2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
58 #include <trace/events/rcu.h>
62 /* Data structures. */
64 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
65 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
67 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
68 .level = { &sname##_state.node[0] }, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
82 struct rcu_state rcu_sched_state
=
83 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
84 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
86 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
87 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
89 static struct rcu_state
*rcu_state
;
90 LIST_HEAD(rcu_struct_flavors
);
92 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
93 static int rcu_fanout_leaf
= CONFIG_RCU_FANOUT_LEAF
;
94 module_param(rcu_fanout_leaf
, int, 0444);
95 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
96 static int num_rcu_lvl
[] = { /* Number of rcu_nodes at specified level. */
103 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
106 * The rcu_scheduler_active variable transitions from zero to one just
107 * before the first task is spawned. So when this variable is zero, RCU
108 * can assume that there is but one task, allowing RCU to (for example)
109 * optimize synchronize_sched() to a simple barrier(). When this variable
110 * is one, RCU must actually do all the hard work required to detect real
111 * grace periods. This variable is also used to suppress boot-time false
112 * positives from lockdep-RCU error checking.
114 int rcu_scheduler_active __read_mostly
;
115 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
118 * The rcu_scheduler_fully_active variable transitions from zero to one
119 * during the early_initcall() processing, which is after the scheduler
120 * is capable of creating new tasks. So RCU processing (for example,
121 * creating tasks for RCU priority boosting) must be delayed until after
122 * rcu_scheduler_fully_active transitions from zero to one. We also
123 * currently delay invocation of any RCU callbacks until after this point.
125 * It might later prove better for people registering RCU callbacks during
126 * early boot to take responsibility for these callbacks, but one step at
129 static int rcu_scheduler_fully_active __read_mostly
;
131 #ifdef CONFIG_RCU_BOOST
134 * Control variables for per-CPU and per-rcu_node kthreads. These
135 * handle all flavors of RCU.
137 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
139 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
140 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
142 #endif /* #ifdef CONFIG_RCU_BOOST */
144 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
149 * Track the rcutorture test sequence number and the update version
150 * number within a given test. The rcutorture_testseq is incremented
151 * on every rcutorture module load and unload, so has an odd value
152 * when a test is running. The rcutorture_vernum is set to zero
153 * when rcutorture starts and is incremented on each rcutorture update.
154 * These variables enable correlating rcutorture output with the
155 * RCU tracing information.
157 unsigned long rcutorture_testseq
;
158 unsigned long rcutorture_vernum
;
161 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
162 * permit this function to be invoked without holding the root rcu_node
163 * structure's ->lock, but of course results can be subject to change.
165 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
167 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
171 * Note a quiescent state. Because we do not need to know
172 * how many quiescent states passed, just if there was at least
173 * one since the start of the grace period, this just sets a flag.
174 * The caller must have disabled preemption.
176 void rcu_sched_qs(int cpu
)
178 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
180 if (rdp
->passed_quiesce
== 0)
181 trace_rcu_grace_period("rcu_sched", rdp
->gpnum
, "cpuqs");
182 rdp
->passed_quiesce
= 1;
185 void rcu_bh_qs(int cpu
)
187 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
189 if (rdp
->passed_quiesce
== 0)
190 trace_rcu_grace_period("rcu_bh", rdp
->gpnum
, "cpuqs");
191 rdp
->passed_quiesce
= 1;
195 * Note a context switch. This is a quiescent state for RCU-sched,
196 * and requires special handling for preemptible RCU.
197 * The caller must have disabled preemption.
199 void rcu_note_context_switch(int cpu
)
201 trace_rcu_utilization("Start context switch");
203 rcu_preempt_note_context_switch(cpu
);
204 trace_rcu_utilization("End context switch");
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
208 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
209 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
210 .dynticks
= ATOMIC_INIT(1),
213 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
214 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
215 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
217 module_param(blimit
, long, 0444);
218 module_param(qhimark
, long, 0444);
219 module_param(qlowmark
, long, 0444);
221 static ulong jiffies_till_first_fqs
= RCU_JIFFIES_TILL_FORCE_QS
;
222 static ulong jiffies_till_next_fqs
= RCU_JIFFIES_TILL_FORCE_QS
;
224 module_param(jiffies_till_first_fqs
, ulong
, 0644);
225 module_param(jiffies_till_next_fqs
, ulong
, 0644);
227 static void rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
228 struct rcu_data
*rdp
);
229 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*));
230 static void force_quiescent_state(struct rcu_state
*rsp
);
231 static int rcu_pending(int cpu
);
234 * Return the number of RCU-sched batches processed thus far for debug & stats.
236 long rcu_batches_completed_sched(void)
238 return rcu_sched_state
.completed
;
240 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
243 * Return the number of RCU BH batches processed thus far for debug & stats.
245 long rcu_batches_completed_bh(void)
247 return rcu_bh_state
.completed
;
249 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
252 * Force a quiescent state for RCU BH.
254 void rcu_bh_force_quiescent_state(void)
256 force_quiescent_state(&rcu_bh_state
);
258 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
261 * Record the number of times rcutorture tests have been initiated and
262 * terminated. This information allows the debugfs tracing stats to be
263 * correlated to the rcutorture messages, even when the rcutorture module
264 * is being repeatedly loaded and unloaded. In other words, we cannot
265 * store this state in rcutorture itself.
267 void rcutorture_record_test_transition(void)
269 rcutorture_testseq
++;
270 rcutorture_vernum
= 0;
272 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
275 * Record the number of writer passes through the current rcutorture test.
276 * This is also used to correlate debugfs tracing stats with the rcutorture
279 void rcutorture_record_progress(unsigned long vernum
)
283 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
286 * Force a quiescent state for RCU-sched.
288 void rcu_sched_force_quiescent_state(void)
290 force_quiescent_state(&rcu_sched_state
);
292 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
295 * Does the CPU have callbacks ready to be invoked?
298 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
300 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
301 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
305 * Does the current CPU require a not-yet-started grace period?
306 * The caller must have disabled interrupts to prevent races with
307 * normal callback registry.
310 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
314 if (rcu_gp_in_progress(rsp
))
315 return 0; /* No, a grace period is already in progress. */
316 if (rcu_nocb_needs_gp(rsp
))
317 return 1; /* Yes, a no-CBs CPU needs one. */
318 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
319 return 0; /* No, this is a no-CBs (or offline) CPU. */
320 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
321 return 1; /* Yes, this CPU has newly registered callbacks. */
322 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
323 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
324 ULONG_CMP_LT(ACCESS_ONCE(rsp
->completed
),
325 rdp
->nxtcompleted
[i
]))
326 return 1; /* Yes, CBs for future grace period. */
327 return 0; /* No grace period needed. */
331 * Return the root node of the specified rcu_state structure.
333 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
335 return &rsp
->node
[0];
339 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
345 static void rcu_eqs_enter_common(struct rcu_dynticks
*rdtp
, long long oldval
,
348 trace_rcu_dyntick("Start", oldval
, rdtp
->dynticks_nesting
);
349 if (!user
&& !is_idle_task(current
)) {
350 struct task_struct
*idle
= idle_task(smp_processor_id());
352 trace_rcu_dyntick("Error on entry: not idle task", oldval
, 0);
353 ftrace_dump(DUMP_ORIG
);
354 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
355 current
->pid
, current
->comm
,
356 idle
->pid
, idle
->comm
); /* must be idle task! */
358 rcu_prepare_for_idle(smp_processor_id());
359 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
360 smp_mb__before_atomic_inc(); /* See above. */
361 atomic_inc(&rdtp
->dynticks
);
362 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
363 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
366 * It is illegal to enter an extended quiescent state while
367 * in an RCU read-side critical section.
369 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map
),
370 "Illegal idle entry in RCU read-side critical section.");
371 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
),
372 "Illegal idle entry in RCU-bh read-side critical section.");
373 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map
),
374 "Illegal idle entry in RCU-sched read-side critical section.");
378 * Enter an RCU extended quiescent state, which can be either the
379 * idle loop or adaptive-tickless usermode execution.
381 static void rcu_eqs_enter(bool user
)
384 struct rcu_dynticks
*rdtp
;
386 rdtp
= &__get_cpu_var(rcu_dynticks
);
387 oldval
= rdtp
->dynticks_nesting
;
388 WARN_ON_ONCE((oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
389 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
)
390 rdtp
->dynticks_nesting
= 0;
392 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
393 rcu_eqs_enter_common(rdtp
, oldval
, user
);
397 * rcu_idle_enter - inform RCU that current CPU is entering idle
399 * Enter idle mode, in other words, -leave- the mode in which RCU
400 * read-side critical sections can occur. (Though RCU read-side
401 * critical sections can occur in irq handlers in idle, a possibility
402 * handled by irq_enter() and irq_exit().)
404 * We crowbar the ->dynticks_nesting field to zero to allow for
405 * the possibility of usermode upcalls having messed up our count
406 * of interrupt nesting level during the prior busy period.
408 void rcu_idle_enter(void)
412 local_irq_save(flags
);
413 rcu_eqs_enter(false);
414 local_irq_restore(flags
);
416 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
418 #ifdef CONFIG_RCU_USER_QS
420 * rcu_user_enter - inform RCU that we are resuming userspace.
422 * Enter RCU idle mode right before resuming userspace. No use of RCU
423 * is permitted between this call and rcu_user_exit(). This way the
424 * CPU doesn't need to maintain the tick for RCU maintenance purposes
425 * when the CPU runs in userspace.
427 void rcu_user_enter(void)
433 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
434 * after the current irq returns.
436 * This is similar to rcu_user_enter() but in the context of a non-nesting
437 * irq. After this call, RCU enters into idle mode when the interrupt
440 void rcu_user_enter_after_irq(void)
443 struct rcu_dynticks
*rdtp
;
445 local_irq_save(flags
);
446 rdtp
= &__get_cpu_var(rcu_dynticks
);
447 /* Ensure this irq is interrupting a non-idle RCU state. */
448 WARN_ON_ONCE(!(rdtp
->dynticks_nesting
& DYNTICK_TASK_MASK
));
449 rdtp
->dynticks_nesting
= 1;
450 local_irq_restore(flags
);
452 #endif /* CONFIG_RCU_USER_QS */
455 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
457 * Exit from an interrupt handler, which might possibly result in entering
458 * idle mode, in other words, leaving the mode in which read-side critical
459 * sections can occur.
461 * This code assumes that the idle loop never does anything that might
462 * result in unbalanced calls to irq_enter() and irq_exit(). If your
463 * architecture violates this assumption, RCU will give you what you
464 * deserve, good and hard. But very infrequently and irreproducibly.
466 * Use things like work queues to work around this limitation.
468 * You have been warned.
470 void rcu_irq_exit(void)
474 struct rcu_dynticks
*rdtp
;
476 local_irq_save(flags
);
477 rdtp
= &__get_cpu_var(rcu_dynticks
);
478 oldval
= rdtp
->dynticks_nesting
;
479 rdtp
->dynticks_nesting
--;
480 WARN_ON_ONCE(rdtp
->dynticks_nesting
< 0);
481 if (rdtp
->dynticks_nesting
)
482 trace_rcu_dyntick("--=", oldval
, rdtp
->dynticks_nesting
);
484 rcu_eqs_enter_common(rdtp
, oldval
, true);
485 local_irq_restore(flags
);
489 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
491 * If the new value of the ->dynticks_nesting counter was previously zero,
492 * we really have exited idle, and must do the appropriate accounting.
493 * The caller must have disabled interrupts.
495 static void rcu_eqs_exit_common(struct rcu_dynticks
*rdtp
, long long oldval
,
498 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
499 atomic_inc(&rdtp
->dynticks
);
500 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
501 smp_mb__after_atomic_inc(); /* See above. */
502 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
503 rcu_cleanup_after_idle(smp_processor_id());
504 trace_rcu_dyntick("End", oldval
, rdtp
->dynticks_nesting
);
505 if (!user
&& !is_idle_task(current
)) {
506 struct task_struct
*idle
= idle_task(smp_processor_id());
508 trace_rcu_dyntick("Error on exit: not idle task",
509 oldval
, rdtp
->dynticks_nesting
);
510 ftrace_dump(DUMP_ORIG
);
511 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
512 current
->pid
, current
->comm
,
513 idle
->pid
, idle
->comm
); /* must be idle task! */
518 * Exit an RCU extended quiescent state, which can be either the
519 * idle loop or adaptive-tickless usermode execution.
521 static void rcu_eqs_exit(bool user
)
523 struct rcu_dynticks
*rdtp
;
526 rdtp
= &__get_cpu_var(rcu_dynticks
);
527 oldval
= rdtp
->dynticks_nesting
;
528 WARN_ON_ONCE(oldval
< 0);
529 if (oldval
& DYNTICK_TASK_NEST_MASK
)
530 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
532 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
533 rcu_eqs_exit_common(rdtp
, oldval
, user
);
537 * rcu_idle_exit - inform RCU that current CPU is leaving idle
539 * Exit idle mode, in other words, -enter- the mode in which RCU
540 * read-side critical sections can occur.
542 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
543 * allow for the possibility of usermode upcalls messing up our count
544 * of interrupt nesting level during the busy period that is just
547 void rcu_idle_exit(void)
551 local_irq_save(flags
);
553 local_irq_restore(flags
);
555 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
557 #ifdef CONFIG_RCU_USER_QS
559 * rcu_user_exit - inform RCU that we are exiting userspace.
561 * Exit RCU idle mode while entering the kernel because it can
562 * run a RCU read side critical section anytime.
564 void rcu_user_exit(void)
570 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
571 * idle mode after the current non-nesting irq returns.
573 * This is similar to rcu_user_exit() but in the context of an irq.
574 * This is called when the irq has interrupted a userspace RCU idle mode
575 * context. When the current non-nesting interrupt returns after this call,
576 * the CPU won't restore the RCU idle mode.
578 void rcu_user_exit_after_irq(void)
581 struct rcu_dynticks
*rdtp
;
583 local_irq_save(flags
);
584 rdtp
= &__get_cpu_var(rcu_dynticks
);
585 /* Ensure we are interrupting an RCU idle mode. */
586 WARN_ON_ONCE(rdtp
->dynticks_nesting
& DYNTICK_TASK_NEST_MASK
);
587 rdtp
->dynticks_nesting
+= DYNTICK_TASK_EXIT_IDLE
;
588 local_irq_restore(flags
);
590 #endif /* CONFIG_RCU_USER_QS */
593 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
595 * Enter an interrupt handler, which might possibly result in exiting
596 * idle mode, in other words, entering the mode in which read-side critical
597 * sections can occur.
599 * Note that the Linux kernel is fully capable of entering an interrupt
600 * handler that it never exits, for example when doing upcalls to
601 * user mode! This code assumes that the idle loop never does upcalls to
602 * user mode. If your architecture does do upcalls from the idle loop (or
603 * does anything else that results in unbalanced calls to the irq_enter()
604 * and irq_exit() functions), RCU will give you what you deserve, good
605 * and hard. But very infrequently and irreproducibly.
607 * Use things like work queues to work around this limitation.
609 * You have been warned.
611 void rcu_irq_enter(void)
614 struct rcu_dynticks
*rdtp
;
617 local_irq_save(flags
);
618 rdtp
= &__get_cpu_var(rcu_dynticks
);
619 oldval
= rdtp
->dynticks_nesting
;
620 rdtp
->dynticks_nesting
++;
621 WARN_ON_ONCE(rdtp
->dynticks_nesting
== 0);
623 trace_rcu_dyntick("++=", oldval
, rdtp
->dynticks_nesting
);
625 rcu_eqs_exit_common(rdtp
, oldval
, true);
626 local_irq_restore(flags
);
630 * rcu_nmi_enter - inform RCU of entry to NMI context
632 * If the CPU was idle with dynamic ticks active, and there is no
633 * irq handler running, this updates rdtp->dynticks_nmi to let the
634 * RCU grace-period handling know that the CPU is active.
636 void rcu_nmi_enter(void)
638 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
640 if (rdtp
->dynticks_nmi_nesting
== 0 &&
641 (atomic_read(&rdtp
->dynticks
) & 0x1))
643 rdtp
->dynticks_nmi_nesting
++;
644 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
645 atomic_inc(&rdtp
->dynticks
);
646 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
647 smp_mb__after_atomic_inc(); /* See above. */
648 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
652 * rcu_nmi_exit - inform RCU of exit from NMI context
654 * If the CPU was idle with dynamic ticks active, and there is no
655 * irq handler running, this updates rdtp->dynticks_nmi to let the
656 * RCU grace-period handling know that the CPU is no longer active.
658 void rcu_nmi_exit(void)
660 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
662 if (rdtp
->dynticks_nmi_nesting
== 0 ||
663 --rdtp
->dynticks_nmi_nesting
!= 0)
665 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
666 smp_mb__before_atomic_inc(); /* See above. */
667 atomic_inc(&rdtp
->dynticks
);
668 smp_mb__after_atomic_inc(); /* Force delay to next write. */
669 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
673 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
675 * If the current CPU is in its idle loop and is neither in an interrupt
676 * or NMI handler, return true.
678 int rcu_is_cpu_idle(void)
683 ret
= (atomic_read(&__get_cpu_var(rcu_dynticks
).dynticks
) & 0x1) == 0;
687 EXPORT_SYMBOL(rcu_is_cpu_idle
);
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
712 bool rcu_lockdep_current_cpu_online(void)
714 struct rcu_data
*rdp
;
715 struct rcu_node
*rnp
;
721 rdp
= &__get_cpu_var(rcu_sched_data
);
723 ret
= (rdp
->grpmask
& rnp
->qsmaskinit
) ||
724 !rcu_scheduler_fully_active
;
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
739 static int rcu_is_cpu_rrupt_from_idle(void)
741 return __get_cpu_var(rcu_dynticks
).dynticks_nesting
<= 1;
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
747 * is in dynticks idle mode, which is an extended quiescent state.
749 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
751 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
752 return (rdp
->dynticks_snap
& 0x1) == 0;
756 * Return true if the specified CPU has passed through a quiescent
757 * state by virtue of being in or having passed through an dynticks
758 * idle state since the last call to dyntick_save_progress_counter()
759 * for this same CPU, or by virtue of having been offline.
761 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
766 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
767 snap
= (unsigned int)rdp
->dynticks_snap
;
770 * If the CPU passed through or entered a dynticks idle phase with
771 * no active irq/NMI handlers, then we can safely pretend that the CPU
772 * already acknowledged the request to pass through a quiescent
773 * state. Either way, that CPU cannot possibly be in an RCU
774 * read-side critical section that started before the beginning
775 * of the current RCU grace period.
777 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
778 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "dti");
784 * Check for the CPU being offline, but only if the grace period
785 * is old enough. We don't need to worry about the CPU changing
786 * state: If we see it offline even once, it has been through a
789 * The reason for insisting that the grace period be at least
790 * one jiffy old is that CPUs that are not quite online and that
791 * have just gone offline can still execute RCU read-side critical
794 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
795 return 0; /* Grace period is not old enough. */
797 if (cpu_is_offline(rdp
->cpu
)) {
798 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "ofl");
804 * There is a possibility that a CPU in adaptive-ticks state
805 * might run in the kernel with the scheduling-clock tick disabled
806 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
807 * force the CPU to restart the scheduling-clock tick in this
808 * CPU is in this state.
810 rcu_kick_nohz_cpu(rdp
->cpu
);
815 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
817 rsp
->gp_start
= jiffies
;
818 rsp
->jiffies_stall
= jiffies
+ rcu_jiffies_till_stall_check();
822 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
823 * for architectures that do not implement trigger_all_cpu_backtrace().
824 * The NMI-triggered stack traces are more accurate because they are
825 * printed by the target CPU.
827 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
831 struct rcu_node
*rnp
;
833 rcu_for_each_leaf_node(rsp
, rnp
) {
834 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
835 if (rnp
->qsmask
!= 0) {
836 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
837 if (rnp
->qsmask
& (1UL << cpu
))
838 dump_cpu_task(rnp
->grplo
+ cpu
);
840 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
844 static void print_other_cpu_stall(struct rcu_state
*rsp
)
850 struct rcu_node
*rnp
= rcu_get_root(rsp
);
853 /* Only let one CPU complain about others per time interval. */
855 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
856 delta
= jiffies
- rsp
->jiffies_stall
;
857 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
858 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
861 rsp
->jiffies_stall
= jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3;
862 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
865 * OK, time to rat on our buddy...
866 * See Documentation/RCU/stallwarn.txt for info on how to debug
867 * RCU CPU stall warnings.
869 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks:",
871 print_cpu_stall_info_begin();
872 rcu_for_each_leaf_node(rsp
, rnp
) {
873 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
874 ndetected
+= rcu_print_task_stall(rnp
);
875 if (rnp
->qsmask
!= 0) {
876 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
877 if (rnp
->qsmask
& (1UL << cpu
)) {
878 print_cpu_stall_info(rsp
,
883 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
887 * Now rat on any tasks that got kicked up to the root rcu_node
888 * due to CPU offlining.
890 rnp
= rcu_get_root(rsp
);
891 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
892 ndetected
+= rcu_print_task_stall(rnp
);
893 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
895 print_cpu_stall_info_end();
896 for_each_possible_cpu(cpu
)
897 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
898 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
899 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
900 rsp
->gpnum
, rsp
->completed
, totqlen
);
902 printk(KERN_ERR
"INFO: Stall ended before state dump start\n");
903 else if (!trigger_all_cpu_backtrace())
904 rcu_dump_cpu_stacks(rsp
);
906 /* Complain about tasks blocking the grace period. */
908 rcu_print_detail_task_stall(rsp
);
910 force_quiescent_state(rsp
); /* Kick them all. */
913 static void print_cpu_stall(struct rcu_state
*rsp
)
917 struct rcu_node
*rnp
= rcu_get_root(rsp
);
921 * OK, time to rat on ourselves...
922 * See Documentation/RCU/stallwarn.txt for info on how to debug
923 * RCU CPU stall warnings.
925 printk(KERN_ERR
"INFO: %s self-detected stall on CPU", rsp
->name
);
926 print_cpu_stall_info_begin();
927 print_cpu_stall_info(rsp
, smp_processor_id());
928 print_cpu_stall_info_end();
929 for_each_possible_cpu(cpu
)
930 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
931 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
932 jiffies
- rsp
->gp_start
, rsp
->gpnum
, rsp
->completed
, totqlen
);
933 if (!trigger_all_cpu_backtrace())
936 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
937 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
938 rsp
->jiffies_stall
= jiffies
+
939 3 * rcu_jiffies_till_stall_check() + 3;
940 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
942 set_need_resched(); /* kick ourselves to get things going. */
945 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
949 struct rcu_node
*rnp
;
951 if (rcu_cpu_stall_suppress
)
953 j
= ACCESS_ONCE(jiffies
);
954 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
956 if (rcu_gp_in_progress(rsp
) &&
957 (ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
959 /* We haven't checked in, so go dump stack. */
960 print_cpu_stall(rsp
);
962 } else if (rcu_gp_in_progress(rsp
) &&
963 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
965 /* They had a few time units to dump stack, so complain. */
966 print_other_cpu_stall(rsp
);
971 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
973 * Set the stall-warning timeout way off into the future, thus preventing
974 * any RCU CPU stall-warning messages from appearing in the current set of
977 * The caller must disable hard irqs.
979 void rcu_cpu_stall_reset(void)
981 struct rcu_state
*rsp
;
983 for_each_rcu_flavor(rsp
)
984 rsp
->jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
988 * Update CPU-local rcu_data state to record the newly noticed grace period.
989 * This is used both when we started the grace period and when we notice
990 * that someone else started the grace period. The caller must hold the
991 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
992 * and must have irqs disabled.
994 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
996 if (rdp
->gpnum
!= rnp
->gpnum
) {
998 * If the current grace period is waiting for this CPU,
999 * set up to detect a quiescent state, otherwise don't
1000 * go looking for one.
1002 rdp
->gpnum
= rnp
->gpnum
;
1003 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpustart");
1004 rdp
->passed_quiesce
= 0;
1005 rdp
->qs_pending
= !!(rnp
->qsmask
& rdp
->grpmask
);
1006 zero_cpu_stall_ticks(rdp
);
1010 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1012 unsigned long flags
;
1013 struct rcu_node
*rnp
;
1015 local_irq_save(flags
);
1017 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
1018 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
1019 local_irq_restore(flags
);
1022 __note_new_gpnum(rsp
, rnp
, rdp
);
1023 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1027 * Did someone else start a new RCU grace period start since we last
1028 * checked? Update local state appropriately if so. Must be called
1029 * on the CPU corresponding to rdp.
1032 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1034 unsigned long flags
;
1037 local_irq_save(flags
);
1038 if (rdp
->gpnum
!= rsp
->gpnum
) {
1039 note_new_gpnum(rsp
, rdp
);
1042 local_irq_restore(flags
);
1047 * Initialize the specified rcu_data structure's callback list to empty.
1049 static void init_callback_list(struct rcu_data
*rdp
)
1053 if (init_nocb_callback_list(rdp
))
1055 rdp
->nxtlist
= NULL
;
1056 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1057 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1061 * Determine the value that ->completed will have at the end of the
1062 * next subsequent grace period. This is used to tag callbacks so that
1063 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1064 * been dyntick-idle for an extended period with callbacks under the
1065 * influence of RCU_FAST_NO_HZ.
1067 * The caller must hold rnp->lock with interrupts disabled.
1069 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1070 struct rcu_node
*rnp
)
1073 * If RCU is idle, we just wait for the next grace period.
1074 * But we can only be sure that RCU is idle if we are looking
1075 * at the root rcu_node structure -- otherwise, a new grace
1076 * period might have started, but just not yet gotten around
1077 * to initializing the current non-root rcu_node structure.
1079 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1080 return rnp
->completed
+ 1;
1083 * Otherwise, wait for a possible partial grace period and
1084 * then the subsequent full grace period.
1086 return rnp
->completed
+ 2;
1090 * Trace-event helper function for rcu_start_future_gp() and
1091 * rcu_nocb_wait_gp().
1093 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1094 unsigned long c
, char *s
)
1096 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1097 rnp
->completed
, c
, rnp
->level
,
1098 rnp
->grplo
, rnp
->grphi
, s
);
1102 * Start some future grace period, as needed to handle newly arrived
1103 * callbacks. The required future grace periods are recorded in each
1104 * rcu_node structure's ->need_future_gp field.
1106 * The caller must hold the specified rcu_node structure's ->lock.
1108 static unsigned long __maybe_unused
1109 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1113 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1116 * Pick up grace-period number for new callbacks. If this
1117 * grace period is already marked as needed, return to the caller.
1119 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1120 trace_rcu_future_gp(rnp
, rdp
, c
, "Startleaf");
1121 if (rnp
->need_future_gp
[c
& 0x1]) {
1122 trace_rcu_future_gp(rnp
, rdp
, c
, "Prestartleaf");
1127 * If either this rcu_node structure or the root rcu_node structure
1128 * believe that a grace period is in progress, then we must wait
1129 * for the one following, which is in "c". Because our request
1130 * will be noticed at the end of the current grace period, we don't
1131 * need to explicitly start one.
1133 if (rnp
->gpnum
!= rnp
->completed
||
1134 ACCESS_ONCE(rnp
->gpnum
) != ACCESS_ONCE(rnp
->completed
)) {
1135 rnp
->need_future_gp
[c
& 0x1]++;
1136 trace_rcu_future_gp(rnp
, rdp
, c
, "Startedleaf");
1141 * There might be no grace period in progress. If we don't already
1142 * hold it, acquire the root rcu_node structure's lock in order to
1143 * start one (if needed).
1145 if (rnp
!= rnp_root
)
1146 raw_spin_lock(&rnp_root
->lock
);
1149 * Get a new grace-period number. If there really is no grace
1150 * period in progress, it will be smaller than the one we obtained
1151 * earlier. Adjust callbacks as needed. Note that even no-CBs
1152 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1154 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1155 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1156 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1157 rdp
->nxtcompleted
[i
] = c
;
1160 * If the needed for the required grace period is already
1161 * recorded, trace and leave.
1163 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1164 trace_rcu_future_gp(rnp
, rdp
, c
, "Prestartedroot");
1168 /* Record the need for the future grace period. */
1169 rnp_root
->need_future_gp
[c
& 0x1]++;
1171 /* If a grace period is not already in progress, start one. */
1172 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1173 trace_rcu_future_gp(rnp
, rdp
, c
, "Startedleafroot");
1175 trace_rcu_future_gp(rnp
, rdp
, c
, "Startedroot");
1176 rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1179 if (rnp
!= rnp_root
)
1180 raw_spin_unlock(&rnp_root
->lock
);
1185 * Clean up any old requests for the just-ended grace period. Also return
1186 * whether any additional grace periods have been requested. Also invoke
1187 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1188 * waiting for this grace period to complete.
1190 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1192 int c
= rnp
->completed
;
1194 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1196 rcu_nocb_gp_cleanup(rsp
, rnp
);
1197 rnp
->need_future_gp
[c
& 0x1] = 0;
1198 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1199 trace_rcu_future_gp(rnp
, rdp
, c
, needmore
? "CleanupMore" : "Cleanup");
1204 * If there is room, assign a ->completed number to any callbacks on
1205 * this CPU that have not already been assigned. Also accelerate any
1206 * callbacks that were previously assigned a ->completed number that has
1207 * since proven to be too conservative, which can happen if callbacks get
1208 * assigned a ->completed number while RCU is idle, but with reference to
1209 * a non-root rcu_node structure. This function is idempotent, so it does
1210 * not hurt to call it repeatedly.
1212 * The caller must hold rnp->lock with interrupts disabled.
1214 static void rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1215 struct rcu_data
*rdp
)
1220 /* If the CPU has no callbacks, nothing to do. */
1221 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1225 * Starting from the sublist containing the callbacks most
1226 * recently assigned a ->completed number and working down, find the
1227 * first sublist that is not assignable to an upcoming grace period.
1228 * Such a sublist has something in it (first two tests) and has
1229 * a ->completed number assigned that will complete sooner than
1230 * the ->completed number for newly arrived callbacks (last test).
1232 * The key point is that any later sublist can be assigned the
1233 * same ->completed number as the newly arrived callbacks, which
1234 * means that the callbacks in any of these later sublist can be
1235 * grouped into a single sublist, whether or not they have already
1236 * been assigned a ->completed number.
1238 c
= rcu_cbs_completed(rsp
, rnp
);
1239 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1240 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1241 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1245 * If there are no sublist for unassigned callbacks, leave.
1246 * At the same time, advance "i" one sublist, so that "i" will
1247 * index into the sublist where all the remaining callbacks should
1250 if (++i
>= RCU_NEXT_TAIL
)
1254 * Assign all subsequent callbacks' ->completed number to the next
1255 * full grace period and group them all in the sublist initially
1258 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1259 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1260 rdp
->nxtcompleted
[i
] = c
;
1262 /* Record any needed additional grace periods. */
1263 rcu_start_future_gp(rnp
, rdp
);
1265 /* Trace depending on how much we were able to accelerate. */
1266 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1267 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "AccWaitCB");
1269 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "AccReadyCB");
1273 * Move any callbacks whose grace period has completed to the
1274 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1275 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1276 * sublist. This function is idempotent, so it does not hurt to
1277 * invoke it repeatedly. As long as it is not invoked -too- often...
1279 * The caller must hold rnp->lock with interrupts disabled.
1281 static void rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1282 struct rcu_data
*rdp
)
1286 /* If the CPU has no callbacks, nothing to do. */
1287 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1291 * Find all callbacks whose ->completed numbers indicate that they
1292 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1294 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1295 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1297 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1299 /* Clean up any sublist tail pointers that were misordered above. */
1300 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1301 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1303 /* Copy down callbacks to fill in empty sublists. */
1304 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1305 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1307 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1308 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1311 /* Classify any remaining callbacks. */
1312 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1316 * Advance this CPU's callbacks, but only if the current grace period
1317 * has ended. This may be called only from the CPU to whom the rdp
1318 * belongs. In addition, the corresponding leaf rcu_node structure's
1319 * ->lock must be held by the caller, with irqs disabled.
1322 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1324 /* Did another grace period end? */
1325 if (rdp
->completed
== rnp
->completed
) {
1327 /* No, so just accelerate recent callbacks. */
1328 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1332 /* Advance callbacks. */
1333 rcu_advance_cbs(rsp
, rnp
, rdp
);
1335 /* Remember that we saw this grace-period completion. */
1336 rdp
->completed
= rnp
->completed
;
1337 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuend");
1340 * If we were in an extended quiescent state, we may have
1341 * missed some grace periods that others CPUs handled on
1342 * our behalf. Catch up with this state to avoid noting
1343 * spurious new grace periods. If another grace period
1344 * has started, then rnp->gpnum will have advanced, so
1345 * we will detect this later on. Of course, any quiescent
1346 * states we found for the old GP are now invalid.
1348 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
)) {
1349 rdp
->gpnum
= rdp
->completed
;
1350 rdp
->passed_quiesce
= 0;
1354 * If RCU does not need a quiescent state from this CPU,
1355 * then make sure that this CPU doesn't go looking for one.
1357 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
1358 rdp
->qs_pending
= 0;
1363 * Advance this CPU's callbacks, but only if the current grace period
1364 * has ended. This may be called only from the CPU to whom the rdp
1368 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1370 unsigned long flags
;
1371 struct rcu_node
*rnp
;
1373 local_irq_save(flags
);
1375 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
1376 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
1377 local_irq_restore(flags
);
1380 __rcu_process_gp_end(rsp
, rnp
, rdp
);
1381 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1385 * Do per-CPU grace-period initialization for running CPU. The caller
1386 * must hold the lock of the leaf rcu_node structure corresponding to
1390 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1392 /* Prior grace period ended, so advance callbacks for current CPU. */
1393 __rcu_process_gp_end(rsp
, rnp
, rdp
);
1395 /* Set state so that this CPU will detect the next quiescent state. */
1396 __note_new_gpnum(rsp
, rnp
, rdp
);
1400 * Initialize a new grace period.
1402 static int rcu_gp_init(struct rcu_state
*rsp
)
1404 struct rcu_data
*rdp
;
1405 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1407 raw_spin_lock_irq(&rnp
->lock
);
1408 rsp
->gp_flags
= 0; /* Clear all flags: New grace period. */
1410 if (rcu_gp_in_progress(rsp
)) {
1411 /* Grace period already in progress, don't start another. */
1412 raw_spin_unlock_irq(&rnp
->lock
);
1416 /* Advance to a new grace period and initialize state. */
1418 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, "start");
1419 record_gp_stall_check_time(rsp
);
1420 raw_spin_unlock_irq(&rnp
->lock
);
1422 /* Exclude any concurrent CPU-hotplug operations. */
1423 mutex_lock(&rsp
->onoff_mutex
);
1426 * Set the quiescent-state-needed bits in all the rcu_node
1427 * structures for all currently online CPUs in breadth-first order,
1428 * starting from the root rcu_node structure, relying on the layout
1429 * of the tree within the rsp->node[] array. Note that other CPUs
1430 * will access only the leaves of the hierarchy, thus seeing that no
1431 * grace period is in progress, at least until the corresponding
1432 * leaf node has been initialized. In addition, we have excluded
1433 * CPU-hotplug operations.
1435 * The grace period cannot complete until the initialization
1436 * process finishes, because this kthread handles both.
1438 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1439 raw_spin_lock_irq(&rnp
->lock
);
1440 rdp
= this_cpu_ptr(rsp
->rda
);
1441 rcu_preempt_check_blocked_tasks(rnp
);
1442 rnp
->qsmask
= rnp
->qsmaskinit
;
1443 ACCESS_ONCE(rnp
->gpnum
) = rsp
->gpnum
;
1444 WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
);
1445 ACCESS_ONCE(rnp
->completed
) = rsp
->completed
;
1446 if (rnp
== rdp
->mynode
)
1447 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
1448 rcu_preempt_boost_start_gp(rnp
);
1449 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
1450 rnp
->level
, rnp
->grplo
,
1451 rnp
->grphi
, rnp
->qsmask
);
1452 raw_spin_unlock_irq(&rnp
->lock
);
1453 #ifdef CONFIG_PROVE_RCU_DELAY
1454 if ((prandom_u32() % (rcu_num_nodes
* 8)) == 0 &&
1455 system_state
== SYSTEM_RUNNING
)
1456 schedule_timeout_uninterruptible(2);
1457 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1461 mutex_unlock(&rsp
->onoff_mutex
);
1466 * Do one round of quiescent-state forcing.
1468 int rcu_gp_fqs(struct rcu_state
*rsp
, int fqs_state_in
)
1470 int fqs_state
= fqs_state_in
;
1471 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1474 if (fqs_state
== RCU_SAVE_DYNTICK
) {
1475 /* Collect dyntick-idle snapshots. */
1476 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1477 fqs_state
= RCU_FORCE_QS
;
1479 /* Handle dyntick-idle and offline CPUs. */
1480 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1482 /* Clear flag to prevent immediate re-entry. */
1483 if (ACCESS_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
1484 raw_spin_lock_irq(&rnp
->lock
);
1485 rsp
->gp_flags
&= ~RCU_GP_FLAG_FQS
;
1486 raw_spin_unlock_irq(&rnp
->lock
);
1492 * Clean up after the old grace period.
1494 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
1496 unsigned long gp_duration
;
1498 struct rcu_data
*rdp
;
1499 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1501 raw_spin_lock_irq(&rnp
->lock
);
1502 gp_duration
= jiffies
- rsp
->gp_start
;
1503 if (gp_duration
> rsp
->gp_max
)
1504 rsp
->gp_max
= gp_duration
;
1507 * We know the grace period is complete, but to everyone else
1508 * it appears to still be ongoing. But it is also the case
1509 * that to everyone else it looks like there is nothing that
1510 * they can do to advance the grace period. It is therefore
1511 * safe for us to drop the lock in order to mark the grace
1512 * period as completed in all of the rcu_node structures.
1514 raw_spin_unlock_irq(&rnp
->lock
);
1517 * Propagate new ->completed value to rcu_node structures so
1518 * that other CPUs don't have to wait until the start of the next
1519 * grace period to process their callbacks. This also avoids
1520 * some nasty RCU grace-period initialization races by forcing
1521 * the end of the current grace period to be completely recorded in
1522 * all of the rcu_node structures before the beginning of the next
1523 * grace period is recorded in any of the rcu_node structures.
1525 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1526 raw_spin_lock_irq(&rnp
->lock
);
1527 ACCESS_ONCE(rnp
->completed
) = rsp
->gpnum
;
1528 rdp
= this_cpu_ptr(rsp
->rda
);
1529 if (rnp
== rdp
->mynode
)
1530 __rcu_process_gp_end(rsp
, rnp
, rdp
);
1531 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
1532 raw_spin_unlock_irq(&rnp
->lock
);
1535 rnp
= rcu_get_root(rsp
);
1536 raw_spin_lock_irq(&rnp
->lock
);
1537 rcu_nocb_gp_set(rnp
, nocb
);
1539 rsp
->completed
= rsp
->gpnum
; /* Declare grace period done. */
1540 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, "end");
1541 rsp
->fqs_state
= RCU_GP_IDLE
;
1542 rdp
= this_cpu_ptr(rsp
->rda
);
1543 rcu_advance_cbs(rsp
, rnp
, rdp
); /* Reduce false positives below. */
1544 if (cpu_needs_another_gp(rsp
, rdp
))
1546 raw_spin_unlock_irq(&rnp
->lock
);
1550 * Body of kthread that handles grace periods.
1552 static int __noreturn
rcu_gp_kthread(void *arg
)
1557 struct rcu_state
*rsp
= arg
;
1558 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1562 /* Handle grace-period start. */
1564 wait_event_interruptible(rsp
->gp_wq
,
1567 if ((rsp
->gp_flags
& RCU_GP_FLAG_INIT
) &&
1571 flush_signals(current
);
1574 /* Handle quiescent-state forcing. */
1575 fqs_state
= RCU_SAVE_DYNTICK
;
1576 j
= jiffies_till_first_fqs
;
1579 jiffies_till_first_fqs
= HZ
;
1582 rsp
->jiffies_force_qs
= jiffies
+ j
;
1583 ret
= wait_event_interruptible_timeout(rsp
->gp_wq
,
1584 (rsp
->gp_flags
& RCU_GP_FLAG_FQS
) ||
1585 (!ACCESS_ONCE(rnp
->qsmask
) &&
1586 !rcu_preempt_blocked_readers_cgp(rnp
)),
1588 /* If grace period done, leave loop. */
1589 if (!ACCESS_ONCE(rnp
->qsmask
) &&
1590 !rcu_preempt_blocked_readers_cgp(rnp
))
1592 /* If time for quiescent-state forcing, do it. */
1593 if (ret
== 0 || (rsp
->gp_flags
& RCU_GP_FLAG_FQS
)) {
1594 fqs_state
= rcu_gp_fqs(rsp
, fqs_state
);
1597 /* Deal with stray signal. */
1599 flush_signals(current
);
1601 j
= jiffies_till_next_fqs
;
1604 jiffies_till_next_fqs
= HZ
;
1607 jiffies_till_next_fqs
= 1;
1611 /* Handle grace-period end. */
1612 rcu_gp_cleanup(rsp
);
1617 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1618 * in preparation for detecting the next grace period. The caller must hold
1619 * the root node's ->lock and hard irqs must be disabled.
1621 * Note that it is legal for a dying CPU (which is marked as offline) to
1622 * invoke this function. This can happen when the dying CPU reports its
1626 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1627 struct rcu_data
*rdp
)
1629 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
1631 * Either we have not yet spawned the grace-period
1632 * task, this CPU does not need another grace period,
1633 * or a grace period is already in progress.
1634 * Either way, don't start a new grace period.
1638 rsp
->gp_flags
= RCU_GP_FLAG_INIT
;
1640 /* Wake up rcu_gp_kthread() to start the grace period. */
1641 wake_up(&rsp
->gp_wq
);
1645 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1646 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1647 * is invoked indirectly from rcu_advance_cbs(), which would result in
1648 * endless recursion -- or would do so if it wasn't for the self-deadlock
1649 * that is encountered beforehand.
1652 rcu_start_gp(struct rcu_state
*rsp
)
1654 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1655 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1658 * If there is no grace period in progress right now, any
1659 * callbacks we have up to this point will be satisfied by the
1660 * next grace period. Also, advancing the callbacks reduces the
1661 * probability of false positives from cpu_needs_another_gp()
1662 * resulting in pointless grace periods. So, advance callbacks
1663 * then start the grace period!
1665 rcu_advance_cbs(rsp
, rnp
, rdp
);
1666 rcu_start_gp_advanced(rsp
, rnp
, rdp
);
1670 * Report a full set of quiescent states to the specified rcu_state
1671 * data structure. This involves cleaning up after the prior grace
1672 * period and letting rcu_start_gp() start up the next grace period
1673 * if one is needed. Note that the caller must hold rnp->lock, which
1674 * is released before return.
1676 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
1677 __releases(rcu_get_root(rsp
)->lock
)
1679 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
1680 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
1681 wake_up(&rsp
->gp_wq
); /* Memory barrier implied by wake_up() path. */
1685 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1686 * Allows quiescent states for a group of CPUs to be reported at one go
1687 * to the specified rcu_node structure, though all the CPUs in the group
1688 * must be represented by the same rcu_node structure (which need not be
1689 * a leaf rcu_node structure, though it often will be). That structure's
1690 * lock must be held upon entry, and it is released before return.
1693 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
1694 struct rcu_node
*rnp
, unsigned long flags
)
1695 __releases(rnp
->lock
)
1697 struct rcu_node
*rnp_c
;
1699 /* Walk up the rcu_node hierarchy. */
1701 if (!(rnp
->qsmask
& mask
)) {
1703 /* Our bit has already been cleared, so done. */
1704 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1707 rnp
->qsmask
&= ~mask
;
1708 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
1709 mask
, rnp
->qsmask
, rnp
->level
,
1710 rnp
->grplo
, rnp
->grphi
,
1712 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
1714 /* Other bits still set at this level, so done. */
1715 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1718 mask
= rnp
->grpmask
;
1719 if (rnp
->parent
== NULL
) {
1721 /* No more levels. Exit loop holding root lock. */
1725 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1728 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1729 WARN_ON_ONCE(rnp_c
->qsmask
);
1733 * Get here if we are the last CPU to pass through a quiescent
1734 * state for this grace period. Invoke rcu_report_qs_rsp()
1735 * to clean up and start the next grace period if one is needed.
1737 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
1741 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1742 * structure. This must be either called from the specified CPU, or
1743 * called when the specified CPU is known to be offline (and when it is
1744 * also known that no other CPU is concurrently trying to help the offline
1745 * CPU). The lastcomp argument is used to make sure we are still in the
1746 * grace period of interest. We don't want to end the current grace period
1747 * based on quiescent states detected in an earlier grace period!
1750 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1752 unsigned long flags
;
1754 struct rcu_node
*rnp
;
1757 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1758 if (rdp
->passed_quiesce
== 0 || rdp
->gpnum
!= rnp
->gpnum
||
1759 rnp
->completed
== rnp
->gpnum
) {
1762 * The grace period in which this quiescent state was
1763 * recorded has ended, so don't report it upwards.
1764 * We will instead need a new quiescent state that lies
1765 * within the current grace period.
1767 rdp
->passed_quiesce
= 0; /* need qs for new gp. */
1768 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1771 mask
= rdp
->grpmask
;
1772 if ((rnp
->qsmask
& mask
) == 0) {
1773 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1775 rdp
->qs_pending
= 0;
1778 * This GP can't end until cpu checks in, so all of our
1779 * callbacks can be processed during the next GP.
1781 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1783 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1788 * Check to see if there is a new grace period of which this CPU
1789 * is not yet aware, and if so, set up local rcu_data state for it.
1790 * Otherwise, see if this CPU has just passed through its first
1791 * quiescent state for this grace period, and record that fact if so.
1794 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1796 /* If there is now a new grace period, record and return. */
1797 if (check_for_new_grace_period(rsp
, rdp
))
1801 * Does this CPU still need to do its part for current grace period?
1802 * If no, return and let the other CPUs do their part as well.
1804 if (!rdp
->qs_pending
)
1808 * Was there a quiescent state since the beginning of the grace
1809 * period? If no, then exit and wait for the next call.
1811 if (!rdp
->passed_quiesce
)
1815 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1818 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
1821 #ifdef CONFIG_HOTPLUG_CPU
1824 * Send the specified CPU's RCU callbacks to the orphanage. The
1825 * specified CPU must be offline, and the caller must hold the
1829 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
1830 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1832 /* No-CBs CPUs do not have orphanable callbacks. */
1833 if (rcu_is_nocb_cpu(rdp
->cpu
))
1837 * Orphan the callbacks. First adjust the counts. This is safe
1838 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1839 * cannot be running now. Thus no memory barrier is required.
1841 if (rdp
->nxtlist
!= NULL
) {
1842 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
1843 rsp
->qlen
+= rdp
->qlen
;
1844 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1846 ACCESS_ONCE(rdp
->qlen
) = 0;
1850 * Next, move those callbacks still needing a grace period to
1851 * the orphanage, where some other CPU will pick them up.
1852 * Some of the callbacks might have gone partway through a grace
1853 * period, but that is too bad. They get to start over because we
1854 * cannot assume that grace periods are synchronized across CPUs.
1855 * We don't bother updating the ->nxttail[] array yet, instead
1856 * we just reset the whole thing later on.
1858 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
1859 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1860 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
1861 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1865 * Then move the ready-to-invoke callbacks to the orphanage,
1866 * where some other CPU will pick them up. These will not be
1867 * required to pass though another grace period: They are done.
1869 if (rdp
->nxtlist
!= NULL
) {
1870 *rsp
->orphan_donetail
= rdp
->nxtlist
;
1871 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1874 /* Finally, initialize the rcu_data structure's list to empty. */
1875 init_callback_list(rdp
);
1879 * Adopt the RCU callbacks from the specified rcu_state structure's
1880 * orphanage. The caller must hold the ->orphan_lock.
1882 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
1885 struct rcu_data
*rdp
= __this_cpu_ptr(rsp
->rda
);
1887 /* No-CBs CPUs are handled specially. */
1888 if (rcu_nocb_adopt_orphan_cbs(rsp
, rdp
))
1891 /* Do the accounting first. */
1892 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
1893 rdp
->qlen
+= rsp
->qlen
;
1894 rdp
->n_cbs_adopted
+= rsp
->qlen
;
1895 if (rsp
->qlen_lazy
!= rsp
->qlen
)
1896 rcu_idle_count_callbacks_posted();
1901 * We do not need a memory barrier here because the only way we
1902 * can get here if there is an rcu_barrier() in flight is if
1903 * we are the task doing the rcu_barrier().
1906 /* First adopt the ready-to-invoke callbacks. */
1907 if (rsp
->orphan_donelist
!= NULL
) {
1908 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1909 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
1910 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
1911 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1912 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
1913 rsp
->orphan_donelist
= NULL
;
1914 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
1917 /* And then adopt the callbacks that still need a grace period. */
1918 if (rsp
->orphan_nxtlist
!= NULL
) {
1919 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
1920 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
1921 rsp
->orphan_nxtlist
= NULL
;
1922 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
1927 * Trace the fact that this CPU is going offline.
1929 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
1931 RCU_TRACE(unsigned long mask
);
1932 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
1933 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
1935 RCU_TRACE(mask
= rdp
->grpmask
);
1936 trace_rcu_grace_period(rsp
->name
,
1937 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
1942 * The CPU has been completely removed, and some other CPU is reporting
1943 * this fact from process context. Do the remainder of the cleanup,
1944 * including orphaning the outgoing CPU's RCU callbacks, and also
1945 * adopting them. There can only be one CPU hotplug operation at a time,
1946 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1948 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
1950 unsigned long flags
;
1952 int need_report
= 0;
1953 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1954 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
1956 /* Adjust any no-longer-needed kthreads. */
1957 rcu_boost_kthread_setaffinity(rnp
, -1);
1959 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1961 /* Exclude any attempts to start a new grace period. */
1962 mutex_lock(&rsp
->onoff_mutex
);
1963 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
1965 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1966 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
1967 rcu_adopt_orphan_cbs(rsp
);
1969 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1970 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1972 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1973 rnp
->qsmaskinit
&= ~mask
;
1974 if (rnp
->qsmaskinit
!= 0) {
1975 if (rnp
!= rdp
->mynode
)
1976 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1979 if (rnp
== rdp
->mynode
)
1980 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1982 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1983 mask
= rnp
->grpmask
;
1985 } while (rnp
!= NULL
);
1988 * We still hold the leaf rcu_node structure lock here, and
1989 * irqs are still disabled. The reason for this subterfuge is
1990 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1991 * held leads to deadlock.
1993 raw_spin_unlock(&rsp
->orphan_lock
); /* irqs remain disabled. */
1995 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1996 rcu_report_unblock_qs_rnp(rnp
, flags
);
1998 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1999 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
2000 rcu_report_exp_rnp(rsp
, rnp
, true);
2001 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2002 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2003 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2004 init_callback_list(rdp
);
2005 /* Disallow further callbacks on this CPU. */
2006 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2007 mutex_unlock(&rsp
->onoff_mutex
);
2010 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2012 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2016 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2020 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2023 * Invoke any RCU callbacks that have made it to the end of their grace
2024 * period. Thottle as specified by rdp->blimit.
2026 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2028 unsigned long flags
;
2029 struct rcu_head
*next
, *list
, **tail
;
2030 long bl
, count
, count_lazy
;
2033 /* If no callbacks are ready, just return. */
2034 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2035 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2036 trace_rcu_batch_end(rsp
->name
, 0, !!ACCESS_ONCE(rdp
->nxtlist
),
2037 need_resched(), is_idle_task(current
),
2038 rcu_is_callbacks_kthread());
2043 * Extract the list of ready callbacks, disabling to prevent
2044 * races with call_rcu() from interrupt handlers.
2046 local_irq_save(flags
);
2047 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2049 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2050 list
= rdp
->nxtlist
;
2051 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2052 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2053 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2054 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2055 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2056 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2057 local_irq_restore(flags
);
2059 /* Invoke callbacks. */
2060 count
= count_lazy
= 0;
2064 debug_rcu_head_unqueue(list
);
2065 if (__rcu_reclaim(rsp
->name
, list
))
2068 /* Stop only if limit reached and CPU has something to do. */
2069 if (++count
>= bl
&&
2071 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2075 local_irq_save(flags
);
2076 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2077 is_idle_task(current
),
2078 rcu_is_callbacks_kthread());
2080 /* Update count, and requeue any remaining callbacks. */
2082 *tail
= rdp
->nxtlist
;
2083 rdp
->nxtlist
= list
;
2084 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2085 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2086 rdp
->nxttail
[i
] = tail
;
2090 smp_mb(); /* List handling before counting for rcu_barrier(). */
2091 rdp
->qlen_lazy
-= count_lazy
;
2092 ACCESS_ONCE(rdp
->qlen
) -= count
;
2093 rdp
->n_cbs_invoked
+= count
;
2095 /* Reinstate batch limit if we have worked down the excess. */
2096 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2097 rdp
->blimit
= blimit
;
2099 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2100 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2101 rdp
->qlen_last_fqs_check
= 0;
2102 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2103 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2104 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2105 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2107 local_irq_restore(flags
);
2109 /* Re-invoke RCU core processing if there are callbacks remaining. */
2110 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2115 * Check to see if this CPU is in a non-context-switch quiescent state
2116 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2117 * Also schedule RCU core processing.
2119 * This function must be called from hardirq context. It is normally
2120 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2121 * false, there is no point in invoking rcu_check_callbacks().
2123 void rcu_check_callbacks(int cpu
, int user
)
2125 trace_rcu_utilization("Start scheduler-tick");
2126 increment_cpu_stall_ticks();
2127 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2130 * Get here if this CPU took its interrupt from user
2131 * mode or from the idle loop, and if this is not a
2132 * nested interrupt. In this case, the CPU is in
2133 * a quiescent state, so note it.
2135 * No memory barrier is required here because both
2136 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2137 * variables that other CPUs neither access nor modify,
2138 * at least not while the corresponding CPU is online.
2144 } else if (!in_softirq()) {
2147 * Get here if this CPU did not take its interrupt from
2148 * softirq, in other words, if it is not interrupting
2149 * a rcu_bh read-side critical section. This is an _bh
2150 * critical section, so note it.
2155 rcu_preempt_check_callbacks(cpu
);
2156 if (rcu_pending(cpu
))
2158 trace_rcu_utilization("End scheduler-tick");
2162 * Scan the leaf rcu_node structures, processing dyntick state for any that
2163 * have not yet encountered a quiescent state, using the function specified.
2164 * Also initiate boosting for any threads blocked on the root rcu_node.
2166 * The caller must have suppressed start of new grace periods.
2168 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
2172 unsigned long flags
;
2174 struct rcu_node
*rnp
;
2176 rcu_for_each_leaf_node(rsp
, rnp
) {
2179 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2180 if (!rcu_gp_in_progress(rsp
)) {
2181 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2184 if (rnp
->qsmask
== 0) {
2185 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
2190 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
2191 if ((rnp
->qsmask
& bit
) != 0 &&
2192 f(per_cpu_ptr(rsp
->rda
, cpu
)))
2197 /* rcu_report_qs_rnp() releases rnp->lock. */
2198 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
2201 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2203 rnp
= rcu_get_root(rsp
);
2204 if (rnp
->qsmask
== 0) {
2205 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2206 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
2211 * Force quiescent states on reluctant CPUs, and also detect which
2212 * CPUs are in dyntick-idle mode.
2214 static void force_quiescent_state(struct rcu_state
*rsp
)
2216 unsigned long flags
;
2218 struct rcu_node
*rnp
;
2219 struct rcu_node
*rnp_old
= NULL
;
2221 /* Funnel through hierarchy to reduce memory contention. */
2222 rnp
= per_cpu_ptr(rsp
->rda
, raw_smp_processor_id())->mynode
;
2223 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2224 ret
= (ACCESS_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2225 !raw_spin_trylock(&rnp
->fqslock
);
2226 if (rnp_old
!= NULL
)
2227 raw_spin_unlock(&rnp_old
->fqslock
);
2229 rsp
->n_force_qs_lh
++;
2234 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2236 /* Reached the root of the rcu_node tree, acquire lock. */
2237 raw_spin_lock_irqsave(&rnp_old
->lock
, flags
);
2238 raw_spin_unlock(&rnp_old
->fqslock
);
2239 if (ACCESS_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2240 rsp
->n_force_qs_lh
++;
2241 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2242 return; /* Someone beat us to it. */
2244 rsp
->gp_flags
|= RCU_GP_FLAG_FQS
;
2245 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2246 wake_up(&rsp
->gp_wq
); /* Memory barrier implied by wake_up() path. */
2250 * This does the RCU core processing work for the specified rcu_state
2251 * and rcu_data structures. This may be called only from the CPU to
2252 * whom the rdp belongs.
2255 __rcu_process_callbacks(struct rcu_state
*rsp
)
2257 unsigned long flags
;
2258 struct rcu_data
*rdp
= __this_cpu_ptr(rsp
->rda
);
2260 WARN_ON_ONCE(rdp
->beenonline
== 0);
2262 /* Handle the end of a grace period that some other CPU ended. */
2263 rcu_process_gp_end(rsp
, rdp
);
2265 /* Update RCU state based on any recent quiescent states. */
2266 rcu_check_quiescent_state(rsp
, rdp
);
2268 /* Does this CPU require a not-yet-started grace period? */
2269 local_irq_save(flags
);
2270 if (cpu_needs_another_gp(rsp
, rdp
)) {
2271 raw_spin_lock(&rcu_get_root(rsp
)->lock
); /* irqs disabled. */
2273 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
2275 local_irq_restore(flags
);
2278 /* If there are callbacks ready, invoke them. */
2279 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2280 invoke_rcu_callbacks(rsp
, rdp
);
2284 * Do RCU core processing for the current CPU.
2286 static void rcu_process_callbacks(struct softirq_action
*unused
)
2288 struct rcu_state
*rsp
;
2290 if (cpu_is_offline(smp_processor_id()))
2292 trace_rcu_utilization("Start RCU core");
2293 for_each_rcu_flavor(rsp
)
2294 __rcu_process_callbacks(rsp
);
2295 trace_rcu_utilization("End RCU core");
2299 * Schedule RCU callback invocation. If the specified type of RCU
2300 * does not support RCU priority boosting, just do a direct call,
2301 * otherwise wake up the per-CPU kernel kthread. Note that because we
2302 * are running on the current CPU with interrupts disabled, the
2303 * rcu_cpu_kthread_task cannot disappear out from under us.
2305 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2307 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active
)))
2309 if (likely(!rsp
->boost
)) {
2310 rcu_do_batch(rsp
, rdp
);
2313 invoke_rcu_callbacks_kthread();
2316 static void invoke_rcu_core(void)
2318 if (cpu_online(smp_processor_id()))
2319 raise_softirq(RCU_SOFTIRQ
);
2323 * Handle any core-RCU processing required by a call_rcu() invocation.
2325 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
2326 struct rcu_head
*head
, unsigned long flags
)
2329 * If called from an extended quiescent state, invoke the RCU
2330 * core in order to force a re-evaluation of RCU's idleness.
2332 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2335 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2336 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2340 * Force the grace period if too many callbacks or too long waiting.
2341 * Enforce hysteresis, and don't invoke force_quiescent_state()
2342 * if some other CPU has recently done so. Also, don't bother
2343 * invoking force_quiescent_state() if the newly enqueued callback
2344 * is the only one waiting for a grace period to complete.
2346 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
2348 /* Are we ignoring a completed grace period? */
2349 rcu_process_gp_end(rsp
, rdp
);
2350 check_for_new_grace_period(rsp
, rdp
);
2352 /* Start a new grace period if one not already started. */
2353 if (!rcu_gp_in_progress(rsp
)) {
2354 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
2356 raw_spin_lock(&rnp_root
->lock
);
2358 raw_spin_unlock(&rnp_root
->lock
);
2360 /* Give the grace period a kick. */
2361 rdp
->blimit
= LONG_MAX
;
2362 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
2363 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
2364 force_quiescent_state(rsp
);
2365 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2366 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2372 * Helper function for call_rcu() and friends. The cpu argument will
2373 * normally be -1, indicating "currently running CPU". It may specify
2374 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2375 * is expected to specify a CPU.
2378 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
2379 struct rcu_state
*rsp
, int cpu
, bool lazy
)
2381 unsigned long flags
;
2382 struct rcu_data
*rdp
;
2384 WARN_ON_ONCE((unsigned long)head
& 0x3); /* Misaligned rcu_head! */
2385 debug_rcu_head_queue(head
);
2390 * Opportunistically note grace-period endings and beginnings.
2391 * Note that we might see a beginning right after we see an
2392 * end, but never vice versa, since this CPU has to pass through
2393 * a quiescent state betweentimes.
2395 local_irq_save(flags
);
2396 rdp
= this_cpu_ptr(rsp
->rda
);
2398 /* Add the callback to our list. */
2399 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
2403 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2404 offline
= !__call_rcu_nocb(rdp
, head
, lazy
);
2405 WARN_ON_ONCE(offline
);
2406 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2407 local_irq_restore(flags
);
2410 ACCESS_ONCE(rdp
->qlen
)++;
2414 rcu_idle_count_callbacks_posted();
2415 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2416 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
2417 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
2419 if (__is_kfree_rcu_offset((unsigned long)func
))
2420 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
2421 rdp
->qlen_lazy
, rdp
->qlen
);
2423 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
2425 /* Go handle any RCU core processing required. */
2426 __call_rcu_core(rsp
, rdp
, head
, flags
);
2427 local_irq_restore(flags
);
2431 * Queue an RCU-sched callback for invocation after a grace period.
2433 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
2435 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
2437 EXPORT_SYMBOL_GPL(call_rcu_sched
);
2440 * Queue an RCU callback for invocation after a quicker grace period.
2442 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
2444 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
2446 EXPORT_SYMBOL_GPL(call_rcu_bh
);
2449 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2450 * any blocking grace-period wait automatically implies a grace period
2451 * if there is only one CPU online at any point time during execution
2452 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2453 * occasionally incorrectly indicate that there are multiple CPUs online
2454 * when there was in fact only one the whole time, as this just adds
2455 * some overhead: RCU still operates correctly.
2457 static inline int rcu_blocking_is_gp(void)
2461 might_sleep(); /* Check for RCU read-side critical section. */
2463 ret
= num_online_cpus() <= 1;
2469 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2471 * Control will return to the caller some time after a full rcu-sched
2472 * grace period has elapsed, in other words after all currently executing
2473 * rcu-sched read-side critical sections have completed. These read-side
2474 * critical sections are delimited by rcu_read_lock_sched() and
2475 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2476 * local_irq_disable(), and so on may be used in place of
2477 * rcu_read_lock_sched().
2479 * This means that all preempt_disable code sequences, including NMI and
2480 * non-threaded hardware-interrupt handlers, in progress on entry will
2481 * have completed before this primitive returns. However, this does not
2482 * guarantee that softirq handlers will have completed, since in some
2483 * kernels, these handlers can run in process context, and can block.
2485 * Note that this guarantee implies further memory-ordering guarantees.
2486 * On systems with more than one CPU, when synchronize_sched() returns,
2487 * each CPU is guaranteed to have executed a full memory barrier since the
2488 * end of its last RCU-sched read-side critical section whose beginning
2489 * preceded the call to synchronize_sched(). In addition, each CPU having
2490 * an RCU read-side critical section that extends beyond the return from
2491 * synchronize_sched() is guaranteed to have executed a full memory barrier
2492 * after the beginning of synchronize_sched() and before the beginning of
2493 * that RCU read-side critical section. Note that these guarantees include
2494 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2495 * that are executing in the kernel.
2497 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2498 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2499 * to have executed a full memory barrier during the execution of
2500 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2501 * again only if the system has more than one CPU).
2503 * This primitive provides the guarantees made by the (now removed)
2504 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2505 * guarantees that rcu_read_lock() sections will have completed.
2506 * In "classic RCU", these two guarantees happen to be one and
2507 * the same, but can differ in realtime RCU implementations.
2509 void synchronize_sched(void)
2511 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
2512 !lock_is_held(&rcu_lock_map
) &&
2513 !lock_is_held(&rcu_sched_lock_map
),
2514 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2515 if (rcu_blocking_is_gp())
2518 synchronize_sched_expedited();
2520 wait_rcu_gp(call_rcu_sched
);
2522 EXPORT_SYMBOL_GPL(synchronize_sched
);
2525 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2527 * Control will return to the caller some time after a full rcu_bh grace
2528 * period has elapsed, in other words after all currently executing rcu_bh
2529 * read-side critical sections have completed. RCU read-side critical
2530 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2531 * and may be nested.
2533 * See the description of synchronize_sched() for more detailed information
2534 * on memory ordering guarantees.
2536 void synchronize_rcu_bh(void)
2538 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
2539 !lock_is_held(&rcu_lock_map
) &&
2540 !lock_is_held(&rcu_sched_lock_map
),
2541 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2542 if (rcu_blocking_is_gp())
2545 synchronize_rcu_bh_expedited();
2547 wait_rcu_gp(call_rcu_bh
);
2549 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
2551 static int synchronize_sched_expedited_cpu_stop(void *data
)
2554 * There must be a full memory barrier on each affected CPU
2555 * between the time that try_stop_cpus() is called and the
2556 * time that it returns.
2558 * In the current initial implementation of cpu_stop, the
2559 * above condition is already met when the control reaches
2560 * this point and the following smp_mb() is not strictly
2561 * necessary. Do smp_mb() anyway for documentation and
2562 * robustness against future implementation changes.
2564 smp_mb(); /* See above comment block. */
2569 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2571 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2572 * approach to force the grace period to end quickly. This consumes
2573 * significant time on all CPUs and is unfriendly to real-time workloads,
2574 * so is thus not recommended for any sort of common-case code. In fact,
2575 * if you are using synchronize_sched_expedited() in a loop, please
2576 * restructure your code to batch your updates, and then use a single
2577 * synchronize_sched() instead.
2579 * Note that it is illegal to call this function while holding any lock
2580 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2581 * to call this function from a CPU-hotplug notifier. Failing to observe
2582 * these restriction will result in deadlock.
2584 * This implementation can be thought of as an application of ticket
2585 * locking to RCU, with sync_sched_expedited_started and
2586 * sync_sched_expedited_done taking on the roles of the halves
2587 * of the ticket-lock word. Each task atomically increments
2588 * sync_sched_expedited_started upon entry, snapshotting the old value,
2589 * then attempts to stop all the CPUs. If this succeeds, then each
2590 * CPU will have executed a context switch, resulting in an RCU-sched
2591 * grace period. We are then done, so we use atomic_cmpxchg() to
2592 * update sync_sched_expedited_done to match our snapshot -- but
2593 * only if someone else has not already advanced past our snapshot.
2595 * On the other hand, if try_stop_cpus() fails, we check the value
2596 * of sync_sched_expedited_done. If it has advanced past our
2597 * initial snapshot, then someone else must have forced a grace period
2598 * some time after we took our snapshot. In this case, our work is
2599 * done for us, and we can simply return. Otherwise, we try again,
2600 * but keep our initial snapshot for purposes of checking for someone
2601 * doing our work for us.
2603 * If we fail too many times in a row, we fall back to synchronize_sched().
2605 void synchronize_sched_expedited(void)
2607 long firstsnap
, s
, snap
;
2609 struct rcu_state
*rsp
= &rcu_sched_state
;
2612 * If we are in danger of counter wrap, just do synchronize_sched().
2613 * By allowing sync_sched_expedited_started to advance no more than
2614 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2615 * that more than 3.5 billion CPUs would be required to force a
2616 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2617 * course be required on a 64-bit system.
2619 if (ULONG_CMP_GE((ulong
)atomic_long_read(&rsp
->expedited_start
),
2620 (ulong
)atomic_long_read(&rsp
->expedited_done
) +
2622 synchronize_sched();
2623 atomic_long_inc(&rsp
->expedited_wrap
);
2628 * Take a ticket. Note that atomic_inc_return() implies a
2629 * full memory barrier.
2631 snap
= atomic_long_inc_return(&rsp
->expedited_start
);
2634 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2637 * Each pass through the following loop attempts to force a
2638 * context switch on each CPU.
2640 while (try_stop_cpus(cpu_online_mask
,
2641 synchronize_sched_expedited_cpu_stop
,
2644 atomic_long_inc(&rsp
->expedited_tryfail
);
2646 /* Check to see if someone else did our work for us. */
2647 s
= atomic_long_read(&rsp
->expedited_done
);
2648 if (ULONG_CMP_GE((ulong
)s
, (ulong
)firstsnap
)) {
2649 /* ensure test happens before caller kfree */
2650 smp_mb__before_atomic_inc(); /* ^^^ */
2651 atomic_long_inc(&rsp
->expedited_workdone1
);
2655 /* No joy, try again later. Or just synchronize_sched(). */
2656 if (trycount
++ < 10) {
2657 udelay(trycount
* num_online_cpus());
2659 wait_rcu_gp(call_rcu_sched
);
2660 atomic_long_inc(&rsp
->expedited_normal
);
2664 /* Recheck to see if someone else did our work for us. */
2665 s
= atomic_long_read(&rsp
->expedited_done
);
2666 if (ULONG_CMP_GE((ulong
)s
, (ulong
)firstsnap
)) {
2667 /* ensure test happens before caller kfree */
2668 smp_mb__before_atomic_inc(); /* ^^^ */
2669 atomic_long_inc(&rsp
->expedited_workdone2
);
2674 * Refetching sync_sched_expedited_started allows later
2675 * callers to piggyback on our grace period. We retry
2676 * after they started, so our grace period works for them,
2677 * and they started after our first try, so their grace
2678 * period works for us.
2681 snap
= atomic_long_read(&rsp
->expedited_start
);
2682 smp_mb(); /* ensure read is before try_stop_cpus(). */
2684 atomic_long_inc(&rsp
->expedited_stoppedcpus
);
2687 * Everyone up to our most recent fetch is covered by our grace
2688 * period. Update the counter, but only if our work is still
2689 * relevant -- which it won't be if someone who started later
2690 * than we did already did their update.
2693 atomic_long_inc(&rsp
->expedited_done_tries
);
2694 s
= atomic_long_read(&rsp
->expedited_done
);
2695 if (ULONG_CMP_GE((ulong
)s
, (ulong
)snap
)) {
2696 /* ensure test happens before caller kfree */
2697 smp_mb__before_atomic_inc(); /* ^^^ */
2698 atomic_long_inc(&rsp
->expedited_done_lost
);
2701 } while (atomic_long_cmpxchg(&rsp
->expedited_done
, s
, snap
) != s
);
2702 atomic_long_inc(&rsp
->expedited_done_exit
);
2706 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
2709 * Check to see if there is any immediate RCU-related work to be done
2710 * by the current CPU, for the specified type of RCU, returning 1 if so.
2711 * The checks are in order of increasing expense: checks that can be
2712 * carried out against CPU-local state are performed first. However,
2713 * we must check for CPU stalls first, else we might not get a chance.
2715 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2717 struct rcu_node
*rnp
= rdp
->mynode
;
2719 rdp
->n_rcu_pending
++;
2721 /* Check for CPU stalls, if enabled. */
2722 check_cpu_stall(rsp
, rdp
);
2724 /* Is the RCU core waiting for a quiescent state from this CPU? */
2725 if (rcu_scheduler_fully_active
&&
2726 rdp
->qs_pending
&& !rdp
->passed_quiesce
) {
2727 rdp
->n_rp_qs_pending
++;
2728 } else if (rdp
->qs_pending
&& rdp
->passed_quiesce
) {
2729 rdp
->n_rp_report_qs
++;
2733 /* Does this CPU have callbacks ready to invoke? */
2734 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
2735 rdp
->n_rp_cb_ready
++;
2739 /* Has RCU gone idle with this CPU needing another grace period? */
2740 if (cpu_needs_another_gp(rsp
, rdp
)) {
2741 rdp
->n_rp_cpu_needs_gp
++;
2745 /* Has another RCU grace period completed? */
2746 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
2747 rdp
->n_rp_gp_completed
++;
2751 /* Has a new RCU grace period started? */
2752 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
2753 rdp
->n_rp_gp_started
++;
2758 rdp
->n_rp_need_nothing
++;
2763 * Check to see if there is any immediate RCU-related work to be done
2764 * by the current CPU, returning 1 if so. This function is part of the
2765 * RCU implementation; it is -not- an exported member of the RCU API.
2767 static int rcu_pending(int cpu
)
2769 struct rcu_state
*rsp
;
2771 for_each_rcu_flavor(rsp
)
2772 if (__rcu_pending(rsp
, per_cpu_ptr(rsp
->rda
, cpu
)))
2778 * Return true if the specified CPU has any callback. If all_lazy is
2779 * non-NULL, store an indication of whether all callbacks are lazy.
2780 * (If there are no callbacks, all of them are deemed to be lazy.)
2782 static int rcu_cpu_has_callbacks(int cpu
, bool *all_lazy
)
2786 struct rcu_data
*rdp
;
2787 struct rcu_state
*rsp
;
2789 for_each_rcu_flavor(rsp
) {
2790 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2791 if (rdp
->qlen
!= rdp
->qlen_lazy
)
2802 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2803 * the compiler is expected to optimize this away.
2805 static void _rcu_barrier_trace(struct rcu_state
*rsp
, char *s
,
2806 int cpu
, unsigned long done
)
2808 trace_rcu_barrier(rsp
->name
, s
, cpu
,
2809 atomic_read(&rsp
->barrier_cpu_count
), done
);
2813 * RCU callback function for _rcu_barrier(). If we are last, wake
2814 * up the task executing _rcu_barrier().
2816 static void rcu_barrier_callback(struct rcu_head
*rhp
)
2818 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
2819 struct rcu_state
*rsp
= rdp
->rsp
;
2821 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
2822 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->n_barrier_done
);
2823 complete(&rsp
->barrier_completion
);
2825 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->n_barrier_done
);
2830 * Called with preemption disabled, and from cross-cpu IRQ context.
2832 static void rcu_barrier_func(void *type
)
2834 struct rcu_state
*rsp
= type
;
2835 struct rcu_data
*rdp
= __this_cpu_ptr(rsp
->rda
);
2837 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->n_barrier_done
);
2838 atomic_inc(&rsp
->barrier_cpu_count
);
2839 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
2843 * Orchestrate the specified type of RCU barrier, waiting for all
2844 * RCU callbacks of the specified type to complete.
2846 static void _rcu_barrier(struct rcu_state
*rsp
)
2849 struct rcu_data
*rdp
;
2850 unsigned long snap
= ACCESS_ONCE(rsp
->n_barrier_done
);
2851 unsigned long snap_done
;
2853 _rcu_barrier_trace(rsp
, "Begin", -1, snap
);
2855 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2856 mutex_lock(&rsp
->barrier_mutex
);
2859 * Ensure that all prior references, including to ->n_barrier_done,
2860 * are ordered before the _rcu_barrier() machinery.
2862 smp_mb(); /* See above block comment. */
2865 * Recheck ->n_barrier_done to see if others did our work for us.
2866 * This means checking ->n_barrier_done for an even-to-odd-to-even
2867 * transition. The "if" expression below therefore rounds the old
2868 * value up to the next even number and adds two before comparing.
2870 snap_done
= ACCESS_ONCE(rsp
->n_barrier_done
);
2871 _rcu_barrier_trace(rsp
, "Check", -1, snap_done
);
2872 if (ULONG_CMP_GE(snap_done
, ((snap
+ 1) & ~0x1) + 2)) {
2873 _rcu_barrier_trace(rsp
, "EarlyExit", -1, snap_done
);
2874 smp_mb(); /* caller's subsequent code after above check. */
2875 mutex_unlock(&rsp
->barrier_mutex
);
2880 * Increment ->n_barrier_done to avoid duplicate work. Use
2881 * ACCESS_ONCE() to prevent the compiler from speculating
2882 * the increment to precede the early-exit check.
2884 ACCESS_ONCE(rsp
->n_barrier_done
)++;
2885 WARN_ON_ONCE((rsp
->n_barrier_done
& 0x1) != 1);
2886 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->n_barrier_done
);
2887 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2890 * Initialize the count to one rather than to zero in order to
2891 * avoid a too-soon return to zero in case of a short grace period
2892 * (or preemption of this task). Exclude CPU-hotplug operations
2893 * to ensure that no offline CPU has callbacks queued.
2895 init_completion(&rsp
->barrier_completion
);
2896 atomic_set(&rsp
->barrier_cpu_count
, 1);
2900 * Force each CPU with callbacks to register a new callback.
2901 * When that callback is invoked, we will know that all of the
2902 * corresponding CPU's preceding callbacks have been invoked.
2904 for_each_possible_cpu(cpu
) {
2905 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
2907 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2908 if (rcu_is_nocb_cpu(cpu
)) {
2909 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
2910 rsp
->n_barrier_done
);
2911 atomic_inc(&rsp
->barrier_cpu_count
);
2912 __call_rcu(&rdp
->barrier_head
, rcu_barrier_callback
,
2914 } else if (ACCESS_ONCE(rdp
->qlen
)) {
2915 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
2916 rsp
->n_barrier_done
);
2917 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
2919 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
2920 rsp
->n_barrier_done
);
2926 * Now that we have an rcu_barrier_callback() callback on each
2927 * CPU, and thus each counted, remove the initial count.
2929 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
2930 complete(&rsp
->barrier_completion
);
2932 /* Increment ->n_barrier_done to prevent duplicate work. */
2933 smp_mb(); /* Keep increment after above mechanism. */
2934 ACCESS_ONCE(rsp
->n_barrier_done
)++;
2935 WARN_ON_ONCE((rsp
->n_barrier_done
& 0x1) != 0);
2936 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->n_barrier_done
);
2937 smp_mb(); /* Keep increment before caller's subsequent code. */
2939 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2940 wait_for_completion(&rsp
->barrier_completion
);
2942 /* Other rcu_barrier() invocations can now safely proceed. */
2943 mutex_unlock(&rsp
->barrier_mutex
);
2947 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2949 void rcu_barrier_bh(void)
2951 _rcu_barrier(&rcu_bh_state
);
2953 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
2956 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2958 void rcu_barrier_sched(void)
2960 _rcu_barrier(&rcu_sched_state
);
2962 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
2965 * Do boot-time initialization of a CPU's per-CPU RCU data.
2968 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
2970 unsigned long flags
;
2971 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2972 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2974 /* Set up local state, ensuring consistent view of global state. */
2975 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2976 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
2977 init_callback_list(rdp
);
2979 ACCESS_ONCE(rdp
->qlen
) = 0;
2980 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
2981 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
2982 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
2985 rcu_boot_init_nocb_percpu_data(rdp
);
2986 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2990 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2991 * offline event can be happening at a given time. Note also that we
2992 * can accept some slop in the rsp->completed access due to the fact
2993 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2995 static void __cpuinit
2996 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
2998 unsigned long flags
;
3000 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3001 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3003 /* Exclude new grace periods. */
3004 mutex_lock(&rsp
->onoff_mutex
);
3006 /* Set up local state, ensuring consistent view of global state. */
3007 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3008 rdp
->beenonline
= 1; /* We have now been online. */
3009 rdp
->preemptible
= preemptible
;
3010 rdp
->qlen_last_fqs_check
= 0;
3011 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3012 rdp
->blimit
= blimit
;
3013 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
3014 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
3015 atomic_set(&rdp
->dynticks
->dynticks
,
3016 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
3017 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
3019 /* Add CPU to rcu_node bitmasks. */
3021 mask
= rdp
->grpmask
;
3023 /* Exclude any attempts to start a new GP on small systems. */
3024 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
3025 rnp
->qsmaskinit
|= mask
;
3026 mask
= rnp
->grpmask
;
3027 if (rnp
== rdp
->mynode
) {
3029 * If there is a grace period in progress, we will
3030 * set up to wait for it next time we run the
3033 rdp
->gpnum
= rnp
->completed
;
3034 rdp
->completed
= rnp
->completed
;
3035 rdp
->passed_quiesce
= 0;
3036 rdp
->qs_pending
= 0;
3037 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuonl");
3039 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
3041 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
3042 local_irq_restore(flags
);
3044 mutex_unlock(&rsp
->onoff_mutex
);
3047 static void __cpuinit
rcu_prepare_cpu(int cpu
)
3049 struct rcu_state
*rsp
;
3051 for_each_rcu_flavor(rsp
)
3052 rcu_init_percpu_data(cpu
, rsp
,
3053 strcmp(rsp
->name
, "rcu_preempt") == 0);
3057 * Handle CPU online/offline notification events.
3059 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
3060 unsigned long action
, void *hcpu
)
3062 long cpu
= (long)hcpu
;
3063 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
3064 struct rcu_node
*rnp
= rdp
->mynode
;
3065 struct rcu_state
*rsp
;
3067 trace_rcu_utilization("Start CPU hotplug");
3069 case CPU_UP_PREPARE
:
3070 case CPU_UP_PREPARE_FROZEN
:
3071 rcu_prepare_cpu(cpu
);
3072 rcu_prepare_kthreads(cpu
);
3075 case CPU_DOWN_FAILED
:
3076 rcu_boost_kthread_setaffinity(rnp
, -1);
3078 case CPU_DOWN_PREPARE
:
3079 rcu_boost_kthread_setaffinity(rnp
, cpu
);
3082 case CPU_DYING_FROZEN
:
3083 for_each_rcu_flavor(rsp
)
3084 rcu_cleanup_dying_cpu(rsp
);
3087 case CPU_DEAD_FROZEN
:
3088 case CPU_UP_CANCELED
:
3089 case CPU_UP_CANCELED_FROZEN
:
3090 for_each_rcu_flavor(rsp
)
3091 rcu_cleanup_dead_cpu(cpu
, rsp
);
3096 trace_rcu_utilization("End CPU hotplug");
3101 * Spawn the kthread that handles this RCU flavor's grace periods.
3103 static int __init
rcu_spawn_gp_kthread(void)
3105 unsigned long flags
;
3106 struct rcu_node
*rnp
;
3107 struct rcu_state
*rsp
;
3108 struct task_struct
*t
;
3110 for_each_rcu_flavor(rsp
) {
3111 t
= kthread_run(rcu_gp_kthread
, rsp
, rsp
->name
);
3113 rnp
= rcu_get_root(rsp
);
3114 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3115 rsp
->gp_kthread
= t
;
3116 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3117 rcu_spawn_nocb_kthreads(rsp
);
3121 early_initcall(rcu_spawn_gp_kthread
);
3124 * This function is invoked towards the end of the scheduler's initialization
3125 * process. Before this is called, the idle task might contain
3126 * RCU read-side critical sections (during which time, this idle
3127 * task is booting the system). After this function is called, the
3128 * idle tasks are prohibited from containing RCU read-side critical
3129 * sections. This function also enables RCU lockdep checking.
3131 void rcu_scheduler_starting(void)
3133 WARN_ON(num_online_cpus() != 1);
3134 WARN_ON(nr_context_switches() > 0);
3135 rcu_scheduler_active
= 1;
3139 * Compute the per-level fanout, either using the exact fanout specified
3140 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3142 #ifdef CONFIG_RCU_FANOUT_EXACT
3143 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
3147 for (i
= rcu_num_lvls
- 1; i
> 0; i
--)
3148 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
3149 rsp
->levelspread
[0] = rcu_fanout_leaf
;
3151 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3152 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
3159 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
3160 ccur
= rsp
->levelcnt
[i
];
3161 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
3165 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3168 * Helper function for rcu_init() that initializes one rcu_state structure.
3170 static void __init
rcu_init_one(struct rcu_state
*rsp
,
3171 struct rcu_data __percpu
*rda
)
3173 static char *buf
[] = { "rcu_node_0",
3176 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3177 static char *fqs
[] = { "rcu_node_fqs_0",
3180 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3184 struct rcu_node
*rnp
;
3186 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
3188 /* Silence gcc 4.8 warning about array index out of range. */
3189 if (rcu_num_lvls
> RCU_NUM_LVLS
)
3190 panic("rcu_init_one: rcu_num_lvls overflow");
3192 /* Initialize the level-tracking arrays. */
3194 for (i
= 0; i
< rcu_num_lvls
; i
++)
3195 rsp
->levelcnt
[i
] = num_rcu_lvl
[i
];
3196 for (i
= 1; i
< rcu_num_lvls
; i
++)
3197 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
3198 rcu_init_levelspread(rsp
);
3200 /* Initialize the elements themselves, starting from the leaves. */
3202 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
3203 cpustride
*= rsp
->levelspread
[i
];
3204 rnp
= rsp
->level
[i
];
3205 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
3206 raw_spin_lock_init(&rnp
->lock
);
3207 lockdep_set_class_and_name(&rnp
->lock
,
3208 &rcu_node_class
[i
], buf
[i
]);
3209 raw_spin_lock_init(&rnp
->fqslock
);
3210 lockdep_set_class_and_name(&rnp
->fqslock
,
3211 &rcu_fqs_class
[i
], fqs
[i
]);
3212 rnp
->gpnum
= rsp
->gpnum
;
3213 rnp
->completed
= rsp
->completed
;
3215 rnp
->qsmaskinit
= 0;
3216 rnp
->grplo
= j
* cpustride
;
3217 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
3218 if (rnp
->grphi
>= NR_CPUS
)
3219 rnp
->grphi
= NR_CPUS
- 1;
3225 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
3226 rnp
->grpmask
= 1UL << rnp
->grpnum
;
3227 rnp
->parent
= rsp
->level
[i
- 1] +
3228 j
/ rsp
->levelspread
[i
- 1];
3231 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
3232 rcu_init_one_nocb(rnp
);
3237 init_waitqueue_head(&rsp
->gp_wq
);
3238 rnp
= rsp
->level
[rcu_num_lvls
- 1];
3239 for_each_possible_cpu(i
) {
3240 while (i
> rnp
->grphi
)
3242 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
3243 rcu_boot_init_percpu_data(i
, rsp
);
3245 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
3249 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3250 * replace the definitions in rcutree.h because those are needed to size
3251 * the ->node array in the rcu_state structure.
3253 static void __init
rcu_init_geometry(void)
3258 int rcu_capacity
[MAX_RCU_LVLS
+ 1];
3260 /* If the compile-time values are accurate, just leave. */
3261 if (rcu_fanout_leaf
== CONFIG_RCU_FANOUT_LEAF
&&
3262 nr_cpu_ids
== NR_CPUS
)
3266 * Compute number of nodes that can be handled an rcu_node tree
3267 * with the given number of levels. Setting rcu_capacity[0] makes
3268 * some of the arithmetic easier.
3270 rcu_capacity
[0] = 1;
3271 rcu_capacity
[1] = rcu_fanout_leaf
;
3272 for (i
= 2; i
<= MAX_RCU_LVLS
; i
++)
3273 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * CONFIG_RCU_FANOUT
;
3276 * The boot-time rcu_fanout_leaf parameter is only permitted
3277 * to increase the leaf-level fanout, not decrease it. Of course,
3278 * the leaf-level fanout cannot exceed the number of bits in
3279 * the rcu_node masks. Finally, the tree must be able to accommodate
3280 * the configured number of CPUs. Complain and fall back to the
3281 * compile-time values if these limits are exceeded.
3283 if (rcu_fanout_leaf
< CONFIG_RCU_FANOUT_LEAF
||
3284 rcu_fanout_leaf
> sizeof(unsigned long) * 8 ||
3285 n
> rcu_capacity
[MAX_RCU_LVLS
]) {
3290 /* Calculate the number of rcu_nodes at each level of the tree. */
3291 for (i
= 1; i
<= MAX_RCU_LVLS
; i
++)
3292 if (n
<= rcu_capacity
[i
]) {
3293 for (j
= 0; j
<= i
; j
++)
3295 DIV_ROUND_UP(n
, rcu_capacity
[i
- j
]);
3297 for (j
= i
+ 1; j
<= MAX_RCU_LVLS
; j
++)
3302 /* Calculate the total number of rcu_node structures. */
3304 for (i
= 0; i
<= MAX_RCU_LVLS
; i
++)
3305 rcu_num_nodes
+= num_rcu_lvl
[i
];
3309 void __init
rcu_init(void)
3313 rcu_bootup_announce();
3314 rcu_init_geometry();
3315 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
3316 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
3317 __rcu_init_preempt();
3318 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
3321 * We don't need protection against CPU-hotplug here because
3322 * this is called early in boot, before either interrupts
3323 * or the scheduler are operational.
3325 cpu_notifier(rcu_cpu_notify
, 0);
3326 for_each_online_cpu(cpu
)
3327 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
3330 #include "rcutree_plugin.h"