ifdef CONFIG_DEBUG_SLAB
533 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
534 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
535 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
540 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
544 mutex_lock(&slab_mutex
);
546 print_slabinfo_header(m
);
548 return seq_list_start(&slab_caches
, *pos
);
551 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
553 return seq_list_next(p
, &slab_caches
, pos
);
556 void slab_stop(struct seq_file
*m
, void *p
)
558 mutex_unlock(&slab_mutex
);
562 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
564 struct kmem_cache
*c
;
565 struct slabinfo sinfo
;
568 if (!is_root_cache(s
))
571 for_each_memcg_cache_index(i
) {
572 c
= cache_from_memcg(s
, i
);
576 memset(&sinfo
, 0, sizeof(sinfo
));
577 get_slabinfo(c
, &sinfo
);
579 info
->active_slabs
+= sinfo
.active_slabs
;
580 info
->num_slabs
+= sinfo
.num_slabs
;
581 info
->shared_avail
+= sinfo
.shared_avail
;
582 info
->active_objs
+= sinfo
.active_objs
;
583 info
->num_objs
+= sinfo
.num_objs
;
587 int cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
589 struct slabinfo sinfo
;
591 memset(&sinfo
, 0, sizeof(sinfo
));
592 get_slabinfo(s
, &sinfo
);
594 memcg_accumulate_slabinfo(s
, &sinfo
);
596 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
597 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
598 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
600 seq_printf(m
, " : tunables %4u %4u %4u",
601 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
602 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
603 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
604 slabinfo_show_stats(m
, s
);
609 static int s_show(struct seq_file
*m
, void *p
)
611 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
613 if (!is_root_cache(s
))
615 return cache_show(s
, m
);
619 * slabinfo_op - iterator that generates /proc/slabinfo
629 * + further values on SMP and with statistics enabled
631 static const struct seq_operations slabinfo_op
= {
638 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
640 return seq_open(file
, &slabinfo_op
);
643 static const struct file_operations proc_slabinfo_operations
= {
644 .open
= slabinfo_open
,
646 .write
= slabinfo_write
,
648 .release
= seq_release
,
651 static int __init
slab_proc_init(void)
653 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
654 &proc_slabinfo_operations
);
657 module_init(slab_proc_init
);
658 #endif /* CONFIG_SLABINFO */