Staging: tm6000: silence Sparse warning "dubious: !x | !y"
[linux-2.6.git] / fs / btrfs / inode.c
blob160b55b3e132043718c08c40327a13b30696a2bb
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
95 int err;
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int compress_type = BTRFS_COMPRESS_NONE;
127 if (compressed_size && compressed_pages) {
128 compress_type = root->fs_info->compress_type;
129 cur_size = compressed_size;
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
162 if (compress_type != BTRFS_COMPRESS_NONE) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
178 btrfs_set_file_extent_compression(leaf, ei,
179 compress_type);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
232 if (compressed_size)
233 data_len = compressed_size;
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 int compress_type;
267 struct list_head list;
270 struct async_cow {
271 struct inode *inode;
272 struct btrfs_root *root;
273 struct page *locked_page;
274 u64 start;
275 u64 end;
276 struct list_head extents;
277 struct btrfs_work work;
280 static noinline int add_async_extent(struct async_cow *cow,
281 u64 start, u64 ram_size,
282 u64 compressed_size,
283 struct page **pages,
284 unsigned long nr_pages,
285 int compress_type)
287 struct async_extent *async_extent;
289 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290 async_extent->start = start;
291 async_extent->ram_size = ram_size;
292 async_extent->compressed_size = compressed_size;
293 async_extent->pages = pages;
294 async_extent->nr_pages = nr_pages;
295 async_extent->compress_type = compress_type;
296 list_add_tail(&async_extent->list, &cow->extents);
297 return 0;
301 * we create compressed extents in two phases. The first
302 * phase compresses a range of pages that have already been
303 * locked (both pages and state bits are locked).
305 * This is done inside an ordered work queue, and the compression
306 * is spread across many cpus. The actual IO submission is step
307 * two, and the ordered work queue takes care of making sure that
308 * happens in the same order things were put onto the queue by
309 * writepages and friends.
311 * If this code finds it can't get good compression, it puts an
312 * entry onto the work queue to write the uncompressed bytes. This
313 * makes sure that both compressed inodes and uncompressed inodes
314 * are written in the same order that pdflush sent them down.
316 static noinline int compress_file_range(struct inode *inode,
317 struct page *locked_page,
318 u64 start, u64 end,
319 struct async_cow *async_cow,
320 int *num_added)
322 struct btrfs_root *root = BTRFS_I(inode)->root;
323 struct btrfs_trans_handle *trans;
324 u64 num_bytes;
325 u64 blocksize = root->sectorsize;
326 u64 actual_end;
327 u64 isize = i_size_read(inode);
328 int ret = 0;
329 struct page **pages = NULL;
330 unsigned long nr_pages;
331 unsigned long nr_pages_ret = 0;
332 unsigned long total_compressed = 0;
333 unsigned long total_in = 0;
334 unsigned long max_compressed = 128 * 1024;
335 unsigned long max_uncompressed = 128 * 1024;
336 int i;
337 int will_compress;
338 int compress_type = root->fs_info->compress_type;
340 actual_end = min_t(u64, isize, end + 1);
341 again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
359 total_compressed = actual_end - start;
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
371 total_compressed = min(total_compressed, max_uncompressed);
372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 num_bytes = max(blocksize, num_bytes);
374 total_in = 0;
375 ret = 0;
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
385 WARN_ON(pages);
386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388 if (BTRFS_I(inode)->force_compress)
389 compress_type = BTRFS_I(inode)->force_compress;
391 ret = btrfs_compress_pages(compress_type,
392 inode->i_mapping, start,
393 total_compressed, pages,
394 nr_pages, &nr_pages_ret,
395 &total_in,
396 &total_compressed,
397 max_compressed);
399 if (!ret) {
400 unsigned long offset = total_compressed &
401 (PAGE_CACHE_SIZE - 1);
402 struct page *page = pages[nr_pages_ret - 1];
403 char *kaddr;
405 /* zero the tail end of the last page, we might be
406 * sending it down to disk
408 if (offset) {
409 kaddr = kmap_atomic(page, KM_USER0);
410 memset(kaddr + offset, 0,
411 PAGE_CACHE_SIZE - offset);
412 kunmap_atomic(kaddr, KM_USER0);
414 will_compress = 1;
417 if (start == 0) {
418 trans = btrfs_join_transaction(root, 1);
419 BUG_ON(!trans);
420 btrfs_set_trans_block_group(trans, inode);
421 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
423 /* lets try to make an inline extent */
424 if (ret || total_in < (actual_end - start)) {
425 /* we didn't compress the entire range, try
426 * to make an uncompressed inline extent.
428 ret = cow_file_range_inline(trans, root, inode,
429 start, end, 0, NULL);
430 } else {
431 /* try making a compressed inline extent */
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end,
434 total_compressed, pages);
436 if (ret == 0) {
438 * inline extent creation worked, we don't need
439 * to create any more async work items. Unlock
440 * and free up our temp pages.
442 extent_clear_unlock_delalloc(inode,
443 &BTRFS_I(inode)->io_tree,
444 start, end, NULL,
445 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446 EXTENT_CLEAR_DELALLOC |
447 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
449 btrfs_end_transaction(trans, root);
450 goto free_pages_out;
452 btrfs_end_transaction(trans, root);
455 if (will_compress) {
457 * we aren't doing an inline extent round the compressed size
458 * up to a block size boundary so the allocator does sane
459 * things
461 total_compressed = (total_compressed + blocksize - 1) &
462 ~(blocksize - 1);
465 * one last check to make sure the compression is really a
466 * win, compare the page count read with the blocks on disk
468 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469 ~(PAGE_CACHE_SIZE - 1);
470 if (total_compressed >= total_in) {
471 will_compress = 0;
472 } else {
473 num_bytes = total_in;
476 if (!will_compress && pages) {
478 * the compression code ran but failed to make things smaller,
479 * free any pages it allocated and our page pointer array
481 for (i = 0; i < nr_pages_ret; i++) {
482 WARN_ON(pages[i]->mapping);
483 page_cache_release(pages[i]);
485 kfree(pages);
486 pages = NULL;
487 total_compressed = 0;
488 nr_pages_ret = 0;
490 /* flag the file so we don't compress in the future */
491 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492 !(BTRFS_I(inode)->force_compress)) {
493 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
496 if (will_compress) {
497 *num_added += 1;
499 /* the async work queues will take care of doing actual
500 * allocation on disk for these compressed pages,
501 * and will submit them to the elevator.
503 add_async_extent(async_cow, start, num_bytes,
504 total_compressed, pages, nr_pages_ret,
505 compress_type);
507 if (start + num_bytes < end) {
508 start += num_bytes;
509 pages = NULL;
510 cond_resched();
511 goto again;
513 } else {
514 cleanup_and_bail_uncompressed:
516 * No compression, but we still need to write the pages in
517 * the file we've been given so far. redirty the locked
518 * page if it corresponds to our extent and set things up
519 * for the async work queue to run cow_file_range to do
520 * the normal delalloc dance
522 if (page_offset(locked_page) >= start &&
523 page_offset(locked_page) <= end) {
524 __set_page_dirty_nobuffers(locked_page);
525 /* unlocked later on in the async handlers */
527 add_async_extent(async_cow, start, end - start + 1,
528 0, NULL, 0, BTRFS_COMPRESS_NONE);
529 *num_added += 1;
532 out:
533 return 0;
535 free_pages_out:
536 for (i = 0; i < nr_pages_ret; i++) {
537 WARN_ON(pages[i]->mapping);
538 page_cache_release(pages[i]);
540 kfree(pages);
542 goto out;
546 * phase two of compressed writeback. This is the ordered portion
547 * of the code, which only gets called in the order the work was
548 * queued. We walk all the async extents created by compress_file_range
549 * and send them down to the disk.
551 static noinline int submit_compressed_extents(struct inode *inode,
552 struct async_cow *async_cow)
554 struct async_extent *async_extent;
555 u64 alloc_hint = 0;
556 struct btrfs_trans_handle *trans;
557 struct btrfs_key ins;
558 struct extent_map *em;
559 struct btrfs_root *root = BTRFS_I(inode)->root;
560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561 struct extent_io_tree *io_tree;
562 int ret = 0;
564 if (list_empty(&async_cow->extents))
565 return 0;
568 while (!list_empty(&async_cow->extents)) {
569 async_extent = list_entry(async_cow->extents.next,
570 struct async_extent, list);
571 list_del(&async_extent->list);
573 io_tree = &BTRFS_I(inode)->io_tree;
575 retry:
576 /* did the compression code fall back to uncompressed IO? */
577 if (!async_extent->pages) {
578 int page_started = 0;
579 unsigned long nr_written = 0;
581 lock_extent(io_tree, async_extent->start,
582 async_extent->start +
583 async_extent->ram_size - 1, GFP_NOFS);
585 /* allocate blocks */
586 ret = cow_file_range(inode, async_cow->locked_page,
587 async_extent->start,
588 async_extent->start +
589 async_extent->ram_size - 1,
590 &page_started, &nr_written, 0);
593 * if page_started, cow_file_range inserted an
594 * inline extent and took care of all the unlocking
595 * and IO for us. Otherwise, we need to submit
596 * all those pages down to the drive.
598 if (!page_started && !ret)
599 extent_write_locked_range(io_tree,
600 inode, async_extent->start,
601 async_extent->start +
602 async_extent->ram_size - 1,
603 btrfs_get_extent,
604 WB_SYNC_ALL);
605 kfree(async_extent);
606 cond_resched();
607 continue;
610 lock_extent(io_tree, async_extent->start,
611 async_extent->start + async_extent->ram_size - 1,
612 GFP_NOFS);
614 trans = btrfs_join_transaction(root, 1);
615 ret = btrfs_reserve_extent(trans, root,
616 async_extent->compressed_size,
617 async_extent->compressed_size,
618 0, alloc_hint,
619 (u64)-1, &ins, 1);
620 btrfs_end_transaction(trans, root);
622 if (ret) {
623 int i;
624 for (i = 0; i < async_extent->nr_pages; i++) {
625 WARN_ON(async_extent->pages[i]->mapping);
626 page_cache_release(async_extent->pages[i]);
628 kfree(async_extent->pages);
629 async_extent->nr_pages = 0;
630 async_extent->pages = NULL;
631 unlock_extent(io_tree, async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1, GFP_NOFS);
634 goto retry;
638 * here we're doing allocation and writeback of the
639 * compressed pages
641 btrfs_drop_extent_cache(inode, async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1, 0);
645 em = alloc_extent_map(GFP_NOFS);
646 em->start = async_extent->start;
647 em->len = async_extent->ram_size;
648 em->orig_start = em->start;
650 em->block_start = ins.objectid;
651 em->block_len = ins.offset;
652 em->bdev = root->fs_info->fs_devices->latest_bdev;
653 em->compress_type = async_extent->compress_type;
654 set_bit(EXTENT_FLAG_PINNED, &em->flags);
655 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
657 while (1) {
658 write_lock(&em_tree->lock);
659 ret = add_extent_mapping(em_tree, em);
660 write_unlock(&em_tree->lock);
661 if (ret != -EEXIST) {
662 free_extent_map(em);
663 break;
665 btrfs_drop_extent_cache(inode, async_extent->start,
666 async_extent->start +
667 async_extent->ram_size - 1, 0);
670 ret = btrfs_add_ordered_extent_compress(inode,
671 async_extent->start,
672 ins.objectid,
673 async_extent->ram_size,
674 ins.offset,
675 BTRFS_ORDERED_COMPRESSED,
676 async_extent->compress_type);
677 BUG_ON(ret);
680 * clear dirty, set writeback and unlock the pages.
682 extent_clear_unlock_delalloc(inode,
683 &BTRFS_I(inode)->io_tree,
684 async_extent->start,
685 async_extent->start +
686 async_extent->ram_size - 1,
687 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
688 EXTENT_CLEAR_UNLOCK |
689 EXTENT_CLEAR_DELALLOC |
690 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
692 ret = btrfs_submit_compressed_write(inode,
693 async_extent->start,
694 async_extent->ram_size,
695 ins.objectid,
696 ins.offset, async_extent->pages,
697 async_extent->nr_pages);
699 BUG_ON(ret);
700 alloc_hint = ins.objectid + ins.offset;
701 kfree(async_extent);
702 cond_resched();
705 return 0;
708 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
709 u64 num_bytes)
711 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
712 struct extent_map *em;
713 u64 alloc_hint = 0;
715 read_lock(&em_tree->lock);
716 em = search_extent_mapping(em_tree, start, num_bytes);
717 if (em) {
719 * if block start isn't an actual block number then find the
720 * first block in this inode and use that as a hint. If that
721 * block is also bogus then just don't worry about it.
723 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
724 free_extent_map(em);
725 em = search_extent_mapping(em_tree, 0, 0);
726 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
727 alloc_hint = em->block_start;
728 if (em)
729 free_extent_map(em);
730 } else {
731 alloc_hint = em->block_start;
732 free_extent_map(em);
735 read_unlock(&em_tree->lock);
737 return alloc_hint;
741 * when extent_io.c finds a delayed allocation range in the file,
742 * the call backs end up in this code. The basic idea is to
743 * allocate extents on disk for the range, and create ordered data structs
744 * in ram to track those extents.
746 * locked_page is the page that writepage had locked already. We use
747 * it to make sure we don't do extra locks or unlocks.
749 * *page_started is set to one if we unlock locked_page and do everything
750 * required to start IO on it. It may be clean and already done with
751 * IO when we return.
753 static noinline int cow_file_range(struct inode *inode,
754 struct page *locked_page,
755 u64 start, u64 end, int *page_started,
756 unsigned long *nr_written,
757 int unlock)
759 struct btrfs_root *root = BTRFS_I(inode)->root;
760 struct btrfs_trans_handle *trans;
761 u64 alloc_hint = 0;
762 u64 num_bytes;
763 unsigned long ram_size;
764 u64 disk_num_bytes;
765 u64 cur_alloc_size;
766 u64 blocksize = root->sectorsize;
767 struct btrfs_key ins;
768 struct extent_map *em;
769 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
770 int ret = 0;
772 BUG_ON(root == root->fs_info->tree_root);
773 trans = btrfs_join_transaction(root, 1);
774 BUG_ON(!trans);
775 btrfs_set_trans_block_group(trans, inode);
776 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
778 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
779 num_bytes = max(blocksize, num_bytes);
780 disk_num_bytes = num_bytes;
781 ret = 0;
783 if (start == 0) {
784 /* lets try to make an inline extent */
785 ret = cow_file_range_inline(trans, root, inode,
786 start, end, 0, NULL);
787 if (ret == 0) {
788 extent_clear_unlock_delalloc(inode,
789 &BTRFS_I(inode)->io_tree,
790 start, end, NULL,
791 EXTENT_CLEAR_UNLOCK_PAGE |
792 EXTENT_CLEAR_UNLOCK |
793 EXTENT_CLEAR_DELALLOC |
794 EXTENT_CLEAR_DIRTY |
795 EXTENT_SET_WRITEBACK |
796 EXTENT_END_WRITEBACK);
798 *nr_written = *nr_written +
799 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
800 *page_started = 1;
801 ret = 0;
802 goto out;
806 BUG_ON(disk_num_bytes >
807 btrfs_super_total_bytes(&root->fs_info->super_copy));
809 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
810 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
812 while (disk_num_bytes > 0) {
813 unsigned long op;
815 cur_alloc_size = disk_num_bytes;
816 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
817 root->sectorsize, 0, alloc_hint,
818 (u64)-1, &ins, 1);
819 BUG_ON(ret);
821 em = alloc_extent_map(GFP_NOFS);
822 em->start = start;
823 em->orig_start = em->start;
824 ram_size = ins.offset;
825 em->len = ins.offset;
827 em->block_start = ins.objectid;
828 em->block_len = ins.offset;
829 em->bdev = root->fs_info->fs_devices->latest_bdev;
830 set_bit(EXTENT_FLAG_PINNED, &em->flags);
832 while (1) {
833 write_lock(&em_tree->lock);
834 ret = add_extent_mapping(em_tree, em);
835 write_unlock(&em_tree->lock);
836 if (ret != -EEXIST) {
837 free_extent_map(em);
838 break;
840 btrfs_drop_extent_cache(inode, start,
841 start + ram_size - 1, 0);
844 cur_alloc_size = ins.offset;
845 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
846 ram_size, cur_alloc_size, 0);
847 BUG_ON(ret);
849 if (root->root_key.objectid ==
850 BTRFS_DATA_RELOC_TREE_OBJECTID) {
851 ret = btrfs_reloc_clone_csums(inode, start,
852 cur_alloc_size);
853 BUG_ON(ret);
856 if (disk_num_bytes < cur_alloc_size)
857 break;
859 /* we're not doing compressed IO, don't unlock the first
860 * page (which the caller expects to stay locked), don't
861 * clear any dirty bits and don't set any writeback bits
863 * Do set the Private2 bit so we know this page was properly
864 * setup for writepage
866 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
867 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
868 EXTENT_SET_PRIVATE2;
870 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
871 start, start + ram_size - 1,
872 locked_page, op);
873 disk_num_bytes -= cur_alloc_size;
874 num_bytes -= cur_alloc_size;
875 alloc_hint = ins.objectid + ins.offset;
876 start += cur_alloc_size;
878 out:
879 ret = 0;
880 btrfs_end_transaction(trans, root);
882 return ret;
886 * work queue call back to started compression on a file and pages
888 static noinline void async_cow_start(struct btrfs_work *work)
890 struct async_cow *async_cow;
891 int num_added = 0;
892 async_cow = container_of(work, struct async_cow, work);
894 compress_file_range(async_cow->inode, async_cow->locked_page,
895 async_cow->start, async_cow->end, async_cow,
896 &num_added);
897 if (num_added == 0)
898 async_cow->inode = NULL;
902 * work queue call back to submit previously compressed pages
904 static noinline void async_cow_submit(struct btrfs_work *work)
906 struct async_cow *async_cow;
907 struct btrfs_root *root;
908 unsigned long nr_pages;
910 async_cow = container_of(work, struct async_cow, work);
912 root = async_cow->root;
913 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
914 PAGE_CACHE_SHIFT;
916 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
918 if (atomic_read(&root->fs_info->async_delalloc_pages) <
919 5 * 1042 * 1024 &&
920 waitqueue_active(&root->fs_info->async_submit_wait))
921 wake_up(&root->fs_info->async_submit_wait);
923 if (async_cow->inode)
924 submit_compressed_extents(async_cow->inode, async_cow);
927 static noinline void async_cow_free(struct btrfs_work *work)
929 struct async_cow *async_cow;
930 async_cow = container_of(work, struct async_cow, work);
931 kfree(async_cow);
934 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
935 u64 start, u64 end, int *page_started,
936 unsigned long *nr_written)
938 struct async_cow *async_cow;
939 struct btrfs_root *root = BTRFS_I(inode)->root;
940 unsigned long nr_pages;
941 u64 cur_end;
942 int limit = 10 * 1024 * 1042;
944 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
945 1, 0, NULL, GFP_NOFS);
946 while (start < end) {
947 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
948 async_cow->inode = inode;
949 async_cow->root = root;
950 async_cow->locked_page = locked_page;
951 async_cow->start = start;
953 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
954 cur_end = end;
955 else
956 cur_end = min(end, start + 512 * 1024 - 1);
958 async_cow->end = cur_end;
959 INIT_LIST_HEAD(&async_cow->extents);
961 async_cow->work.func = async_cow_start;
962 async_cow->work.ordered_func = async_cow_submit;
963 async_cow->work.ordered_free = async_cow_free;
964 async_cow->work.flags = 0;
966 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
967 PAGE_CACHE_SHIFT;
968 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
970 btrfs_queue_worker(&root->fs_info->delalloc_workers,
971 &async_cow->work);
973 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
974 wait_event(root->fs_info->async_submit_wait,
975 (atomic_read(&root->fs_info->async_delalloc_pages) <
976 limit));
979 while (atomic_read(&root->fs_info->async_submit_draining) &&
980 atomic_read(&root->fs_info->async_delalloc_pages)) {
981 wait_event(root->fs_info->async_submit_wait,
982 (atomic_read(&root->fs_info->async_delalloc_pages) ==
983 0));
986 *nr_written += nr_pages;
987 start = cur_end + 1;
989 *page_started = 1;
990 return 0;
993 static noinline int csum_exist_in_range(struct btrfs_root *root,
994 u64 bytenr, u64 num_bytes)
996 int ret;
997 struct btrfs_ordered_sum *sums;
998 LIST_HEAD(list);
1000 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1001 bytenr + num_bytes - 1, &list);
1002 if (ret == 0 && list_empty(&list))
1003 return 0;
1005 while (!list_empty(&list)) {
1006 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1007 list_del(&sums->list);
1008 kfree(sums);
1010 return 1;
1014 * when nowcow writeback call back. This checks for snapshots or COW copies
1015 * of the extents that exist in the file, and COWs the file as required.
1017 * If no cow copies or snapshots exist, we write directly to the existing
1018 * blocks on disk
1020 static noinline int run_delalloc_nocow(struct inode *inode,
1021 struct page *locked_page,
1022 u64 start, u64 end, int *page_started, int force,
1023 unsigned long *nr_written)
1025 struct btrfs_root *root = BTRFS_I(inode)->root;
1026 struct btrfs_trans_handle *trans;
1027 struct extent_buffer *leaf;
1028 struct btrfs_path *path;
1029 struct btrfs_file_extent_item *fi;
1030 struct btrfs_key found_key;
1031 u64 cow_start;
1032 u64 cur_offset;
1033 u64 extent_end;
1034 u64 extent_offset;
1035 u64 disk_bytenr;
1036 u64 num_bytes;
1037 int extent_type;
1038 int ret;
1039 int type;
1040 int nocow;
1041 int check_prev = 1;
1042 bool nolock = false;
1044 path = btrfs_alloc_path();
1045 BUG_ON(!path);
1046 if (root == root->fs_info->tree_root) {
1047 nolock = true;
1048 trans = btrfs_join_transaction_nolock(root, 1);
1049 } else {
1050 trans = btrfs_join_transaction(root, 1);
1052 BUG_ON(!trans);
1054 cow_start = (u64)-1;
1055 cur_offset = start;
1056 while (1) {
1057 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1058 cur_offset, 0);
1059 BUG_ON(ret < 0);
1060 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1061 leaf = path->nodes[0];
1062 btrfs_item_key_to_cpu(leaf, &found_key,
1063 path->slots[0] - 1);
1064 if (found_key.objectid == inode->i_ino &&
1065 found_key.type == BTRFS_EXTENT_DATA_KEY)
1066 path->slots[0]--;
1068 check_prev = 0;
1069 next_slot:
1070 leaf = path->nodes[0];
1071 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1072 ret = btrfs_next_leaf(root, path);
1073 if (ret < 0)
1074 BUG_ON(1);
1075 if (ret > 0)
1076 break;
1077 leaf = path->nodes[0];
1080 nocow = 0;
1081 disk_bytenr = 0;
1082 num_bytes = 0;
1083 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1085 if (found_key.objectid > inode->i_ino ||
1086 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1087 found_key.offset > end)
1088 break;
1090 if (found_key.offset > cur_offset) {
1091 extent_end = found_key.offset;
1092 extent_type = 0;
1093 goto out_check;
1096 fi = btrfs_item_ptr(leaf, path->slots[0],
1097 struct btrfs_file_extent_item);
1098 extent_type = btrfs_file_extent_type(leaf, fi);
1100 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1101 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1102 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1103 extent_offset = btrfs_file_extent_offset(leaf, fi);
1104 extent_end = found_key.offset +
1105 btrfs_file_extent_num_bytes(leaf, fi);
1106 if (extent_end <= start) {
1107 path->slots[0]++;
1108 goto next_slot;
1110 if (disk_bytenr == 0)
1111 goto out_check;
1112 if (btrfs_file_extent_compression(leaf, fi) ||
1113 btrfs_file_extent_encryption(leaf, fi) ||
1114 btrfs_file_extent_other_encoding(leaf, fi))
1115 goto out_check;
1116 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1117 goto out_check;
1118 if (btrfs_extent_readonly(root, disk_bytenr))
1119 goto out_check;
1120 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1121 found_key.offset -
1122 extent_offset, disk_bytenr))
1123 goto out_check;
1124 disk_bytenr += extent_offset;
1125 disk_bytenr += cur_offset - found_key.offset;
1126 num_bytes = min(end + 1, extent_end) - cur_offset;
1128 * force cow if csum exists in the range.
1129 * this ensure that csum for a given extent are
1130 * either valid or do not exist.
1132 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1133 goto out_check;
1134 nocow = 1;
1135 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1136 extent_end = found_key.offset +
1137 btrfs_file_extent_inline_len(leaf, fi);
1138 extent_end = ALIGN(extent_end, root->sectorsize);
1139 } else {
1140 BUG_ON(1);
1142 out_check:
1143 if (extent_end <= start) {
1144 path->slots[0]++;
1145 goto next_slot;
1147 if (!nocow) {
1148 if (cow_start == (u64)-1)
1149 cow_start = cur_offset;
1150 cur_offset = extent_end;
1151 if (cur_offset > end)
1152 break;
1153 path->slots[0]++;
1154 goto next_slot;
1157 btrfs_release_path(root, path);
1158 if (cow_start != (u64)-1) {
1159 ret = cow_file_range(inode, locked_page, cow_start,
1160 found_key.offset - 1, page_started,
1161 nr_written, 1);
1162 BUG_ON(ret);
1163 cow_start = (u64)-1;
1166 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1167 struct extent_map *em;
1168 struct extent_map_tree *em_tree;
1169 em_tree = &BTRFS_I(inode)->extent_tree;
1170 em = alloc_extent_map(GFP_NOFS);
1171 em->start = cur_offset;
1172 em->orig_start = em->start;
1173 em->len = num_bytes;
1174 em->block_len = num_bytes;
1175 em->block_start = disk_bytenr;
1176 em->bdev = root->fs_info->fs_devices->latest_bdev;
1177 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1178 while (1) {
1179 write_lock(&em_tree->lock);
1180 ret = add_extent_mapping(em_tree, em);
1181 write_unlock(&em_tree->lock);
1182 if (ret != -EEXIST) {
1183 free_extent_map(em);
1184 break;
1186 btrfs_drop_extent_cache(inode, em->start,
1187 em->start + em->len - 1, 0);
1189 type = BTRFS_ORDERED_PREALLOC;
1190 } else {
1191 type = BTRFS_ORDERED_NOCOW;
1194 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1195 num_bytes, num_bytes, type);
1196 BUG_ON(ret);
1198 if (root->root_key.objectid ==
1199 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1200 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1201 num_bytes);
1202 BUG_ON(ret);
1205 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1206 cur_offset, cur_offset + num_bytes - 1,
1207 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1208 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1209 EXTENT_SET_PRIVATE2);
1210 cur_offset = extent_end;
1211 if (cur_offset > end)
1212 break;
1214 btrfs_release_path(root, path);
1216 if (cur_offset <= end && cow_start == (u64)-1)
1217 cow_start = cur_offset;
1218 if (cow_start != (u64)-1) {
1219 ret = cow_file_range(inode, locked_page, cow_start, end,
1220 page_started, nr_written, 1);
1221 BUG_ON(ret);
1224 if (nolock) {
1225 ret = btrfs_end_transaction_nolock(trans, root);
1226 BUG_ON(ret);
1227 } else {
1228 ret = btrfs_end_transaction(trans, root);
1229 BUG_ON(ret);
1231 btrfs_free_path(path);
1232 return 0;
1236 * extent_io.c call back to do delayed allocation processing
1238 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1239 u64 start, u64 end, int *page_started,
1240 unsigned long *nr_written)
1242 int ret;
1243 struct btrfs_root *root = BTRFS_I(inode)->root;
1245 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1246 ret = run_delalloc_nocow(inode, locked_page, start, end,
1247 page_started, 1, nr_written);
1248 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1249 ret = run_delalloc_nocow(inode, locked_page, start, end,
1250 page_started, 0, nr_written);
1251 else if (!btrfs_test_opt(root, COMPRESS) &&
1252 !(BTRFS_I(inode)->force_compress))
1253 ret = cow_file_range(inode, locked_page, start, end,
1254 page_started, nr_written, 1);
1255 else
1256 ret = cow_file_range_async(inode, locked_page, start, end,
1257 page_started, nr_written);
1258 return ret;
1261 static int btrfs_split_extent_hook(struct inode *inode,
1262 struct extent_state *orig, u64 split)
1264 /* not delalloc, ignore it */
1265 if (!(orig->state & EXTENT_DELALLOC))
1266 return 0;
1268 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1269 return 0;
1273 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1274 * extents so we can keep track of new extents that are just merged onto old
1275 * extents, such as when we are doing sequential writes, so we can properly
1276 * account for the metadata space we'll need.
1278 static int btrfs_merge_extent_hook(struct inode *inode,
1279 struct extent_state *new,
1280 struct extent_state *other)
1282 /* not delalloc, ignore it */
1283 if (!(other->state & EXTENT_DELALLOC))
1284 return 0;
1286 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1287 return 0;
1291 * extent_io.c set_bit_hook, used to track delayed allocation
1292 * bytes in this file, and to maintain the list of inodes that
1293 * have pending delalloc work to be done.
1295 static int btrfs_set_bit_hook(struct inode *inode,
1296 struct extent_state *state, int *bits)
1300 * set_bit and clear bit hooks normally require _irqsave/restore
1301 * but in this case, we are only testeing for the DELALLOC
1302 * bit, which is only set or cleared with irqs on
1304 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1305 struct btrfs_root *root = BTRFS_I(inode)->root;
1306 u64 len = state->end + 1 - state->start;
1307 int do_list = (root->root_key.objectid !=
1308 BTRFS_ROOT_TREE_OBJECTID);
1310 if (*bits & EXTENT_FIRST_DELALLOC)
1311 *bits &= ~EXTENT_FIRST_DELALLOC;
1312 else
1313 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1315 spin_lock(&root->fs_info->delalloc_lock);
1316 BTRFS_I(inode)->delalloc_bytes += len;
1317 root->fs_info->delalloc_bytes += len;
1318 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1319 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1320 &root->fs_info->delalloc_inodes);
1322 spin_unlock(&root->fs_info->delalloc_lock);
1324 return 0;
1328 * extent_io.c clear_bit_hook, see set_bit_hook for why
1330 static int btrfs_clear_bit_hook(struct inode *inode,
1331 struct extent_state *state, int *bits)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testeing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1339 struct btrfs_root *root = BTRFS_I(inode)->root;
1340 u64 len = state->end + 1 - state->start;
1341 int do_list = (root->root_key.objectid !=
1342 BTRFS_ROOT_TREE_OBJECTID);
1344 if (*bits & EXTENT_FIRST_DELALLOC)
1345 *bits &= ~EXTENT_FIRST_DELALLOC;
1346 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1347 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1349 if (*bits & EXTENT_DO_ACCOUNTING)
1350 btrfs_delalloc_release_metadata(inode, len);
1352 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1353 && do_list)
1354 btrfs_free_reserved_data_space(inode, len);
1356 spin_lock(&root->fs_info->delalloc_lock);
1357 root->fs_info->delalloc_bytes -= len;
1358 BTRFS_I(inode)->delalloc_bytes -= len;
1360 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1361 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1362 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1364 spin_unlock(&root->fs_info->delalloc_lock);
1366 return 0;
1370 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1371 * we don't create bios that span stripes or chunks
1373 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1374 size_t size, struct bio *bio,
1375 unsigned long bio_flags)
1377 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1378 struct btrfs_mapping_tree *map_tree;
1379 u64 logical = (u64)bio->bi_sector << 9;
1380 u64 length = 0;
1381 u64 map_length;
1382 int ret;
1384 if (bio_flags & EXTENT_BIO_COMPRESSED)
1385 return 0;
1387 length = bio->bi_size;
1388 map_tree = &root->fs_info->mapping_tree;
1389 map_length = length;
1390 ret = btrfs_map_block(map_tree, READ, logical,
1391 &map_length, NULL, 0);
1393 if (map_length < length + size)
1394 return 1;
1395 return ret;
1399 * in order to insert checksums into the metadata in large chunks,
1400 * we wait until bio submission time. All the pages in the bio are
1401 * checksummed and sums are attached onto the ordered extent record.
1403 * At IO completion time the cums attached on the ordered extent record
1404 * are inserted into the btree
1406 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1407 struct bio *bio, int mirror_num,
1408 unsigned long bio_flags,
1409 u64 bio_offset)
1411 struct btrfs_root *root = BTRFS_I(inode)->root;
1412 int ret = 0;
1414 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1415 BUG_ON(ret);
1416 return 0;
1420 * in order to insert checksums into the metadata in large chunks,
1421 * we wait until bio submission time. All the pages in the bio are
1422 * checksummed and sums are attached onto the ordered extent record.
1424 * At IO completion time the cums attached on the ordered extent record
1425 * are inserted into the btree
1427 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1428 int mirror_num, unsigned long bio_flags,
1429 u64 bio_offset)
1431 struct btrfs_root *root = BTRFS_I(inode)->root;
1432 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1436 * extent_io.c submission hook. This does the right thing for csum calculation
1437 * on write, or reading the csums from the tree before a read
1439 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1440 int mirror_num, unsigned long bio_flags,
1441 u64 bio_offset)
1443 struct btrfs_root *root = BTRFS_I(inode)->root;
1444 int ret = 0;
1445 int skip_sum;
1447 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1449 if (root == root->fs_info->tree_root)
1450 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1451 else
1452 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1453 BUG_ON(ret);
1455 if (!(rw & REQ_WRITE)) {
1456 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1457 return btrfs_submit_compressed_read(inode, bio,
1458 mirror_num, bio_flags);
1459 } else if (!skip_sum)
1460 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1461 goto mapit;
1462 } else if (!skip_sum) {
1463 /* csum items have already been cloned */
1464 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1465 goto mapit;
1466 /* we're doing a write, do the async checksumming */
1467 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1468 inode, rw, bio, mirror_num,
1469 bio_flags, bio_offset,
1470 __btrfs_submit_bio_start,
1471 __btrfs_submit_bio_done);
1474 mapit:
1475 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1479 * given a list of ordered sums record them in the inode. This happens
1480 * at IO completion time based on sums calculated at bio submission time.
1482 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1483 struct inode *inode, u64 file_offset,
1484 struct list_head *list)
1486 struct btrfs_ordered_sum *sum;
1488 btrfs_set_trans_block_group(trans, inode);
1490 list_for_each_entry(sum, list, list) {
1491 btrfs_csum_file_blocks(trans,
1492 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1494 return 0;
1497 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1498 struct extent_state **cached_state)
1500 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1501 WARN_ON(1);
1502 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1503 cached_state, GFP_NOFS);
1506 /* see btrfs_writepage_start_hook for details on why this is required */
1507 struct btrfs_writepage_fixup {
1508 struct page *page;
1509 struct btrfs_work work;
1512 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1514 struct btrfs_writepage_fixup *fixup;
1515 struct btrfs_ordered_extent *ordered;
1516 struct extent_state *cached_state = NULL;
1517 struct page *page;
1518 struct inode *inode;
1519 u64 page_start;
1520 u64 page_end;
1522 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1523 page = fixup->page;
1524 again:
1525 lock_page(page);
1526 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1527 ClearPageChecked(page);
1528 goto out_page;
1531 inode = page->mapping->host;
1532 page_start = page_offset(page);
1533 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1535 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1536 &cached_state, GFP_NOFS);
1538 /* already ordered? We're done */
1539 if (PagePrivate2(page))
1540 goto out;
1542 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1543 if (ordered) {
1544 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1545 page_end, &cached_state, GFP_NOFS);
1546 unlock_page(page);
1547 btrfs_start_ordered_extent(inode, ordered, 1);
1548 goto again;
1551 BUG();
1552 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1553 ClearPageChecked(page);
1554 out:
1555 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1556 &cached_state, GFP_NOFS);
1557 out_page:
1558 unlock_page(page);
1559 page_cache_release(page);
1563 * There are a few paths in the higher layers of the kernel that directly
1564 * set the page dirty bit without asking the filesystem if it is a
1565 * good idea. This causes problems because we want to make sure COW
1566 * properly happens and the data=ordered rules are followed.
1568 * In our case any range that doesn't have the ORDERED bit set
1569 * hasn't been properly setup for IO. We kick off an async process
1570 * to fix it up. The async helper will wait for ordered extents, set
1571 * the delalloc bit and make it safe to write the page.
1573 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1575 struct inode *inode = page->mapping->host;
1576 struct btrfs_writepage_fixup *fixup;
1577 struct btrfs_root *root = BTRFS_I(inode)->root;
1579 /* this page is properly in the ordered list */
1580 if (TestClearPagePrivate2(page))
1581 return 0;
1583 if (PageChecked(page))
1584 return -EAGAIN;
1586 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1587 if (!fixup)
1588 return -EAGAIN;
1590 SetPageChecked(page);
1591 page_cache_get(page);
1592 fixup->work.func = btrfs_writepage_fixup_worker;
1593 fixup->page = page;
1594 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1595 return -EAGAIN;
1598 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1599 struct inode *inode, u64 file_pos,
1600 u64 disk_bytenr, u64 disk_num_bytes,
1601 u64 num_bytes, u64 ram_bytes,
1602 u8 compression, u8 encryption,
1603 u16 other_encoding, int extent_type)
1605 struct btrfs_root *root = BTRFS_I(inode)->root;
1606 struct btrfs_file_extent_item *fi;
1607 struct btrfs_path *path;
1608 struct extent_buffer *leaf;
1609 struct btrfs_key ins;
1610 u64 hint;
1611 int ret;
1613 path = btrfs_alloc_path();
1614 BUG_ON(!path);
1616 path->leave_spinning = 1;
1619 * we may be replacing one extent in the tree with another.
1620 * The new extent is pinned in the extent map, and we don't want
1621 * to drop it from the cache until it is completely in the btree.
1623 * So, tell btrfs_drop_extents to leave this extent in the cache.
1624 * the caller is expected to unpin it and allow it to be merged
1625 * with the others.
1627 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1628 &hint, 0);
1629 BUG_ON(ret);
1631 ins.objectid = inode->i_ino;
1632 ins.offset = file_pos;
1633 ins.type = BTRFS_EXTENT_DATA_KEY;
1634 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1635 BUG_ON(ret);
1636 leaf = path->nodes[0];
1637 fi = btrfs_item_ptr(leaf, path->slots[0],
1638 struct btrfs_file_extent_item);
1639 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1640 btrfs_set_file_extent_type(leaf, fi, extent_type);
1641 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1642 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1643 btrfs_set_file_extent_offset(leaf, fi, 0);
1644 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1645 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1646 btrfs_set_file_extent_compression(leaf, fi, compression);
1647 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1648 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1650 btrfs_unlock_up_safe(path, 1);
1651 btrfs_set_lock_blocking(leaf);
1653 btrfs_mark_buffer_dirty(leaf);
1655 inode_add_bytes(inode, num_bytes);
1657 ins.objectid = disk_bytenr;
1658 ins.offset = disk_num_bytes;
1659 ins.type = BTRFS_EXTENT_ITEM_KEY;
1660 ret = btrfs_alloc_reserved_file_extent(trans, root,
1661 root->root_key.objectid,
1662 inode->i_ino, file_pos, &ins);
1663 BUG_ON(ret);
1664 btrfs_free_path(path);
1666 return 0;
1670 * helper function for btrfs_finish_ordered_io, this
1671 * just reads in some of the csum leaves to prime them into ram
1672 * before we start the transaction. It limits the amount of btree
1673 * reads required while inside the transaction.
1675 /* as ordered data IO finishes, this gets called so we can finish
1676 * an ordered extent if the range of bytes in the file it covers are
1677 * fully written.
1679 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1681 struct btrfs_root *root = BTRFS_I(inode)->root;
1682 struct btrfs_trans_handle *trans = NULL;
1683 struct btrfs_ordered_extent *ordered_extent = NULL;
1684 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1685 struct extent_state *cached_state = NULL;
1686 int compress_type = 0;
1687 int ret;
1688 bool nolock = false;
1690 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1691 end - start + 1);
1692 if (!ret)
1693 return 0;
1694 BUG_ON(!ordered_extent);
1696 nolock = (root == root->fs_info->tree_root);
1698 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1699 BUG_ON(!list_empty(&ordered_extent->list));
1700 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1701 if (!ret) {
1702 if (nolock)
1703 trans = btrfs_join_transaction_nolock(root, 1);
1704 else
1705 trans = btrfs_join_transaction(root, 1);
1706 BUG_ON(!trans);
1707 btrfs_set_trans_block_group(trans, inode);
1708 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1709 ret = btrfs_update_inode(trans, root, inode);
1710 BUG_ON(ret);
1712 goto out;
1715 lock_extent_bits(io_tree, ordered_extent->file_offset,
1716 ordered_extent->file_offset + ordered_extent->len - 1,
1717 0, &cached_state, GFP_NOFS);
1719 if (nolock)
1720 trans = btrfs_join_transaction_nolock(root, 1);
1721 else
1722 trans = btrfs_join_transaction(root, 1);
1723 btrfs_set_trans_block_group(trans, inode);
1724 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1726 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1727 compress_type = ordered_extent->compress_type;
1728 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1729 BUG_ON(compress_type);
1730 ret = btrfs_mark_extent_written(trans, inode,
1731 ordered_extent->file_offset,
1732 ordered_extent->file_offset +
1733 ordered_extent->len);
1734 BUG_ON(ret);
1735 } else {
1736 BUG_ON(root == root->fs_info->tree_root);
1737 ret = insert_reserved_file_extent(trans, inode,
1738 ordered_extent->file_offset,
1739 ordered_extent->start,
1740 ordered_extent->disk_len,
1741 ordered_extent->len,
1742 ordered_extent->len,
1743 compress_type, 0, 0,
1744 BTRFS_FILE_EXTENT_REG);
1745 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1746 ordered_extent->file_offset,
1747 ordered_extent->len);
1748 BUG_ON(ret);
1750 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1751 ordered_extent->file_offset +
1752 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1754 add_pending_csums(trans, inode, ordered_extent->file_offset,
1755 &ordered_extent->list);
1757 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1758 ret = btrfs_update_inode(trans, root, inode);
1759 BUG_ON(ret);
1760 out:
1761 if (nolock) {
1762 if (trans)
1763 btrfs_end_transaction_nolock(trans, root);
1764 } else {
1765 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1766 if (trans)
1767 btrfs_end_transaction(trans, root);
1770 /* once for us */
1771 btrfs_put_ordered_extent(ordered_extent);
1772 /* once for the tree */
1773 btrfs_put_ordered_extent(ordered_extent);
1775 return 0;
1778 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1779 struct extent_state *state, int uptodate)
1781 ClearPagePrivate2(page);
1782 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1786 * When IO fails, either with EIO or csum verification fails, we
1787 * try other mirrors that might have a good copy of the data. This
1788 * io_failure_record is used to record state as we go through all the
1789 * mirrors. If another mirror has good data, the page is set up to date
1790 * and things continue. If a good mirror can't be found, the original
1791 * bio end_io callback is called to indicate things have failed.
1793 struct io_failure_record {
1794 struct page *page;
1795 u64 start;
1796 u64 len;
1797 u64 logical;
1798 unsigned long bio_flags;
1799 int last_mirror;
1802 static int btrfs_io_failed_hook(struct bio *failed_bio,
1803 struct page *page, u64 start, u64 end,
1804 struct extent_state *state)
1806 struct io_failure_record *failrec = NULL;
1807 u64 private;
1808 struct extent_map *em;
1809 struct inode *inode = page->mapping->host;
1810 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1811 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1812 struct bio *bio;
1813 int num_copies;
1814 int ret;
1815 int rw;
1816 u64 logical;
1818 ret = get_state_private(failure_tree, start, &private);
1819 if (ret) {
1820 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1821 if (!failrec)
1822 return -ENOMEM;
1823 failrec->start = start;
1824 failrec->len = end - start + 1;
1825 failrec->last_mirror = 0;
1826 failrec->bio_flags = 0;
1828 read_lock(&em_tree->lock);
1829 em = lookup_extent_mapping(em_tree, start, failrec->len);
1830 if (em->start > start || em->start + em->len < start) {
1831 free_extent_map(em);
1832 em = NULL;
1834 read_unlock(&em_tree->lock);
1836 if (!em || IS_ERR(em)) {
1837 kfree(failrec);
1838 return -EIO;
1840 logical = start - em->start;
1841 logical = em->block_start + logical;
1842 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1843 logical = em->block_start;
1844 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1845 extent_set_compress_type(&failrec->bio_flags,
1846 em->compress_type);
1848 failrec->logical = logical;
1849 free_extent_map(em);
1850 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1851 EXTENT_DIRTY, GFP_NOFS);
1852 set_state_private(failure_tree, start,
1853 (u64)(unsigned long)failrec);
1854 } else {
1855 failrec = (struct io_failure_record *)(unsigned long)private;
1857 num_copies = btrfs_num_copies(
1858 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1859 failrec->logical, failrec->len);
1860 failrec->last_mirror++;
1861 if (!state) {
1862 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1863 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1864 failrec->start,
1865 EXTENT_LOCKED);
1866 if (state && state->start != failrec->start)
1867 state = NULL;
1868 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1870 if (!state || failrec->last_mirror > num_copies) {
1871 set_state_private(failure_tree, failrec->start, 0);
1872 clear_extent_bits(failure_tree, failrec->start,
1873 failrec->start + failrec->len - 1,
1874 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1875 kfree(failrec);
1876 return -EIO;
1878 bio = bio_alloc(GFP_NOFS, 1);
1879 bio->bi_private = state;
1880 bio->bi_end_io = failed_bio->bi_end_io;
1881 bio->bi_sector = failrec->logical >> 9;
1882 bio->bi_bdev = failed_bio->bi_bdev;
1883 bio->bi_size = 0;
1885 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1886 if (failed_bio->bi_rw & REQ_WRITE)
1887 rw = WRITE;
1888 else
1889 rw = READ;
1891 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1892 failrec->last_mirror,
1893 failrec->bio_flags, 0);
1894 return 0;
1898 * each time an IO finishes, we do a fast check in the IO failure tree
1899 * to see if we need to process or clean up an io_failure_record
1901 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1903 u64 private;
1904 u64 private_failure;
1905 struct io_failure_record *failure;
1906 int ret;
1908 private = 0;
1909 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1910 (u64)-1, 1, EXTENT_DIRTY)) {
1911 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1912 start, &private_failure);
1913 if (ret == 0) {
1914 failure = (struct io_failure_record *)(unsigned long)
1915 private_failure;
1916 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1917 failure->start, 0);
1918 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1919 failure->start,
1920 failure->start + failure->len - 1,
1921 EXTENT_DIRTY | EXTENT_LOCKED,
1922 GFP_NOFS);
1923 kfree(failure);
1926 return 0;
1930 * when reads are done, we need to check csums to verify the data is correct
1931 * if there's a match, we allow the bio to finish. If not, we go through
1932 * the io_failure_record routines to find good copies
1934 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1935 struct extent_state *state)
1937 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1938 struct inode *inode = page->mapping->host;
1939 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1940 char *kaddr;
1941 u64 private = ~(u32)0;
1942 int ret;
1943 struct btrfs_root *root = BTRFS_I(inode)->root;
1944 u32 csum = ~(u32)0;
1946 if (PageChecked(page)) {
1947 ClearPageChecked(page);
1948 goto good;
1951 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1952 return 0;
1954 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1955 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1956 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1957 GFP_NOFS);
1958 return 0;
1961 if (state && state->start == start) {
1962 private = state->private;
1963 ret = 0;
1964 } else {
1965 ret = get_state_private(io_tree, start, &private);
1967 kaddr = kmap_atomic(page, KM_USER0);
1968 if (ret)
1969 goto zeroit;
1971 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1972 btrfs_csum_final(csum, (char *)&csum);
1973 if (csum != private)
1974 goto zeroit;
1976 kunmap_atomic(kaddr, KM_USER0);
1977 good:
1978 /* if the io failure tree for this inode is non-empty,
1979 * check to see if we've recovered from a failed IO
1981 btrfs_clean_io_failures(inode, start);
1982 return 0;
1984 zeroit:
1985 if (printk_ratelimit()) {
1986 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1987 "private %llu\n", page->mapping->host->i_ino,
1988 (unsigned long long)start, csum,
1989 (unsigned long long)private);
1991 memset(kaddr + offset, 1, end - start + 1);
1992 flush_dcache_page(page);
1993 kunmap_atomic(kaddr, KM_USER0);
1994 if (private == 0)
1995 return 0;
1996 return -EIO;
1999 struct delayed_iput {
2000 struct list_head list;
2001 struct inode *inode;
2004 void btrfs_add_delayed_iput(struct inode *inode)
2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 struct delayed_iput *delayed;
2009 if (atomic_add_unless(&inode->i_count, -1, 1))
2010 return;
2012 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2013 delayed->inode = inode;
2015 spin_lock(&fs_info->delayed_iput_lock);
2016 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2017 spin_unlock(&fs_info->delayed_iput_lock);
2020 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2022 LIST_HEAD(list);
2023 struct btrfs_fs_info *fs_info = root->fs_info;
2024 struct delayed_iput *delayed;
2025 int empty;
2027 spin_lock(&fs_info->delayed_iput_lock);
2028 empty = list_empty(&fs_info->delayed_iputs);
2029 spin_unlock(&fs_info->delayed_iput_lock);
2030 if (empty)
2031 return;
2033 down_read(&root->fs_info->cleanup_work_sem);
2034 spin_lock(&fs_info->delayed_iput_lock);
2035 list_splice_init(&fs_info->delayed_iputs, &list);
2036 spin_unlock(&fs_info->delayed_iput_lock);
2038 while (!list_empty(&list)) {
2039 delayed = list_entry(list.next, struct delayed_iput, list);
2040 list_del(&delayed->list);
2041 iput(delayed->inode);
2042 kfree(delayed);
2044 up_read(&root->fs_info->cleanup_work_sem);
2048 * calculate extra metadata reservation when snapshotting a subvolume
2049 * contains orphan files.
2051 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2052 struct btrfs_pending_snapshot *pending,
2053 u64 *bytes_to_reserve)
2055 struct btrfs_root *root;
2056 struct btrfs_block_rsv *block_rsv;
2057 u64 num_bytes;
2058 int index;
2060 root = pending->root;
2061 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2062 return;
2064 block_rsv = root->orphan_block_rsv;
2066 /* orphan block reservation for the snapshot */
2067 num_bytes = block_rsv->size;
2070 * after the snapshot is created, COWing tree blocks may use more
2071 * space than it frees. So we should make sure there is enough
2072 * reserved space.
2074 index = trans->transid & 0x1;
2075 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2076 num_bytes += block_rsv->size -
2077 (block_rsv->reserved + block_rsv->freed[index]);
2080 *bytes_to_reserve += num_bytes;
2083 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2084 struct btrfs_pending_snapshot *pending)
2086 struct btrfs_root *root = pending->root;
2087 struct btrfs_root *snap = pending->snap;
2088 struct btrfs_block_rsv *block_rsv;
2089 u64 num_bytes;
2090 int index;
2091 int ret;
2093 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2094 return;
2096 /* refill source subvolume's orphan block reservation */
2097 block_rsv = root->orphan_block_rsv;
2098 index = trans->transid & 0x1;
2099 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2100 num_bytes = block_rsv->size -
2101 (block_rsv->reserved + block_rsv->freed[index]);
2102 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2103 root->orphan_block_rsv,
2104 num_bytes);
2105 BUG_ON(ret);
2108 /* setup orphan block reservation for the snapshot */
2109 block_rsv = btrfs_alloc_block_rsv(snap);
2110 BUG_ON(!block_rsv);
2112 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2113 snap->orphan_block_rsv = block_rsv;
2115 num_bytes = root->orphan_block_rsv->size;
2116 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2117 block_rsv, num_bytes);
2118 BUG_ON(ret);
2120 #if 0
2121 /* insert orphan item for the snapshot */
2122 WARN_ON(!root->orphan_item_inserted);
2123 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2124 snap->root_key.objectid);
2125 BUG_ON(ret);
2126 snap->orphan_item_inserted = 1;
2127 #endif
2130 enum btrfs_orphan_cleanup_state {
2131 ORPHAN_CLEANUP_STARTED = 1,
2132 ORPHAN_CLEANUP_DONE = 2,
2136 * This is called in transaction commmit time. If there are no orphan
2137 * files in the subvolume, it removes orphan item and frees block_rsv
2138 * structure.
2140 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2141 struct btrfs_root *root)
2143 int ret;
2145 if (!list_empty(&root->orphan_list) ||
2146 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2147 return;
2149 if (root->orphan_item_inserted &&
2150 btrfs_root_refs(&root->root_item) > 0) {
2151 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2152 root->root_key.objectid);
2153 BUG_ON(ret);
2154 root->orphan_item_inserted = 0;
2157 if (root->orphan_block_rsv) {
2158 WARN_ON(root->orphan_block_rsv->size > 0);
2159 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2160 root->orphan_block_rsv = NULL;
2165 * This creates an orphan entry for the given inode in case something goes
2166 * wrong in the middle of an unlink/truncate.
2168 * NOTE: caller of this function should reserve 5 units of metadata for
2169 * this function.
2171 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2173 struct btrfs_root *root = BTRFS_I(inode)->root;
2174 struct btrfs_block_rsv *block_rsv = NULL;
2175 int reserve = 0;
2176 int insert = 0;
2177 int ret;
2179 if (!root->orphan_block_rsv) {
2180 block_rsv = btrfs_alloc_block_rsv(root);
2181 BUG_ON(!block_rsv);
2184 spin_lock(&root->orphan_lock);
2185 if (!root->orphan_block_rsv) {
2186 root->orphan_block_rsv = block_rsv;
2187 } else if (block_rsv) {
2188 btrfs_free_block_rsv(root, block_rsv);
2189 block_rsv = NULL;
2192 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2193 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2194 #if 0
2196 * For proper ENOSPC handling, we should do orphan
2197 * cleanup when mounting. But this introduces backward
2198 * compatibility issue.
2200 if (!xchg(&root->orphan_item_inserted, 1))
2201 insert = 2;
2202 else
2203 insert = 1;
2204 #endif
2205 insert = 1;
2206 } else {
2207 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2210 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2211 BTRFS_I(inode)->orphan_meta_reserved = 1;
2212 reserve = 1;
2214 spin_unlock(&root->orphan_lock);
2216 if (block_rsv)
2217 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2219 /* grab metadata reservation from transaction handle */
2220 if (reserve) {
2221 ret = btrfs_orphan_reserve_metadata(trans, inode);
2222 BUG_ON(ret);
2225 /* insert an orphan item to track this unlinked/truncated file */
2226 if (insert >= 1) {
2227 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2228 BUG_ON(ret);
2231 /* insert an orphan item to track subvolume contains orphan files */
2232 if (insert >= 2) {
2233 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2234 root->root_key.objectid);
2235 BUG_ON(ret);
2237 return 0;
2241 * We have done the truncate/delete so we can go ahead and remove the orphan
2242 * item for this particular inode.
2244 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2246 struct btrfs_root *root = BTRFS_I(inode)->root;
2247 int delete_item = 0;
2248 int release_rsv = 0;
2249 int ret = 0;
2251 spin_lock(&root->orphan_lock);
2252 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2253 list_del_init(&BTRFS_I(inode)->i_orphan);
2254 delete_item = 1;
2257 if (BTRFS_I(inode)->orphan_meta_reserved) {
2258 BTRFS_I(inode)->orphan_meta_reserved = 0;
2259 release_rsv = 1;
2261 spin_unlock(&root->orphan_lock);
2263 if (trans && delete_item) {
2264 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2265 BUG_ON(ret);
2268 if (release_rsv)
2269 btrfs_orphan_release_metadata(inode);
2271 return 0;
2275 * this cleans up any orphans that may be left on the list from the last use
2276 * of this root.
2278 void btrfs_orphan_cleanup(struct btrfs_root *root)
2280 struct btrfs_path *path;
2281 struct extent_buffer *leaf;
2282 struct btrfs_key key, found_key;
2283 struct btrfs_trans_handle *trans;
2284 struct inode *inode;
2285 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2287 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2288 return;
2290 path = btrfs_alloc_path();
2291 BUG_ON(!path);
2292 path->reada = -1;
2294 key.objectid = BTRFS_ORPHAN_OBJECTID;
2295 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2296 key.offset = (u64)-1;
2298 while (1) {
2299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2300 if (ret < 0) {
2301 printk(KERN_ERR "Error searching slot for orphan: %d"
2302 "\n", ret);
2303 break;
2307 * if ret == 0 means we found what we were searching for, which
2308 * is weird, but possible, so only screw with path if we didnt
2309 * find the key and see if we have stuff that matches
2311 if (ret > 0) {
2312 if (path->slots[0] == 0)
2313 break;
2314 path->slots[0]--;
2317 /* pull out the item */
2318 leaf = path->nodes[0];
2319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2321 /* make sure the item matches what we want */
2322 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2323 break;
2324 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2325 break;
2327 /* release the path since we're done with it */
2328 btrfs_release_path(root, path);
2331 * this is where we are basically btrfs_lookup, without the
2332 * crossing root thing. we store the inode number in the
2333 * offset of the orphan item.
2335 found_key.objectid = found_key.offset;
2336 found_key.type = BTRFS_INODE_ITEM_KEY;
2337 found_key.offset = 0;
2338 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2339 BUG_ON(IS_ERR(inode));
2342 * add this inode to the orphan list so btrfs_orphan_del does
2343 * the proper thing when we hit it
2345 spin_lock(&root->orphan_lock);
2346 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2347 spin_unlock(&root->orphan_lock);
2350 * if this is a bad inode, means we actually succeeded in
2351 * removing the inode, but not the orphan record, which means
2352 * we need to manually delete the orphan since iput will just
2353 * do a destroy_inode
2355 if (is_bad_inode(inode)) {
2356 trans = btrfs_start_transaction(root, 0);
2357 btrfs_orphan_del(trans, inode);
2358 btrfs_end_transaction(trans, root);
2359 iput(inode);
2360 continue;
2363 /* if we have links, this was a truncate, lets do that */
2364 if (inode->i_nlink) {
2365 nr_truncate++;
2366 btrfs_truncate(inode);
2367 } else {
2368 nr_unlink++;
2371 /* this will do delete_inode and everything for us */
2372 iput(inode);
2374 btrfs_free_path(path);
2376 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2378 if (root->orphan_block_rsv)
2379 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2380 (u64)-1);
2382 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2383 trans = btrfs_join_transaction(root, 1);
2384 btrfs_end_transaction(trans, root);
2387 if (nr_unlink)
2388 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2389 if (nr_truncate)
2390 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2394 * very simple check to peek ahead in the leaf looking for xattrs. If we
2395 * don't find any xattrs, we know there can't be any acls.
2397 * slot is the slot the inode is in, objectid is the objectid of the inode
2399 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2400 int slot, u64 objectid)
2402 u32 nritems = btrfs_header_nritems(leaf);
2403 struct btrfs_key found_key;
2404 int scanned = 0;
2406 slot++;
2407 while (slot < nritems) {
2408 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2410 /* we found a different objectid, there must not be acls */
2411 if (found_key.objectid != objectid)
2412 return 0;
2414 /* we found an xattr, assume we've got an acl */
2415 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2416 return 1;
2419 * we found a key greater than an xattr key, there can't
2420 * be any acls later on
2422 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2423 return 0;
2425 slot++;
2426 scanned++;
2429 * it goes inode, inode backrefs, xattrs, extents,
2430 * so if there are a ton of hard links to an inode there can
2431 * be a lot of backrefs. Don't waste time searching too hard,
2432 * this is just an optimization
2434 if (scanned >= 8)
2435 break;
2437 /* we hit the end of the leaf before we found an xattr or
2438 * something larger than an xattr. We have to assume the inode
2439 * has acls
2441 return 1;
2445 * read an inode from the btree into the in-memory inode
2447 static void btrfs_read_locked_inode(struct inode *inode)
2449 struct btrfs_path *path;
2450 struct extent_buffer *leaf;
2451 struct btrfs_inode_item *inode_item;
2452 struct btrfs_timespec *tspec;
2453 struct btrfs_root *root = BTRFS_I(inode)->root;
2454 struct btrfs_key location;
2455 int maybe_acls;
2456 u64 alloc_group_block;
2457 u32 rdev;
2458 int ret;
2460 path = btrfs_alloc_path();
2461 BUG_ON(!path);
2462 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2464 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2465 if (ret)
2466 goto make_bad;
2468 leaf = path->nodes[0];
2469 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2470 struct btrfs_inode_item);
2472 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2473 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2474 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2475 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2476 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2478 tspec = btrfs_inode_atime(inode_item);
2479 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2480 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2482 tspec = btrfs_inode_mtime(inode_item);
2483 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2484 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2486 tspec = btrfs_inode_ctime(inode_item);
2487 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2490 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2491 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2492 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2493 inode->i_generation = BTRFS_I(inode)->generation;
2494 inode->i_rdev = 0;
2495 rdev = btrfs_inode_rdev(leaf, inode_item);
2497 BTRFS_I(inode)->index_cnt = (u64)-1;
2498 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2500 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2503 * try to precache a NULL acl entry for files that don't have
2504 * any xattrs or acls
2506 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2507 if (!maybe_acls)
2508 cache_no_acl(inode);
2510 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2511 alloc_group_block, 0);
2512 btrfs_free_path(path);
2513 inode_item = NULL;
2515 switch (inode->i_mode & S_IFMT) {
2516 case S_IFREG:
2517 inode->i_mapping->a_ops = &btrfs_aops;
2518 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2519 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2520 inode->i_fop = &btrfs_file_operations;
2521 inode->i_op = &btrfs_file_inode_operations;
2522 break;
2523 case S_IFDIR:
2524 inode->i_fop = &btrfs_dir_file_operations;
2525 if (root == root->fs_info->tree_root)
2526 inode->i_op = &btrfs_dir_ro_inode_operations;
2527 else
2528 inode->i_op = &btrfs_dir_inode_operations;
2529 break;
2530 case S_IFLNK:
2531 inode->i_op = &btrfs_symlink_inode_operations;
2532 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2533 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2534 break;
2535 default:
2536 inode->i_op = &btrfs_special_inode_operations;
2537 init_special_inode(inode, inode->i_mode, rdev);
2538 break;
2541 btrfs_update_iflags(inode);
2542 return;
2544 make_bad:
2545 btrfs_free_path(path);
2546 make_bad_inode(inode);
2550 * given a leaf and an inode, copy the inode fields into the leaf
2552 static void fill_inode_item(struct btrfs_trans_handle *trans,
2553 struct extent_buffer *leaf,
2554 struct btrfs_inode_item *item,
2555 struct inode *inode)
2557 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2558 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2559 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2560 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2561 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2563 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2564 inode->i_atime.tv_sec);
2565 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2566 inode->i_atime.tv_nsec);
2568 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2569 inode->i_mtime.tv_sec);
2570 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2571 inode->i_mtime.tv_nsec);
2573 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2574 inode->i_ctime.tv_sec);
2575 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2576 inode->i_ctime.tv_nsec);
2578 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2579 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2580 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2581 btrfs_set_inode_transid(leaf, item, trans->transid);
2582 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2583 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2584 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2588 * copy everything in the in-memory inode into the btree.
2590 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2591 struct btrfs_root *root, struct inode *inode)
2593 struct btrfs_inode_item *inode_item;
2594 struct btrfs_path *path;
2595 struct extent_buffer *leaf;
2596 int ret;
2598 path = btrfs_alloc_path();
2599 BUG_ON(!path);
2600 path->leave_spinning = 1;
2601 ret = btrfs_lookup_inode(trans, root, path,
2602 &BTRFS_I(inode)->location, 1);
2603 if (ret) {
2604 if (ret > 0)
2605 ret = -ENOENT;
2606 goto failed;
2609 btrfs_unlock_up_safe(path, 1);
2610 leaf = path->nodes[0];
2611 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2612 struct btrfs_inode_item);
2614 fill_inode_item(trans, leaf, inode_item, inode);
2615 btrfs_mark_buffer_dirty(leaf);
2616 btrfs_set_inode_last_trans(trans, inode);
2617 ret = 0;
2618 failed:
2619 btrfs_free_path(path);
2620 return ret;
2625 * unlink helper that gets used here in inode.c and in the tree logging
2626 * recovery code. It remove a link in a directory with a given name, and
2627 * also drops the back refs in the inode to the directory
2629 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root,
2631 struct inode *dir, struct inode *inode,
2632 const char *name, int name_len)
2634 struct btrfs_path *path;
2635 int ret = 0;
2636 struct extent_buffer *leaf;
2637 struct btrfs_dir_item *di;
2638 struct btrfs_key key;
2639 u64 index;
2641 path = btrfs_alloc_path();
2642 if (!path) {
2643 ret = -ENOMEM;
2644 goto err;
2647 path->leave_spinning = 1;
2648 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2649 name, name_len, -1);
2650 if (IS_ERR(di)) {
2651 ret = PTR_ERR(di);
2652 goto err;
2654 if (!di) {
2655 ret = -ENOENT;
2656 goto err;
2658 leaf = path->nodes[0];
2659 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2660 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2661 if (ret)
2662 goto err;
2663 btrfs_release_path(root, path);
2665 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2666 inode->i_ino,
2667 dir->i_ino, &index);
2668 if (ret) {
2669 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2670 "inode %lu parent %lu\n", name_len, name,
2671 inode->i_ino, dir->i_ino);
2672 goto err;
2675 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2676 index, name, name_len, -1);
2677 if (IS_ERR(di)) {
2678 ret = PTR_ERR(di);
2679 goto err;
2681 if (!di) {
2682 ret = -ENOENT;
2683 goto err;
2685 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2686 btrfs_release_path(root, path);
2688 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2689 inode, dir->i_ino);
2690 BUG_ON(ret != 0 && ret != -ENOENT);
2692 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2693 dir, index);
2694 if (ret == -ENOENT)
2695 ret = 0;
2696 err:
2697 btrfs_free_path(path);
2698 if (ret)
2699 goto out;
2701 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2702 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2703 btrfs_update_inode(trans, root, dir);
2704 btrfs_drop_nlink(inode);
2705 ret = btrfs_update_inode(trans, root, inode);
2706 out:
2707 return ret;
2710 /* helper to check if there is any shared block in the path */
2711 static int check_path_shared(struct btrfs_root *root,
2712 struct btrfs_path *path)
2714 struct extent_buffer *eb;
2715 int level;
2716 u64 refs = 1;
2717 int uninitialized_var(ret);
2719 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2720 if (!path->nodes[level])
2721 break;
2722 eb = path->nodes[level];
2723 if (!btrfs_block_can_be_shared(root, eb))
2724 continue;
2725 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2726 &refs, NULL);
2727 if (refs > 1)
2728 return 1;
2730 return ret; /* XXX callers? */
2734 * helper to start transaction for unlink and rmdir.
2736 * unlink and rmdir are special in btrfs, they do not always free space.
2737 * so in enospc case, we should make sure they will free space before
2738 * allowing them to use the global metadata reservation.
2740 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2741 struct dentry *dentry)
2743 struct btrfs_trans_handle *trans;
2744 struct btrfs_root *root = BTRFS_I(dir)->root;
2745 struct btrfs_path *path;
2746 struct btrfs_inode_ref *ref;
2747 struct btrfs_dir_item *di;
2748 struct inode *inode = dentry->d_inode;
2749 u64 index;
2750 int check_link = 1;
2751 int err = -ENOSPC;
2752 int ret;
2754 trans = btrfs_start_transaction(root, 10);
2755 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2756 return trans;
2758 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2759 return ERR_PTR(-ENOSPC);
2761 /* check if there is someone else holds reference */
2762 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2763 return ERR_PTR(-ENOSPC);
2765 if (atomic_read(&inode->i_count) > 2)
2766 return ERR_PTR(-ENOSPC);
2768 if (xchg(&root->fs_info->enospc_unlink, 1))
2769 return ERR_PTR(-ENOSPC);
2771 path = btrfs_alloc_path();
2772 if (!path) {
2773 root->fs_info->enospc_unlink = 0;
2774 return ERR_PTR(-ENOMEM);
2777 trans = btrfs_start_transaction(root, 0);
2778 if (IS_ERR(trans)) {
2779 btrfs_free_path(path);
2780 root->fs_info->enospc_unlink = 0;
2781 return trans;
2784 path->skip_locking = 1;
2785 path->search_commit_root = 1;
2787 ret = btrfs_lookup_inode(trans, root, path,
2788 &BTRFS_I(dir)->location, 0);
2789 if (ret < 0) {
2790 err = ret;
2791 goto out;
2793 if (ret == 0) {
2794 if (check_path_shared(root, path))
2795 goto out;
2796 } else {
2797 check_link = 0;
2799 btrfs_release_path(root, path);
2801 ret = btrfs_lookup_inode(trans, root, path,
2802 &BTRFS_I(inode)->location, 0);
2803 if (ret < 0) {
2804 err = ret;
2805 goto out;
2807 if (ret == 0) {
2808 if (check_path_shared(root, path))
2809 goto out;
2810 } else {
2811 check_link = 0;
2813 btrfs_release_path(root, path);
2815 if (ret == 0 && S_ISREG(inode->i_mode)) {
2816 ret = btrfs_lookup_file_extent(trans, root, path,
2817 inode->i_ino, (u64)-1, 0);
2818 if (ret < 0) {
2819 err = ret;
2820 goto out;
2822 BUG_ON(ret == 0);
2823 if (check_path_shared(root, path))
2824 goto out;
2825 btrfs_release_path(root, path);
2828 if (!check_link) {
2829 err = 0;
2830 goto out;
2833 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2834 dentry->d_name.name, dentry->d_name.len, 0);
2835 if (IS_ERR(di)) {
2836 err = PTR_ERR(di);
2837 goto out;
2839 if (di) {
2840 if (check_path_shared(root, path))
2841 goto out;
2842 } else {
2843 err = 0;
2844 goto out;
2846 btrfs_release_path(root, path);
2848 ref = btrfs_lookup_inode_ref(trans, root, path,
2849 dentry->d_name.name, dentry->d_name.len,
2850 inode->i_ino, dir->i_ino, 0);
2851 if (IS_ERR(ref)) {
2852 err = PTR_ERR(ref);
2853 goto out;
2855 BUG_ON(!ref);
2856 if (check_path_shared(root, path))
2857 goto out;
2858 index = btrfs_inode_ref_index(path->nodes[0], ref);
2859 btrfs_release_path(root, path);
2861 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2862 dentry->d_name.name, dentry->d_name.len, 0);
2863 if (IS_ERR(di)) {
2864 err = PTR_ERR(di);
2865 goto out;
2867 BUG_ON(ret == -ENOENT);
2868 if (check_path_shared(root, path))
2869 goto out;
2871 err = 0;
2872 out:
2873 btrfs_free_path(path);
2874 if (err) {
2875 btrfs_end_transaction(trans, root);
2876 root->fs_info->enospc_unlink = 0;
2877 return ERR_PTR(err);
2880 trans->block_rsv = &root->fs_info->global_block_rsv;
2881 return trans;
2884 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2885 struct btrfs_root *root)
2887 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2888 BUG_ON(!root->fs_info->enospc_unlink);
2889 root->fs_info->enospc_unlink = 0;
2891 btrfs_end_transaction_throttle(trans, root);
2894 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2896 struct btrfs_root *root = BTRFS_I(dir)->root;
2897 struct btrfs_trans_handle *trans;
2898 struct inode *inode = dentry->d_inode;
2899 int ret;
2900 unsigned long nr = 0;
2902 trans = __unlink_start_trans(dir, dentry);
2903 if (IS_ERR(trans))
2904 return PTR_ERR(trans);
2906 btrfs_set_trans_block_group(trans, dir);
2908 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2910 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2911 dentry->d_name.name, dentry->d_name.len);
2912 BUG_ON(ret);
2914 if (inode->i_nlink == 0) {
2915 ret = btrfs_orphan_add(trans, inode);
2916 BUG_ON(ret);
2919 nr = trans->blocks_used;
2920 __unlink_end_trans(trans, root);
2921 btrfs_btree_balance_dirty(root, nr);
2922 return ret;
2925 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2926 struct btrfs_root *root,
2927 struct inode *dir, u64 objectid,
2928 const char *name, int name_len)
2930 struct btrfs_path *path;
2931 struct extent_buffer *leaf;
2932 struct btrfs_dir_item *di;
2933 struct btrfs_key key;
2934 u64 index;
2935 int ret;
2937 path = btrfs_alloc_path();
2938 if (!path)
2939 return -ENOMEM;
2941 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2942 name, name_len, -1);
2943 BUG_ON(!di || IS_ERR(di));
2945 leaf = path->nodes[0];
2946 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2947 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2948 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2949 BUG_ON(ret);
2950 btrfs_release_path(root, path);
2952 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2953 objectid, root->root_key.objectid,
2954 dir->i_ino, &index, name, name_len);
2955 if (ret < 0) {
2956 BUG_ON(ret != -ENOENT);
2957 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2958 name, name_len);
2959 BUG_ON(!di || IS_ERR(di));
2961 leaf = path->nodes[0];
2962 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2963 btrfs_release_path(root, path);
2964 index = key.offset;
2967 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2968 index, name, name_len, -1);
2969 BUG_ON(!di || IS_ERR(di));
2971 leaf = path->nodes[0];
2972 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2973 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2974 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2975 BUG_ON(ret);
2976 btrfs_release_path(root, path);
2978 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2979 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2980 ret = btrfs_update_inode(trans, root, dir);
2981 BUG_ON(ret);
2983 btrfs_free_path(path);
2984 return 0;
2987 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2989 struct inode *inode = dentry->d_inode;
2990 int err = 0;
2991 struct btrfs_root *root = BTRFS_I(dir)->root;
2992 struct btrfs_trans_handle *trans;
2993 unsigned long nr = 0;
2995 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2996 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2997 return -ENOTEMPTY;
2999 trans = __unlink_start_trans(dir, dentry);
3000 if (IS_ERR(trans))
3001 return PTR_ERR(trans);
3003 btrfs_set_trans_block_group(trans, dir);
3005 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3006 err = btrfs_unlink_subvol(trans, root, dir,
3007 BTRFS_I(inode)->location.objectid,
3008 dentry->d_name.name,
3009 dentry->d_name.len);
3010 goto out;
3013 err = btrfs_orphan_add(trans, inode);
3014 if (err)
3015 goto out;
3017 /* now the directory is empty */
3018 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3019 dentry->d_name.name, dentry->d_name.len);
3020 if (!err)
3021 btrfs_i_size_write(inode, 0);
3022 out:
3023 nr = trans->blocks_used;
3024 __unlink_end_trans(trans, root);
3025 btrfs_btree_balance_dirty(root, nr);
3027 return err;
3030 #if 0
3032 * when truncating bytes in a file, it is possible to avoid reading
3033 * the leaves that contain only checksum items. This can be the
3034 * majority of the IO required to delete a large file, but it must
3035 * be done carefully.
3037 * The keys in the level just above the leaves are checked to make sure
3038 * the lowest key in a given leaf is a csum key, and starts at an offset
3039 * after the new size.
3041 * Then the key for the next leaf is checked to make sure it also has
3042 * a checksum item for the same file. If it does, we know our target leaf
3043 * contains only checksum items, and it can be safely freed without reading
3044 * it.
3046 * This is just an optimization targeted at large files. It may do
3047 * nothing. It will return 0 unless things went badly.
3049 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3050 struct btrfs_root *root,
3051 struct btrfs_path *path,
3052 struct inode *inode, u64 new_size)
3054 struct btrfs_key key;
3055 int ret;
3056 int nritems;
3057 struct btrfs_key found_key;
3058 struct btrfs_key other_key;
3059 struct btrfs_leaf_ref *ref;
3060 u64 leaf_gen;
3061 u64 leaf_start;
3063 path->lowest_level = 1;
3064 key.objectid = inode->i_ino;
3065 key.type = BTRFS_CSUM_ITEM_KEY;
3066 key.offset = new_size;
3067 again:
3068 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3069 if (ret < 0)
3070 goto out;
3072 if (path->nodes[1] == NULL) {
3073 ret = 0;
3074 goto out;
3076 ret = 0;
3077 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3078 nritems = btrfs_header_nritems(path->nodes[1]);
3080 if (!nritems)
3081 goto out;
3083 if (path->slots[1] >= nritems)
3084 goto next_node;
3086 /* did we find a key greater than anything we want to delete? */
3087 if (found_key.objectid > inode->i_ino ||
3088 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3089 goto out;
3091 /* we check the next key in the node to make sure the leave contains
3092 * only checksum items. This comparison doesn't work if our
3093 * leaf is the last one in the node
3095 if (path->slots[1] + 1 >= nritems) {
3096 next_node:
3097 /* search forward from the last key in the node, this
3098 * will bring us into the next node in the tree
3100 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3102 /* unlikely, but we inc below, so check to be safe */
3103 if (found_key.offset == (u64)-1)
3104 goto out;
3106 /* search_forward needs a path with locks held, do the
3107 * search again for the original key. It is possible
3108 * this will race with a balance and return a path that
3109 * we could modify, but this drop is just an optimization
3110 * and is allowed to miss some leaves.
3112 btrfs_release_path(root, path);
3113 found_key.offset++;
3115 /* setup a max key for search_forward */
3116 other_key.offset = (u64)-1;
3117 other_key.type = key.type;
3118 other_key.objectid = key.objectid;
3120 path->keep_locks = 1;
3121 ret = btrfs_search_forward(root, &found_key, &other_key,
3122 path, 0, 0);
3123 path->keep_locks = 0;
3124 if (ret || found_key.objectid != key.objectid ||
3125 found_key.type != key.type) {
3126 ret = 0;
3127 goto out;
3130 key.offset = found_key.offset;
3131 btrfs_release_path(root, path);
3132 cond_resched();
3133 goto again;
3136 /* we know there's one more slot after us in the tree,
3137 * read that key so we can verify it is also a checksum item
3139 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3141 if (found_key.objectid < inode->i_ino)
3142 goto next_key;
3144 if (found_key.type != key.type || found_key.offset < new_size)
3145 goto next_key;
3148 * if the key for the next leaf isn't a csum key from this objectid,
3149 * we can't be sure there aren't good items inside this leaf.
3150 * Bail out
3152 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3153 goto out;
3155 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3156 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3158 * it is safe to delete this leaf, it contains only
3159 * csum items from this inode at an offset >= new_size
3161 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3162 BUG_ON(ret);
3164 if (root->ref_cows && leaf_gen < trans->transid) {
3165 ref = btrfs_alloc_leaf_ref(root, 0);
3166 if (ref) {
3167 ref->root_gen = root->root_key.offset;
3168 ref->bytenr = leaf_start;
3169 ref->owner = 0;
3170 ref->generation = leaf_gen;
3171 ref->nritems = 0;
3173 btrfs_sort_leaf_ref(ref);
3175 ret = btrfs_add_leaf_ref(root, ref, 0);
3176 WARN_ON(ret);
3177 btrfs_free_leaf_ref(root, ref);
3178 } else {
3179 WARN_ON(1);
3182 next_key:
3183 btrfs_release_path(root, path);
3185 if (other_key.objectid == inode->i_ino &&
3186 other_key.type == key.type && other_key.offset > key.offset) {
3187 key.offset = other_key.offset;
3188 cond_resched();
3189 goto again;
3191 ret = 0;
3192 out:
3193 /* fixup any changes we've made to the path */
3194 path->lowest_level = 0;
3195 path->keep_locks = 0;
3196 btrfs_release_path(root, path);
3197 return ret;
3200 #endif
3203 * this can truncate away extent items, csum items and directory items.
3204 * It starts at a high offset and removes keys until it can't find
3205 * any higher than new_size
3207 * csum items that cross the new i_size are truncated to the new size
3208 * as well.
3210 * min_type is the minimum key type to truncate down to. If set to 0, this
3211 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3213 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3214 struct btrfs_root *root,
3215 struct inode *inode,
3216 u64 new_size, u32 min_type)
3218 struct btrfs_path *path;
3219 struct extent_buffer *leaf;
3220 struct btrfs_file_extent_item *fi;
3221 struct btrfs_key key;
3222 struct btrfs_key found_key;
3223 u64 extent_start = 0;
3224 u64 extent_num_bytes = 0;
3225 u64 extent_offset = 0;
3226 u64 item_end = 0;
3227 u64 mask = root->sectorsize - 1;
3228 u32 found_type = (u8)-1;
3229 int found_extent;
3230 int del_item;
3231 int pending_del_nr = 0;
3232 int pending_del_slot = 0;
3233 int extent_type = -1;
3234 int encoding;
3235 int ret;
3236 int err = 0;
3238 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3240 if (root->ref_cows || root == root->fs_info->tree_root)
3241 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3243 path = btrfs_alloc_path();
3244 BUG_ON(!path);
3245 path->reada = -1;
3247 key.objectid = inode->i_ino;
3248 key.offset = (u64)-1;
3249 key.type = (u8)-1;
3251 search_again:
3252 path->leave_spinning = 1;
3253 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3254 if (ret < 0) {
3255 err = ret;
3256 goto out;
3259 if (ret > 0) {
3260 /* there are no items in the tree for us to truncate, we're
3261 * done
3263 if (path->slots[0] == 0)
3264 goto out;
3265 path->slots[0]--;
3268 while (1) {
3269 fi = NULL;
3270 leaf = path->nodes[0];
3271 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3272 found_type = btrfs_key_type(&found_key);
3273 encoding = 0;
3275 if (found_key.objectid != inode->i_ino)
3276 break;
3278 if (found_type < min_type)
3279 break;
3281 item_end = found_key.offset;
3282 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3283 fi = btrfs_item_ptr(leaf, path->slots[0],
3284 struct btrfs_file_extent_item);
3285 extent_type = btrfs_file_extent_type(leaf, fi);
3286 encoding = btrfs_file_extent_compression(leaf, fi);
3287 encoding |= btrfs_file_extent_encryption(leaf, fi);
3288 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3290 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3291 item_end +=
3292 btrfs_file_extent_num_bytes(leaf, fi);
3293 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3294 item_end += btrfs_file_extent_inline_len(leaf,
3295 fi);
3297 item_end--;
3299 if (found_type > min_type) {
3300 del_item = 1;
3301 } else {
3302 if (item_end < new_size)
3303 break;
3304 if (found_key.offset >= new_size)
3305 del_item = 1;
3306 else
3307 del_item = 0;
3309 found_extent = 0;
3310 /* FIXME, shrink the extent if the ref count is only 1 */
3311 if (found_type != BTRFS_EXTENT_DATA_KEY)
3312 goto delete;
3314 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3315 u64 num_dec;
3316 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3317 if (!del_item && !encoding) {
3318 u64 orig_num_bytes =
3319 btrfs_file_extent_num_bytes(leaf, fi);
3320 extent_num_bytes = new_size -
3321 found_key.offset + root->sectorsize - 1;
3322 extent_num_bytes = extent_num_bytes &
3323 ~((u64)root->sectorsize - 1);
3324 btrfs_set_file_extent_num_bytes(leaf, fi,
3325 extent_num_bytes);
3326 num_dec = (orig_num_bytes -
3327 extent_num_bytes);
3328 if (root->ref_cows && extent_start != 0)
3329 inode_sub_bytes(inode, num_dec);
3330 btrfs_mark_buffer_dirty(leaf);
3331 } else {
3332 extent_num_bytes =
3333 btrfs_file_extent_disk_num_bytes(leaf,
3334 fi);
3335 extent_offset = found_key.offset -
3336 btrfs_file_extent_offset(leaf, fi);
3338 /* FIXME blocksize != 4096 */
3339 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3340 if (extent_start != 0) {
3341 found_extent = 1;
3342 if (root->ref_cows)
3343 inode_sub_bytes(inode, num_dec);
3346 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3348 * we can't truncate inline items that have had
3349 * special encodings
3351 if (!del_item &&
3352 btrfs_file_extent_compression(leaf, fi) == 0 &&
3353 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3354 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3355 u32 size = new_size - found_key.offset;
3357 if (root->ref_cows) {
3358 inode_sub_bytes(inode, item_end + 1 -
3359 new_size);
3361 size =
3362 btrfs_file_extent_calc_inline_size(size);
3363 ret = btrfs_truncate_item(trans, root, path,
3364 size, 1);
3365 BUG_ON(ret);
3366 } else if (root->ref_cows) {
3367 inode_sub_bytes(inode, item_end + 1 -
3368 found_key.offset);
3371 delete:
3372 if (del_item) {
3373 if (!pending_del_nr) {
3374 /* no pending yet, add ourselves */
3375 pending_del_slot = path->slots[0];
3376 pending_del_nr = 1;
3377 } else if (pending_del_nr &&
3378 path->slots[0] + 1 == pending_del_slot) {
3379 /* hop on the pending chunk */
3380 pending_del_nr++;
3381 pending_del_slot = path->slots[0];
3382 } else {
3383 BUG();
3385 } else {
3386 break;
3388 if (found_extent && (root->ref_cows ||
3389 root == root->fs_info->tree_root)) {
3390 btrfs_set_path_blocking(path);
3391 ret = btrfs_free_extent(trans, root, extent_start,
3392 extent_num_bytes, 0,
3393 btrfs_header_owner(leaf),
3394 inode->i_ino, extent_offset);
3395 BUG_ON(ret);
3398 if (found_type == BTRFS_INODE_ITEM_KEY)
3399 break;
3401 if (path->slots[0] == 0 ||
3402 path->slots[0] != pending_del_slot) {
3403 if (root->ref_cows) {
3404 err = -EAGAIN;
3405 goto out;
3407 if (pending_del_nr) {
3408 ret = btrfs_del_items(trans, root, path,
3409 pending_del_slot,
3410 pending_del_nr);
3411 BUG_ON(ret);
3412 pending_del_nr = 0;
3414 btrfs_release_path(root, path);
3415 goto search_again;
3416 } else {
3417 path->slots[0]--;
3420 out:
3421 if (pending_del_nr) {
3422 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3423 pending_del_nr);
3424 BUG_ON(ret);
3426 btrfs_free_path(path);
3427 return err;
3431 * taken from block_truncate_page, but does cow as it zeros out
3432 * any bytes left in the last page in the file.
3434 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3436 struct inode *inode = mapping->host;
3437 struct btrfs_root *root = BTRFS_I(inode)->root;
3438 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3439 struct btrfs_ordered_extent *ordered;
3440 struct extent_state *cached_state = NULL;
3441 char *kaddr;
3442 u32 blocksize = root->sectorsize;
3443 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3444 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3445 struct page *page;
3446 int ret = 0;
3447 u64 page_start;
3448 u64 page_end;
3450 if ((offset & (blocksize - 1)) == 0)
3451 goto out;
3452 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3453 if (ret)
3454 goto out;
3456 ret = -ENOMEM;
3457 again:
3458 page = grab_cache_page(mapping, index);
3459 if (!page) {
3460 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3461 goto out;
3464 page_start = page_offset(page);
3465 page_end = page_start + PAGE_CACHE_SIZE - 1;
3467 if (!PageUptodate(page)) {
3468 ret = btrfs_readpage(NULL, page);
3469 lock_page(page);
3470 if (page->mapping != mapping) {
3471 unlock_page(page);
3472 page_cache_release(page);
3473 goto again;
3475 if (!PageUptodate(page)) {
3476 ret = -EIO;
3477 goto out_unlock;
3480 wait_on_page_writeback(page);
3482 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3483 GFP_NOFS);
3484 set_page_extent_mapped(page);
3486 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3487 if (ordered) {
3488 unlock_extent_cached(io_tree, page_start, page_end,
3489 &cached_state, GFP_NOFS);
3490 unlock_page(page);
3491 page_cache_release(page);
3492 btrfs_start_ordered_extent(inode, ordered, 1);
3493 btrfs_put_ordered_extent(ordered);
3494 goto again;
3497 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3498 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3499 0, 0, &cached_state, GFP_NOFS);
3501 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3502 &cached_state);
3503 if (ret) {
3504 unlock_extent_cached(io_tree, page_start, page_end,
3505 &cached_state, GFP_NOFS);
3506 goto out_unlock;
3509 ret = 0;
3510 if (offset != PAGE_CACHE_SIZE) {
3511 kaddr = kmap(page);
3512 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3513 flush_dcache_page(page);
3514 kunmap(page);
3516 ClearPageChecked(page);
3517 set_page_dirty(page);
3518 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3519 GFP_NOFS);
3521 out_unlock:
3522 if (ret)
3523 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3524 unlock_page(page);
3525 page_cache_release(page);
3526 out:
3527 return ret;
3530 int btrfs_cont_expand(struct inode *inode, loff_t size)
3532 struct btrfs_trans_handle *trans;
3533 struct btrfs_root *root = BTRFS_I(inode)->root;
3534 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3535 struct extent_map *em = NULL;
3536 struct extent_state *cached_state = NULL;
3537 u64 mask = root->sectorsize - 1;
3538 u64 hole_start = (inode->i_size + mask) & ~mask;
3539 u64 block_end = (size + mask) & ~mask;
3540 u64 last_byte;
3541 u64 cur_offset;
3542 u64 hole_size;
3543 int err = 0;
3545 if (size <= hole_start)
3546 return 0;
3548 while (1) {
3549 struct btrfs_ordered_extent *ordered;
3550 btrfs_wait_ordered_range(inode, hole_start,
3551 block_end - hole_start);
3552 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3553 &cached_state, GFP_NOFS);
3554 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3555 if (!ordered)
3556 break;
3557 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3558 &cached_state, GFP_NOFS);
3559 btrfs_put_ordered_extent(ordered);
3562 cur_offset = hole_start;
3563 while (1) {
3564 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3565 block_end - cur_offset, 0);
3566 BUG_ON(IS_ERR(em) || !em);
3567 last_byte = min(extent_map_end(em), block_end);
3568 last_byte = (last_byte + mask) & ~mask;
3569 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3570 u64 hint_byte = 0;
3571 hole_size = last_byte - cur_offset;
3573 trans = btrfs_start_transaction(root, 2);
3574 if (IS_ERR(trans)) {
3575 err = PTR_ERR(trans);
3576 break;
3578 btrfs_set_trans_block_group(trans, inode);
3580 err = btrfs_drop_extents(trans, inode, cur_offset,
3581 cur_offset + hole_size,
3582 &hint_byte, 1);
3583 BUG_ON(err);
3585 err = btrfs_insert_file_extent(trans, root,
3586 inode->i_ino, cur_offset, 0,
3587 0, hole_size, 0, hole_size,
3588 0, 0, 0);
3589 BUG_ON(err);
3591 btrfs_drop_extent_cache(inode, hole_start,
3592 last_byte - 1, 0);
3594 btrfs_end_transaction(trans, root);
3596 free_extent_map(em);
3597 em = NULL;
3598 cur_offset = last_byte;
3599 if (cur_offset >= block_end)
3600 break;
3603 free_extent_map(em);
3604 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3605 GFP_NOFS);
3606 return err;
3609 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3611 struct btrfs_root *root = BTRFS_I(inode)->root;
3612 struct btrfs_trans_handle *trans;
3613 unsigned long nr;
3614 int ret;
3616 if (attr->ia_size == inode->i_size)
3617 return 0;
3619 if (attr->ia_size > inode->i_size) {
3620 unsigned long limit;
3621 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3622 if (attr->ia_size > inode->i_sb->s_maxbytes)
3623 return -EFBIG;
3624 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3625 send_sig(SIGXFSZ, current, 0);
3626 return -EFBIG;
3630 trans = btrfs_start_transaction(root, 5);
3631 if (IS_ERR(trans))
3632 return PTR_ERR(trans);
3634 btrfs_set_trans_block_group(trans, inode);
3636 ret = btrfs_orphan_add(trans, inode);
3637 BUG_ON(ret);
3639 nr = trans->blocks_used;
3640 btrfs_end_transaction(trans, root);
3641 btrfs_btree_balance_dirty(root, nr);
3643 if (attr->ia_size > inode->i_size) {
3644 ret = btrfs_cont_expand(inode, attr->ia_size);
3645 if (ret) {
3646 btrfs_truncate(inode);
3647 return ret;
3650 i_size_write(inode, attr->ia_size);
3651 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3653 trans = btrfs_start_transaction(root, 0);
3654 BUG_ON(IS_ERR(trans));
3655 btrfs_set_trans_block_group(trans, inode);
3656 trans->block_rsv = root->orphan_block_rsv;
3657 BUG_ON(!trans->block_rsv);
3659 ret = btrfs_update_inode(trans, root, inode);
3660 BUG_ON(ret);
3661 if (inode->i_nlink > 0) {
3662 ret = btrfs_orphan_del(trans, inode);
3663 BUG_ON(ret);
3665 nr = trans->blocks_used;
3666 btrfs_end_transaction(trans, root);
3667 btrfs_btree_balance_dirty(root, nr);
3668 return 0;
3672 * We're truncating a file that used to have good data down to
3673 * zero. Make sure it gets into the ordered flush list so that
3674 * any new writes get down to disk quickly.
3676 if (attr->ia_size == 0)
3677 BTRFS_I(inode)->ordered_data_close = 1;
3679 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3680 ret = vmtruncate(inode, attr->ia_size);
3681 BUG_ON(ret);
3683 return 0;
3686 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3688 struct inode *inode = dentry->d_inode;
3689 struct btrfs_root *root = BTRFS_I(inode)->root;
3690 int err;
3692 if (btrfs_root_readonly(root))
3693 return -EROFS;
3695 err = inode_change_ok(inode, attr);
3696 if (err)
3697 return err;
3699 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3700 err = btrfs_setattr_size(inode, attr);
3701 if (err)
3702 return err;
3705 if (attr->ia_valid) {
3706 setattr_copy(inode, attr);
3707 mark_inode_dirty(inode);
3709 if (attr->ia_valid & ATTR_MODE)
3710 err = btrfs_acl_chmod(inode);
3713 return err;
3716 void btrfs_evict_inode(struct inode *inode)
3718 struct btrfs_trans_handle *trans;
3719 struct btrfs_root *root = BTRFS_I(inode)->root;
3720 unsigned long nr;
3721 int ret;
3723 truncate_inode_pages(&inode->i_data, 0);
3724 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3725 root == root->fs_info->tree_root))
3726 goto no_delete;
3728 if (is_bad_inode(inode)) {
3729 btrfs_orphan_del(NULL, inode);
3730 goto no_delete;
3732 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3733 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3735 if (root->fs_info->log_root_recovering) {
3736 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3737 goto no_delete;
3740 if (inode->i_nlink > 0) {
3741 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3742 goto no_delete;
3745 btrfs_i_size_write(inode, 0);
3747 while (1) {
3748 trans = btrfs_start_transaction(root, 0);
3749 BUG_ON(IS_ERR(trans));
3750 btrfs_set_trans_block_group(trans, inode);
3751 trans->block_rsv = root->orphan_block_rsv;
3753 ret = btrfs_block_rsv_check(trans, root,
3754 root->orphan_block_rsv, 0, 5);
3755 if (ret) {
3756 BUG_ON(ret != -EAGAIN);
3757 ret = btrfs_commit_transaction(trans, root);
3758 BUG_ON(ret);
3759 continue;
3762 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3763 if (ret != -EAGAIN)
3764 break;
3766 nr = trans->blocks_used;
3767 btrfs_end_transaction(trans, root);
3768 trans = NULL;
3769 btrfs_btree_balance_dirty(root, nr);
3773 if (ret == 0) {
3774 ret = btrfs_orphan_del(trans, inode);
3775 BUG_ON(ret);
3778 nr = trans->blocks_used;
3779 btrfs_end_transaction(trans, root);
3780 btrfs_btree_balance_dirty(root, nr);
3781 no_delete:
3782 end_writeback(inode);
3783 return;
3787 * this returns the key found in the dir entry in the location pointer.
3788 * If no dir entries were found, location->objectid is 0.
3790 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3791 struct btrfs_key *location)
3793 const char *name = dentry->d_name.name;
3794 int namelen = dentry->d_name.len;
3795 struct btrfs_dir_item *di;
3796 struct btrfs_path *path;
3797 struct btrfs_root *root = BTRFS_I(dir)->root;
3798 int ret = 0;
3800 path = btrfs_alloc_path();
3801 BUG_ON(!path);
3803 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3804 namelen, 0);
3805 if (IS_ERR(di))
3806 ret = PTR_ERR(di);
3808 if (!di || IS_ERR(di))
3809 goto out_err;
3811 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3812 out:
3813 btrfs_free_path(path);
3814 return ret;
3815 out_err:
3816 location->objectid = 0;
3817 goto out;
3821 * when we hit a tree root in a directory, the btrfs part of the inode
3822 * needs to be changed to reflect the root directory of the tree root. This
3823 * is kind of like crossing a mount point.
3825 static int fixup_tree_root_location(struct btrfs_root *root,
3826 struct inode *dir,
3827 struct dentry *dentry,
3828 struct btrfs_key *location,
3829 struct btrfs_root **sub_root)
3831 struct btrfs_path *path;
3832 struct btrfs_root *new_root;
3833 struct btrfs_root_ref *ref;
3834 struct extent_buffer *leaf;
3835 int ret;
3836 int err = 0;
3838 path = btrfs_alloc_path();
3839 if (!path) {
3840 err = -ENOMEM;
3841 goto out;
3844 err = -ENOENT;
3845 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3846 BTRFS_I(dir)->root->root_key.objectid,
3847 location->objectid);
3848 if (ret) {
3849 if (ret < 0)
3850 err = ret;
3851 goto out;
3854 leaf = path->nodes[0];
3855 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3856 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3857 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3858 goto out;
3860 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3861 (unsigned long)(ref + 1),
3862 dentry->d_name.len);
3863 if (ret)
3864 goto out;
3866 btrfs_release_path(root->fs_info->tree_root, path);
3868 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3869 if (IS_ERR(new_root)) {
3870 err = PTR_ERR(new_root);
3871 goto out;
3874 if (btrfs_root_refs(&new_root->root_item) == 0) {
3875 err = -ENOENT;
3876 goto out;
3879 *sub_root = new_root;
3880 location->objectid = btrfs_root_dirid(&new_root->root_item);
3881 location->type = BTRFS_INODE_ITEM_KEY;
3882 location->offset = 0;
3883 err = 0;
3884 out:
3885 btrfs_free_path(path);
3886 return err;
3889 static void inode_tree_add(struct inode *inode)
3891 struct btrfs_root *root = BTRFS_I(inode)->root;
3892 struct btrfs_inode *entry;
3893 struct rb_node **p;
3894 struct rb_node *parent;
3895 again:
3896 p = &root->inode_tree.rb_node;
3897 parent = NULL;
3899 if (inode_unhashed(inode))
3900 return;
3902 spin_lock(&root->inode_lock);
3903 while (*p) {
3904 parent = *p;
3905 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3907 if (inode->i_ino < entry->vfs_inode.i_ino)
3908 p = &parent->rb_left;
3909 else if (inode->i_ino > entry->vfs_inode.i_ino)
3910 p = &parent->rb_right;
3911 else {
3912 WARN_ON(!(entry->vfs_inode.i_state &
3913 (I_WILL_FREE | I_FREEING)));
3914 rb_erase(parent, &root->inode_tree);
3915 RB_CLEAR_NODE(parent);
3916 spin_unlock(&root->inode_lock);
3917 goto again;
3920 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3921 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3922 spin_unlock(&root->inode_lock);
3925 static void inode_tree_del(struct inode *inode)
3927 struct btrfs_root *root = BTRFS_I(inode)->root;
3928 int empty = 0;
3930 spin_lock(&root->inode_lock);
3931 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3932 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3933 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3934 empty = RB_EMPTY_ROOT(&root->inode_tree);
3936 spin_unlock(&root->inode_lock);
3939 * Free space cache has inodes in the tree root, but the tree root has a
3940 * root_refs of 0, so this could end up dropping the tree root as a
3941 * snapshot, so we need the extra !root->fs_info->tree_root check to
3942 * make sure we don't drop it.
3944 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3945 root != root->fs_info->tree_root) {
3946 synchronize_srcu(&root->fs_info->subvol_srcu);
3947 spin_lock(&root->inode_lock);
3948 empty = RB_EMPTY_ROOT(&root->inode_tree);
3949 spin_unlock(&root->inode_lock);
3950 if (empty)
3951 btrfs_add_dead_root(root);
3955 int btrfs_invalidate_inodes(struct btrfs_root *root)
3957 struct rb_node *node;
3958 struct rb_node *prev;
3959 struct btrfs_inode *entry;
3960 struct inode *inode;
3961 u64 objectid = 0;
3963 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3965 spin_lock(&root->inode_lock);
3966 again:
3967 node = root->inode_tree.rb_node;
3968 prev = NULL;
3969 while (node) {
3970 prev = node;
3971 entry = rb_entry(node, struct btrfs_inode, rb_node);
3973 if (objectid < entry->vfs_inode.i_ino)
3974 node = node->rb_left;
3975 else if (objectid > entry->vfs_inode.i_ino)
3976 node = node->rb_right;
3977 else
3978 break;
3980 if (!node) {
3981 while (prev) {
3982 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3983 if (objectid <= entry->vfs_inode.i_ino) {
3984 node = prev;
3985 break;
3987 prev = rb_next(prev);
3990 while (node) {
3991 entry = rb_entry(node, struct btrfs_inode, rb_node);
3992 objectid = entry->vfs_inode.i_ino + 1;
3993 inode = igrab(&entry->vfs_inode);
3994 if (inode) {
3995 spin_unlock(&root->inode_lock);
3996 if (atomic_read(&inode->i_count) > 1)
3997 d_prune_aliases(inode);
3999 * btrfs_drop_inode will have it removed from
4000 * the inode cache when its usage count
4001 * hits zero.
4003 iput(inode);
4004 cond_resched();
4005 spin_lock(&root->inode_lock);
4006 goto again;
4009 if (cond_resched_lock(&root->inode_lock))
4010 goto again;
4012 node = rb_next(node);
4014 spin_unlock(&root->inode_lock);
4015 return 0;
4018 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4020 struct btrfs_iget_args *args = p;
4021 inode->i_ino = args->ino;
4022 BTRFS_I(inode)->root = args->root;
4023 btrfs_set_inode_space_info(args->root, inode);
4024 return 0;
4027 static int btrfs_find_actor(struct inode *inode, void *opaque)
4029 struct btrfs_iget_args *args = opaque;
4030 return args->ino == inode->i_ino &&
4031 args->root == BTRFS_I(inode)->root;
4034 static struct inode *btrfs_iget_locked(struct super_block *s,
4035 u64 objectid,
4036 struct btrfs_root *root)
4038 struct inode *inode;
4039 struct btrfs_iget_args args;
4040 args.ino = objectid;
4041 args.root = root;
4043 inode = iget5_locked(s, objectid, btrfs_find_actor,
4044 btrfs_init_locked_inode,
4045 (void *)&args);
4046 return inode;
4049 /* Get an inode object given its location and corresponding root.
4050 * Returns in *is_new if the inode was read from disk
4052 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4053 struct btrfs_root *root, int *new)
4055 struct inode *inode;
4057 inode = btrfs_iget_locked(s, location->objectid, root);
4058 if (!inode)
4059 return ERR_PTR(-ENOMEM);
4061 if (inode->i_state & I_NEW) {
4062 BTRFS_I(inode)->root = root;
4063 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4064 btrfs_read_locked_inode(inode);
4066 inode_tree_add(inode);
4067 unlock_new_inode(inode);
4068 if (new)
4069 *new = 1;
4072 return inode;
4075 static struct inode *new_simple_dir(struct super_block *s,
4076 struct btrfs_key *key,
4077 struct btrfs_root *root)
4079 struct inode *inode = new_inode(s);
4081 if (!inode)
4082 return ERR_PTR(-ENOMEM);
4084 BTRFS_I(inode)->root = root;
4085 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4086 BTRFS_I(inode)->dummy_inode = 1;
4088 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4089 inode->i_op = &simple_dir_inode_operations;
4090 inode->i_fop = &simple_dir_operations;
4091 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4092 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4094 return inode;
4097 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4099 struct inode *inode;
4100 struct btrfs_root *root = BTRFS_I(dir)->root;
4101 struct btrfs_root *sub_root = root;
4102 struct btrfs_key location;
4103 int index;
4104 int ret;
4106 if (dentry->d_name.len > BTRFS_NAME_LEN)
4107 return ERR_PTR(-ENAMETOOLONG);
4109 ret = btrfs_inode_by_name(dir, dentry, &location);
4111 if (ret < 0)
4112 return ERR_PTR(ret);
4114 if (location.objectid == 0)
4115 return NULL;
4117 if (location.type == BTRFS_INODE_ITEM_KEY) {
4118 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4119 return inode;
4122 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4124 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4125 ret = fixup_tree_root_location(root, dir, dentry,
4126 &location, &sub_root);
4127 if (ret < 0) {
4128 if (ret != -ENOENT)
4129 inode = ERR_PTR(ret);
4130 else
4131 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4132 } else {
4133 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4135 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4137 if (root != sub_root) {
4138 down_read(&root->fs_info->cleanup_work_sem);
4139 if (!(inode->i_sb->s_flags & MS_RDONLY))
4140 btrfs_orphan_cleanup(sub_root);
4141 up_read(&root->fs_info->cleanup_work_sem);
4144 return inode;
4147 static int btrfs_dentry_delete(const struct dentry *dentry)
4149 struct btrfs_root *root;
4151 if (!dentry->d_inode && !IS_ROOT(dentry))
4152 dentry = dentry->d_parent;
4154 if (dentry->d_inode) {
4155 root = BTRFS_I(dentry->d_inode)->root;
4156 if (btrfs_root_refs(&root->root_item) == 0)
4157 return 1;
4159 return 0;
4162 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4163 struct nameidata *nd)
4165 struct inode *inode;
4167 inode = btrfs_lookup_dentry(dir, dentry);
4168 if (IS_ERR(inode))
4169 return ERR_CAST(inode);
4171 return d_splice_alias(inode, dentry);
4174 static unsigned char btrfs_filetype_table[] = {
4175 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4178 static int btrfs_real_readdir(struct file *filp, void *dirent,
4179 filldir_t filldir)
4181 struct inode *inode = filp->f_dentry->d_inode;
4182 struct btrfs_root *root = BTRFS_I(inode)->root;
4183 struct btrfs_item *item;
4184 struct btrfs_dir_item *di;
4185 struct btrfs_key key;
4186 struct btrfs_key found_key;
4187 struct btrfs_path *path;
4188 int ret;
4189 u32 nritems;
4190 struct extent_buffer *leaf;
4191 int slot;
4192 int advance;
4193 unsigned char d_type;
4194 int over = 0;
4195 u32 di_cur;
4196 u32 di_total;
4197 u32 di_len;
4198 int key_type = BTRFS_DIR_INDEX_KEY;
4199 char tmp_name[32];
4200 char *name_ptr;
4201 int name_len;
4203 /* FIXME, use a real flag for deciding about the key type */
4204 if (root->fs_info->tree_root == root)
4205 key_type = BTRFS_DIR_ITEM_KEY;
4207 /* special case for "." */
4208 if (filp->f_pos == 0) {
4209 over = filldir(dirent, ".", 1,
4210 1, inode->i_ino,
4211 DT_DIR);
4212 if (over)
4213 return 0;
4214 filp->f_pos = 1;
4216 /* special case for .., just use the back ref */
4217 if (filp->f_pos == 1) {
4218 u64 pino = parent_ino(filp->f_path.dentry);
4219 over = filldir(dirent, "..", 2,
4220 2, pino, DT_DIR);
4221 if (over)
4222 return 0;
4223 filp->f_pos = 2;
4225 path = btrfs_alloc_path();
4226 path->reada = 2;
4228 btrfs_set_key_type(&key, key_type);
4229 key.offset = filp->f_pos;
4230 key.objectid = inode->i_ino;
4232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4233 if (ret < 0)
4234 goto err;
4235 advance = 0;
4237 while (1) {
4238 leaf = path->nodes[0];
4239 nritems = btrfs_header_nritems(leaf);
4240 slot = path->slots[0];
4241 if (advance || slot >= nritems) {
4242 if (slot >= nritems - 1) {
4243 ret = btrfs_next_leaf(root, path);
4244 if (ret)
4245 break;
4246 leaf = path->nodes[0];
4247 nritems = btrfs_header_nritems(leaf);
4248 slot = path->slots[0];
4249 } else {
4250 slot++;
4251 path->slots[0]++;
4255 advance = 1;
4256 item = btrfs_item_nr(leaf, slot);
4257 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4259 if (found_key.objectid != key.objectid)
4260 break;
4261 if (btrfs_key_type(&found_key) != key_type)
4262 break;
4263 if (found_key.offset < filp->f_pos)
4264 continue;
4266 filp->f_pos = found_key.offset;
4268 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4269 di_cur = 0;
4270 di_total = btrfs_item_size(leaf, item);
4272 while (di_cur < di_total) {
4273 struct btrfs_key location;
4275 name_len = btrfs_dir_name_len(leaf, di);
4276 if (name_len <= sizeof(tmp_name)) {
4277 name_ptr = tmp_name;
4278 } else {
4279 name_ptr = kmalloc(name_len, GFP_NOFS);
4280 if (!name_ptr) {
4281 ret = -ENOMEM;
4282 goto err;
4285 read_extent_buffer(leaf, name_ptr,
4286 (unsigned long)(di + 1), name_len);
4288 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4289 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4291 /* is this a reference to our own snapshot? If so
4292 * skip it
4294 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4295 location.objectid == root->root_key.objectid) {
4296 over = 0;
4297 goto skip;
4299 over = filldir(dirent, name_ptr, name_len,
4300 found_key.offset, location.objectid,
4301 d_type);
4303 skip:
4304 if (name_ptr != tmp_name)
4305 kfree(name_ptr);
4307 if (over)
4308 goto nopos;
4309 di_len = btrfs_dir_name_len(leaf, di) +
4310 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4311 di_cur += di_len;
4312 di = (struct btrfs_dir_item *)((char *)di + di_len);
4316 /* Reached end of directory/root. Bump pos past the last item. */
4317 if (key_type == BTRFS_DIR_INDEX_KEY)
4319 * 32-bit glibc will use getdents64, but then strtol -
4320 * so the last number we can serve is this.
4322 filp->f_pos = 0x7fffffff;
4323 else
4324 filp->f_pos++;
4325 nopos:
4326 ret = 0;
4327 err:
4328 btrfs_free_path(path);
4329 return ret;
4332 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4334 struct btrfs_root *root = BTRFS_I(inode)->root;
4335 struct btrfs_trans_handle *trans;
4336 int ret = 0;
4337 bool nolock = false;
4339 if (BTRFS_I(inode)->dummy_inode)
4340 return 0;
4342 smp_mb();
4343 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4345 if (wbc->sync_mode == WB_SYNC_ALL) {
4346 if (nolock)
4347 trans = btrfs_join_transaction_nolock(root, 1);
4348 else
4349 trans = btrfs_join_transaction(root, 1);
4350 btrfs_set_trans_block_group(trans, inode);
4351 if (nolock)
4352 ret = btrfs_end_transaction_nolock(trans, root);
4353 else
4354 ret = btrfs_commit_transaction(trans, root);
4356 return ret;
4360 * This is somewhat expensive, updating the tree every time the
4361 * inode changes. But, it is most likely to find the inode in cache.
4362 * FIXME, needs more benchmarking...there are no reasons other than performance
4363 * to keep or drop this code.
4365 void btrfs_dirty_inode(struct inode *inode)
4367 struct btrfs_root *root = BTRFS_I(inode)->root;
4368 struct btrfs_trans_handle *trans;
4369 int ret;
4371 if (BTRFS_I(inode)->dummy_inode)
4372 return;
4374 trans = btrfs_join_transaction(root, 1);
4375 btrfs_set_trans_block_group(trans, inode);
4377 ret = btrfs_update_inode(trans, root, inode);
4378 if (ret && ret == -ENOSPC) {
4379 /* whoops, lets try again with the full transaction */
4380 btrfs_end_transaction(trans, root);
4381 trans = btrfs_start_transaction(root, 1);
4382 if (IS_ERR(trans)) {
4383 if (printk_ratelimit()) {
4384 printk(KERN_ERR "btrfs: fail to "
4385 "dirty inode %lu error %ld\n",
4386 inode->i_ino, PTR_ERR(trans));
4388 return;
4390 btrfs_set_trans_block_group(trans, inode);
4392 ret = btrfs_update_inode(trans, root, inode);
4393 if (ret) {
4394 if (printk_ratelimit()) {
4395 printk(KERN_ERR "btrfs: fail to "
4396 "dirty inode %lu error %d\n",
4397 inode->i_ino, ret);
4401 btrfs_end_transaction(trans, root);
4405 * find the highest existing sequence number in a directory
4406 * and then set the in-memory index_cnt variable to reflect
4407 * free sequence numbers
4409 static int btrfs_set_inode_index_count(struct inode *inode)
4411 struct btrfs_root *root = BTRFS_I(inode)->root;
4412 struct btrfs_key key, found_key;
4413 struct btrfs_path *path;
4414 struct extent_buffer *leaf;
4415 int ret;
4417 key.objectid = inode->i_ino;
4418 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4419 key.offset = (u64)-1;
4421 path = btrfs_alloc_path();
4422 if (!path)
4423 return -ENOMEM;
4425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426 if (ret < 0)
4427 goto out;
4428 /* FIXME: we should be able to handle this */
4429 if (ret == 0)
4430 goto out;
4431 ret = 0;
4434 * MAGIC NUMBER EXPLANATION:
4435 * since we search a directory based on f_pos we have to start at 2
4436 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4437 * else has to start at 2
4439 if (path->slots[0] == 0) {
4440 BTRFS_I(inode)->index_cnt = 2;
4441 goto out;
4444 path->slots[0]--;
4446 leaf = path->nodes[0];
4447 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4449 if (found_key.objectid != inode->i_ino ||
4450 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4451 BTRFS_I(inode)->index_cnt = 2;
4452 goto out;
4455 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4456 out:
4457 btrfs_free_path(path);
4458 return ret;
4462 * helper to find a free sequence number in a given directory. This current
4463 * code is very simple, later versions will do smarter things in the btree
4465 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4467 int ret = 0;
4469 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4470 ret = btrfs_set_inode_index_count(dir);
4471 if (ret)
4472 return ret;
4475 *index = BTRFS_I(dir)->index_cnt;
4476 BTRFS_I(dir)->index_cnt++;
4478 return ret;
4481 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4482 struct btrfs_root *root,
4483 struct inode *dir,
4484 const char *name, int name_len,
4485 u64 ref_objectid, u64 objectid,
4486 u64 alloc_hint, int mode, u64 *index)
4488 struct inode *inode;
4489 struct btrfs_inode_item *inode_item;
4490 struct btrfs_key *location;
4491 struct btrfs_path *path;
4492 struct btrfs_inode_ref *ref;
4493 struct btrfs_key key[2];
4494 u32 sizes[2];
4495 unsigned long ptr;
4496 int ret;
4497 int owner;
4499 path = btrfs_alloc_path();
4500 BUG_ON(!path);
4502 inode = new_inode(root->fs_info->sb);
4503 if (!inode)
4504 return ERR_PTR(-ENOMEM);
4506 if (dir) {
4507 ret = btrfs_set_inode_index(dir, index);
4508 if (ret) {
4509 iput(inode);
4510 return ERR_PTR(ret);
4514 * index_cnt is ignored for everything but a dir,
4515 * btrfs_get_inode_index_count has an explanation for the magic
4516 * number
4518 BTRFS_I(inode)->index_cnt = 2;
4519 BTRFS_I(inode)->root = root;
4520 BTRFS_I(inode)->generation = trans->transid;
4521 inode->i_generation = BTRFS_I(inode)->generation;
4522 btrfs_set_inode_space_info(root, inode);
4524 if (mode & S_IFDIR)
4525 owner = 0;
4526 else
4527 owner = 1;
4528 BTRFS_I(inode)->block_group =
4529 btrfs_find_block_group(root, 0, alloc_hint, owner);
4531 key[0].objectid = objectid;
4532 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4533 key[0].offset = 0;
4535 key[1].objectid = objectid;
4536 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4537 key[1].offset = ref_objectid;
4539 sizes[0] = sizeof(struct btrfs_inode_item);
4540 sizes[1] = name_len + sizeof(*ref);
4542 path->leave_spinning = 1;
4543 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4544 if (ret != 0)
4545 goto fail;
4547 inode_init_owner(inode, dir, mode);
4548 inode->i_ino = objectid;
4549 inode_set_bytes(inode, 0);
4550 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4551 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4552 struct btrfs_inode_item);
4553 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4555 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4556 struct btrfs_inode_ref);
4557 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4558 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4559 ptr = (unsigned long)(ref + 1);
4560 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4562 btrfs_mark_buffer_dirty(path->nodes[0]);
4563 btrfs_free_path(path);
4565 location = &BTRFS_I(inode)->location;
4566 location->objectid = objectid;
4567 location->offset = 0;
4568 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4570 btrfs_inherit_iflags(inode, dir);
4572 if ((mode & S_IFREG)) {
4573 if (btrfs_test_opt(root, NODATASUM))
4574 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4575 if (btrfs_test_opt(root, NODATACOW))
4576 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4579 insert_inode_hash(inode);
4580 inode_tree_add(inode);
4581 return inode;
4582 fail:
4583 if (dir)
4584 BTRFS_I(dir)->index_cnt--;
4585 btrfs_free_path(path);
4586 iput(inode);
4587 return ERR_PTR(ret);
4590 static inline u8 btrfs_inode_type(struct inode *inode)
4592 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4596 * utility function to add 'inode' into 'parent_inode' with
4597 * a give name and a given sequence number.
4598 * if 'add_backref' is true, also insert a backref from the
4599 * inode to the parent directory.
4601 int btrfs_add_link(struct btrfs_trans_handle *trans,
4602 struct inode *parent_inode, struct inode *inode,
4603 const char *name, int name_len, int add_backref, u64 index)
4605 int ret = 0;
4606 struct btrfs_key key;
4607 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4609 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4610 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4611 } else {
4612 key.objectid = inode->i_ino;
4613 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4614 key.offset = 0;
4617 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4618 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4619 key.objectid, root->root_key.objectid,
4620 parent_inode->i_ino,
4621 index, name, name_len);
4622 } else if (add_backref) {
4623 ret = btrfs_insert_inode_ref(trans, root,
4624 name, name_len, inode->i_ino,
4625 parent_inode->i_ino, index);
4628 if (ret == 0) {
4629 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4630 parent_inode->i_ino, &key,
4631 btrfs_inode_type(inode), index);
4632 BUG_ON(ret);
4634 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4635 name_len * 2);
4636 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4637 ret = btrfs_update_inode(trans, root, parent_inode);
4639 return ret;
4642 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4643 struct inode *dir, struct dentry *dentry,
4644 struct inode *inode, int backref, u64 index)
4646 int err = btrfs_add_link(trans, dir, inode,
4647 dentry->d_name.name, dentry->d_name.len,
4648 backref, index);
4649 if (!err) {
4650 d_instantiate(dentry, inode);
4651 return 0;
4653 if (err > 0)
4654 err = -EEXIST;
4655 return err;
4658 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4659 int mode, dev_t rdev)
4661 struct btrfs_trans_handle *trans;
4662 struct btrfs_root *root = BTRFS_I(dir)->root;
4663 struct inode *inode = NULL;
4664 int err;
4665 int drop_inode = 0;
4666 u64 objectid;
4667 unsigned long nr = 0;
4668 u64 index = 0;
4670 if (!new_valid_dev(rdev))
4671 return -EINVAL;
4673 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4674 if (err)
4675 return err;
4678 * 2 for inode item and ref
4679 * 2 for dir items
4680 * 1 for xattr if selinux is on
4682 trans = btrfs_start_transaction(root, 5);
4683 if (IS_ERR(trans))
4684 return PTR_ERR(trans);
4686 btrfs_set_trans_block_group(trans, dir);
4688 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4689 dentry->d_name.len, dir->i_ino, objectid,
4690 BTRFS_I(dir)->block_group, mode, &index);
4691 err = PTR_ERR(inode);
4692 if (IS_ERR(inode))
4693 goto out_unlock;
4695 err = btrfs_init_inode_security(trans, inode, dir);
4696 if (err) {
4697 drop_inode = 1;
4698 goto out_unlock;
4701 btrfs_set_trans_block_group(trans, inode);
4702 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4703 if (err)
4704 drop_inode = 1;
4705 else {
4706 inode->i_op = &btrfs_special_inode_operations;
4707 init_special_inode(inode, inode->i_mode, rdev);
4708 btrfs_update_inode(trans, root, inode);
4710 btrfs_update_inode_block_group(trans, inode);
4711 btrfs_update_inode_block_group(trans, dir);
4712 out_unlock:
4713 nr = trans->blocks_used;
4714 btrfs_end_transaction_throttle(trans, root);
4715 btrfs_btree_balance_dirty(root, nr);
4716 if (drop_inode) {
4717 inode_dec_link_count(inode);
4718 iput(inode);
4720 return err;
4723 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4724 int mode, struct nameidata *nd)
4726 struct btrfs_trans_handle *trans;
4727 struct btrfs_root *root = BTRFS_I(dir)->root;
4728 struct inode *inode = NULL;
4729 int drop_inode = 0;
4730 int err;
4731 unsigned long nr = 0;
4732 u64 objectid;
4733 u64 index = 0;
4735 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4736 if (err)
4737 return err;
4739 * 2 for inode item and ref
4740 * 2 for dir items
4741 * 1 for xattr if selinux is on
4743 trans = btrfs_start_transaction(root, 5);
4744 if (IS_ERR(trans))
4745 return PTR_ERR(trans);
4747 btrfs_set_trans_block_group(trans, dir);
4749 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4750 dentry->d_name.len, dir->i_ino, objectid,
4751 BTRFS_I(dir)->block_group, mode, &index);
4752 err = PTR_ERR(inode);
4753 if (IS_ERR(inode))
4754 goto out_unlock;
4756 err = btrfs_init_inode_security(trans, inode, dir);
4757 if (err) {
4758 drop_inode = 1;
4759 goto out_unlock;
4762 btrfs_set_trans_block_group(trans, inode);
4763 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4764 if (err)
4765 drop_inode = 1;
4766 else {
4767 inode->i_mapping->a_ops = &btrfs_aops;
4768 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4769 inode->i_fop = &btrfs_file_operations;
4770 inode->i_op = &btrfs_file_inode_operations;
4771 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4773 btrfs_update_inode_block_group(trans, inode);
4774 btrfs_update_inode_block_group(trans, dir);
4775 out_unlock:
4776 nr = trans->blocks_used;
4777 btrfs_end_transaction_throttle(trans, root);
4778 if (drop_inode) {
4779 inode_dec_link_count(inode);
4780 iput(inode);
4782 btrfs_btree_balance_dirty(root, nr);
4783 return err;
4786 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4787 struct dentry *dentry)
4789 struct btrfs_trans_handle *trans;
4790 struct btrfs_root *root = BTRFS_I(dir)->root;
4791 struct inode *inode = old_dentry->d_inode;
4792 u64 index;
4793 unsigned long nr = 0;
4794 int err;
4795 int drop_inode = 0;
4797 if (inode->i_nlink == 0)
4798 return -ENOENT;
4800 /* do not allow sys_link's with other subvols of the same device */
4801 if (root->objectid != BTRFS_I(inode)->root->objectid)
4802 return -EPERM;
4804 btrfs_inc_nlink(inode);
4805 inode->i_ctime = CURRENT_TIME;
4807 err = btrfs_set_inode_index(dir, &index);
4808 if (err)
4809 goto fail;
4812 * 1 item for inode ref
4813 * 2 items for dir items
4815 trans = btrfs_start_transaction(root, 3);
4816 if (IS_ERR(trans)) {
4817 err = PTR_ERR(trans);
4818 goto fail;
4821 btrfs_set_trans_block_group(trans, dir);
4822 ihold(inode);
4824 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4826 if (err) {
4827 drop_inode = 1;
4828 } else {
4829 struct dentry *parent = dget_parent(dentry);
4830 btrfs_update_inode_block_group(trans, dir);
4831 err = btrfs_update_inode(trans, root, inode);
4832 BUG_ON(err);
4833 btrfs_log_new_name(trans, inode, NULL, parent);
4834 dput(parent);
4837 nr = trans->blocks_used;
4838 btrfs_end_transaction_throttle(trans, root);
4839 fail:
4840 if (drop_inode) {
4841 inode_dec_link_count(inode);
4842 iput(inode);
4844 btrfs_btree_balance_dirty(root, nr);
4845 return err;
4848 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4850 struct inode *inode = NULL;
4851 struct btrfs_trans_handle *trans;
4852 struct btrfs_root *root = BTRFS_I(dir)->root;
4853 int err = 0;
4854 int drop_on_err = 0;
4855 u64 objectid = 0;
4856 u64 index = 0;
4857 unsigned long nr = 1;
4859 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4860 if (err)
4861 return err;
4864 * 2 items for inode and ref
4865 * 2 items for dir items
4866 * 1 for xattr if selinux is on
4868 trans = btrfs_start_transaction(root, 5);
4869 if (IS_ERR(trans))
4870 return PTR_ERR(trans);
4871 btrfs_set_trans_block_group(trans, dir);
4873 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4874 dentry->d_name.len, dir->i_ino, objectid,
4875 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4876 &index);
4877 if (IS_ERR(inode)) {
4878 err = PTR_ERR(inode);
4879 goto out_fail;
4882 drop_on_err = 1;
4884 err = btrfs_init_inode_security(trans, inode, dir);
4885 if (err)
4886 goto out_fail;
4888 inode->i_op = &btrfs_dir_inode_operations;
4889 inode->i_fop = &btrfs_dir_file_operations;
4890 btrfs_set_trans_block_group(trans, inode);
4892 btrfs_i_size_write(inode, 0);
4893 err = btrfs_update_inode(trans, root, inode);
4894 if (err)
4895 goto out_fail;
4897 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4898 dentry->d_name.len, 0, index);
4899 if (err)
4900 goto out_fail;
4902 d_instantiate(dentry, inode);
4903 drop_on_err = 0;
4904 btrfs_update_inode_block_group(trans, inode);
4905 btrfs_update_inode_block_group(trans, dir);
4907 out_fail:
4908 nr = trans->blocks_used;
4909 btrfs_end_transaction_throttle(trans, root);
4910 if (drop_on_err)
4911 iput(inode);
4912 btrfs_btree_balance_dirty(root, nr);
4913 return err;
4916 /* helper for btfs_get_extent. Given an existing extent in the tree,
4917 * and an extent that you want to insert, deal with overlap and insert
4918 * the new extent into the tree.
4920 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4921 struct extent_map *existing,
4922 struct extent_map *em,
4923 u64 map_start, u64 map_len)
4925 u64 start_diff;
4927 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4928 start_diff = map_start - em->start;
4929 em->start = map_start;
4930 em->len = map_len;
4931 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4932 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4933 em->block_start += start_diff;
4934 em->block_len -= start_diff;
4936 return add_extent_mapping(em_tree, em);
4939 static noinline int uncompress_inline(struct btrfs_path *path,
4940 struct inode *inode, struct page *page,
4941 size_t pg_offset, u64 extent_offset,
4942 struct btrfs_file_extent_item *item)
4944 int ret;
4945 struct extent_buffer *leaf = path->nodes[0];
4946 char *tmp;
4947 size_t max_size;
4948 unsigned long inline_size;
4949 unsigned long ptr;
4950 int compress_type;
4952 WARN_ON(pg_offset != 0);
4953 compress_type = btrfs_file_extent_compression(leaf, item);
4954 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4955 inline_size = btrfs_file_extent_inline_item_len(leaf,
4956 btrfs_item_nr(leaf, path->slots[0]));
4957 tmp = kmalloc(inline_size, GFP_NOFS);
4958 ptr = btrfs_file_extent_inline_start(item);
4960 read_extent_buffer(leaf, tmp, ptr, inline_size);
4962 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4963 ret = btrfs_decompress(compress_type, tmp, page,
4964 extent_offset, inline_size, max_size);
4965 if (ret) {
4966 char *kaddr = kmap_atomic(page, KM_USER0);
4967 unsigned long copy_size = min_t(u64,
4968 PAGE_CACHE_SIZE - pg_offset,
4969 max_size - extent_offset);
4970 memset(kaddr + pg_offset, 0, copy_size);
4971 kunmap_atomic(kaddr, KM_USER0);
4973 kfree(tmp);
4974 return 0;
4978 * a bit scary, this does extent mapping from logical file offset to the disk.
4979 * the ugly parts come from merging extents from the disk with the in-ram
4980 * representation. This gets more complex because of the data=ordered code,
4981 * where the in-ram extents might be locked pending data=ordered completion.
4983 * This also copies inline extents directly into the page.
4986 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4987 size_t pg_offset, u64 start, u64 len,
4988 int create)
4990 int ret;
4991 int err = 0;
4992 u64 bytenr;
4993 u64 extent_start = 0;
4994 u64 extent_end = 0;
4995 u64 objectid = inode->i_ino;
4996 u32 found_type;
4997 struct btrfs_path *path = NULL;
4998 struct btrfs_root *root = BTRFS_I(inode)->root;
4999 struct btrfs_file_extent_item *item;
5000 struct extent_buffer *leaf;
5001 struct btrfs_key found_key;
5002 struct extent_map *em = NULL;
5003 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5004 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5005 struct btrfs_trans_handle *trans = NULL;
5006 int compress_type;
5008 again:
5009 read_lock(&em_tree->lock);
5010 em = lookup_extent_mapping(em_tree, start, len);
5011 if (em)
5012 em->bdev = root->fs_info->fs_devices->latest_bdev;
5013 read_unlock(&em_tree->lock);
5015 if (em) {
5016 if (em->start > start || em->start + em->len <= start)
5017 free_extent_map(em);
5018 else if (em->block_start == EXTENT_MAP_INLINE && page)
5019 free_extent_map(em);
5020 else
5021 goto out;
5023 em = alloc_extent_map(GFP_NOFS);
5024 if (!em) {
5025 err = -ENOMEM;
5026 goto out;
5028 em->bdev = root->fs_info->fs_devices->latest_bdev;
5029 em->start = EXTENT_MAP_HOLE;
5030 em->orig_start = EXTENT_MAP_HOLE;
5031 em->len = (u64)-1;
5032 em->block_len = (u64)-1;
5034 if (!path) {
5035 path = btrfs_alloc_path();
5036 BUG_ON(!path);
5039 ret = btrfs_lookup_file_extent(trans, root, path,
5040 objectid, start, trans != NULL);
5041 if (ret < 0) {
5042 err = ret;
5043 goto out;
5046 if (ret != 0) {
5047 if (path->slots[0] == 0)
5048 goto not_found;
5049 path->slots[0]--;
5052 leaf = path->nodes[0];
5053 item = btrfs_item_ptr(leaf, path->slots[0],
5054 struct btrfs_file_extent_item);
5055 /* are we inside the extent that was found? */
5056 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5057 found_type = btrfs_key_type(&found_key);
5058 if (found_key.objectid != objectid ||
5059 found_type != BTRFS_EXTENT_DATA_KEY) {
5060 goto not_found;
5063 found_type = btrfs_file_extent_type(leaf, item);
5064 extent_start = found_key.offset;
5065 compress_type = btrfs_file_extent_compression(leaf, item);
5066 if (found_type == BTRFS_FILE_EXTENT_REG ||
5067 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5068 extent_end = extent_start +
5069 btrfs_file_extent_num_bytes(leaf, item);
5070 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5071 size_t size;
5072 size = btrfs_file_extent_inline_len(leaf, item);
5073 extent_end = (extent_start + size + root->sectorsize - 1) &
5074 ~((u64)root->sectorsize - 1);
5077 if (start >= extent_end) {
5078 path->slots[0]++;
5079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5080 ret = btrfs_next_leaf(root, path);
5081 if (ret < 0) {
5082 err = ret;
5083 goto out;
5085 if (ret > 0)
5086 goto not_found;
5087 leaf = path->nodes[0];
5089 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5090 if (found_key.objectid != objectid ||
5091 found_key.type != BTRFS_EXTENT_DATA_KEY)
5092 goto not_found;
5093 if (start + len <= found_key.offset)
5094 goto not_found;
5095 em->start = start;
5096 em->len = found_key.offset - start;
5097 goto not_found_em;
5100 if (found_type == BTRFS_FILE_EXTENT_REG ||
5101 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5102 em->start = extent_start;
5103 em->len = extent_end - extent_start;
5104 em->orig_start = extent_start -
5105 btrfs_file_extent_offset(leaf, item);
5106 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5107 if (bytenr == 0) {
5108 em->block_start = EXTENT_MAP_HOLE;
5109 goto insert;
5111 if (compress_type != BTRFS_COMPRESS_NONE) {
5112 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5113 em->compress_type = compress_type;
5114 em->block_start = bytenr;
5115 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5116 item);
5117 } else {
5118 bytenr += btrfs_file_extent_offset(leaf, item);
5119 em->block_start = bytenr;
5120 em->block_len = em->len;
5121 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5122 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5124 goto insert;
5125 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5126 unsigned long ptr;
5127 char *map;
5128 size_t size;
5129 size_t extent_offset;
5130 size_t copy_size;
5132 em->block_start = EXTENT_MAP_INLINE;
5133 if (!page || create) {
5134 em->start = extent_start;
5135 em->len = extent_end - extent_start;
5136 goto out;
5139 size = btrfs_file_extent_inline_len(leaf, item);
5140 extent_offset = page_offset(page) + pg_offset - extent_start;
5141 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5142 size - extent_offset);
5143 em->start = extent_start + extent_offset;
5144 em->len = (copy_size + root->sectorsize - 1) &
5145 ~((u64)root->sectorsize - 1);
5146 em->orig_start = EXTENT_MAP_INLINE;
5147 if (compress_type) {
5148 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5149 em->compress_type = compress_type;
5151 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5152 if (create == 0 && !PageUptodate(page)) {
5153 if (btrfs_file_extent_compression(leaf, item) !=
5154 BTRFS_COMPRESS_NONE) {
5155 ret = uncompress_inline(path, inode, page,
5156 pg_offset,
5157 extent_offset, item);
5158 BUG_ON(ret);
5159 } else {
5160 map = kmap(page);
5161 read_extent_buffer(leaf, map + pg_offset, ptr,
5162 copy_size);
5163 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5164 memset(map + pg_offset + copy_size, 0,
5165 PAGE_CACHE_SIZE - pg_offset -
5166 copy_size);
5168 kunmap(page);
5170 flush_dcache_page(page);
5171 } else if (create && PageUptodate(page)) {
5172 WARN_ON(1);
5173 if (!trans) {
5174 kunmap(page);
5175 free_extent_map(em);
5176 em = NULL;
5177 btrfs_release_path(root, path);
5178 trans = btrfs_join_transaction(root, 1);
5179 goto again;
5181 map = kmap(page);
5182 write_extent_buffer(leaf, map + pg_offset, ptr,
5183 copy_size);
5184 kunmap(page);
5185 btrfs_mark_buffer_dirty(leaf);
5187 set_extent_uptodate(io_tree, em->start,
5188 extent_map_end(em) - 1, GFP_NOFS);
5189 goto insert;
5190 } else {
5191 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5192 WARN_ON(1);
5194 not_found:
5195 em->start = start;
5196 em->len = len;
5197 not_found_em:
5198 em->block_start = EXTENT_MAP_HOLE;
5199 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5200 insert:
5201 btrfs_release_path(root, path);
5202 if (em->start > start || extent_map_end(em) <= start) {
5203 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5204 "[%llu %llu]\n", (unsigned long long)em->start,
5205 (unsigned long long)em->len,
5206 (unsigned long long)start,
5207 (unsigned long long)len);
5208 err = -EIO;
5209 goto out;
5212 err = 0;
5213 write_lock(&em_tree->lock);
5214 ret = add_extent_mapping(em_tree, em);
5215 /* it is possible that someone inserted the extent into the tree
5216 * while we had the lock dropped. It is also possible that
5217 * an overlapping map exists in the tree
5219 if (ret == -EEXIST) {
5220 struct extent_map *existing;
5222 ret = 0;
5224 existing = lookup_extent_mapping(em_tree, start, len);
5225 if (existing && (existing->start > start ||
5226 existing->start + existing->len <= start)) {
5227 free_extent_map(existing);
5228 existing = NULL;
5230 if (!existing) {
5231 existing = lookup_extent_mapping(em_tree, em->start,
5232 em->len);
5233 if (existing) {
5234 err = merge_extent_mapping(em_tree, existing,
5235 em, start,
5236 root->sectorsize);
5237 free_extent_map(existing);
5238 if (err) {
5239 free_extent_map(em);
5240 em = NULL;
5242 } else {
5243 err = -EIO;
5244 free_extent_map(em);
5245 em = NULL;
5247 } else {
5248 free_extent_map(em);
5249 em = existing;
5250 err = 0;
5253 write_unlock(&em_tree->lock);
5254 out:
5255 if (path)
5256 btrfs_free_path(path);
5257 if (trans) {
5258 ret = btrfs_end_transaction(trans, root);
5259 if (!err)
5260 err = ret;
5262 if (err) {
5263 free_extent_map(em);
5264 return ERR_PTR(err);
5266 return em;
5269 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5270 u64 start, u64 len)
5272 struct btrfs_root *root = BTRFS_I(inode)->root;
5273 struct btrfs_trans_handle *trans;
5274 struct extent_map *em;
5275 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5276 struct btrfs_key ins;
5277 u64 alloc_hint;
5278 int ret;
5280 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5282 trans = btrfs_join_transaction(root, 0);
5283 if (!trans)
5284 return ERR_PTR(-ENOMEM);
5286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5288 alloc_hint = get_extent_allocation_hint(inode, start, len);
5289 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5290 alloc_hint, (u64)-1, &ins, 1);
5291 if (ret) {
5292 em = ERR_PTR(ret);
5293 goto out;
5296 em = alloc_extent_map(GFP_NOFS);
5297 if (!em) {
5298 em = ERR_PTR(-ENOMEM);
5299 goto out;
5302 em->start = start;
5303 em->orig_start = em->start;
5304 em->len = ins.offset;
5306 em->block_start = ins.objectid;
5307 em->block_len = ins.offset;
5308 em->bdev = root->fs_info->fs_devices->latest_bdev;
5309 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5311 while (1) {
5312 write_lock(&em_tree->lock);
5313 ret = add_extent_mapping(em_tree, em);
5314 write_unlock(&em_tree->lock);
5315 if (ret != -EEXIST)
5316 break;
5317 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5320 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5321 ins.offset, ins.offset, 0);
5322 if (ret) {
5323 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5324 em = ERR_PTR(ret);
5326 out:
5327 btrfs_end_transaction(trans, root);
5328 return em;
5332 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5333 * block must be cow'd
5335 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5336 struct inode *inode, u64 offset, u64 len)
5338 struct btrfs_path *path;
5339 int ret;
5340 struct extent_buffer *leaf;
5341 struct btrfs_root *root = BTRFS_I(inode)->root;
5342 struct btrfs_file_extent_item *fi;
5343 struct btrfs_key key;
5344 u64 disk_bytenr;
5345 u64 backref_offset;
5346 u64 extent_end;
5347 u64 num_bytes;
5348 int slot;
5349 int found_type;
5351 path = btrfs_alloc_path();
5352 if (!path)
5353 return -ENOMEM;
5355 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5356 offset, 0);
5357 if (ret < 0)
5358 goto out;
5360 slot = path->slots[0];
5361 if (ret == 1) {
5362 if (slot == 0) {
5363 /* can't find the item, must cow */
5364 ret = 0;
5365 goto out;
5367 slot--;
5369 ret = 0;
5370 leaf = path->nodes[0];
5371 btrfs_item_key_to_cpu(leaf, &key, slot);
5372 if (key.objectid != inode->i_ino ||
5373 key.type != BTRFS_EXTENT_DATA_KEY) {
5374 /* not our file or wrong item type, must cow */
5375 goto out;
5378 if (key.offset > offset) {
5379 /* Wrong offset, must cow */
5380 goto out;
5383 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5384 found_type = btrfs_file_extent_type(leaf, fi);
5385 if (found_type != BTRFS_FILE_EXTENT_REG &&
5386 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5387 /* not a regular extent, must cow */
5388 goto out;
5390 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5391 backref_offset = btrfs_file_extent_offset(leaf, fi);
5393 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5394 if (extent_end < offset + len) {
5395 /* extent doesn't include our full range, must cow */
5396 goto out;
5399 if (btrfs_extent_readonly(root, disk_bytenr))
5400 goto out;
5403 * look for other files referencing this extent, if we
5404 * find any we must cow
5406 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5407 key.offset - backref_offset, disk_bytenr))
5408 goto out;
5411 * adjust disk_bytenr and num_bytes to cover just the bytes
5412 * in this extent we are about to write. If there
5413 * are any csums in that range we have to cow in order
5414 * to keep the csums correct
5416 disk_bytenr += backref_offset;
5417 disk_bytenr += offset - key.offset;
5418 num_bytes = min(offset + len, extent_end) - offset;
5419 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5420 goto out;
5422 * all of the above have passed, it is safe to overwrite this extent
5423 * without cow
5425 ret = 1;
5426 out:
5427 btrfs_free_path(path);
5428 return ret;
5431 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5432 struct buffer_head *bh_result, int create)
5434 struct extent_map *em;
5435 struct btrfs_root *root = BTRFS_I(inode)->root;
5436 u64 start = iblock << inode->i_blkbits;
5437 u64 len = bh_result->b_size;
5438 struct btrfs_trans_handle *trans;
5440 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5441 if (IS_ERR(em))
5442 return PTR_ERR(em);
5445 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5446 * io. INLINE is special, and we could probably kludge it in here, but
5447 * it's still buffered so for safety lets just fall back to the generic
5448 * buffered path.
5450 * For COMPRESSED we _have_ to read the entire extent in so we can
5451 * decompress it, so there will be buffering required no matter what we
5452 * do, so go ahead and fallback to buffered.
5454 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5455 * to buffered IO. Don't blame me, this is the price we pay for using
5456 * the generic code.
5458 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5459 em->block_start == EXTENT_MAP_INLINE) {
5460 free_extent_map(em);
5461 return -ENOTBLK;
5464 /* Just a good old fashioned hole, return */
5465 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5466 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5467 free_extent_map(em);
5468 /* DIO will do one hole at a time, so just unlock a sector */
5469 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5470 start + root->sectorsize - 1, GFP_NOFS);
5471 return 0;
5475 * We don't allocate a new extent in the following cases
5477 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5478 * existing extent.
5479 * 2) The extent is marked as PREALLOC. We're good to go here and can
5480 * just use the extent.
5483 if (!create) {
5484 len = em->len - (start - em->start);
5485 goto map;
5488 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5489 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5490 em->block_start != EXTENT_MAP_HOLE)) {
5491 int type;
5492 int ret;
5493 u64 block_start;
5495 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5496 type = BTRFS_ORDERED_PREALLOC;
5497 else
5498 type = BTRFS_ORDERED_NOCOW;
5499 len = min(len, em->len - (start - em->start));
5500 block_start = em->block_start + (start - em->start);
5503 * we're not going to log anything, but we do need
5504 * to make sure the current transaction stays open
5505 * while we look for nocow cross refs
5507 trans = btrfs_join_transaction(root, 0);
5508 if (!trans)
5509 goto must_cow;
5511 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5512 ret = btrfs_add_ordered_extent_dio(inode, start,
5513 block_start, len, len, type);
5514 btrfs_end_transaction(trans, root);
5515 if (ret) {
5516 free_extent_map(em);
5517 return ret;
5519 goto unlock;
5521 btrfs_end_transaction(trans, root);
5523 must_cow:
5525 * this will cow the extent, reset the len in case we changed
5526 * it above
5528 len = bh_result->b_size;
5529 free_extent_map(em);
5530 em = btrfs_new_extent_direct(inode, start, len);
5531 if (IS_ERR(em))
5532 return PTR_ERR(em);
5533 len = min(len, em->len - (start - em->start));
5534 unlock:
5535 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5536 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5537 0, NULL, GFP_NOFS);
5538 map:
5539 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5540 inode->i_blkbits;
5541 bh_result->b_size = len;
5542 bh_result->b_bdev = em->bdev;
5543 set_buffer_mapped(bh_result);
5544 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5545 set_buffer_new(bh_result);
5547 free_extent_map(em);
5549 return 0;
5552 struct btrfs_dio_private {
5553 struct inode *inode;
5554 u64 logical_offset;
5555 u64 disk_bytenr;
5556 u64 bytes;
5557 u32 *csums;
5558 void *private;
5560 /* number of bios pending for this dio */
5561 atomic_t pending_bios;
5563 /* IO errors */
5564 int errors;
5566 struct bio *orig_bio;
5569 static void btrfs_endio_direct_read(struct bio *bio, int err)
5571 struct btrfs_dio_private *dip = bio->bi_private;
5572 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5573 struct bio_vec *bvec = bio->bi_io_vec;
5574 struct inode *inode = dip->inode;
5575 struct btrfs_root *root = BTRFS_I(inode)->root;
5576 u64 start;
5577 u32 *private = dip->csums;
5579 start = dip->logical_offset;
5580 do {
5581 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5582 struct page *page = bvec->bv_page;
5583 char *kaddr;
5584 u32 csum = ~(u32)0;
5585 unsigned long flags;
5587 local_irq_save(flags);
5588 kaddr = kmap_atomic(page, KM_IRQ0);
5589 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5590 csum, bvec->bv_len);
5591 btrfs_csum_final(csum, (char *)&csum);
5592 kunmap_atomic(kaddr, KM_IRQ0);
5593 local_irq_restore(flags);
5595 flush_dcache_page(bvec->bv_page);
5596 if (csum != *private) {
5597 printk(KERN_ERR "btrfs csum failed ino %lu off"
5598 " %llu csum %u private %u\n",
5599 inode->i_ino, (unsigned long long)start,
5600 csum, *private);
5601 err = -EIO;
5605 start += bvec->bv_len;
5606 private++;
5607 bvec++;
5608 } while (bvec <= bvec_end);
5610 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5611 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5612 bio->bi_private = dip->private;
5614 kfree(dip->csums);
5615 kfree(dip);
5616 dio_end_io(bio, err);
5619 static void btrfs_endio_direct_write(struct bio *bio, int err)
5621 struct btrfs_dio_private *dip = bio->bi_private;
5622 struct inode *inode = dip->inode;
5623 struct btrfs_root *root = BTRFS_I(inode)->root;
5624 struct btrfs_trans_handle *trans;
5625 struct btrfs_ordered_extent *ordered = NULL;
5626 struct extent_state *cached_state = NULL;
5627 u64 ordered_offset = dip->logical_offset;
5628 u64 ordered_bytes = dip->bytes;
5629 int ret;
5631 if (err)
5632 goto out_done;
5633 again:
5634 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5635 &ordered_offset,
5636 ordered_bytes);
5637 if (!ret)
5638 goto out_test;
5640 BUG_ON(!ordered);
5642 trans = btrfs_join_transaction(root, 1);
5643 if (!trans) {
5644 err = -ENOMEM;
5645 goto out;
5647 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5649 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5650 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5651 if (!ret)
5652 ret = btrfs_update_inode(trans, root, inode);
5653 err = ret;
5654 goto out;
5657 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5658 ordered->file_offset + ordered->len - 1, 0,
5659 &cached_state, GFP_NOFS);
5661 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5662 ret = btrfs_mark_extent_written(trans, inode,
5663 ordered->file_offset,
5664 ordered->file_offset +
5665 ordered->len);
5666 if (ret) {
5667 err = ret;
5668 goto out_unlock;
5670 } else {
5671 ret = insert_reserved_file_extent(trans, inode,
5672 ordered->file_offset,
5673 ordered->start,
5674 ordered->disk_len,
5675 ordered->len,
5676 ordered->len,
5677 0, 0, 0,
5678 BTRFS_FILE_EXTENT_REG);
5679 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5680 ordered->file_offset, ordered->len);
5681 if (ret) {
5682 err = ret;
5683 WARN_ON(1);
5684 goto out_unlock;
5688 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5689 btrfs_ordered_update_i_size(inode, 0, ordered);
5690 btrfs_update_inode(trans, root, inode);
5691 out_unlock:
5692 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5693 ordered->file_offset + ordered->len - 1,
5694 &cached_state, GFP_NOFS);
5695 out:
5696 btrfs_delalloc_release_metadata(inode, ordered->len);
5697 btrfs_end_transaction(trans, root);
5698 ordered_offset = ordered->file_offset + ordered->len;
5699 btrfs_put_ordered_extent(ordered);
5700 btrfs_put_ordered_extent(ordered);
5702 out_test:
5704 * our bio might span multiple ordered extents. If we haven't
5705 * completed the accounting for the whole dio, go back and try again
5707 if (ordered_offset < dip->logical_offset + dip->bytes) {
5708 ordered_bytes = dip->logical_offset + dip->bytes -
5709 ordered_offset;
5710 goto again;
5712 out_done:
5713 bio->bi_private = dip->private;
5715 kfree(dip->csums);
5716 kfree(dip);
5717 dio_end_io(bio, err);
5720 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5721 struct bio *bio, int mirror_num,
5722 unsigned long bio_flags, u64 offset)
5724 int ret;
5725 struct btrfs_root *root = BTRFS_I(inode)->root;
5726 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5727 BUG_ON(ret);
5728 return 0;
5731 static void btrfs_end_dio_bio(struct bio *bio, int err)
5733 struct btrfs_dio_private *dip = bio->bi_private;
5735 if (err) {
5736 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5737 "sector %#Lx len %u err no %d\n",
5738 dip->inode->i_ino, bio->bi_rw,
5739 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5740 dip->errors = 1;
5743 * before atomic variable goto zero, we must make sure
5744 * dip->errors is perceived to be set.
5746 smp_mb__before_atomic_dec();
5749 /* if there are more bios still pending for this dio, just exit */
5750 if (!atomic_dec_and_test(&dip->pending_bios))
5751 goto out;
5753 if (dip->errors)
5754 bio_io_error(dip->orig_bio);
5755 else {
5756 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5757 bio_endio(dip->orig_bio, 0);
5759 out:
5760 bio_put(bio);
5763 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5764 u64 first_sector, gfp_t gfp_flags)
5766 int nr_vecs = bio_get_nr_vecs(bdev);
5767 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5770 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5771 int rw, u64 file_offset, int skip_sum,
5772 u32 *csums)
5774 int write = rw & REQ_WRITE;
5775 struct btrfs_root *root = BTRFS_I(inode)->root;
5776 int ret;
5778 bio_get(bio);
5779 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5780 if (ret)
5781 goto err;
5783 if (write && !skip_sum) {
5784 ret = btrfs_wq_submit_bio(root->fs_info,
5785 inode, rw, bio, 0, 0,
5786 file_offset,
5787 __btrfs_submit_bio_start_direct_io,
5788 __btrfs_submit_bio_done);
5789 goto err;
5790 } else if (!skip_sum)
5791 btrfs_lookup_bio_sums_dio(root, inode, bio,
5792 file_offset, csums);
5794 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5795 err:
5796 bio_put(bio);
5797 return ret;
5800 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5801 int skip_sum)
5803 struct inode *inode = dip->inode;
5804 struct btrfs_root *root = BTRFS_I(inode)->root;
5805 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5806 struct bio *bio;
5807 struct bio *orig_bio = dip->orig_bio;
5808 struct bio_vec *bvec = orig_bio->bi_io_vec;
5809 u64 start_sector = orig_bio->bi_sector;
5810 u64 file_offset = dip->logical_offset;
5811 u64 submit_len = 0;
5812 u64 map_length;
5813 int nr_pages = 0;
5814 u32 *csums = dip->csums;
5815 int ret = 0;
5817 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5818 if (!bio)
5819 return -ENOMEM;
5820 bio->bi_private = dip;
5821 bio->bi_end_io = btrfs_end_dio_bio;
5822 atomic_inc(&dip->pending_bios);
5824 map_length = orig_bio->bi_size;
5825 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5826 &map_length, NULL, 0);
5827 if (ret) {
5828 bio_put(bio);
5829 return -EIO;
5832 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5833 if (unlikely(map_length < submit_len + bvec->bv_len ||
5834 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5835 bvec->bv_offset) < bvec->bv_len)) {
5837 * inc the count before we submit the bio so
5838 * we know the end IO handler won't happen before
5839 * we inc the count. Otherwise, the dip might get freed
5840 * before we're done setting it up
5842 atomic_inc(&dip->pending_bios);
5843 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5844 file_offset, skip_sum,
5845 csums);
5846 if (ret) {
5847 bio_put(bio);
5848 atomic_dec(&dip->pending_bios);
5849 goto out_err;
5852 if (!skip_sum)
5853 csums = csums + nr_pages;
5854 start_sector += submit_len >> 9;
5855 file_offset += submit_len;
5857 submit_len = 0;
5858 nr_pages = 0;
5860 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5861 start_sector, GFP_NOFS);
5862 if (!bio)
5863 goto out_err;
5864 bio->bi_private = dip;
5865 bio->bi_end_io = btrfs_end_dio_bio;
5867 map_length = orig_bio->bi_size;
5868 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5869 &map_length, NULL, 0);
5870 if (ret) {
5871 bio_put(bio);
5872 goto out_err;
5874 } else {
5875 submit_len += bvec->bv_len;
5876 nr_pages ++;
5877 bvec++;
5881 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5882 csums);
5883 if (!ret)
5884 return 0;
5886 bio_put(bio);
5887 out_err:
5888 dip->errors = 1;
5890 * before atomic variable goto zero, we must
5891 * make sure dip->errors is perceived to be set.
5893 smp_mb__before_atomic_dec();
5894 if (atomic_dec_and_test(&dip->pending_bios))
5895 bio_io_error(dip->orig_bio);
5897 /* bio_end_io() will handle error, so we needn't return it */
5898 return 0;
5901 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5902 loff_t file_offset)
5904 struct btrfs_root *root = BTRFS_I(inode)->root;
5905 struct btrfs_dio_private *dip;
5906 struct bio_vec *bvec = bio->bi_io_vec;
5907 int skip_sum;
5908 int write = rw & REQ_WRITE;
5909 int ret = 0;
5911 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5913 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5914 if (!dip) {
5915 ret = -ENOMEM;
5916 goto free_ordered;
5918 dip->csums = NULL;
5920 if (!skip_sum) {
5921 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5922 if (!dip->csums) {
5923 ret = -ENOMEM;
5924 goto free_ordered;
5928 dip->private = bio->bi_private;
5929 dip->inode = inode;
5930 dip->logical_offset = file_offset;
5932 dip->bytes = 0;
5933 do {
5934 dip->bytes += bvec->bv_len;
5935 bvec++;
5936 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5938 dip->disk_bytenr = (u64)bio->bi_sector << 9;
5939 bio->bi_private = dip;
5940 dip->errors = 0;
5941 dip->orig_bio = bio;
5942 atomic_set(&dip->pending_bios, 0);
5944 if (write)
5945 bio->bi_end_io = btrfs_endio_direct_write;
5946 else
5947 bio->bi_end_io = btrfs_endio_direct_read;
5949 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5950 if (!ret)
5951 return;
5952 free_ordered:
5954 * If this is a write, we need to clean up the reserved space and kill
5955 * the ordered extent.
5957 if (write) {
5958 struct btrfs_ordered_extent *ordered;
5959 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5960 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5961 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5962 btrfs_free_reserved_extent(root, ordered->start,
5963 ordered->disk_len);
5964 btrfs_put_ordered_extent(ordered);
5965 btrfs_put_ordered_extent(ordered);
5967 bio_endio(bio, ret);
5970 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5971 const struct iovec *iov, loff_t offset,
5972 unsigned long nr_segs)
5974 int seg;
5975 size_t size;
5976 unsigned long addr;
5977 unsigned blocksize_mask = root->sectorsize - 1;
5978 ssize_t retval = -EINVAL;
5979 loff_t end = offset;
5981 if (offset & blocksize_mask)
5982 goto out;
5984 /* Check the memory alignment. Blocks cannot straddle pages */
5985 for (seg = 0; seg < nr_segs; seg++) {
5986 addr = (unsigned long)iov[seg].iov_base;
5987 size = iov[seg].iov_len;
5988 end += size;
5989 if ((addr & blocksize_mask) || (size & blocksize_mask))
5990 goto out;
5992 retval = 0;
5993 out:
5994 return retval;
5996 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5997 const struct iovec *iov, loff_t offset,
5998 unsigned long nr_segs)
6000 struct file *file = iocb->ki_filp;
6001 struct inode *inode = file->f_mapping->host;
6002 struct btrfs_ordered_extent *ordered;
6003 struct extent_state *cached_state = NULL;
6004 u64 lockstart, lockend;
6005 ssize_t ret;
6006 int writing = rw & WRITE;
6007 int write_bits = 0;
6008 size_t count = iov_length(iov, nr_segs);
6010 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6011 offset, nr_segs)) {
6012 return 0;
6015 lockstart = offset;
6016 lockend = offset + count - 1;
6018 if (writing) {
6019 ret = btrfs_delalloc_reserve_space(inode, count);
6020 if (ret)
6021 goto out;
6024 while (1) {
6025 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6026 0, &cached_state, GFP_NOFS);
6028 * We're concerned with the entire range that we're going to be
6029 * doing DIO to, so we need to make sure theres no ordered
6030 * extents in this range.
6032 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6033 lockend - lockstart + 1);
6034 if (!ordered)
6035 break;
6036 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6037 &cached_state, GFP_NOFS);
6038 btrfs_start_ordered_extent(inode, ordered, 1);
6039 btrfs_put_ordered_extent(ordered);
6040 cond_resched();
6044 * we don't use btrfs_set_extent_delalloc because we don't want
6045 * the dirty or uptodate bits
6047 if (writing) {
6048 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6049 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6050 EXTENT_DELALLOC, 0, NULL, &cached_state,
6051 GFP_NOFS);
6052 if (ret) {
6053 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6054 lockend, EXTENT_LOCKED | write_bits,
6055 1, 0, &cached_state, GFP_NOFS);
6056 goto out;
6060 free_extent_state(cached_state);
6061 cached_state = NULL;
6063 ret = __blockdev_direct_IO(rw, iocb, inode,
6064 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6065 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6066 btrfs_submit_direct, 0);
6068 if (ret < 0 && ret != -EIOCBQUEUED) {
6069 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6070 offset + iov_length(iov, nr_segs) - 1,
6071 EXTENT_LOCKED | write_bits, 1, 0,
6072 &cached_state, GFP_NOFS);
6073 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6075 * We're falling back to buffered, unlock the section we didn't
6076 * do IO on.
6078 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6079 offset + iov_length(iov, nr_segs) - 1,
6080 EXTENT_LOCKED | write_bits, 1, 0,
6081 &cached_state, GFP_NOFS);
6083 out:
6084 free_extent_state(cached_state);
6085 return ret;
6088 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6089 __u64 start, __u64 len)
6091 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6094 int btrfs_readpage(struct file *file, struct page *page)
6096 struct extent_io_tree *tree;
6097 tree = &BTRFS_I(page->mapping->host)->io_tree;
6098 return extent_read_full_page(tree, page, btrfs_get_extent);
6101 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6103 struct extent_io_tree *tree;
6106 if (current->flags & PF_MEMALLOC) {
6107 redirty_page_for_writepage(wbc, page);
6108 unlock_page(page);
6109 return 0;
6111 tree = &BTRFS_I(page->mapping->host)->io_tree;
6112 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6115 int btrfs_writepages(struct address_space *mapping,
6116 struct writeback_control *wbc)
6118 struct extent_io_tree *tree;
6120 tree = &BTRFS_I(mapping->host)->io_tree;
6121 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6124 static int
6125 btrfs_readpages(struct file *file, struct address_space *mapping,
6126 struct list_head *pages, unsigned nr_pages)
6128 struct extent_io_tree *tree;
6129 tree = &BTRFS_I(mapping->host)->io_tree;
6130 return extent_readpages(tree, mapping, pages, nr_pages,
6131 btrfs_get_extent);
6133 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6135 struct extent_io_tree *tree;
6136 struct extent_map_tree *map;
6137 int ret;
6139 tree = &BTRFS_I(page->mapping->host)->io_tree;
6140 map = &BTRFS_I(page->mapping->host)->extent_tree;
6141 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6142 if (ret == 1) {
6143 ClearPagePrivate(page);
6144 set_page_private(page, 0);
6145 page_cache_release(page);
6147 return ret;
6150 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6152 if (PageWriteback(page) || PageDirty(page))
6153 return 0;
6154 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6157 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6159 struct extent_io_tree *tree;
6160 struct btrfs_ordered_extent *ordered;
6161 struct extent_state *cached_state = NULL;
6162 u64 page_start = page_offset(page);
6163 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6167 * we have the page locked, so new writeback can't start,
6168 * and the dirty bit won't be cleared while we are here.
6170 * Wait for IO on this page so that we can safely clear
6171 * the PagePrivate2 bit and do ordered accounting
6173 wait_on_page_writeback(page);
6175 tree = &BTRFS_I(page->mapping->host)->io_tree;
6176 if (offset) {
6177 btrfs_releasepage(page, GFP_NOFS);
6178 return;
6180 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6181 GFP_NOFS);
6182 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6183 page_offset(page));
6184 if (ordered) {
6186 * IO on this page will never be started, so we need
6187 * to account for any ordered extents now
6189 clear_extent_bit(tree, page_start, page_end,
6190 EXTENT_DIRTY | EXTENT_DELALLOC |
6191 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6192 &cached_state, GFP_NOFS);
6194 * whoever cleared the private bit is responsible
6195 * for the finish_ordered_io
6197 if (TestClearPagePrivate2(page)) {
6198 btrfs_finish_ordered_io(page->mapping->host,
6199 page_start, page_end);
6201 btrfs_put_ordered_extent(ordered);
6202 cached_state = NULL;
6203 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6204 GFP_NOFS);
6206 clear_extent_bit(tree, page_start, page_end,
6207 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6208 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6209 __btrfs_releasepage(page, GFP_NOFS);
6211 ClearPageChecked(page);
6212 if (PagePrivate(page)) {
6213 ClearPagePrivate(page);
6214 set_page_private(page, 0);
6215 page_cache_release(page);
6220 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6221 * called from a page fault handler when a page is first dirtied. Hence we must
6222 * be careful to check for EOF conditions here. We set the page up correctly
6223 * for a written page which means we get ENOSPC checking when writing into
6224 * holes and correct delalloc and unwritten extent mapping on filesystems that
6225 * support these features.
6227 * We are not allowed to take the i_mutex here so we have to play games to
6228 * protect against truncate races as the page could now be beyond EOF. Because
6229 * vmtruncate() writes the inode size before removing pages, once we have the
6230 * page lock we can determine safely if the page is beyond EOF. If it is not
6231 * beyond EOF, then the page is guaranteed safe against truncation until we
6232 * unlock the page.
6234 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6236 struct page *page = vmf->page;
6237 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6238 struct btrfs_root *root = BTRFS_I(inode)->root;
6239 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6240 struct btrfs_ordered_extent *ordered;
6241 struct extent_state *cached_state = NULL;
6242 char *kaddr;
6243 unsigned long zero_start;
6244 loff_t size;
6245 int ret;
6246 u64 page_start;
6247 u64 page_end;
6249 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6250 if (ret) {
6251 if (ret == -ENOMEM)
6252 ret = VM_FAULT_OOM;
6253 else /* -ENOSPC, -EIO, etc */
6254 ret = VM_FAULT_SIGBUS;
6255 goto out;
6258 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6259 again:
6260 lock_page(page);
6261 size = i_size_read(inode);
6262 page_start = page_offset(page);
6263 page_end = page_start + PAGE_CACHE_SIZE - 1;
6265 if ((page->mapping != inode->i_mapping) ||
6266 (page_start >= size)) {
6267 /* page got truncated out from underneath us */
6268 goto out_unlock;
6270 wait_on_page_writeback(page);
6272 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6273 GFP_NOFS);
6274 set_page_extent_mapped(page);
6277 * we can't set the delalloc bits if there are pending ordered
6278 * extents. Drop our locks and wait for them to finish
6280 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6281 if (ordered) {
6282 unlock_extent_cached(io_tree, page_start, page_end,
6283 &cached_state, GFP_NOFS);
6284 unlock_page(page);
6285 btrfs_start_ordered_extent(inode, ordered, 1);
6286 btrfs_put_ordered_extent(ordered);
6287 goto again;
6291 * XXX - page_mkwrite gets called every time the page is dirtied, even
6292 * if it was already dirty, so for space accounting reasons we need to
6293 * clear any delalloc bits for the range we are fixing to save. There
6294 * is probably a better way to do this, but for now keep consistent with
6295 * prepare_pages in the normal write path.
6297 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6298 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6299 0, 0, &cached_state, GFP_NOFS);
6301 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6302 &cached_state);
6303 if (ret) {
6304 unlock_extent_cached(io_tree, page_start, page_end,
6305 &cached_state, GFP_NOFS);
6306 ret = VM_FAULT_SIGBUS;
6307 goto out_unlock;
6309 ret = 0;
6311 /* page is wholly or partially inside EOF */
6312 if (page_start + PAGE_CACHE_SIZE > size)
6313 zero_start = size & ~PAGE_CACHE_MASK;
6314 else
6315 zero_start = PAGE_CACHE_SIZE;
6317 if (zero_start != PAGE_CACHE_SIZE) {
6318 kaddr = kmap(page);
6319 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6320 flush_dcache_page(page);
6321 kunmap(page);
6323 ClearPageChecked(page);
6324 set_page_dirty(page);
6325 SetPageUptodate(page);
6327 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6328 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6330 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6332 out_unlock:
6333 if (!ret)
6334 return VM_FAULT_LOCKED;
6335 unlock_page(page);
6336 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6337 out:
6338 return ret;
6341 static void btrfs_truncate(struct inode *inode)
6343 struct btrfs_root *root = BTRFS_I(inode)->root;
6344 int ret;
6345 struct btrfs_trans_handle *trans;
6346 unsigned long nr;
6347 u64 mask = root->sectorsize - 1;
6349 if (!S_ISREG(inode->i_mode)) {
6350 WARN_ON(1);
6351 return;
6354 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6355 if (ret)
6356 return;
6358 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6359 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6361 trans = btrfs_start_transaction(root, 0);
6362 BUG_ON(IS_ERR(trans));
6363 btrfs_set_trans_block_group(trans, inode);
6364 trans->block_rsv = root->orphan_block_rsv;
6367 * setattr is responsible for setting the ordered_data_close flag,
6368 * but that is only tested during the last file release. That
6369 * could happen well after the next commit, leaving a great big
6370 * window where new writes may get lost if someone chooses to write
6371 * to this file after truncating to zero
6373 * The inode doesn't have any dirty data here, and so if we commit
6374 * this is a noop. If someone immediately starts writing to the inode
6375 * it is very likely we'll catch some of their writes in this
6376 * transaction, and the commit will find this file on the ordered
6377 * data list with good things to send down.
6379 * This is a best effort solution, there is still a window where
6380 * using truncate to replace the contents of the file will
6381 * end up with a zero length file after a crash.
6383 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6384 btrfs_add_ordered_operation(trans, root, inode);
6386 while (1) {
6387 if (!trans) {
6388 trans = btrfs_start_transaction(root, 0);
6389 BUG_ON(IS_ERR(trans));
6390 btrfs_set_trans_block_group(trans, inode);
6391 trans->block_rsv = root->orphan_block_rsv;
6394 ret = btrfs_block_rsv_check(trans, root,
6395 root->orphan_block_rsv, 0, 5);
6396 if (ret) {
6397 BUG_ON(ret != -EAGAIN);
6398 ret = btrfs_commit_transaction(trans, root);
6399 BUG_ON(ret);
6400 trans = NULL;
6401 continue;
6404 ret = btrfs_truncate_inode_items(trans, root, inode,
6405 inode->i_size,
6406 BTRFS_EXTENT_DATA_KEY);
6407 if (ret != -EAGAIN)
6408 break;
6410 ret = btrfs_update_inode(trans, root, inode);
6411 BUG_ON(ret);
6413 nr = trans->blocks_used;
6414 btrfs_end_transaction(trans, root);
6415 trans = NULL;
6416 btrfs_btree_balance_dirty(root, nr);
6419 if (ret == 0 && inode->i_nlink > 0) {
6420 ret = btrfs_orphan_del(trans, inode);
6421 BUG_ON(ret);
6424 ret = btrfs_update_inode(trans, root, inode);
6425 BUG_ON(ret);
6427 nr = trans->blocks_used;
6428 ret = btrfs_end_transaction_throttle(trans, root);
6429 BUG_ON(ret);
6430 btrfs_btree_balance_dirty(root, nr);
6434 * create a new subvolume directory/inode (helper for the ioctl).
6436 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6437 struct btrfs_root *new_root,
6438 u64 new_dirid, u64 alloc_hint)
6440 struct inode *inode;
6441 int err;
6442 u64 index = 0;
6444 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6445 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6446 if (IS_ERR(inode))
6447 return PTR_ERR(inode);
6448 inode->i_op = &btrfs_dir_inode_operations;
6449 inode->i_fop = &btrfs_dir_file_operations;
6451 inode->i_nlink = 1;
6452 btrfs_i_size_write(inode, 0);
6454 err = btrfs_update_inode(trans, new_root, inode);
6455 BUG_ON(err);
6457 iput(inode);
6458 return 0;
6461 /* helper function for file defrag and space balancing. This
6462 * forces readahead on a given range of bytes in an inode
6464 unsigned long btrfs_force_ra(struct address_space *mapping,
6465 struct file_ra_state *ra, struct file *file,
6466 pgoff_t offset, pgoff_t last_index)
6468 pgoff_t req_size = last_index - offset + 1;
6470 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6471 return offset + req_size;
6474 struct inode *btrfs_alloc_inode(struct super_block *sb)
6476 struct btrfs_inode *ei;
6477 struct inode *inode;
6479 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6480 if (!ei)
6481 return NULL;
6483 ei->root = NULL;
6484 ei->space_info = NULL;
6485 ei->generation = 0;
6486 ei->sequence = 0;
6487 ei->last_trans = 0;
6488 ei->last_sub_trans = 0;
6489 ei->logged_trans = 0;
6490 ei->delalloc_bytes = 0;
6491 ei->reserved_bytes = 0;
6492 ei->disk_i_size = 0;
6493 ei->flags = 0;
6494 ei->index_cnt = (u64)-1;
6495 ei->last_unlink_trans = 0;
6497 spin_lock_init(&ei->accounting_lock);
6498 atomic_set(&ei->outstanding_extents, 0);
6499 ei->reserved_extents = 0;
6501 ei->ordered_data_close = 0;
6502 ei->orphan_meta_reserved = 0;
6503 ei->dummy_inode = 0;
6504 ei->force_compress = BTRFS_COMPRESS_NONE;
6506 inode = &ei->vfs_inode;
6507 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6508 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6509 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6510 mutex_init(&ei->log_mutex);
6511 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6512 INIT_LIST_HEAD(&ei->i_orphan);
6513 INIT_LIST_HEAD(&ei->delalloc_inodes);
6514 INIT_LIST_HEAD(&ei->ordered_operations);
6515 RB_CLEAR_NODE(&ei->rb_node);
6517 return inode;
6520 static void btrfs_i_callback(struct rcu_head *head)
6522 struct inode *inode = container_of(head, struct inode, i_rcu);
6523 INIT_LIST_HEAD(&inode->i_dentry);
6524 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6527 void btrfs_destroy_inode(struct inode *inode)
6529 struct btrfs_ordered_extent *ordered;
6530 struct btrfs_root *root = BTRFS_I(inode)->root;
6532 WARN_ON(!list_empty(&inode->i_dentry));
6533 WARN_ON(inode->i_data.nrpages);
6534 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6535 WARN_ON(BTRFS_I(inode)->reserved_extents);
6538 * This can happen where we create an inode, but somebody else also
6539 * created the same inode and we need to destroy the one we already
6540 * created.
6542 if (!root)
6543 goto free;
6546 * Make sure we're properly removed from the ordered operation
6547 * lists.
6549 smp_mb();
6550 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6551 spin_lock(&root->fs_info->ordered_extent_lock);
6552 list_del_init(&BTRFS_I(inode)->ordered_operations);
6553 spin_unlock(&root->fs_info->ordered_extent_lock);
6556 if (root == root->fs_info->tree_root) {
6557 struct btrfs_block_group_cache *block_group;
6559 block_group = btrfs_lookup_block_group(root->fs_info,
6560 BTRFS_I(inode)->block_group);
6561 if (block_group && block_group->inode == inode) {
6562 spin_lock(&block_group->lock);
6563 block_group->inode = NULL;
6564 spin_unlock(&block_group->lock);
6565 btrfs_put_block_group(block_group);
6566 } else if (block_group) {
6567 btrfs_put_block_group(block_group);
6571 spin_lock(&root->orphan_lock);
6572 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6573 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6574 inode->i_ino);
6575 list_del_init(&BTRFS_I(inode)->i_orphan);
6577 spin_unlock(&root->orphan_lock);
6579 while (1) {
6580 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6581 if (!ordered)
6582 break;
6583 else {
6584 printk(KERN_ERR "btrfs found ordered "
6585 "extent %llu %llu on inode cleanup\n",
6586 (unsigned long long)ordered->file_offset,
6587 (unsigned long long)ordered->len);
6588 btrfs_remove_ordered_extent(inode, ordered);
6589 btrfs_put_ordered_extent(ordered);
6590 btrfs_put_ordered_extent(ordered);
6593 inode_tree_del(inode);
6594 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6595 free:
6596 call_rcu(&inode->i_rcu, btrfs_i_callback);
6599 int btrfs_drop_inode(struct inode *inode)
6601 struct btrfs_root *root = BTRFS_I(inode)->root;
6603 if (btrfs_root_refs(&root->root_item) == 0 &&
6604 root != root->fs_info->tree_root)
6605 return 1;
6606 else
6607 return generic_drop_inode(inode);
6610 static void init_once(void *foo)
6612 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6614 inode_init_once(&ei->vfs_inode);
6617 void btrfs_destroy_cachep(void)
6619 if (btrfs_inode_cachep)
6620 kmem_cache_destroy(btrfs_inode_cachep);
6621 if (btrfs_trans_handle_cachep)
6622 kmem_cache_destroy(btrfs_trans_handle_cachep);
6623 if (btrfs_transaction_cachep)
6624 kmem_cache_destroy(btrfs_transaction_cachep);
6625 if (btrfs_path_cachep)
6626 kmem_cache_destroy(btrfs_path_cachep);
6629 int btrfs_init_cachep(void)
6631 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6632 sizeof(struct btrfs_inode), 0,
6633 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6634 if (!btrfs_inode_cachep)
6635 goto fail;
6637 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6638 sizeof(struct btrfs_trans_handle), 0,
6639 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6640 if (!btrfs_trans_handle_cachep)
6641 goto fail;
6643 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6644 sizeof(struct btrfs_transaction), 0,
6645 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6646 if (!btrfs_transaction_cachep)
6647 goto fail;
6649 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6650 sizeof(struct btrfs_path), 0,
6651 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6652 if (!btrfs_path_cachep)
6653 goto fail;
6655 return 0;
6656 fail:
6657 btrfs_destroy_cachep();
6658 return -ENOMEM;
6661 static int btrfs_getattr(struct vfsmount *mnt,
6662 struct dentry *dentry, struct kstat *stat)
6664 struct inode *inode = dentry->d_inode;
6665 generic_fillattr(inode, stat);
6666 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6667 stat->blksize = PAGE_CACHE_SIZE;
6668 stat->blocks = (inode_get_bytes(inode) +
6669 BTRFS_I(inode)->delalloc_bytes) >> 9;
6670 return 0;
6673 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6674 struct inode *new_dir, struct dentry *new_dentry)
6676 struct btrfs_trans_handle *trans;
6677 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6678 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6679 struct inode *new_inode = new_dentry->d_inode;
6680 struct inode *old_inode = old_dentry->d_inode;
6681 struct timespec ctime = CURRENT_TIME;
6682 u64 index = 0;
6683 u64 root_objectid;
6684 int ret;
6686 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6687 return -EPERM;
6689 /* we only allow rename subvolume link between subvolumes */
6690 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6691 return -EXDEV;
6693 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6694 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6695 return -ENOTEMPTY;
6697 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6698 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6699 return -ENOTEMPTY;
6701 * we're using rename to replace one file with another.
6702 * and the replacement file is large. Start IO on it now so
6703 * we don't add too much work to the end of the transaction
6705 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6706 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6707 filemap_flush(old_inode->i_mapping);
6709 /* close the racy window with snapshot create/destroy ioctl */
6710 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6711 down_read(&root->fs_info->subvol_sem);
6713 * We want to reserve the absolute worst case amount of items. So if
6714 * both inodes are subvols and we need to unlink them then that would
6715 * require 4 item modifications, but if they are both normal inodes it
6716 * would require 5 item modifications, so we'll assume their normal
6717 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6718 * should cover the worst case number of items we'll modify.
6720 trans = btrfs_start_transaction(root, 20);
6721 if (IS_ERR(trans))
6722 return PTR_ERR(trans);
6724 btrfs_set_trans_block_group(trans, new_dir);
6726 if (dest != root)
6727 btrfs_record_root_in_trans(trans, dest);
6729 ret = btrfs_set_inode_index(new_dir, &index);
6730 if (ret)
6731 goto out_fail;
6733 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6734 /* force full log commit if subvolume involved. */
6735 root->fs_info->last_trans_log_full_commit = trans->transid;
6736 } else {
6737 ret = btrfs_insert_inode_ref(trans, dest,
6738 new_dentry->d_name.name,
6739 new_dentry->d_name.len,
6740 old_inode->i_ino,
6741 new_dir->i_ino, index);
6742 if (ret)
6743 goto out_fail;
6745 * this is an ugly little race, but the rename is required
6746 * to make sure that if we crash, the inode is either at the
6747 * old name or the new one. pinning the log transaction lets
6748 * us make sure we don't allow a log commit to come in after
6749 * we unlink the name but before we add the new name back in.
6751 btrfs_pin_log_trans(root);
6754 * make sure the inode gets flushed if it is replacing
6755 * something.
6757 if (new_inode && new_inode->i_size &&
6758 old_inode && S_ISREG(old_inode->i_mode)) {
6759 btrfs_add_ordered_operation(trans, root, old_inode);
6762 old_dir->i_ctime = old_dir->i_mtime = ctime;
6763 new_dir->i_ctime = new_dir->i_mtime = ctime;
6764 old_inode->i_ctime = ctime;
6766 if (old_dentry->d_parent != new_dentry->d_parent)
6767 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6769 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6770 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6771 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6772 old_dentry->d_name.name,
6773 old_dentry->d_name.len);
6774 } else {
6775 btrfs_inc_nlink(old_dentry->d_inode);
6776 ret = btrfs_unlink_inode(trans, root, old_dir,
6777 old_dentry->d_inode,
6778 old_dentry->d_name.name,
6779 old_dentry->d_name.len);
6781 BUG_ON(ret);
6783 if (new_inode) {
6784 new_inode->i_ctime = CURRENT_TIME;
6785 if (unlikely(new_inode->i_ino ==
6786 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6787 root_objectid = BTRFS_I(new_inode)->location.objectid;
6788 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6789 root_objectid,
6790 new_dentry->d_name.name,
6791 new_dentry->d_name.len);
6792 BUG_ON(new_inode->i_nlink == 0);
6793 } else {
6794 ret = btrfs_unlink_inode(trans, dest, new_dir,
6795 new_dentry->d_inode,
6796 new_dentry->d_name.name,
6797 new_dentry->d_name.len);
6799 BUG_ON(ret);
6800 if (new_inode->i_nlink == 0) {
6801 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6802 BUG_ON(ret);
6806 ret = btrfs_add_link(trans, new_dir, old_inode,
6807 new_dentry->d_name.name,
6808 new_dentry->d_name.len, 0, index);
6809 BUG_ON(ret);
6811 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6812 struct dentry *parent = dget_parent(new_dentry);
6813 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6814 dput(parent);
6815 btrfs_end_log_trans(root);
6817 out_fail:
6818 btrfs_end_transaction_throttle(trans, root);
6820 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6821 up_read(&root->fs_info->subvol_sem);
6823 return ret;
6827 * some fairly slow code that needs optimization. This walks the list
6828 * of all the inodes with pending delalloc and forces them to disk.
6830 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6832 struct list_head *head = &root->fs_info->delalloc_inodes;
6833 struct btrfs_inode *binode;
6834 struct inode *inode;
6836 if (root->fs_info->sb->s_flags & MS_RDONLY)
6837 return -EROFS;
6839 spin_lock(&root->fs_info->delalloc_lock);
6840 while (!list_empty(head)) {
6841 binode = list_entry(head->next, struct btrfs_inode,
6842 delalloc_inodes);
6843 inode = igrab(&binode->vfs_inode);
6844 if (!inode)
6845 list_del_init(&binode->delalloc_inodes);
6846 spin_unlock(&root->fs_info->delalloc_lock);
6847 if (inode) {
6848 filemap_flush(inode->i_mapping);
6849 if (delay_iput)
6850 btrfs_add_delayed_iput(inode);
6851 else
6852 iput(inode);
6854 cond_resched();
6855 spin_lock(&root->fs_info->delalloc_lock);
6857 spin_unlock(&root->fs_info->delalloc_lock);
6859 /* the filemap_flush will queue IO into the worker threads, but
6860 * we have to make sure the IO is actually started and that
6861 * ordered extents get created before we return
6863 atomic_inc(&root->fs_info->async_submit_draining);
6864 while (atomic_read(&root->fs_info->nr_async_submits) ||
6865 atomic_read(&root->fs_info->async_delalloc_pages)) {
6866 wait_event(root->fs_info->async_submit_wait,
6867 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6868 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6870 atomic_dec(&root->fs_info->async_submit_draining);
6871 return 0;
6874 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6875 int sync)
6877 struct btrfs_inode *binode;
6878 struct inode *inode = NULL;
6880 spin_lock(&root->fs_info->delalloc_lock);
6881 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6882 binode = list_entry(root->fs_info->delalloc_inodes.next,
6883 struct btrfs_inode, delalloc_inodes);
6884 inode = igrab(&binode->vfs_inode);
6885 if (inode) {
6886 list_move_tail(&binode->delalloc_inodes,
6887 &root->fs_info->delalloc_inodes);
6888 break;
6891 list_del_init(&binode->delalloc_inodes);
6892 cond_resched_lock(&root->fs_info->delalloc_lock);
6894 spin_unlock(&root->fs_info->delalloc_lock);
6896 if (inode) {
6897 if (sync) {
6898 filemap_write_and_wait(inode->i_mapping);
6900 * We have to do this because compression doesn't
6901 * actually set PG_writeback until it submits the pages
6902 * for IO, which happens in an async thread, so we could
6903 * race and not actually wait for any writeback pages
6904 * because they've not been submitted yet. Technically
6905 * this could still be the case for the ordered stuff
6906 * since the async thread may not have started to do its
6907 * work yet. If this becomes the case then we need to
6908 * figure out a way to make sure that in writepage we
6909 * wait for any async pages to be submitted before
6910 * returning so that fdatawait does what its supposed to
6911 * do.
6913 btrfs_wait_ordered_range(inode, 0, (u64)-1);
6914 } else {
6915 filemap_flush(inode->i_mapping);
6917 if (delay_iput)
6918 btrfs_add_delayed_iput(inode);
6919 else
6920 iput(inode);
6921 return 1;
6923 return 0;
6926 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6927 const char *symname)
6929 struct btrfs_trans_handle *trans;
6930 struct btrfs_root *root = BTRFS_I(dir)->root;
6931 struct btrfs_path *path;
6932 struct btrfs_key key;
6933 struct inode *inode = NULL;
6934 int err;
6935 int drop_inode = 0;
6936 u64 objectid;
6937 u64 index = 0 ;
6938 int name_len;
6939 int datasize;
6940 unsigned long ptr;
6941 struct btrfs_file_extent_item *ei;
6942 struct extent_buffer *leaf;
6943 unsigned long nr = 0;
6945 name_len = strlen(symname) + 1;
6946 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6947 return -ENAMETOOLONG;
6949 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6950 if (err)
6951 return err;
6953 * 2 items for inode item and ref
6954 * 2 items for dir items
6955 * 1 item for xattr if selinux is on
6957 trans = btrfs_start_transaction(root, 5);
6958 if (IS_ERR(trans))
6959 return PTR_ERR(trans);
6961 btrfs_set_trans_block_group(trans, dir);
6963 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6964 dentry->d_name.len, dir->i_ino, objectid,
6965 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6966 &index);
6967 err = PTR_ERR(inode);
6968 if (IS_ERR(inode))
6969 goto out_unlock;
6971 err = btrfs_init_inode_security(trans, inode, dir);
6972 if (err) {
6973 drop_inode = 1;
6974 goto out_unlock;
6977 btrfs_set_trans_block_group(trans, inode);
6978 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6979 if (err)
6980 drop_inode = 1;
6981 else {
6982 inode->i_mapping->a_ops = &btrfs_aops;
6983 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6984 inode->i_fop = &btrfs_file_operations;
6985 inode->i_op = &btrfs_file_inode_operations;
6986 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6988 btrfs_update_inode_block_group(trans, inode);
6989 btrfs_update_inode_block_group(trans, dir);
6990 if (drop_inode)
6991 goto out_unlock;
6993 path = btrfs_alloc_path();
6994 BUG_ON(!path);
6995 key.objectid = inode->i_ino;
6996 key.offset = 0;
6997 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6998 datasize = btrfs_file_extent_calc_inline_size(name_len);
6999 err = btrfs_insert_empty_item(trans, root, path, &key,
7000 datasize);
7001 if (err) {
7002 drop_inode = 1;
7003 goto out_unlock;
7005 leaf = path->nodes[0];
7006 ei = btrfs_item_ptr(leaf, path->slots[0],
7007 struct btrfs_file_extent_item);
7008 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7009 btrfs_set_file_extent_type(leaf, ei,
7010 BTRFS_FILE_EXTENT_INLINE);
7011 btrfs_set_file_extent_encryption(leaf, ei, 0);
7012 btrfs_set_file_extent_compression(leaf, ei, 0);
7013 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7014 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7016 ptr = btrfs_file_extent_inline_start(ei);
7017 write_extent_buffer(leaf, symname, ptr, name_len);
7018 btrfs_mark_buffer_dirty(leaf);
7019 btrfs_free_path(path);
7021 inode->i_op = &btrfs_symlink_inode_operations;
7022 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7023 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7024 inode_set_bytes(inode, name_len);
7025 btrfs_i_size_write(inode, name_len - 1);
7026 err = btrfs_update_inode(trans, root, inode);
7027 if (err)
7028 drop_inode = 1;
7030 out_unlock:
7031 nr = trans->blocks_used;
7032 btrfs_end_transaction_throttle(trans, root);
7033 if (drop_inode) {
7034 inode_dec_link_count(inode);
7035 iput(inode);
7037 btrfs_btree_balance_dirty(root, nr);
7038 return err;
7041 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7042 u64 start, u64 num_bytes, u64 min_size,
7043 loff_t actual_len, u64 *alloc_hint,
7044 struct btrfs_trans_handle *trans)
7046 struct btrfs_root *root = BTRFS_I(inode)->root;
7047 struct btrfs_key ins;
7048 u64 cur_offset = start;
7049 u64 i_size;
7050 int ret = 0;
7051 bool own_trans = true;
7053 if (trans)
7054 own_trans = false;
7055 while (num_bytes > 0) {
7056 if (own_trans) {
7057 trans = btrfs_start_transaction(root, 3);
7058 if (IS_ERR(trans)) {
7059 ret = PTR_ERR(trans);
7060 break;
7064 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7065 0, *alloc_hint, (u64)-1, &ins, 1);
7066 if (ret) {
7067 if (own_trans)
7068 btrfs_end_transaction(trans, root);
7069 break;
7072 ret = insert_reserved_file_extent(trans, inode,
7073 cur_offset, ins.objectid,
7074 ins.offset, ins.offset,
7075 ins.offset, 0, 0, 0,
7076 BTRFS_FILE_EXTENT_PREALLOC);
7077 BUG_ON(ret);
7078 btrfs_drop_extent_cache(inode, cur_offset,
7079 cur_offset + ins.offset -1, 0);
7081 num_bytes -= ins.offset;
7082 cur_offset += ins.offset;
7083 *alloc_hint = ins.objectid + ins.offset;
7085 inode->i_ctime = CURRENT_TIME;
7086 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7087 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7088 (actual_len > inode->i_size) &&
7089 (cur_offset > inode->i_size)) {
7090 if (cur_offset > actual_len)
7091 i_size = actual_len;
7092 else
7093 i_size = cur_offset;
7094 i_size_write(inode, i_size);
7095 btrfs_ordered_update_i_size(inode, i_size, NULL);
7098 ret = btrfs_update_inode(trans, root, inode);
7099 BUG_ON(ret);
7101 if (own_trans)
7102 btrfs_end_transaction(trans, root);
7104 return ret;
7107 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7108 u64 start, u64 num_bytes, u64 min_size,
7109 loff_t actual_len, u64 *alloc_hint)
7111 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7112 min_size, actual_len, alloc_hint,
7113 NULL);
7116 int btrfs_prealloc_file_range_trans(struct inode *inode,
7117 struct btrfs_trans_handle *trans, int mode,
7118 u64 start, u64 num_bytes, u64 min_size,
7119 loff_t actual_len, u64 *alloc_hint)
7121 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7122 min_size, actual_len, alloc_hint, trans);
7125 static int btrfs_set_page_dirty(struct page *page)
7127 return __set_page_dirty_nobuffers(page);
7130 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7132 struct btrfs_root *root = BTRFS_I(inode)->root;
7134 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7135 return -EROFS;
7136 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7137 return -EACCES;
7138 return generic_permission(inode, mask, flags, btrfs_check_acl);
7141 static const struct inode_operations btrfs_dir_inode_operations = {
7142 .getattr = btrfs_getattr,
7143 .lookup = btrfs_lookup,
7144 .create = btrfs_create,
7145 .unlink = btrfs_unlink,
7146 .link = btrfs_link,
7147 .mkdir = btrfs_mkdir,
7148 .rmdir = btrfs_rmdir,
7149 .rename = btrfs_rename,
7150 .symlink = btrfs_symlink,
7151 .setattr = btrfs_setattr,
7152 .mknod = btrfs_mknod,
7153 .setxattr = btrfs_setxattr,
7154 .getxattr = btrfs_getxattr,
7155 .listxattr = btrfs_listxattr,
7156 .removexattr = btrfs_removexattr,
7157 .permission = btrfs_permission,
7159 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7160 .lookup = btrfs_lookup,
7161 .permission = btrfs_permission,
7164 static const struct file_operations btrfs_dir_file_operations = {
7165 .llseek = generic_file_llseek,
7166 .read = generic_read_dir,
7167 .readdir = btrfs_real_readdir,
7168 .unlocked_ioctl = btrfs_ioctl,
7169 #ifdef CONFIG_COMPAT
7170 .compat_ioctl = btrfs_ioctl,
7171 #endif
7172 .release = btrfs_release_file,
7173 .fsync = btrfs_sync_file,
7176 static struct extent_io_ops btrfs_extent_io_ops = {
7177 .fill_delalloc = run_delalloc_range,
7178 .submit_bio_hook = btrfs_submit_bio_hook,
7179 .merge_bio_hook = btrfs_merge_bio_hook,
7180 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7181 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7182 .writepage_start_hook = btrfs_writepage_start_hook,
7183 .readpage_io_failed_hook = btrfs_io_failed_hook,
7184 .set_bit_hook = btrfs_set_bit_hook,
7185 .clear_bit_hook = btrfs_clear_bit_hook,
7186 .merge_extent_hook = btrfs_merge_extent_hook,
7187 .split_extent_hook = btrfs_split_extent_hook,
7191 * btrfs doesn't support the bmap operation because swapfiles
7192 * use bmap to make a mapping of extents in the file. They assume
7193 * these extents won't change over the life of the file and they
7194 * use the bmap result to do IO directly to the drive.
7196 * the btrfs bmap call would return logical addresses that aren't
7197 * suitable for IO and they also will change frequently as COW
7198 * operations happen. So, swapfile + btrfs == corruption.
7200 * For now we're avoiding this by dropping bmap.
7202 static const struct address_space_operations btrfs_aops = {
7203 .readpage = btrfs_readpage,
7204 .writepage = btrfs_writepage,
7205 .writepages = btrfs_writepages,
7206 .readpages = btrfs_readpages,
7207 .sync_page = block_sync_page,
7208 .direct_IO = btrfs_direct_IO,
7209 .invalidatepage = btrfs_invalidatepage,
7210 .releasepage = btrfs_releasepage,
7211 .set_page_dirty = btrfs_set_page_dirty,
7212 .error_remove_page = generic_error_remove_page,
7215 static const struct address_space_operations btrfs_symlink_aops = {
7216 .readpage = btrfs_readpage,
7217 .writepage = btrfs_writepage,
7218 .invalidatepage = btrfs_invalidatepage,
7219 .releasepage = btrfs_releasepage,
7222 static const struct inode_operations btrfs_file_inode_operations = {
7223 .truncate = btrfs_truncate,
7224 .getattr = btrfs_getattr,
7225 .setattr = btrfs_setattr,
7226 .setxattr = btrfs_setxattr,
7227 .getxattr = btrfs_getxattr,
7228 .listxattr = btrfs_listxattr,
7229 .removexattr = btrfs_removexattr,
7230 .permission = btrfs_permission,
7231 .fiemap = btrfs_fiemap,
7233 static const struct inode_operations btrfs_special_inode_operations = {
7234 .getattr = btrfs_getattr,
7235 .setattr = btrfs_setattr,
7236 .permission = btrfs_permission,
7237 .setxattr = btrfs_setxattr,
7238 .getxattr = btrfs_getxattr,
7239 .listxattr = btrfs_listxattr,
7240 .removexattr = btrfs_removexattr,
7242 static const struct inode_operations btrfs_symlink_inode_operations = {
7243 .readlink = generic_readlink,
7244 .follow_link = page_follow_link_light,
7245 .put_link = page_put_link,
7246 .getattr = btrfs_getattr,
7247 .permission = btrfs_permission,
7248 .setxattr = btrfs_setxattr,
7249 .getxattr = btrfs_getxattr,
7250 .listxattr = btrfs_listxattr,
7251 .removexattr = btrfs_removexattr,
7254 const struct dentry_operations btrfs_dentry_operations = {
7255 .d_delete = btrfs_dentry_delete,