[XFS] move linux/log2.h header to xfs_linux.h
[linux-2.6.git] / fs / xfs / xfs_inode.c
blobbc9e7c8918091690b407c3d08dc1293c18c0e2fe
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
53 kmem_zone_t *xfs_ifork_zone;
54 kmem_zone_t *xfs_inode_zone;
55 kmem_zone_t *xfs_chashlist_zone;
58 * Used in xfs_itruncate(). This is the maximum number of extents
59 * freed from a file in a single transaction.
61 #define XFS_ITRUNC_MAX_EXTENTS 2
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
65 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
66 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 #ifdef DEBUG
70 * Make sure that the extents in the given memory buffer
71 * are valid.
73 STATIC void
74 xfs_validate_extents(
75 xfs_ifork_t *ifp,
76 int nrecs,
77 xfs_exntfmt_t fmt)
79 xfs_bmbt_irec_t irec;
80 xfs_bmbt_rec_host_t rec;
81 int i;
83 for (i = 0; i < nrecs; i++) {
84 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
85 rec.l0 = get_unaligned(&ep->l0);
86 rec.l1 = get_unaligned(&ep->l1);
87 xfs_bmbt_get_all(&rec, &irec);
88 if (fmt == XFS_EXTFMT_NOSTATE)
89 ASSERT(irec.br_state == XFS_EXT_NORM);
92 #else /* DEBUG */
93 #define xfs_validate_extents(ifp, nrecs, fmt)
94 #endif /* DEBUG */
97 * Check that none of the inode's in the buffer have a next
98 * unlinked field of 0.
100 #if defined(DEBUG)
101 void
102 xfs_inobp_check(
103 xfs_mount_t *mp,
104 xfs_buf_t *bp)
106 int i;
107 int j;
108 xfs_dinode_t *dip;
110 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 for (i = 0; i < j; i++) {
113 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
114 i * mp->m_sb.sb_inodesize);
115 if (!dip->di_next_unlinked) {
116 xfs_fs_cmn_err(CE_ALERT, mp,
117 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
118 bp);
119 ASSERT(dip->di_next_unlinked);
123 #endif
126 * This routine is called to map an inode number within a file
127 * system to the buffer containing the on-disk version of the
128 * inode. It returns a pointer to the buffer containing the
129 * on-disk inode in the bpp parameter, and in the dip parameter
130 * it returns a pointer to the on-disk inode within that buffer.
132 * If a non-zero error is returned, then the contents of bpp and
133 * dipp are undefined.
135 * Use xfs_imap() to determine the size and location of the
136 * buffer to read from disk.
138 STATIC int
139 xfs_inotobp(
140 xfs_mount_t *mp,
141 xfs_trans_t *tp,
142 xfs_ino_t ino,
143 xfs_dinode_t **dipp,
144 xfs_buf_t **bpp,
145 int *offset)
147 int di_ok;
148 xfs_imap_t imap;
149 xfs_buf_t *bp;
150 int error;
151 xfs_dinode_t *dip;
154 * Call the space management code to find the location of the
155 * inode on disk.
157 imap.im_blkno = 0;
158 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
159 if (error != 0) {
160 cmn_err(CE_WARN,
161 "xfs_inotobp: xfs_imap() returned an "
162 "error %d on %s. Returning error.", error, mp->m_fsname);
163 return error;
167 * If the inode number maps to a block outside the bounds of the
168 * file system then return NULL rather than calling read_buf
169 * and panicing when we get an error from the driver.
171 if ((imap.im_blkno + imap.im_len) >
172 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
173 cmn_err(CE_WARN,
174 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
175 "of the file system %s. Returning EINVAL.",
176 (unsigned long long)imap.im_blkno,
177 imap.im_len, mp->m_fsname);
178 return XFS_ERROR(EINVAL);
182 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
183 * default to just a read_buf() call.
185 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
186 (int)imap.im_len, XFS_BUF_LOCK, &bp);
188 if (error) {
189 cmn_err(CE_WARN,
190 "xfs_inotobp: xfs_trans_read_buf() returned an "
191 "error %d on %s. Returning error.", error, mp->m_fsname);
192 return error;
194 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
195 di_ok =
196 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
197 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
198 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
199 XFS_RANDOM_ITOBP_INOTOBP))) {
200 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
201 xfs_trans_brelse(tp, bp);
202 cmn_err(CE_WARN,
203 "xfs_inotobp: XFS_TEST_ERROR() returned an "
204 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
205 return XFS_ERROR(EFSCORRUPTED);
208 xfs_inobp_check(mp, bp);
211 * Set *dipp to point to the on-disk inode in the buffer.
213 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
214 *bpp = bp;
215 *offset = imap.im_boffset;
216 return 0;
221 * This routine is called to map an inode to the buffer containing
222 * the on-disk version of the inode. It returns a pointer to the
223 * buffer containing the on-disk inode in the bpp parameter, and in
224 * the dip parameter it returns a pointer to the on-disk inode within
225 * that buffer.
227 * If a non-zero error is returned, then the contents of bpp and
228 * dipp are undefined.
230 * If the inode is new and has not yet been initialized, use xfs_imap()
231 * to determine the size and location of the buffer to read from disk.
232 * If the inode has already been mapped to its buffer and read in once,
233 * then use the mapping information stored in the inode rather than
234 * calling xfs_imap(). This allows us to avoid the overhead of looking
235 * at the inode btree for small block file systems (see xfs_dilocate()).
236 * We can tell whether the inode has been mapped in before by comparing
237 * its disk block address to 0. Only uninitialized inodes will have
238 * 0 for the disk block address.
241 xfs_itobp(
242 xfs_mount_t *mp,
243 xfs_trans_t *tp,
244 xfs_inode_t *ip,
245 xfs_dinode_t **dipp,
246 xfs_buf_t **bpp,
247 xfs_daddr_t bno,
248 uint imap_flags)
250 xfs_imap_t imap;
251 xfs_buf_t *bp;
252 int error;
253 int i;
254 int ni;
256 if (ip->i_blkno == (xfs_daddr_t)0) {
258 * Call the space management code to find the location of the
259 * inode on disk.
261 imap.im_blkno = bno;
262 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
263 XFS_IMAP_LOOKUP | imap_flags)))
264 return error;
267 * If the inode number maps to a block outside the bounds
268 * of the file system then return NULL rather than calling
269 * read_buf and panicing when we get an error from the
270 * driver.
272 if ((imap.im_blkno + imap.im_len) >
273 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
274 #ifdef DEBUG
275 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
276 "(imap.im_blkno (0x%llx) "
277 "+ imap.im_len (0x%llx)) > "
278 " XFS_FSB_TO_BB(mp, "
279 "mp->m_sb.sb_dblocks) (0x%llx)",
280 (unsigned long long) imap.im_blkno,
281 (unsigned long long) imap.im_len,
282 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
283 #endif /* DEBUG */
284 return XFS_ERROR(EINVAL);
288 * Fill in the fields in the inode that will be used to
289 * map the inode to its buffer from now on.
291 ip->i_blkno = imap.im_blkno;
292 ip->i_len = imap.im_len;
293 ip->i_boffset = imap.im_boffset;
294 } else {
296 * We've already mapped the inode once, so just use the
297 * mapping that we saved the first time.
299 imap.im_blkno = ip->i_blkno;
300 imap.im_len = ip->i_len;
301 imap.im_boffset = ip->i_boffset;
303 ASSERT(bno == 0 || bno == imap.im_blkno);
306 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
307 * default to just a read_buf() call.
309 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
310 (int)imap.im_len, XFS_BUF_LOCK, &bp);
311 if (error) {
312 #ifdef DEBUG
313 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
314 "xfs_trans_read_buf() returned error %d, "
315 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
316 error, (unsigned long long) imap.im_blkno,
317 (unsigned long long) imap.im_len);
318 #endif /* DEBUG */
319 return error;
323 * Validate the magic number and version of every inode in the buffer
324 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
325 * No validation is done here in userspace (xfs_repair).
327 #if !defined(__KERNEL__)
328 ni = 0;
329 #elif defined(DEBUG)
330 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
331 #else /* usual case */
332 ni = 1;
333 #endif
335 for (i = 0; i < ni; i++) {
336 int di_ok;
337 xfs_dinode_t *dip;
339 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
340 (i << mp->m_sb.sb_inodelog));
341 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
342 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
343 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
344 XFS_ERRTAG_ITOBP_INOTOBP,
345 XFS_RANDOM_ITOBP_INOTOBP))) {
346 if (imap_flags & XFS_IMAP_BULKSTAT) {
347 xfs_trans_brelse(tp, bp);
348 return XFS_ERROR(EINVAL);
350 #ifdef DEBUG
351 cmn_err(CE_ALERT,
352 "Device %s - bad inode magic/vsn "
353 "daddr %lld #%d (magic=%x)",
354 XFS_BUFTARG_NAME(mp->m_ddev_targp),
355 (unsigned long long)imap.im_blkno, i,
356 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
357 #endif
358 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
359 mp, dip);
360 xfs_trans_brelse(tp, bp);
361 return XFS_ERROR(EFSCORRUPTED);
365 xfs_inobp_check(mp, bp);
368 * Mark the buffer as an inode buffer now that it looks good
370 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
373 * Set *dipp to point to the on-disk inode in the buffer.
375 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
376 *bpp = bp;
377 return 0;
381 * Move inode type and inode format specific information from the
382 * on-disk inode to the in-core inode. For fifos, devs, and sockets
383 * this means set if_rdev to the proper value. For files, directories,
384 * and symlinks this means to bring in the in-line data or extent
385 * pointers. For a file in B-tree format, only the root is immediately
386 * brought in-core. The rest will be in-lined in if_extents when it
387 * is first referenced (see xfs_iread_extents()).
389 STATIC int
390 xfs_iformat(
391 xfs_inode_t *ip,
392 xfs_dinode_t *dip)
394 xfs_attr_shortform_t *atp;
395 int size;
396 int error;
397 xfs_fsize_t di_size;
398 ip->i_df.if_ext_max =
399 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
400 error = 0;
402 if (unlikely(
403 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
404 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
405 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 (unsigned long long)ip->i_ino,
409 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
410 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
411 (unsigned long long)
412 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
418 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
421 (unsigned long long)ip->i_ino,
422 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
433 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
438 ip->i_d.di_size = 0;
439 ip->i_size = 0;
440 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
441 break;
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
446 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
447 case XFS_DINODE_FMT_LOCAL:
449 * no local regular files yet
451 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
462 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
489 break;
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
495 if (error) {
496 return error;
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = be16_to_cpu(atp->hdr.totsize);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
525 return error;
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
538 STATIC int
539 xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
545 xfs_ifork_t *ifp;
546 int real_size;
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
591 STATIC int
592 xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
597 xfs_bmbt_rec_t *dp;
598 xfs_ifork_t *ifp;
599 int nex;
600 int size;
601 int i;
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
621 ifp->if_real_bytes = 0;
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 else
627 xfs_iext_add(ifp, 0, nex);
629 ifp->if_bytes = size;
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 for (i = 0; i < nex; i++, dp++) {
634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
642 ifp, 0, nex))) {
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
661 STATIC int
662 xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
709 return 0;
713 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
714 * and native format
716 * buf = on-disk representation
717 * dip = native representation
718 * dir = direction - +ve -> disk to native
719 * -ve -> native to disk
721 void
722 xfs_xlate_dinode_core(
723 xfs_caddr_t buf,
724 xfs_dinode_core_t *dip,
725 int dir)
727 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
728 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
729 xfs_arch_t arch = ARCH_CONVERT;
731 ASSERT(dir);
733 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
734 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
735 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
736 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
737 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
738 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
739 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
740 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
741 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
743 if (dir > 0) {
744 memcpy(mem_core->di_pad, buf_core->di_pad,
745 sizeof(buf_core->di_pad));
746 } else {
747 memcpy(buf_core->di_pad, mem_core->di_pad,
748 sizeof(buf_core->di_pad));
751 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
753 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
754 dir, arch);
755 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
756 dir, arch);
757 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
758 dir, arch);
759 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
760 dir, arch);
761 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
762 dir, arch);
763 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
764 dir, arch);
765 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
766 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
767 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
768 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
769 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
770 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
771 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
772 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
773 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
774 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
775 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
778 STATIC uint
779 _xfs_dic2xflags(
780 __uint16_t di_flags)
782 uint flags = 0;
784 if (di_flags & XFS_DIFLAG_ANY) {
785 if (di_flags & XFS_DIFLAG_REALTIME)
786 flags |= XFS_XFLAG_REALTIME;
787 if (di_flags & XFS_DIFLAG_PREALLOC)
788 flags |= XFS_XFLAG_PREALLOC;
789 if (di_flags & XFS_DIFLAG_IMMUTABLE)
790 flags |= XFS_XFLAG_IMMUTABLE;
791 if (di_flags & XFS_DIFLAG_APPEND)
792 flags |= XFS_XFLAG_APPEND;
793 if (di_flags & XFS_DIFLAG_SYNC)
794 flags |= XFS_XFLAG_SYNC;
795 if (di_flags & XFS_DIFLAG_NOATIME)
796 flags |= XFS_XFLAG_NOATIME;
797 if (di_flags & XFS_DIFLAG_NODUMP)
798 flags |= XFS_XFLAG_NODUMP;
799 if (di_flags & XFS_DIFLAG_RTINHERIT)
800 flags |= XFS_XFLAG_RTINHERIT;
801 if (di_flags & XFS_DIFLAG_PROJINHERIT)
802 flags |= XFS_XFLAG_PROJINHERIT;
803 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
804 flags |= XFS_XFLAG_NOSYMLINKS;
805 if (di_flags & XFS_DIFLAG_EXTSIZE)
806 flags |= XFS_XFLAG_EXTSIZE;
807 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
808 flags |= XFS_XFLAG_EXTSZINHERIT;
809 if (di_flags & XFS_DIFLAG_NODEFRAG)
810 flags |= XFS_XFLAG_NODEFRAG;
811 if (di_flags & XFS_DIFLAG_FILESTREAM)
812 flags |= XFS_XFLAG_FILESTREAM;
815 return flags;
818 uint
819 xfs_ip2xflags(
820 xfs_inode_t *ip)
822 xfs_dinode_core_t *dic = &ip->i_d;
824 return _xfs_dic2xflags(dic->di_flags) |
825 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
828 uint
829 xfs_dic2xflags(
830 xfs_dinode_core_t *dic)
832 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
833 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
837 * Given a mount structure and an inode number, return a pointer
838 * to a newly allocated in-core inode corresponding to the given
839 * inode number.
841 * Initialize the inode's attributes and extent pointers if it
842 * already has them (it will not if the inode has no links).
845 xfs_iread(
846 xfs_mount_t *mp,
847 xfs_trans_t *tp,
848 xfs_ino_t ino,
849 xfs_inode_t **ipp,
850 xfs_daddr_t bno,
851 uint imap_flags)
853 xfs_buf_t *bp;
854 xfs_dinode_t *dip;
855 xfs_inode_t *ip;
856 int error;
858 ASSERT(xfs_inode_zone != NULL);
860 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
861 ip->i_ino = ino;
862 ip->i_mount = mp;
863 spin_lock_init(&ip->i_flags_lock);
866 * Get pointer's to the on-disk inode and the buffer containing it.
867 * If the inode number refers to a block outside the file system
868 * then xfs_itobp() will return NULL. In this case we should
869 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
870 * know that this is a new incore inode.
872 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
873 if (error) {
874 kmem_zone_free(xfs_inode_zone, ip);
875 return error;
879 * Initialize inode's trace buffers.
880 * Do this before xfs_iformat in case it adds entries.
882 #ifdef XFS_BMAP_TRACE
883 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
884 #endif
885 #ifdef XFS_BMBT_TRACE
886 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
887 #endif
888 #ifdef XFS_RW_TRACE
889 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
890 #endif
891 #ifdef XFS_ILOCK_TRACE
892 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
893 #endif
894 #ifdef XFS_DIR2_TRACE
895 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
896 #endif
899 * If we got something that isn't an inode it means someone
900 * (nfs or dmi) has a stale handle.
902 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
903 kmem_zone_free(xfs_inode_zone, ip);
904 xfs_trans_brelse(tp, bp);
905 #ifdef DEBUG
906 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
907 "dip->di_core.di_magic (0x%x) != "
908 "XFS_DINODE_MAGIC (0x%x)",
909 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
910 XFS_DINODE_MAGIC);
911 #endif /* DEBUG */
912 return XFS_ERROR(EINVAL);
916 * If the on-disk inode is already linked to a directory
917 * entry, copy all of the inode into the in-core inode.
918 * xfs_iformat() handles copying in the inode format
919 * specific information.
920 * Otherwise, just get the truly permanent information.
922 if (dip->di_core.di_mode) {
923 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
924 &(ip->i_d), 1);
925 error = xfs_iformat(ip, dip);
926 if (error) {
927 kmem_zone_free(xfs_inode_zone, ip);
928 xfs_trans_brelse(tp, bp);
929 #ifdef DEBUG
930 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
931 "xfs_iformat() returned error %d",
932 error);
933 #endif /* DEBUG */
934 return error;
936 } else {
937 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
938 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
939 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
940 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
942 * Make sure to pull in the mode here as well in
943 * case the inode is released without being used.
944 * This ensures that xfs_inactive() will see that
945 * the inode is already free and not try to mess
946 * with the uninitialized part of it.
948 ip->i_d.di_mode = 0;
950 * Initialize the per-fork minima and maxima for a new
951 * inode here. xfs_iformat will do it for old inodes.
953 ip->i_df.if_ext_max =
954 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
957 INIT_LIST_HEAD(&ip->i_reclaim);
960 * The inode format changed when we moved the link count and
961 * made it 32 bits long. If this is an old format inode,
962 * convert it in memory to look like a new one. If it gets
963 * flushed to disk we will convert back before flushing or
964 * logging it. We zero out the new projid field and the old link
965 * count field. We'll handle clearing the pad field (the remains
966 * of the old uuid field) when we actually convert the inode to
967 * the new format. We don't change the version number so that we
968 * can distinguish this from a real new format inode.
970 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
971 ip->i_d.di_nlink = ip->i_d.di_onlink;
972 ip->i_d.di_onlink = 0;
973 ip->i_d.di_projid = 0;
976 ip->i_delayed_blks = 0;
977 ip->i_size = ip->i_d.di_size;
980 * Mark the buffer containing the inode as something to keep
981 * around for a while. This helps to keep recently accessed
982 * meta-data in-core longer.
984 XFS_BUF_SET_REF(bp, XFS_INO_REF);
987 * Use xfs_trans_brelse() to release the buffer containing the
988 * on-disk inode, because it was acquired with xfs_trans_read_buf()
989 * in xfs_itobp() above. If tp is NULL, this is just a normal
990 * brelse(). If we're within a transaction, then xfs_trans_brelse()
991 * will only release the buffer if it is not dirty within the
992 * transaction. It will be OK to release the buffer in this case,
993 * because inodes on disk are never destroyed and we will be
994 * locking the new in-core inode before putting it in the hash
995 * table where other processes can find it. Thus we don't have
996 * to worry about the inode being changed just because we released
997 * the buffer.
999 xfs_trans_brelse(tp, bp);
1000 *ipp = ip;
1001 return 0;
1005 * Read in extents from a btree-format inode.
1006 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1009 xfs_iread_extents(
1010 xfs_trans_t *tp,
1011 xfs_inode_t *ip,
1012 int whichfork)
1014 int error;
1015 xfs_ifork_t *ifp;
1016 xfs_extnum_t nextents;
1017 size_t size;
1019 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1020 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1021 ip->i_mount);
1022 return XFS_ERROR(EFSCORRUPTED);
1024 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1025 size = nextents * sizeof(xfs_bmbt_rec_t);
1026 ifp = XFS_IFORK_PTR(ip, whichfork);
1029 * We know that the size is valid (it's checked in iformat_btree)
1031 ifp->if_lastex = NULLEXTNUM;
1032 ifp->if_bytes = ifp->if_real_bytes = 0;
1033 ifp->if_flags |= XFS_IFEXTENTS;
1034 xfs_iext_add(ifp, 0, nextents);
1035 error = xfs_bmap_read_extents(tp, ip, whichfork);
1036 if (error) {
1037 xfs_iext_destroy(ifp);
1038 ifp->if_flags &= ~XFS_IFEXTENTS;
1039 return error;
1041 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1042 return 0;
1046 * Allocate an inode on disk and return a copy of its in-core version.
1047 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1048 * appropriately within the inode. The uid and gid for the inode are
1049 * set according to the contents of the given cred structure.
1051 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1052 * has a free inode available, call xfs_iget()
1053 * to obtain the in-core version of the allocated inode. Finally,
1054 * fill in the inode and log its initial contents. In this case,
1055 * ialloc_context would be set to NULL and call_again set to false.
1057 * If xfs_dialloc() does not have an available inode,
1058 * it will replenish its supply by doing an allocation. Since we can
1059 * only do one allocation within a transaction without deadlocks, we
1060 * must commit the current transaction before returning the inode itself.
1061 * In this case, therefore, we will set call_again to true and return.
1062 * The caller should then commit the current transaction, start a new
1063 * transaction, and call xfs_ialloc() again to actually get the inode.
1065 * To ensure that some other process does not grab the inode that
1066 * was allocated during the first call to xfs_ialloc(), this routine
1067 * also returns the [locked] bp pointing to the head of the freelist
1068 * as ialloc_context. The caller should hold this buffer across
1069 * the commit and pass it back into this routine on the second call.
1071 * If we are allocating quota inodes, we do not have a parent inode
1072 * to attach to or associate with (i.e. pip == NULL) because they
1073 * are not linked into the directory structure - they are attached
1074 * directly to the superblock - and so have no parent.
1077 xfs_ialloc(
1078 xfs_trans_t *tp,
1079 xfs_inode_t *pip,
1080 mode_t mode,
1081 xfs_nlink_t nlink,
1082 xfs_dev_t rdev,
1083 cred_t *cr,
1084 xfs_prid_t prid,
1085 int okalloc,
1086 xfs_buf_t **ialloc_context,
1087 boolean_t *call_again,
1088 xfs_inode_t **ipp)
1090 xfs_ino_t ino;
1091 xfs_inode_t *ip;
1092 bhv_vnode_t *vp;
1093 uint flags;
1094 int error;
1097 * Call the space management code to pick
1098 * the on-disk inode to be allocated.
1100 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1101 ialloc_context, call_again, &ino);
1102 if (error != 0) {
1103 return error;
1105 if (*call_again || ino == NULLFSINO) {
1106 *ipp = NULL;
1107 return 0;
1109 ASSERT(*ialloc_context == NULL);
1112 * Get the in-core inode with the lock held exclusively.
1113 * This is because we're setting fields here we need
1114 * to prevent others from looking at until we're done.
1116 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1117 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1118 if (error != 0) {
1119 return error;
1121 ASSERT(ip != NULL);
1123 vp = XFS_ITOV(ip);
1124 ip->i_d.di_mode = (__uint16_t)mode;
1125 ip->i_d.di_onlink = 0;
1126 ip->i_d.di_nlink = nlink;
1127 ASSERT(ip->i_d.di_nlink == nlink);
1128 ip->i_d.di_uid = current_fsuid(cr);
1129 ip->i_d.di_gid = current_fsgid(cr);
1130 ip->i_d.di_projid = prid;
1131 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1134 * If the superblock version is up to where we support new format
1135 * inodes and this is currently an old format inode, then change
1136 * the inode version number now. This way we only do the conversion
1137 * here rather than here and in the flush/logging code.
1139 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1140 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1141 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1143 * We've already zeroed the old link count, the projid field,
1144 * and the pad field.
1149 * Project ids won't be stored on disk if we are using a version 1 inode.
1151 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1152 xfs_bump_ino_vers2(tp, ip);
1154 if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1155 ip->i_d.di_gid = pip->i_d.di_gid;
1156 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1157 ip->i_d.di_mode |= S_ISGID;
1162 * If the group ID of the new file does not match the effective group
1163 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1164 * (and only if the irix_sgid_inherit compatibility variable is set).
1166 if ((irix_sgid_inherit) &&
1167 (ip->i_d.di_mode & S_ISGID) &&
1168 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1169 ip->i_d.di_mode &= ~S_ISGID;
1172 ip->i_d.di_size = 0;
1173 ip->i_size = 0;
1174 ip->i_d.di_nextents = 0;
1175 ASSERT(ip->i_d.di_nblocks == 0);
1176 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1178 * di_gen will have been taken care of in xfs_iread.
1180 ip->i_d.di_extsize = 0;
1181 ip->i_d.di_dmevmask = 0;
1182 ip->i_d.di_dmstate = 0;
1183 ip->i_d.di_flags = 0;
1184 flags = XFS_ILOG_CORE;
1185 switch (mode & S_IFMT) {
1186 case S_IFIFO:
1187 case S_IFCHR:
1188 case S_IFBLK:
1189 case S_IFSOCK:
1190 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1191 ip->i_df.if_u2.if_rdev = rdev;
1192 ip->i_df.if_flags = 0;
1193 flags |= XFS_ILOG_DEV;
1194 break;
1195 case S_IFREG:
1196 if (pip && xfs_inode_is_filestream(pip)) {
1197 error = xfs_filestream_associate(pip, ip);
1198 if (error < 0)
1199 return -error;
1200 if (!error)
1201 xfs_iflags_set(ip, XFS_IFILESTREAM);
1203 /* fall through */
1204 case S_IFDIR:
1205 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1206 uint di_flags = 0;
1208 if ((mode & S_IFMT) == S_IFDIR) {
1209 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1210 di_flags |= XFS_DIFLAG_RTINHERIT;
1211 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1212 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1213 ip->i_d.di_extsize = pip->i_d.di_extsize;
1215 } else if ((mode & S_IFMT) == S_IFREG) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1217 di_flags |= XFS_DIFLAG_REALTIME;
1218 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1220 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1221 di_flags |= XFS_DIFLAG_EXTSIZE;
1222 ip->i_d.di_extsize = pip->i_d.di_extsize;
1225 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1226 xfs_inherit_noatime)
1227 di_flags |= XFS_DIFLAG_NOATIME;
1228 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1229 xfs_inherit_nodump)
1230 di_flags |= XFS_DIFLAG_NODUMP;
1231 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1232 xfs_inherit_sync)
1233 di_flags |= XFS_DIFLAG_SYNC;
1234 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1235 xfs_inherit_nosymlinks)
1236 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1237 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1238 di_flags |= XFS_DIFLAG_PROJINHERIT;
1239 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1240 xfs_inherit_nodefrag)
1241 di_flags |= XFS_DIFLAG_NODEFRAG;
1242 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1243 di_flags |= XFS_DIFLAG_FILESTREAM;
1244 ip->i_d.di_flags |= di_flags;
1246 /* FALLTHROUGH */
1247 case S_IFLNK:
1248 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1249 ip->i_df.if_flags = XFS_IFEXTENTS;
1250 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1251 ip->i_df.if_u1.if_extents = NULL;
1252 break;
1253 default:
1254 ASSERT(0);
1257 * Attribute fork settings for new inode.
1259 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1260 ip->i_d.di_anextents = 0;
1263 * Log the new values stuffed into the inode.
1265 xfs_trans_log_inode(tp, ip, flags);
1267 /* now that we have an i_mode we can setup inode ops and unlock */
1268 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1270 *ipp = ip;
1271 return 0;
1275 * Check to make sure that there are no blocks allocated to the
1276 * file beyond the size of the file. We don't check this for
1277 * files with fixed size extents or real time extents, but we
1278 * at least do it for regular files.
1280 #ifdef DEBUG
1281 void
1282 xfs_isize_check(
1283 xfs_mount_t *mp,
1284 xfs_inode_t *ip,
1285 xfs_fsize_t isize)
1287 xfs_fileoff_t map_first;
1288 int nimaps;
1289 xfs_bmbt_irec_t imaps[2];
1291 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1292 return;
1294 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1295 return;
1297 nimaps = 2;
1298 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1300 * The filesystem could be shutting down, so bmapi may return
1301 * an error.
1303 if (xfs_bmapi(NULL, ip, map_first,
1304 (XFS_B_TO_FSB(mp,
1305 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1306 map_first),
1307 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1308 NULL, NULL))
1309 return;
1310 ASSERT(nimaps == 1);
1311 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1313 #endif /* DEBUG */
1316 * Calculate the last possible buffered byte in a file. This must
1317 * include data that was buffered beyond the EOF by the write code.
1318 * This also needs to deal with overflowing the xfs_fsize_t type
1319 * which can happen for sizes near the limit.
1321 * We also need to take into account any blocks beyond the EOF. It
1322 * may be the case that they were buffered by a write which failed.
1323 * In that case the pages will still be in memory, but the inode size
1324 * will never have been updated.
1326 xfs_fsize_t
1327 xfs_file_last_byte(
1328 xfs_inode_t *ip)
1330 xfs_mount_t *mp;
1331 xfs_fsize_t last_byte;
1332 xfs_fileoff_t last_block;
1333 xfs_fileoff_t size_last_block;
1334 int error;
1336 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1338 mp = ip->i_mount;
1340 * Only check for blocks beyond the EOF if the extents have
1341 * been read in. This eliminates the need for the inode lock,
1342 * and it also saves us from looking when it really isn't
1343 * necessary.
1345 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1346 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1347 XFS_DATA_FORK);
1348 if (error) {
1349 last_block = 0;
1351 } else {
1352 last_block = 0;
1354 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1355 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1357 last_byte = XFS_FSB_TO_B(mp, last_block);
1358 if (last_byte < 0) {
1359 return XFS_MAXIOFFSET(mp);
1361 last_byte += (1 << mp->m_writeio_log);
1362 if (last_byte < 0) {
1363 return XFS_MAXIOFFSET(mp);
1365 return last_byte;
1368 #if defined(XFS_RW_TRACE)
1369 STATIC void
1370 xfs_itrunc_trace(
1371 int tag,
1372 xfs_inode_t *ip,
1373 int flag,
1374 xfs_fsize_t new_size,
1375 xfs_off_t toss_start,
1376 xfs_off_t toss_finish)
1378 if (ip->i_rwtrace == NULL) {
1379 return;
1382 ktrace_enter(ip->i_rwtrace,
1383 (void*)((long)tag),
1384 (void*)ip,
1385 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1386 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1387 (void*)((long)flag),
1388 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1389 (void*)(unsigned long)(new_size & 0xffffffff),
1390 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1391 (void*)(unsigned long)(toss_start & 0xffffffff),
1392 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(toss_finish & 0xffffffff),
1394 (void*)(unsigned long)current_cpu(),
1395 (void*)(unsigned long)current_pid(),
1396 (void*)NULL,
1397 (void*)NULL,
1398 (void*)NULL);
1400 #else
1401 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1402 #endif
1405 * Start the truncation of the file to new_size. The new size
1406 * must be smaller than the current size. This routine will
1407 * clear the buffer and page caches of file data in the removed
1408 * range, and xfs_itruncate_finish() will remove the underlying
1409 * disk blocks.
1411 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1412 * must NOT have the inode lock held at all. This is because we're
1413 * calling into the buffer/page cache code and we can't hold the
1414 * inode lock when we do so.
1416 * We need to wait for any direct I/Os in flight to complete before we
1417 * proceed with the truncate. This is needed to prevent the extents
1418 * being read or written by the direct I/Os from being removed while the
1419 * I/O is in flight as there is no other method of synchronising
1420 * direct I/O with the truncate operation. Also, because we hold
1421 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1422 * started until the truncate completes and drops the lock. Essentially,
1423 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1424 * between direct I/Os and the truncate operation.
1426 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1427 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1428 * in the case that the caller is locking things out of order and
1429 * may not be able to call xfs_itruncate_finish() with the inode lock
1430 * held without dropping the I/O lock. If the caller must drop the
1431 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1432 * must be called again with all the same restrictions as the initial
1433 * call.
1436 xfs_itruncate_start(
1437 xfs_inode_t *ip,
1438 uint flags,
1439 xfs_fsize_t new_size)
1441 xfs_fsize_t last_byte;
1442 xfs_off_t toss_start;
1443 xfs_mount_t *mp;
1444 bhv_vnode_t *vp;
1445 int error = 0;
1447 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1448 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1449 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1450 (flags == XFS_ITRUNC_MAYBE));
1452 mp = ip->i_mount;
1453 vp = XFS_ITOV(ip);
1455 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1458 * Call toss_pages or flushinval_pages to get rid of pages
1459 * overlapping the region being removed. We have to use
1460 * the less efficient flushinval_pages in the case that the
1461 * caller may not be able to finish the truncate without
1462 * dropping the inode's I/O lock. Make sure
1463 * to catch any pages brought in by buffers overlapping
1464 * the EOF by searching out beyond the isize by our
1465 * block size. We round new_size up to a block boundary
1466 * so that we don't toss things on the same block as
1467 * new_size but before it.
1469 * Before calling toss_page or flushinval_pages, make sure to
1470 * call remapf() over the same region if the file is mapped.
1471 * This frees up mapped file references to the pages in the
1472 * given range and for the flushinval_pages case it ensures
1473 * that we get the latest mapped changes flushed out.
1475 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1476 toss_start = XFS_FSB_TO_B(mp, toss_start);
1477 if (toss_start < 0) {
1479 * The place to start tossing is beyond our maximum
1480 * file size, so there is no way that the data extended
1481 * out there.
1483 return 0;
1485 last_byte = xfs_file_last_byte(ip);
1486 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1487 last_byte);
1488 if (last_byte > toss_start) {
1489 if (flags & XFS_ITRUNC_DEFINITE) {
1490 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1491 } else {
1492 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1496 #ifdef DEBUG
1497 if (new_size == 0) {
1498 ASSERT(VN_CACHED(vp) == 0);
1500 #endif
1501 return error;
1505 * Shrink the file to the given new_size. The new
1506 * size must be smaller than the current size.
1507 * This will free up the underlying blocks
1508 * in the removed range after a call to xfs_itruncate_start()
1509 * or xfs_atruncate_start().
1511 * The transaction passed to this routine must have made
1512 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1513 * This routine may commit the given transaction and
1514 * start new ones, so make sure everything involved in
1515 * the transaction is tidy before calling here.
1516 * Some transaction will be returned to the caller to be
1517 * committed. The incoming transaction must already include
1518 * the inode, and both inode locks must be held exclusively.
1519 * The inode must also be "held" within the transaction. On
1520 * return the inode will be "held" within the returned transaction.
1521 * This routine does NOT require any disk space to be reserved
1522 * for it within the transaction.
1524 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1525 * and it indicates the fork which is to be truncated. For the
1526 * attribute fork we only support truncation to size 0.
1528 * We use the sync parameter to indicate whether or not the first
1529 * transaction we perform might have to be synchronous. For the attr fork,
1530 * it needs to be so if the unlink of the inode is not yet known to be
1531 * permanent in the log. This keeps us from freeing and reusing the
1532 * blocks of the attribute fork before the unlink of the inode becomes
1533 * permanent.
1535 * For the data fork, we normally have to run synchronously if we're
1536 * being called out of the inactive path or we're being called
1537 * out of the create path where we're truncating an existing file.
1538 * Either way, the truncate needs to be sync so blocks don't reappear
1539 * in the file with altered data in case of a crash. wsync filesystems
1540 * can run the first case async because anything that shrinks the inode
1541 * has to run sync so by the time we're called here from inactive, the
1542 * inode size is permanently set to 0.
1544 * Calls from the truncate path always need to be sync unless we're
1545 * in a wsync filesystem and the file has already been unlinked.
1547 * The caller is responsible for correctly setting the sync parameter.
1548 * It gets too hard for us to guess here which path we're being called
1549 * out of just based on inode state.
1552 xfs_itruncate_finish(
1553 xfs_trans_t **tp,
1554 xfs_inode_t *ip,
1555 xfs_fsize_t new_size,
1556 int fork,
1557 int sync)
1559 xfs_fsblock_t first_block;
1560 xfs_fileoff_t first_unmap_block;
1561 xfs_fileoff_t last_block;
1562 xfs_filblks_t unmap_len=0;
1563 xfs_mount_t *mp;
1564 xfs_trans_t *ntp;
1565 int done;
1566 int committed;
1567 xfs_bmap_free_t free_list;
1568 int error;
1570 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1571 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1572 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1573 ASSERT(*tp != NULL);
1574 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1575 ASSERT(ip->i_transp == *tp);
1576 ASSERT(ip->i_itemp != NULL);
1577 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1580 ntp = *tp;
1581 mp = (ntp)->t_mountp;
1582 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1585 * We only support truncating the entire attribute fork.
1587 if (fork == XFS_ATTR_FORK) {
1588 new_size = 0LL;
1590 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1591 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1593 * The first thing we do is set the size to new_size permanently
1594 * on disk. This way we don't have to worry about anyone ever
1595 * being able to look at the data being freed even in the face
1596 * of a crash. What we're getting around here is the case where
1597 * we free a block, it is allocated to another file, it is written
1598 * to, and then we crash. If the new data gets written to the
1599 * file but the log buffers containing the free and reallocation
1600 * don't, then we'd end up with garbage in the blocks being freed.
1601 * As long as we make the new_size permanent before actually
1602 * freeing any blocks it doesn't matter if they get writtten to.
1604 * The callers must signal into us whether or not the size
1605 * setting here must be synchronous. There are a few cases
1606 * where it doesn't have to be synchronous. Those cases
1607 * occur if the file is unlinked and we know the unlink is
1608 * permanent or if the blocks being truncated are guaranteed
1609 * to be beyond the inode eof (regardless of the link count)
1610 * and the eof value is permanent. Both of these cases occur
1611 * only on wsync-mounted filesystems. In those cases, we're
1612 * guaranteed that no user will ever see the data in the blocks
1613 * that are being truncated so the truncate can run async.
1614 * In the free beyond eof case, the file may wind up with
1615 * more blocks allocated to it than it needs if we crash
1616 * and that won't get fixed until the next time the file
1617 * is re-opened and closed but that's ok as that shouldn't
1618 * be too many blocks.
1620 * However, we can't just make all wsync xactions run async
1621 * because there's one call out of the create path that needs
1622 * to run sync where it's truncating an existing file to size
1623 * 0 whose size is > 0.
1625 * It's probably possible to come up with a test in this
1626 * routine that would correctly distinguish all the above
1627 * cases from the values of the function parameters and the
1628 * inode state but for sanity's sake, I've decided to let the
1629 * layers above just tell us. It's simpler to correctly figure
1630 * out in the layer above exactly under what conditions we
1631 * can run async and I think it's easier for others read and
1632 * follow the logic in case something has to be changed.
1633 * cscope is your friend -- rcc.
1635 * The attribute fork is much simpler.
1637 * For the attribute fork we allow the caller to tell us whether
1638 * the unlink of the inode that led to this call is yet permanent
1639 * in the on disk log. If it is not and we will be freeing extents
1640 * in this inode then we make the first transaction synchronous
1641 * to make sure that the unlink is permanent by the time we free
1642 * the blocks.
1644 if (fork == XFS_DATA_FORK) {
1645 if (ip->i_d.di_nextents > 0) {
1647 * If we are not changing the file size then do
1648 * not update the on-disk file size - we may be
1649 * called from xfs_inactive_free_eofblocks(). If we
1650 * update the on-disk file size and then the system
1651 * crashes before the contents of the file are
1652 * flushed to disk then the files may be full of
1653 * holes (ie NULL files bug).
1655 if (ip->i_size != new_size) {
1656 ip->i_d.di_size = new_size;
1657 ip->i_size = new_size;
1658 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1661 } else if (sync) {
1662 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1663 if (ip->i_d.di_anextents > 0)
1664 xfs_trans_set_sync(ntp);
1666 ASSERT(fork == XFS_DATA_FORK ||
1667 (fork == XFS_ATTR_FORK &&
1668 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1669 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1672 * Since it is possible for space to become allocated beyond
1673 * the end of the file (in a crash where the space is allocated
1674 * but the inode size is not yet updated), simply remove any
1675 * blocks which show up between the new EOF and the maximum
1676 * possible file size. If the first block to be removed is
1677 * beyond the maximum file size (ie it is the same as last_block),
1678 * then there is nothing to do.
1680 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1681 ASSERT(first_unmap_block <= last_block);
1682 done = 0;
1683 if (last_block == first_unmap_block) {
1684 done = 1;
1685 } else {
1686 unmap_len = last_block - first_unmap_block + 1;
1688 while (!done) {
1690 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1691 * will tell us whether it freed the entire range or
1692 * not. If this is a synchronous mount (wsync),
1693 * then we can tell bunmapi to keep all the
1694 * transactions asynchronous since the unlink
1695 * transaction that made this inode inactive has
1696 * already hit the disk. There's no danger of
1697 * the freed blocks being reused, there being a
1698 * crash, and the reused blocks suddenly reappearing
1699 * in this file with garbage in them once recovery
1700 * runs.
1702 XFS_BMAP_INIT(&free_list, &first_block);
1703 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1704 first_unmap_block, unmap_len,
1705 XFS_BMAPI_AFLAG(fork) |
1706 (sync ? 0 : XFS_BMAPI_ASYNC),
1707 XFS_ITRUNC_MAX_EXTENTS,
1708 &first_block, &free_list,
1709 NULL, &done);
1710 if (error) {
1712 * If the bunmapi call encounters an error,
1713 * return to the caller where the transaction
1714 * can be properly aborted. We just need to
1715 * make sure we're not holding any resources
1716 * that we were not when we came in.
1718 xfs_bmap_cancel(&free_list);
1719 return error;
1723 * Duplicate the transaction that has the permanent
1724 * reservation and commit the old transaction.
1726 error = xfs_bmap_finish(tp, &free_list, &committed);
1727 ntp = *tp;
1728 if (error) {
1730 * If the bmap finish call encounters an error,
1731 * return to the caller where the transaction
1732 * can be properly aborted. We just need to
1733 * make sure we're not holding any resources
1734 * that we were not when we came in.
1736 * Aborting from this point might lose some
1737 * blocks in the file system, but oh well.
1739 xfs_bmap_cancel(&free_list);
1740 if (committed) {
1742 * If the passed in transaction committed
1743 * in xfs_bmap_finish(), then we want to
1744 * add the inode to this one before returning.
1745 * This keeps things simple for the higher
1746 * level code, because it always knows that
1747 * the inode is locked and held in the
1748 * transaction that returns to it whether
1749 * errors occur or not. We don't mark the
1750 * inode dirty so that this transaction can
1751 * be easily aborted if possible.
1753 xfs_trans_ijoin(ntp, ip,
1754 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1755 xfs_trans_ihold(ntp, ip);
1757 return error;
1760 if (committed) {
1762 * The first xact was committed,
1763 * so add the inode to the new one.
1764 * Mark it dirty so it will be logged
1765 * and moved forward in the log as
1766 * part of every commit.
1768 xfs_trans_ijoin(ntp, ip,
1769 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1770 xfs_trans_ihold(ntp, ip);
1771 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1773 ntp = xfs_trans_dup(ntp);
1774 (void) xfs_trans_commit(*tp, 0);
1775 *tp = ntp;
1776 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1777 XFS_TRANS_PERM_LOG_RES,
1778 XFS_ITRUNCATE_LOG_COUNT);
1780 * Add the inode being truncated to the next chained
1781 * transaction.
1783 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1784 xfs_trans_ihold(ntp, ip);
1785 if (error)
1786 return (error);
1789 * Only update the size in the case of the data fork, but
1790 * always re-log the inode so that our permanent transaction
1791 * can keep on rolling it forward in the log.
1793 if (fork == XFS_DATA_FORK) {
1794 xfs_isize_check(mp, ip, new_size);
1796 * If we are not changing the file size then do
1797 * not update the on-disk file size - we may be
1798 * called from xfs_inactive_free_eofblocks(). If we
1799 * update the on-disk file size and then the system
1800 * crashes before the contents of the file are
1801 * flushed to disk then the files may be full of
1802 * holes (ie NULL files bug).
1804 if (ip->i_size != new_size) {
1805 ip->i_d.di_size = new_size;
1806 ip->i_size = new_size;
1809 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1810 ASSERT((new_size != 0) ||
1811 (fork == XFS_ATTR_FORK) ||
1812 (ip->i_delayed_blks == 0));
1813 ASSERT((new_size != 0) ||
1814 (fork == XFS_ATTR_FORK) ||
1815 (ip->i_d.di_nextents == 0));
1816 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1817 return 0;
1822 * xfs_igrow_start
1824 * Do the first part of growing a file: zero any data in the last
1825 * block that is beyond the old EOF. We need to do this before
1826 * the inode is joined to the transaction to modify the i_size.
1827 * That way we can drop the inode lock and call into the buffer
1828 * cache to get the buffer mapping the EOF.
1831 xfs_igrow_start(
1832 xfs_inode_t *ip,
1833 xfs_fsize_t new_size,
1834 cred_t *credp)
1836 int error;
1838 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1839 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1840 ASSERT(new_size > ip->i_size);
1843 * Zero any pages that may have been created by
1844 * xfs_write_file() beyond the end of the file
1845 * and any blocks between the old and new file sizes.
1847 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1848 ip->i_size);
1849 return error;
1853 * xfs_igrow_finish
1855 * This routine is called to extend the size of a file.
1856 * The inode must have both the iolock and the ilock locked
1857 * for update and it must be a part of the current transaction.
1858 * The xfs_igrow_start() function must have been called previously.
1859 * If the change_flag is not zero, the inode change timestamp will
1860 * be updated.
1862 void
1863 xfs_igrow_finish(
1864 xfs_trans_t *tp,
1865 xfs_inode_t *ip,
1866 xfs_fsize_t new_size,
1867 int change_flag)
1869 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1870 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1871 ASSERT(ip->i_transp == tp);
1872 ASSERT(new_size > ip->i_size);
1875 * Update the file size. Update the inode change timestamp
1876 * if change_flag set.
1878 ip->i_d.di_size = new_size;
1879 ip->i_size = new_size;
1880 if (change_flag)
1881 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1882 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1888 * This is called when the inode's link count goes to 0.
1889 * We place the on-disk inode on a list in the AGI. It
1890 * will be pulled from this list when the inode is freed.
1893 xfs_iunlink(
1894 xfs_trans_t *tp,
1895 xfs_inode_t *ip)
1897 xfs_mount_t *mp;
1898 xfs_agi_t *agi;
1899 xfs_dinode_t *dip;
1900 xfs_buf_t *agibp;
1901 xfs_buf_t *ibp;
1902 xfs_agnumber_t agno;
1903 xfs_daddr_t agdaddr;
1904 xfs_agino_t agino;
1905 short bucket_index;
1906 int offset;
1907 int error;
1908 int agi_ok;
1910 ASSERT(ip->i_d.di_nlink == 0);
1911 ASSERT(ip->i_d.di_mode != 0);
1912 ASSERT(ip->i_transp == tp);
1914 mp = tp->t_mountp;
1916 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1917 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1920 * Get the agi buffer first. It ensures lock ordering
1921 * on the list.
1923 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1924 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1925 if (error) {
1926 return error;
1929 * Validate the magic number of the agi block.
1931 agi = XFS_BUF_TO_AGI(agibp);
1932 agi_ok =
1933 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1934 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1935 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1936 XFS_RANDOM_IUNLINK))) {
1937 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1938 xfs_trans_brelse(tp, agibp);
1939 return XFS_ERROR(EFSCORRUPTED);
1942 * Get the index into the agi hash table for the
1943 * list this inode will go on.
1945 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1946 ASSERT(agino != 0);
1947 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1948 ASSERT(agi->agi_unlinked[bucket_index]);
1949 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1951 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1953 * There is already another inode in the bucket we need
1954 * to add ourselves to. Add us at the front of the list.
1955 * Here we put the head pointer into our next pointer,
1956 * and then we fall through to point the head at us.
1958 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1959 if (error) {
1960 return error;
1962 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1963 ASSERT(dip->di_next_unlinked);
1964 /* both on-disk, don't endian flip twice */
1965 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1966 offset = ip->i_boffset +
1967 offsetof(xfs_dinode_t, di_next_unlinked);
1968 xfs_trans_inode_buf(tp, ibp);
1969 xfs_trans_log_buf(tp, ibp, offset,
1970 (offset + sizeof(xfs_agino_t) - 1));
1971 xfs_inobp_check(mp, ibp);
1975 * Point the bucket head pointer at the inode being inserted.
1977 ASSERT(agino != 0);
1978 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1979 offset = offsetof(xfs_agi_t, agi_unlinked) +
1980 (sizeof(xfs_agino_t) * bucket_index);
1981 xfs_trans_log_buf(tp, agibp, offset,
1982 (offset + sizeof(xfs_agino_t) - 1));
1983 return 0;
1987 * Pull the on-disk inode from the AGI unlinked list.
1989 STATIC int
1990 xfs_iunlink_remove(
1991 xfs_trans_t *tp,
1992 xfs_inode_t *ip)
1994 xfs_ino_t next_ino;
1995 xfs_mount_t *mp;
1996 xfs_agi_t *agi;
1997 xfs_dinode_t *dip;
1998 xfs_buf_t *agibp;
1999 xfs_buf_t *ibp;
2000 xfs_agnumber_t agno;
2001 xfs_daddr_t agdaddr;
2002 xfs_agino_t agino;
2003 xfs_agino_t next_agino;
2004 xfs_buf_t *last_ibp;
2005 xfs_dinode_t *last_dip = NULL;
2006 short bucket_index;
2007 int offset, last_offset = 0;
2008 int error;
2009 int agi_ok;
2012 * First pull the on-disk inode from the AGI unlinked list.
2014 mp = tp->t_mountp;
2016 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2017 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2020 * Get the agi buffer first. It ensures lock ordering
2021 * on the list.
2023 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2024 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2025 if (error) {
2026 cmn_err(CE_WARN,
2027 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2028 error, mp->m_fsname);
2029 return error;
2032 * Validate the magic number of the agi block.
2034 agi = XFS_BUF_TO_AGI(agibp);
2035 agi_ok =
2036 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2037 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2038 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2039 XFS_RANDOM_IUNLINK_REMOVE))) {
2040 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2041 mp, agi);
2042 xfs_trans_brelse(tp, agibp);
2043 cmn_err(CE_WARN,
2044 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2045 mp->m_fsname);
2046 return XFS_ERROR(EFSCORRUPTED);
2049 * Get the index into the agi hash table for the
2050 * list this inode will go on.
2052 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2053 ASSERT(agino != 0);
2054 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2055 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2056 ASSERT(agi->agi_unlinked[bucket_index]);
2058 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2060 * We're at the head of the list. Get the inode's
2061 * on-disk buffer to see if there is anyone after us
2062 * on the list. Only modify our next pointer if it
2063 * is not already NULLAGINO. This saves us the overhead
2064 * of dealing with the buffer when there is no need to
2065 * change it.
2067 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2068 if (error) {
2069 cmn_err(CE_WARN,
2070 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2071 error, mp->m_fsname);
2072 return error;
2074 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2075 ASSERT(next_agino != 0);
2076 if (next_agino != NULLAGINO) {
2077 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2078 offset = ip->i_boffset +
2079 offsetof(xfs_dinode_t, di_next_unlinked);
2080 xfs_trans_inode_buf(tp, ibp);
2081 xfs_trans_log_buf(tp, ibp, offset,
2082 (offset + sizeof(xfs_agino_t) - 1));
2083 xfs_inobp_check(mp, ibp);
2084 } else {
2085 xfs_trans_brelse(tp, ibp);
2088 * Point the bucket head pointer at the next inode.
2090 ASSERT(next_agino != 0);
2091 ASSERT(next_agino != agino);
2092 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2093 offset = offsetof(xfs_agi_t, agi_unlinked) +
2094 (sizeof(xfs_agino_t) * bucket_index);
2095 xfs_trans_log_buf(tp, agibp, offset,
2096 (offset + sizeof(xfs_agino_t) - 1));
2097 } else {
2099 * We need to search the list for the inode being freed.
2101 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2102 last_ibp = NULL;
2103 while (next_agino != agino) {
2105 * If the last inode wasn't the one pointing to
2106 * us, then release its buffer since we're not
2107 * going to do anything with it.
2109 if (last_ibp != NULL) {
2110 xfs_trans_brelse(tp, last_ibp);
2112 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2113 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2114 &last_ibp, &last_offset);
2115 if (error) {
2116 cmn_err(CE_WARN,
2117 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2118 error, mp->m_fsname);
2119 return error;
2121 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2122 ASSERT(next_agino != NULLAGINO);
2123 ASSERT(next_agino != 0);
2126 * Now last_ibp points to the buffer previous to us on
2127 * the unlinked list. Pull us from the list.
2129 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2130 if (error) {
2131 cmn_err(CE_WARN,
2132 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2133 error, mp->m_fsname);
2134 return error;
2136 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2137 ASSERT(next_agino != 0);
2138 ASSERT(next_agino != agino);
2139 if (next_agino != NULLAGINO) {
2140 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2141 offset = ip->i_boffset +
2142 offsetof(xfs_dinode_t, di_next_unlinked);
2143 xfs_trans_inode_buf(tp, ibp);
2144 xfs_trans_log_buf(tp, ibp, offset,
2145 (offset + sizeof(xfs_agino_t) - 1));
2146 xfs_inobp_check(mp, ibp);
2147 } else {
2148 xfs_trans_brelse(tp, ibp);
2151 * Point the previous inode on the list to the next inode.
2153 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2154 ASSERT(next_agino != 0);
2155 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2156 xfs_trans_inode_buf(tp, last_ibp);
2157 xfs_trans_log_buf(tp, last_ibp, offset,
2158 (offset + sizeof(xfs_agino_t) - 1));
2159 xfs_inobp_check(mp, last_ibp);
2161 return 0;
2164 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2166 return (((ip->i_itemp == NULL) ||
2167 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2168 (ip->i_update_core == 0));
2171 STATIC void
2172 xfs_ifree_cluster(
2173 xfs_inode_t *free_ip,
2174 xfs_trans_t *tp,
2175 xfs_ino_t inum)
2177 xfs_mount_t *mp = free_ip->i_mount;
2178 int blks_per_cluster;
2179 int nbufs;
2180 int ninodes;
2181 int i, j, found, pre_flushed;
2182 xfs_daddr_t blkno;
2183 xfs_buf_t *bp;
2184 xfs_ihash_t *ih;
2185 xfs_inode_t *ip, **ip_found;
2186 xfs_inode_log_item_t *iip;
2187 xfs_log_item_t *lip;
2188 SPLDECL(s);
2190 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2191 blks_per_cluster = 1;
2192 ninodes = mp->m_sb.sb_inopblock;
2193 nbufs = XFS_IALLOC_BLOCKS(mp);
2194 } else {
2195 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2196 mp->m_sb.sb_blocksize;
2197 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2198 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2201 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2203 for (j = 0; j < nbufs; j++, inum += ninodes) {
2204 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2205 XFS_INO_TO_AGBNO(mp, inum));
2209 * Look for each inode in memory and attempt to lock it,
2210 * we can be racing with flush and tail pushing here.
2211 * any inode we get the locks on, add to an array of
2212 * inode items to process later.
2214 * The get the buffer lock, we could beat a flush
2215 * or tail pushing thread to the lock here, in which
2216 * case they will go looking for the inode buffer
2217 * and fail, we need some other form of interlock
2218 * here.
2220 found = 0;
2221 for (i = 0; i < ninodes; i++) {
2222 ih = XFS_IHASH(mp, inum + i);
2223 read_lock(&ih->ih_lock);
2224 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2225 if (ip->i_ino == inum + i)
2226 break;
2229 /* Inode not in memory or we found it already,
2230 * nothing to do
2232 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2233 read_unlock(&ih->ih_lock);
2234 continue;
2237 if (xfs_inode_clean(ip)) {
2238 read_unlock(&ih->ih_lock);
2239 continue;
2242 /* If we can get the locks then add it to the
2243 * list, otherwise by the time we get the bp lock
2244 * below it will already be attached to the
2245 * inode buffer.
2248 /* This inode will already be locked - by us, lets
2249 * keep it that way.
2252 if (ip == free_ip) {
2253 if (xfs_iflock_nowait(ip)) {
2254 xfs_iflags_set(ip, XFS_ISTALE);
2255 if (xfs_inode_clean(ip)) {
2256 xfs_ifunlock(ip);
2257 } else {
2258 ip_found[found++] = ip;
2261 read_unlock(&ih->ih_lock);
2262 continue;
2265 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2266 if (xfs_iflock_nowait(ip)) {
2267 xfs_iflags_set(ip, XFS_ISTALE);
2269 if (xfs_inode_clean(ip)) {
2270 xfs_ifunlock(ip);
2271 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2272 } else {
2273 ip_found[found++] = ip;
2275 } else {
2276 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2280 read_unlock(&ih->ih_lock);
2283 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2284 mp->m_bsize * blks_per_cluster,
2285 XFS_BUF_LOCK);
2287 pre_flushed = 0;
2288 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2289 while (lip) {
2290 if (lip->li_type == XFS_LI_INODE) {
2291 iip = (xfs_inode_log_item_t *)lip;
2292 ASSERT(iip->ili_logged == 1);
2293 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2294 AIL_LOCK(mp,s);
2295 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2296 AIL_UNLOCK(mp, s);
2297 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2298 pre_flushed++;
2300 lip = lip->li_bio_list;
2303 for (i = 0; i < found; i++) {
2304 ip = ip_found[i];
2305 iip = ip->i_itemp;
2307 if (!iip) {
2308 ip->i_update_core = 0;
2309 xfs_ifunlock(ip);
2310 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2311 continue;
2314 iip->ili_last_fields = iip->ili_format.ilf_fields;
2315 iip->ili_format.ilf_fields = 0;
2316 iip->ili_logged = 1;
2317 AIL_LOCK(mp,s);
2318 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2319 AIL_UNLOCK(mp, s);
2321 xfs_buf_attach_iodone(bp,
2322 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2323 xfs_istale_done, (xfs_log_item_t *)iip);
2324 if (ip != free_ip) {
2325 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2329 if (found || pre_flushed)
2330 xfs_trans_stale_inode_buf(tp, bp);
2331 xfs_trans_binval(tp, bp);
2334 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2338 * This is called to return an inode to the inode free list.
2339 * The inode should already be truncated to 0 length and have
2340 * no pages associated with it. This routine also assumes that
2341 * the inode is already a part of the transaction.
2343 * The on-disk copy of the inode will have been added to the list
2344 * of unlinked inodes in the AGI. We need to remove the inode from
2345 * that list atomically with respect to freeing it here.
2348 xfs_ifree(
2349 xfs_trans_t *tp,
2350 xfs_inode_t *ip,
2351 xfs_bmap_free_t *flist)
2353 int error;
2354 int delete;
2355 xfs_ino_t first_ino;
2357 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2358 ASSERT(ip->i_transp == tp);
2359 ASSERT(ip->i_d.di_nlink == 0);
2360 ASSERT(ip->i_d.di_nextents == 0);
2361 ASSERT(ip->i_d.di_anextents == 0);
2362 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2363 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2364 ASSERT(ip->i_d.di_nblocks == 0);
2367 * Pull the on-disk inode from the AGI unlinked list.
2369 error = xfs_iunlink_remove(tp, ip);
2370 if (error != 0) {
2371 return error;
2374 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2375 if (error != 0) {
2376 return error;
2378 ip->i_d.di_mode = 0; /* mark incore inode as free */
2379 ip->i_d.di_flags = 0;
2380 ip->i_d.di_dmevmask = 0;
2381 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2382 ip->i_df.if_ext_max =
2383 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2384 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2385 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2387 * Bump the generation count so no one will be confused
2388 * by reincarnations of this inode.
2390 ip->i_d.di_gen++;
2391 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2393 if (delete) {
2394 xfs_ifree_cluster(ip, tp, first_ino);
2397 return 0;
2401 * Reallocate the space for if_broot based on the number of records
2402 * being added or deleted as indicated in rec_diff. Move the records
2403 * and pointers in if_broot to fit the new size. When shrinking this
2404 * will eliminate holes between the records and pointers created by
2405 * the caller. When growing this will create holes to be filled in
2406 * by the caller.
2408 * The caller must not request to add more records than would fit in
2409 * the on-disk inode root. If the if_broot is currently NULL, then
2410 * if we adding records one will be allocated. The caller must also
2411 * not request that the number of records go below zero, although
2412 * it can go to zero.
2414 * ip -- the inode whose if_broot area is changing
2415 * ext_diff -- the change in the number of records, positive or negative,
2416 * requested for the if_broot array.
2418 void
2419 xfs_iroot_realloc(
2420 xfs_inode_t *ip,
2421 int rec_diff,
2422 int whichfork)
2424 int cur_max;
2425 xfs_ifork_t *ifp;
2426 xfs_bmbt_block_t *new_broot;
2427 int new_max;
2428 size_t new_size;
2429 char *np;
2430 char *op;
2433 * Handle the degenerate case quietly.
2435 if (rec_diff == 0) {
2436 return;
2439 ifp = XFS_IFORK_PTR(ip, whichfork);
2440 if (rec_diff > 0) {
2442 * If there wasn't any memory allocated before, just
2443 * allocate it now and get out.
2445 if (ifp->if_broot_bytes == 0) {
2446 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2447 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2448 KM_SLEEP);
2449 ifp->if_broot_bytes = (int)new_size;
2450 return;
2454 * If there is already an existing if_broot, then we need
2455 * to realloc() it and shift the pointers to their new
2456 * location. The records don't change location because
2457 * they are kept butted up against the btree block header.
2459 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2460 new_max = cur_max + rec_diff;
2461 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2462 ifp->if_broot = (xfs_bmbt_block_t *)
2463 kmem_realloc(ifp->if_broot,
2464 new_size,
2465 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2466 KM_SLEEP);
2467 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2468 ifp->if_broot_bytes);
2469 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2470 (int)new_size);
2471 ifp->if_broot_bytes = (int)new_size;
2472 ASSERT(ifp->if_broot_bytes <=
2473 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2474 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2475 return;
2479 * rec_diff is less than 0. In this case, we are shrinking the
2480 * if_broot buffer. It must already exist. If we go to zero
2481 * records, just get rid of the root and clear the status bit.
2483 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2484 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2485 new_max = cur_max + rec_diff;
2486 ASSERT(new_max >= 0);
2487 if (new_max > 0)
2488 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2489 else
2490 new_size = 0;
2491 if (new_size > 0) {
2492 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2494 * First copy over the btree block header.
2496 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2497 } else {
2498 new_broot = NULL;
2499 ifp->if_flags &= ~XFS_IFBROOT;
2503 * Only copy the records and pointers if there are any.
2505 if (new_max > 0) {
2507 * First copy the records.
2509 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2510 ifp->if_broot_bytes);
2511 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2512 (int)new_size);
2513 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2516 * Then copy the pointers.
2518 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2519 ifp->if_broot_bytes);
2520 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2521 (int)new_size);
2522 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2524 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2525 ifp->if_broot = new_broot;
2526 ifp->if_broot_bytes = (int)new_size;
2527 ASSERT(ifp->if_broot_bytes <=
2528 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2529 return;
2534 * This is called when the amount of space needed for if_data
2535 * is increased or decreased. The change in size is indicated by
2536 * the number of bytes that need to be added or deleted in the
2537 * byte_diff parameter.
2539 * If the amount of space needed has decreased below the size of the
2540 * inline buffer, then switch to using the inline buffer. Otherwise,
2541 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2542 * to what is needed.
2544 * ip -- the inode whose if_data area is changing
2545 * byte_diff -- the change in the number of bytes, positive or negative,
2546 * requested for the if_data array.
2548 void
2549 xfs_idata_realloc(
2550 xfs_inode_t *ip,
2551 int byte_diff,
2552 int whichfork)
2554 xfs_ifork_t *ifp;
2555 int new_size;
2556 int real_size;
2558 if (byte_diff == 0) {
2559 return;
2562 ifp = XFS_IFORK_PTR(ip, whichfork);
2563 new_size = (int)ifp->if_bytes + byte_diff;
2564 ASSERT(new_size >= 0);
2566 if (new_size == 0) {
2567 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2568 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2570 ifp->if_u1.if_data = NULL;
2571 real_size = 0;
2572 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2574 * If the valid extents/data can fit in if_inline_ext/data,
2575 * copy them from the malloc'd vector and free it.
2577 if (ifp->if_u1.if_data == NULL) {
2578 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2579 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2580 ASSERT(ifp->if_real_bytes != 0);
2581 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2582 new_size);
2583 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2584 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2586 real_size = 0;
2587 } else {
2589 * Stuck with malloc/realloc.
2590 * For inline data, the underlying buffer must be
2591 * a multiple of 4 bytes in size so that it can be
2592 * logged and stay on word boundaries. We enforce
2593 * that here.
2595 real_size = roundup(new_size, 4);
2596 if (ifp->if_u1.if_data == NULL) {
2597 ASSERT(ifp->if_real_bytes == 0);
2598 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2599 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 * Only do the realloc if the underlying size
2602 * is really changing.
2604 if (ifp->if_real_bytes != real_size) {
2605 ifp->if_u1.if_data =
2606 kmem_realloc(ifp->if_u1.if_data,
2607 real_size,
2608 ifp->if_real_bytes,
2609 KM_SLEEP);
2611 } else {
2612 ASSERT(ifp->if_real_bytes == 0);
2613 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2614 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2615 ifp->if_bytes);
2618 ifp->if_real_bytes = real_size;
2619 ifp->if_bytes = new_size;
2620 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2627 * Map inode to disk block and offset.
2629 * mp -- the mount point structure for the current file system
2630 * tp -- the current transaction
2631 * ino -- the inode number of the inode to be located
2632 * imap -- this structure is filled in with the information necessary
2633 * to retrieve the given inode from disk
2634 * flags -- flags to pass to xfs_dilocate indicating whether or not
2635 * lookups in the inode btree were OK or not
2638 xfs_imap(
2639 xfs_mount_t *mp,
2640 xfs_trans_t *tp,
2641 xfs_ino_t ino,
2642 xfs_imap_t *imap,
2643 uint flags)
2645 xfs_fsblock_t fsbno;
2646 int len;
2647 int off;
2648 int error;
2650 fsbno = imap->im_blkno ?
2651 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2652 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2653 if (error != 0) {
2654 return error;
2656 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2657 imap->im_len = XFS_FSB_TO_BB(mp, len);
2658 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2659 imap->im_ioffset = (ushort)off;
2660 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2661 return 0;
2664 void
2665 xfs_idestroy_fork(
2666 xfs_inode_t *ip,
2667 int whichfork)
2669 xfs_ifork_t *ifp;
2671 ifp = XFS_IFORK_PTR(ip, whichfork);
2672 if (ifp->if_broot != NULL) {
2673 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2674 ifp->if_broot = NULL;
2678 * If the format is local, then we can't have an extents
2679 * array so just look for an inline data array. If we're
2680 * not local then we may or may not have an extents list,
2681 * so check and free it up if we do.
2683 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2684 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2685 (ifp->if_u1.if_data != NULL)) {
2686 ASSERT(ifp->if_real_bytes != 0);
2687 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2688 ifp->if_u1.if_data = NULL;
2689 ifp->if_real_bytes = 0;
2691 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2692 ((ifp->if_flags & XFS_IFEXTIREC) ||
2693 ((ifp->if_u1.if_extents != NULL) &&
2694 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2695 ASSERT(ifp->if_real_bytes != 0);
2696 xfs_iext_destroy(ifp);
2698 ASSERT(ifp->if_u1.if_extents == NULL ||
2699 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2700 ASSERT(ifp->if_real_bytes == 0);
2701 if (whichfork == XFS_ATTR_FORK) {
2702 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2703 ip->i_afp = NULL;
2708 * This is called free all the memory associated with an inode.
2709 * It must free the inode itself and any buffers allocated for
2710 * if_extents/if_data and if_broot. It must also free the lock
2711 * associated with the inode.
2713 void
2714 xfs_idestroy(
2715 xfs_inode_t *ip)
2718 switch (ip->i_d.di_mode & S_IFMT) {
2719 case S_IFREG:
2720 case S_IFDIR:
2721 case S_IFLNK:
2722 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2723 break;
2725 if (ip->i_afp)
2726 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2727 mrfree(&ip->i_lock);
2728 mrfree(&ip->i_iolock);
2729 freesema(&ip->i_flock);
2730 #ifdef XFS_BMAP_TRACE
2731 ktrace_free(ip->i_xtrace);
2732 #endif
2733 #ifdef XFS_BMBT_TRACE
2734 ktrace_free(ip->i_btrace);
2735 #endif
2736 #ifdef XFS_RW_TRACE
2737 ktrace_free(ip->i_rwtrace);
2738 #endif
2739 #ifdef XFS_ILOCK_TRACE
2740 ktrace_free(ip->i_lock_trace);
2741 #endif
2742 #ifdef XFS_DIR2_TRACE
2743 ktrace_free(ip->i_dir_trace);
2744 #endif
2745 if (ip->i_itemp) {
2747 * Only if we are shutting down the fs will we see an
2748 * inode still in the AIL. If it is there, we should remove
2749 * it to prevent a use-after-free from occurring.
2751 xfs_mount_t *mp = ip->i_mount;
2752 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2753 int s;
2755 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2756 XFS_FORCED_SHUTDOWN(ip->i_mount));
2757 if (lip->li_flags & XFS_LI_IN_AIL) {
2758 AIL_LOCK(mp, s);
2759 if (lip->li_flags & XFS_LI_IN_AIL)
2760 xfs_trans_delete_ail(mp, lip, s);
2761 else
2762 AIL_UNLOCK(mp, s);
2764 xfs_inode_item_destroy(ip);
2766 kmem_zone_free(xfs_inode_zone, ip);
2771 * Increment the pin count of the given buffer.
2772 * This value is protected by ipinlock spinlock in the mount structure.
2774 void
2775 xfs_ipin(
2776 xfs_inode_t *ip)
2778 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2780 atomic_inc(&ip->i_pincount);
2784 * Decrement the pin count of the given inode, and wake up
2785 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2786 * inode must have been previously pinned with a call to xfs_ipin().
2788 void
2789 xfs_iunpin(
2790 xfs_inode_t *ip)
2792 ASSERT(atomic_read(&ip->i_pincount) > 0);
2794 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2797 * If the inode is currently being reclaimed, the link between
2798 * the bhv_vnode and the xfs_inode will be broken after the
2799 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2800 * set, then we can move forward and mark the linux inode dirty
2801 * knowing that it is still valid as it won't freed until after
2802 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2803 * i_flags_lock is used to synchronise the setting of the
2804 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2805 * can execute atomically w.r.t to reclaim by holding this lock
2806 * here.
2808 * However, we still need to issue the unpin wakeup call as the
2809 * inode reclaim may be blocked waiting for the inode to become
2810 * unpinned.
2813 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2814 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2815 struct inode *inode = NULL;
2817 BUG_ON(vp == NULL);
2818 inode = vn_to_inode(vp);
2819 BUG_ON(inode->i_state & I_CLEAR);
2821 /* make sync come back and flush this inode */
2822 if (!(inode->i_state & (I_NEW|I_FREEING)))
2823 mark_inode_dirty_sync(inode);
2825 spin_unlock(&ip->i_flags_lock);
2826 wake_up(&ip->i_ipin_wait);
2831 * This is called to wait for the given inode to be unpinned.
2832 * It will sleep until this happens. The caller must have the
2833 * inode locked in at least shared mode so that the buffer cannot
2834 * be subsequently pinned once someone is waiting for it to be
2835 * unpinned.
2837 STATIC void
2838 xfs_iunpin_wait(
2839 xfs_inode_t *ip)
2841 xfs_inode_log_item_t *iip;
2842 xfs_lsn_t lsn;
2844 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2846 if (atomic_read(&ip->i_pincount) == 0) {
2847 return;
2850 iip = ip->i_itemp;
2851 if (iip && iip->ili_last_lsn) {
2852 lsn = iip->ili_last_lsn;
2853 } else {
2854 lsn = (xfs_lsn_t)0;
2858 * Give the log a push so we don't wait here too long.
2860 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2862 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2867 * xfs_iextents_copy()
2869 * This is called to copy the REAL extents (as opposed to the delayed
2870 * allocation extents) from the inode into the given buffer. It
2871 * returns the number of bytes copied into the buffer.
2873 * If there are no delayed allocation extents, then we can just
2874 * memcpy() the extents into the buffer. Otherwise, we need to
2875 * examine each extent in turn and skip those which are delayed.
2878 xfs_iextents_copy(
2879 xfs_inode_t *ip,
2880 xfs_bmbt_rec_t *dp,
2881 int whichfork)
2883 int copied;
2884 int i;
2885 xfs_ifork_t *ifp;
2886 int nrecs;
2887 xfs_fsblock_t start_block;
2889 ifp = XFS_IFORK_PTR(ip, whichfork);
2890 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2891 ASSERT(ifp->if_bytes > 0);
2893 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2894 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2895 ASSERT(nrecs > 0);
2898 * There are some delayed allocation extents in the
2899 * inode, so copy the extents one at a time and skip
2900 * the delayed ones. There must be at least one
2901 * non-delayed extent.
2903 copied = 0;
2904 for (i = 0; i < nrecs; i++) {
2905 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2906 start_block = xfs_bmbt_get_startblock(ep);
2907 if (ISNULLSTARTBLOCK(start_block)) {
2909 * It's a delayed allocation extent, so skip it.
2911 continue;
2914 /* Translate to on disk format */
2915 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2916 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2917 dp++;
2918 copied++;
2920 ASSERT(copied != 0);
2921 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2923 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2927 * Each of the following cases stores data into the same region
2928 * of the on-disk inode, so only one of them can be valid at
2929 * any given time. While it is possible to have conflicting formats
2930 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2931 * in EXTENTS format, this can only happen when the fork has
2932 * changed formats after being modified but before being flushed.
2933 * In these cases, the format always takes precedence, because the
2934 * format indicates the current state of the fork.
2936 /*ARGSUSED*/
2937 STATIC int
2938 xfs_iflush_fork(
2939 xfs_inode_t *ip,
2940 xfs_dinode_t *dip,
2941 xfs_inode_log_item_t *iip,
2942 int whichfork,
2943 xfs_buf_t *bp)
2945 char *cp;
2946 xfs_ifork_t *ifp;
2947 xfs_mount_t *mp;
2948 #ifdef XFS_TRANS_DEBUG
2949 int first;
2950 #endif
2951 static const short brootflag[2] =
2952 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2953 static const short dataflag[2] =
2954 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2955 static const short extflag[2] =
2956 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2958 if (iip == NULL)
2959 return 0;
2960 ifp = XFS_IFORK_PTR(ip, whichfork);
2962 * This can happen if we gave up in iformat in an error path,
2963 * for the attribute fork.
2965 if (ifp == NULL) {
2966 ASSERT(whichfork == XFS_ATTR_FORK);
2967 return 0;
2969 cp = XFS_DFORK_PTR(dip, whichfork);
2970 mp = ip->i_mount;
2971 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2972 case XFS_DINODE_FMT_LOCAL:
2973 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2974 (ifp->if_bytes > 0)) {
2975 ASSERT(ifp->if_u1.if_data != NULL);
2976 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2977 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2979 break;
2981 case XFS_DINODE_FMT_EXTENTS:
2982 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2983 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2984 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2985 (ifp->if_bytes == 0));
2986 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2987 (ifp->if_bytes > 0));
2988 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2989 (ifp->if_bytes > 0)) {
2990 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2991 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2992 whichfork);
2994 break;
2996 case XFS_DINODE_FMT_BTREE:
2997 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2998 (ifp->if_broot_bytes > 0)) {
2999 ASSERT(ifp->if_broot != NULL);
3000 ASSERT(ifp->if_broot_bytes <=
3001 (XFS_IFORK_SIZE(ip, whichfork) +
3002 XFS_BROOT_SIZE_ADJ));
3003 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3004 (xfs_bmdr_block_t *)cp,
3005 XFS_DFORK_SIZE(dip, mp, whichfork));
3007 break;
3009 case XFS_DINODE_FMT_DEV:
3010 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3011 ASSERT(whichfork == XFS_DATA_FORK);
3012 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3014 break;
3016 case XFS_DINODE_FMT_UUID:
3017 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3018 ASSERT(whichfork == XFS_DATA_FORK);
3019 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3020 sizeof(uuid_t));
3022 break;
3024 default:
3025 ASSERT(0);
3026 break;
3029 return 0;
3033 * xfs_iflush() will write a modified inode's changes out to the
3034 * inode's on disk home. The caller must have the inode lock held
3035 * in at least shared mode and the inode flush semaphore must be
3036 * held as well. The inode lock will still be held upon return from
3037 * the call and the caller is free to unlock it.
3038 * The inode flush lock will be unlocked when the inode reaches the disk.
3039 * The flags indicate how the inode's buffer should be written out.
3042 xfs_iflush(
3043 xfs_inode_t *ip,
3044 uint flags)
3046 xfs_inode_log_item_t *iip;
3047 xfs_buf_t *bp;
3048 xfs_dinode_t *dip;
3049 xfs_mount_t *mp;
3050 int error;
3051 /* REFERENCED */
3052 xfs_chash_t *ch;
3053 xfs_inode_t *iq;
3054 int clcount; /* count of inodes clustered */
3055 int bufwasdelwri;
3056 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3057 SPLDECL(s);
3059 XFS_STATS_INC(xs_iflush_count);
3061 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3062 ASSERT(issemalocked(&(ip->i_flock)));
3063 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3064 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3066 iip = ip->i_itemp;
3067 mp = ip->i_mount;
3070 * If the inode isn't dirty, then just release the inode
3071 * flush lock and do nothing.
3073 if ((ip->i_update_core == 0) &&
3074 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3075 ASSERT((iip != NULL) ?
3076 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3077 xfs_ifunlock(ip);
3078 return 0;
3082 * We can't flush the inode until it is unpinned, so
3083 * wait for it. We know noone new can pin it, because
3084 * we are holding the inode lock shared and you need
3085 * to hold it exclusively to pin the inode.
3087 xfs_iunpin_wait(ip);
3090 * This may have been unpinned because the filesystem is shutting
3091 * down forcibly. If that's the case we must not write this inode
3092 * to disk, because the log record didn't make it to disk!
3094 if (XFS_FORCED_SHUTDOWN(mp)) {
3095 ip->i_update_core = 0;
3096 if (iip)
3097 iip->ili_format.ilf_fields = 0;
3098 xfs_ifunlock(ip);
3099 return XFS_ERROR(EIO);
3103 * Get the buffer containing the on-disk inode.
3105 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3106 if (error) {
3107 xfs_ifunlock(ip);
3108 return error;
3112 * Decide how buffer will be flushed out. This is done before
3113 * the call to xfs_iflush_int because this field is zeroed by it.
3115 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3117 * Flush out the inode buffer according to the directions
3118 * of the caller. In the cases where the caller has given
3119 * us a choice choose the non-delwri case. This is because
3120 * the inode is in the AIL and we need to get it out soon.
3122 switch (flags) {
3123 case XFS_IFLUSH_SYNC:
3124 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3125 flags = 0;
3126 break;
3127 case XFS_IFLUSH_ASYNC:
3128 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3129 flags = INT_ASYNC;
3130 break;
3131 case XFS_IFLUSH_DELWRI:
3132 flags = INT_DELWRI;
3133 break;
3134 default:
3135 ASSERT(0);
3136 flags = 0;
3137 break;
3139 } else {
3140 switch (flags) {
3141 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3142 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3143 case XFS_IFLUSH_DELWRI:
3144 flags = INT_DELWRI;
3145 break;
3146 case XFS_IFLUSH_ASYNC:
3147 flags = INT_ASYNC;
3148 break;
3149 case XFS_IFLUSH_SYNC:
3150 flags = 0;
3151 break;
3152 default:
3153 ASSERT(0);
3154 flags = 0;
3155 break;
3160 * First flush out the inode that xfs_iflush was called with.
3162 error = xfs_iflush_int(ip, bp);
3163 if (error) {
3164 goto corrupt_out;
3168 * inode clustering:
3169 * see if other inodes can be gathered into this write
3172 ip->i_chash->chl_buf = bp;
3174 ch = XFS_CHASH(mp, ip->i_blkno);
3175 s = mutex_spinlock(&ch->ch_lock);
3177 clcount = 0;
3178 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3180 * Do an un-protected check to see if the inode is dirty and
3181 * is a candidate for flushing. These checks will be repeated
3182 * later after the appropriate locks are acquired.
3184 iip = iq->i_itemp;
3185 if ((iq->i_update_core == 0) &&
3186 ((iip == NULL) ||
3187 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3188 xfs_ipincount(iq) == 0) {
3189 continue;
3193 * Try to get locks. If any are unavailable,
3194 * then this inode cannot be flushed and is skipped.
3197 /* get inode locks (just i_lock) */
3198 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3199 /* get inode flush lock */
3200 if (xfs_iflock_nowait(iq)) {
3201 /* check if pinned */
3202 if (xfs_ipincount(iq) == 0) {
3203 /* arriving here means that
3204 * this inode can be flushed.
3205 * first re-check that it's
3206 * dirty
3208 iip = iq->i_itemp;
3209 if ((iq->i_update_core != 0)||
3210 ((iip != NULL) &&
3211 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3212 clcount++;
3213 error = xfs_iflush_int(iq, bp);
3214 if (error) {
3215 xfs_iunlock(iq,
3216 XFS_ILOCK_SHARED);
3217 goto cluster_corrupt_out;
3219 } else {
3220 xfs_ifunlock(iq);
3222 } else {
3223 xfs_ifunlock(iq);
3226 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3229 mutex_spinunlock(&ch->ch_lock, s);
3231 if (clcount) {
3232 XFS_STATS_INC(xs_icluster_flushcnt);
3233 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3237 * If the buffer is pinned then push on the log so we won't
3238 * get stuck waiting in the write for too long.
3240 if (XFS_BUF_ISPINNED(bp)){
3241 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3244 if (flags & INT_DELWRI) {
3245 xfs_bdwrite(mp, bp);
3246 } else if (flags & INT_ASYNC) {
3247 xfs_bawrite(mp, bp);
3248 } else {
3249 error = xfs_bwrite(mp, bp);
3251 return error;
3253 corrupt_out:
3254 xfs_buf_relse(bp);
3255 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3256 xfs_iflush_abort(ip);
3258 * Unlocks the flush lock
3260 return XFS_ERROR(EFSCORRUPTED);
3262 cluster_corrupt_out:
3263 /* Corruption detected in the clustering loop. Invalidate the
3264 * inode buffer and shut down the filesystem.
3266 mutex_spinunlock(&ch->ch_lock, s);
3269 * Clean up the buffer. If it was B_DELWRI, just release it --
3270 * brelse can handle it with no problems. If not, shut down the
3271 * filesystem before releasing the buffer.
3273 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3274 xfs_buf_relse(bp);
3277 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3279 if(!bufwasdelwri) {
3281 * Just like incore_relse: if we have b_iodone functions,
3282 * mark the buffer as an error and call them. Otherwise
3283 * mark it as stale and brelse.
3285 if (XFS_BUF_IODONE_FUNC(bp)) {
3286 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3287 XFS_BUF_UNDONE(bp);
3288 XFS_BUF_STALE(bp);
3289 XFS_BUF_SHUT(bp);
3290 XFS_BUF_ERROR(bp,EIO);
3291 xfs_biodone(bp);
3292 } else {
3293 XFS_BUF_STALE(bp);
3294 xfs_buf_relse(bp);
3298 xfs_iflush_abort(iq);
3300 * Unlocks the flush lock
3302 return XFS_ERROR(EFSCORRUPTED);
3306 STATIC int
3307 xfs_iflush_int(
3308 xfs_inode_t *ip,
3309 xfs_buf_t *bp)
3311 xfs_inode_log_item_t *iip;
3312 xfs_dinode_t *dip;
3313 xfs_mount_t *mp;
3314 #ifdef XFS_TRANS_DEBUG
3315 int first;
3316 #endif
3317 SPLDECL(s);
3319 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3320 ASSERT(issemalocked(&(ip->i_flock)));
3321 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3322 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3324 iip = ip->i_itemp;
3325 mp = ip->i_mount;
3329 * If the inode isn't dirty, then just release the inode
3330 * flush lock and do nothing.
3332 if ((ip->i_update_core == 0) &&
3333 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3334 xfs_ifunlock(ip);
3335 return 0;
3338 /* set *dip = inode's place in the buffer */
3339 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3342 * Clear i_update_core before copying out the data.
3343 * This is for coordination with our timestamp updates
3344 * that don't hold the inode lock. They will always
3345 * update the timestamps BEFORE setting i_update_core,
3346 * so if we clear i_update_core after they set it we
3347 * are guaranteed to see their updates to the timestamps.
3348 * I believe that this depends on strongly ordered memory
3349 * semantics, but we have that. We use the SYNCHRONIZE
3350 * macro to make sure that the compiler does not reorder
3351 * the i_update_core access below the data copy below.
3353 ip->i_update_core = 0;
3354 SYNCHRONIZE();
3357 * Make sure to get the latest atime from the Linux inode.
3359 xfs_synchronize_atime(ip);
3361 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3362 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3363 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3364 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3365 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3366 goto corrupt_out;
3368 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3369 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3370 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3371 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3372 ip->i_ino, ip, ip->i_d.di_magic);
3373 goto corrupt_out;
3375 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3376 if (XFS_TEST_ERROR(
3377 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3378 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3379 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3382 ip->i_ino, ip);
3383 goto corrupt_out;
3385 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3386 if (XFS_TEST_ERROR(
3387 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3388 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3389 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3390 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3391 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3392 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3393 ip->i_ino, ip);
3394 goto corrupt_out;
3397 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3398 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3399 XFS_RANDOM_IFLUSH_5)) {
3400 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3401 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3402 ip->i_ino,
3403 ip->i_d.di_nextents + ip->i_d.di_anextents,
3404 ip->i_d.di_nblocks,
3405 ip);
3406 goto corrupt_out;
3408 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3409 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3410 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3411 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3412 ip->i_ino, ip->i_d.di_forkoff, ip);
3413 goto corrupt_out;
3416 * bump the flush iteration count, used to detect flushes which
3417 * postdate a log record during recovery.
3420 ip->i_d.di_flushiter++;
3423 * Copy the dirty parts of the inode into the on-disk
3424 * inode. We always copy out the core of the inode,
3425 * because if the inode is dirty at all the core must
3426 * be.
3428 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3430 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3431 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3432 ip->i_d.di_flushiter = 0;
3435 * If this is really an old format inode and the superblock version
3436 * has not been updated to support only new format inodes, then
3437 * convert back to the old inode format. If the superblock version
3438 * has been updated, then make the conversion permanent.
3440 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3441 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3442 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3443 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3445 * Convert it back.
3447 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3448 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3449 } else {
3451 * The superblock version has already been bumped,
3452 * so just make the conversion to the new inode
3453 * format permanent.
3455 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3456 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3457 ip->i_d.di_onlink = 0;
3458 dip->di_core.di_onlink = 0;
3459 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3460 memset(&(dip->di_core.di_pad[0]), 0,
3461 sizeof(dip->di_core.di_pad));
3462 ASSERT(ip->i_d.di_projid == 0);
3466 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3467 goto corrupt_out;
3470 if (XFS_IFORK_Q(ip)) {
3472 * The only error from xfs_iflush_fork is on the data fork.
3474 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3476 xfs_inobp_check(mp, bp);
3479 * We've recorded everything logged in the inode, so we'd
3480 * like to clear the ilf_fields bits so we don't log and
3481 * flush things unnecessarily. However, we can't stop
3482 * logging all this information until the data we've copied
3483 * into the disk buffer is written to disk. If we did we might
3484 * overwrite the copy of the inode in the log with all the
3485 * data after re-logging only part of it, and in the face of
3486 * a crash we wouldn't have all the data we need to recover.
3488 * What we do is move the bits to the ili_last_fields field.
3489 * When logging the inode, these bits are moved back to the
3490 * ilf_fields field. In the xfs_iflush_done() routine we
3491 * clear ili_last_fields, since we know that the information
3492 * those bits represent is permanently on disk. As long as
3493 * the flush completes before the inode is logged again, then
3494 * both ilf_fields and ili_last_fields will be cleared.
3496 * We can play with the ilf_fields bits here, because the inode
3497 * lock must be held exclusively in order to set bits there
3498 * and the flush lock protects the ili_last_fields bits.
3499 * Set ili_logged so the flush done
3500 * routine can tell whether or not to look in the AIL.
3501 * Also, store the current LSN of the inode so that we can tell
3502 * whether the item has moved in the AIL from xfs_iflush_done().
3503 * In order to read the lsn we need the AIL lock, because
3504 * it is a 64 bit value that cannot be read atomically.
3506 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3507 iip->ili_last_fields = iip->ili_format.ilf_fields;
3508 iip->ili_format.ilf_fields = 0;
3509 iip->ili_logged = 1;
3511 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3512 AIL_LOCK(mp,s);
3513 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3514 AIL_UNLOCK(mp, s);
3517 * Attach the function xfs_iflush_done to the inode's
3518 * buffer. This will remove the inode from the AIL
3519 * and unlock the inode's flush lock when the inode is
3520 * completely written to disk.
3522 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3523 xfs_iflush_done, (xfs_log_item_t *)iip);
3525 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3526 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3527 } else {
3529 * We're flushing an inode which is not in the AIL and has
3530 * not been logged but has i_update_core set. For this
3531 * case we can use a B_DELWRI flush and immediately drop
3532 * the inode flush lock because we can avoid the whole
3533 * AIL state thing. It's OK to drop the flush lock now,
3534 * because we've already locked the buffer and to do anything
3535 * you really need both.
3537 if (iip != NULL) {
3538 ASSERT(iip->ili_logged == 0);
3539 ASSERT(iip->ili_last_fields == 0);
3540 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3542 xfs_ifunlock(ip);
3545 return 0;
3547 corrupt_out:
3548 return XFS_ERROR(EFSCORRUPTED);
3553 * Flush all inactive inodes in mp.
3555 void
3556 xfs_iflush_all(
3557 xfs_mount_t *mp)
3559 xfs_inode_t *ip;
3560 bhv_vnode_t *vp;
3562 again:
3563 XFS_MOUNT_ILOCK(mp);
3564 ip = mp->m_inodes;
3565 if (ip == NULL)
3566 goto out;
3568 do {
3569 /* Make sure we skip markers inserted by sync */
3570 if (ip->i_mount == NULL) {
3571 ip = ip->i_mnext;
3572 continue;
3575 vp = XFS_ITOV_NULL(ip);
3576 if (!vp) {
3577 XFS_MOUNT_IUNLOCK(mp);
3578 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3579 goto again;
3582 ASSERT(vn_count(vp) == 0);
3584 ip = ip->i_mnext;
3585 } while (ip != mp->m_inodes);
3586 out:
3587 XFS_MOUNT_IUNLOCK(mp);
3591 * xfs_iaccess: check accessibility of inode for mode.
3594 xfs_iaccess(
3595 xfs_inode_t *ip,
3596 mode_t mode,
3597 cred_t *cr)
3599 int error;
3600 mode_t orgmode = mode;
3601 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3603 if (mode & S_IWUSR) {
3604 umode_t imode = inode->i_mode;
3606 if (IS_RDONLY(inode) &&
3607 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3608 return XFS_ERROR(EROFS);
3610 if (IS_IMMUTABLE(inode))
3611 return XFS_ERROR(EACCES);
3615 * If there's an Access Control List it's used instead of
3616 * the mode bits.
3618 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3619 return error ? XFS_ERROR(error) : 0;
3621 if (current_fsuid(cr) != ip->i_d.di_uid) {
3622 mode >>= 3;
3623 if (!in_group_p((gid_t)ip->i_d.di_gid))
3624 mode >>= 3;
3628 * If the DACs are ok we don't need any capability check.
3630 if ((ip->i_d.di_mode & mode) == mode)
3631 return 0;
3633 * Read/write DACs are always overridable.
3634 * Executable DACs are overridable if at least one exec bit is set.
3636 if (!(orgmode & S_IXUSR) ||
3637 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3638 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3639 return 0;
3641 if ((orgmode == S_IRUSR) ||
3642 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3643 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3644 return 0;
3645 #ifdef NOISE
3646 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3647 #endif /* NOISE */
3648 return XFS_ERROR(EACCES);
3650 return XFS_ERROR(EACCES);
3654 * xfs_iroundup: round up argument to next power of two
3656 uint
3657 xfs_iroundup(
3658 uint v)
3660 int i;
3661 uint m;
3663 if ((v & (v - 1)) == 0)
3664 return v;
3665 ASSERT((v & 0x80000000) == 0);
3666 if ((v & (v + 1)) == 0)
3667 return v + 1;
3668 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3669 if (v & m)
3670 continue;
3671 v |= m;
3672 if ((v & (v + 1)) == 0)
3673 return v + 1;
3675 ASSERT(0);
3676 return( 0 );
3679 #ifdef XFS_ILOCK_TRACE
3680 ktrace_t *xfs_ilock_trace_buf;
3682 void
3683 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3685 ktrace_enter(ip->i_lock_trace,
3686 (void *)ip,
3687 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3688 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3689 (void *)ra, /* caller of ilock */
3690 (void *)(unsigned long)current_cpu(),
3691 (void *)(unsigned long)current_pid(),
3692 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3694 #endif
3697 * Return a pointer to the extent record at file index idx.
3699 xfs_bmbt_rec_host_t *
3700 xfs_iext_get_ext(
3701 xfs_ifork_t *ifp, /* inode fork pointer */
3702 xfs_extnum_t idx) /* index of target extent */
3704 ASSERT(idx >= 0);
3705 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3706 return ifp->if_u1.if_ext_irec->er_extbuf;
3707 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3708 xfs_ext_irec_t *erp; /* irec pointer */
3709 int erp_idx = 0; /* irec index */
3710 xfs_extnum_t page_idx = idx; /* ext index in target list */
3712 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3713 return &erp->er_extbuf[page_idx];
3714 } else if (ifp->if_bytes) {
3715 return &ifp->if_u1.if_extents[idx];
3716 } else {
3717 return NULL;
3722 * Insert new item(s) into the extent records for incore inode
3723 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3725 void
3726 xfs_iext_insert(
3727 xfs_ifork_t *ifp, /* inode fork pointer */
3728 xfs_extnum_t idx, /* starting index of new items */
3729 xfs_extnum_t count, /* number of inserted items */
3730 xfs_bmbt_irec_t *new) /* items to insert */
3732 xfs_extnum_t i; /* extent record index */
3734 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3735 xfs_iext_add(ifp, idx, count);
3736 for (i = idx; i < idx + count; i++, new++)
3737 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3741 * This is called when the amount of space required for incore file
3742 * extents needs to be increased. The ext_diff parameter stores the
3743 * number of new extents being added and the idx parameter contains
3744 * the extent index where the new extents will be added. If the new
3745 * extents are being appended, then we just need to (re)allocate and
3746 * initialize the space. Otherwise, if the new extents are being
3747 * inserted into the middle of the existing entries, a bit more work
3748 * is required to make room for the new extents to be inserted. The
3749 * caller is responsible for filling in the new extent entries upon
3750 * return.
3752 void
3753 xfs_iext_add(
3754 xfs_ifork_t *ifp, /* inode fork pointer */
3755 xfs_extnum_t idx, /* index to begin adding exts */
3756 int ext_diff) /* number of extents to add */
3758 int byte_diff; /* new bytes being added */
3759 int new_size; /* size of extents after adding */
3760 xfs_extnum_t nextents; /* number of extents in file */
3762 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3763 ASSERT((idx >= 0) && (idx <= nextents));
3764 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3765 new_size = ifp->if_bytes + byte_diff;
3767 * If the new number of extents (nextents + ext_diff)
3768 * fits inside the inode, then continue to use the inline
3769 * extent buffer.
3771 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3772 if (idx < nextents) {
3773 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3774 &ifp->if_u2.if_inline_ext[idx],
3775 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3776 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3778 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3779 ifp->if_real_bytes = 0;
3780 ifp->if_lastex = nextents + ext_diff;
3783 * Otherwise use a linear (direct) extent list.
3784 * If the extents are currently inside the inode,
3785 * xfs_iext_realloc_direct will switch us from
3786 * inline to direct extent allocation mode.
3788 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3789 xfs_iext_realloc_direct(ifp, new_size);
3790 if (idx < nextents) {
3791 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3792 &ifp->if_u1.if_extents[idx],
3793 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3794 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3797 /* Indirection array */
3798 else {
3799 xfs_ext_irec_t *erp;
3800 int erp_idx = 0;
3801 int page_idx = idx;
3803 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3804 if (ifp->if_flags & XFS_IFEXTIREC) {
3805 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3806 } else {
3807 xfs_iext_irec_init(ifp);
3808 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3809 erp = ifp->if_u1.if_ext_irec;
3811 /* Extents fit in target extent page */
3812 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3813 if (page_idx < erp->er_extcount) {
3814 memmove(&erp->er_extbuf[page_idx + ext_diff],
3815 &erp->er_extbuf[page_idx],
3816 (erp->er_extcount - page_idx) *
3817 sizeof(xfs_bmbt_rec_t));
3818 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3820 erp->er_extcount += ext_diff;
3821 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3823 /* Insert a new extent page */
3824 else if (erp) {
3825 xfs_iext_add_indirect_multi(ifp,
3826 erp_idx, page_idx, ext_diff);
3829 * If extent(s) are being appended to the last page in
3830 * the indirection array and the new extent(s) don't fit
3831 * in the page, then erp is NULL and erp_idx is set to
3832 * the next index needed in the indirection array.
3834 else {
3835 int count = ext_diff;
3837 while (count) {
3838 erp = xfs_iext_irec_new(ifp, erp_idx);
3839 erp->er_extcount = count;
3840 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3841 if (count) {
3842 erp_idx++;
3847 ifp->if_bytes = new_size;
3851 * This is called when incore extents are being added to the indirection
3852 * array and the new extents do not fit in the target extent list. The
3853 * erp_idx parameter contains the irec index for the target extent list
3854 * in the indirection array, and the idx parameter contains the extent
3855 * index within the list. The number of extents being added is stored
3856 * in the count parameter.
3858 * |-------| |-------|
3859 * | | | | idx - number of extents before idx
3860 * | idx | | count |
3861 * | | | | count - number of extents being inserted at idx
3862 * |-------| |-------|
3863 * | count | | nex2 | nex2 - number of extents after idx + count
3864 * |-------| |-------|
3866 void
3867 xfs_iext_add_indirect_multi(
3868 xfs_ifork_t *ifp, /* inode fork pointer */
3869 int erp_idx, /* target extent irec index */
3870 xfs_extnum_t idx, /* index within target list */
3871 int count) /* new extents being added */
3873 int byte_diff; /* new bytes being added */
3874 xfs_ext_irec_t *erp; /* pointer to irec entry */
3875 xfs_extnum_t ext_diff; /* number of extents to add */
3876 xfs_extnum_t ext_cnt; /* new extents still needed */
3877 xfs_extnum_t nex2; /* extents after idx + count */
3878 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3879 int nlists; /* number of irec's (lists) */
3881 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3882 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3883 nex2 = erp->er_extcount - idx;
3884 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3887 * Save second part of target extent list
3888 * (all extents past */
3889 if (nex2) {
3890 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3891 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3892 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3893 erp->er_extcount -= nex2;
3894 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3895 memset(&erp->er_extbuf[idx], 0, byte_diff);
3899 * Add the new extents to the end of the target
3900 * list, then allocate new irec record(s) and
3901 * extent buffer(s) as needed to store the rest
3902 * of the new extents.
3904 ext_cnt = count;
3905 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3906 if (ext_diff) {
3907 erp->er_extcount += ext_diff;
3908 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3909 ext_cnt -= ext_diff;
3911 while (ext_cnt) {
3912 erp_idx++;
3913 erp = xfs_iext_irec_new(ifp, erp_idx);
3914 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3915 erp->er_extcount = ext_diff;
3916 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3917 ext_cnt -= ext_diff;
3920 /* Add nex2 extents back to indirection array */
3921 if (nex2) {
3922 xfs_extnum_t ext_avail;
3923 int i;
3925 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3926 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3927 i = 0;
3929 * If nex2 extents fit in the current page, append
3930 * nex2_ep after the new extents.
3932 if (nex2 <= ext_avail) {
3933 i = erp->er_extcount;
3936 * Otherwise, check if space is available in the
3937 * next page.
3939 else if ((erp_idx < nlists - 1) &&
3940 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3941 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3942 erp_idx++;
3943 erp++;
3944 /* Create a hole for nex2 extents */
3945 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3946 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3949 * Final choice, create a new extent page for
3950 * nex2 extents.
3952 else {
3953 erp_idx++;
3954 erp = xfs_iext_irec_new(ifp, erp_idx);
3956 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3957 kmem_free(nex2_ep, byte_diff);
3958 erp->er_extcount += nex2;
3959 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3964 * This is called when the amount of space required for incore file
3965 * extents needs to be decreased. The ext_diff parameter stores the
3966 * number of extents to be removed and the idx parameter contains
3967 * the extent index where the extents will be removed from.
3969 * If the amount of space needed has decreased below the linear
3970 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3971 * extent array. Otherwise, use kmem_realloc() to adjust the
3972 * size to what is needed.
3974 void
3975 xfs_iext_remove(
3976 xfs_ifork_t *ifp, /* inode fork pointer */
3977 xfs_extnum_t idx, /* index to begin removing exts */
3978 int ext_diff) /* number of extents to remove */
3980 xfs_extnum_t nextents; /* number of extents in file */
3981 int new_size; /* size of extents after removal */
3983 ASSERT(ext_diff > 0);
3984 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3985 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3987 if (new_size == 0) {
3988 xfs_iext_destroy(ifp);
3989 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3990 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3991 } else if (ifp->if_real_bytes) {
3992 xfs_iext_remove_direct(ifp, idx, ext_diff);
3993 } else {
3994 xfs_iext_remove_inline(ifp, idx, ext_diff);
3996 ifp->if_bytes = new_size;
4000 * This removes ext_diff extents from the inline buffer, beginning
4001 * at extent index idx.
4003 void
4004 xfs_iext_remove_inline(
4005 xfs_ifork_t *ifp, /* inode fork pointer */
4006 xfs_extnum_t idx, /* index to begin removing exts */
4007 int ext_diff) /* number of extents to remove */
4009 int nextents; /* number of extents in file */
4011 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4012 ASSERT(idx < XFS_INLINE_EXTS);
4013 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4014 ASSERT(((nextents - ext_diff) > 0) &&
4015 (nextents - ext_diff) < XFS_INLINE_EXTS);
4017 if (idx + ext_diff < nextents) {
4018 memmove(&ifp->if_u2.if_inline_ext[idx],
4019 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4020 (nextents - (idx + ext_diff)) *
4021 sizeof(xfs_bmbt_rec_t));
4022 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4023 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4024 } else {
4025 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4026 ext_diff * sizeof(xfs_bmbt_rec_t));
4031 * This removes ext_diff extents from a linear (direct) extent list,
4032 * beginning at extent index idx. If the extents are being removed
4033 * from the end of the list (ie. truncate) then we just need to re-
4034 * allocate the list to remove the extra space. Otherwise, if the
4035 * extents are being removed from the middle of the existing extent
4036 * entries, then we first need to move the extent records beginning
4037 * at idx + ext_diff up in the list to overwrite the records being
4038 * removed, then remove the extra space via kmem_realloc.
4040 void
4041 xfs_iext_remove_direct(
4042 xfs_ifork_t *ifp, /* inode fork pointer */
4043 xfs_extnum_t idx, /* index to begin removing exts */
4044 int ext_diff) /* number of extents to remove */
4046 xfs_extnum_t nextents; /* number of extents in file */
4047 int new_size; /* size of extents after removal */
4049 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4050 new_size = ifp->if_bytes -
4051 (ext_diff * sizeof(xfs_bmbt_rec_t));
4052 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4054 if (new_size == 0) {
4055 xfs_iext_destroy(ifp);
4056 return;
4058 /* Move extents up in the list (if needed) */
4059 if (idx + ext_diff < nextents) {
4060 memmove(&ifp->if_u1.if_extents[idx],
4061 &ifp->if_u1.if_extents[idx + ext_diff],
4062 (nextents - (idx + ext_diff)) *
4063 sizeof(xfs_bmbt_rec_t));
4065 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4066 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4068 * Reallocate the direct extent list. If the extents
4069 * will fit inside the inode then xfs_iext_realloc_direct
4070 * will switch from direct to inline extent allocation
4071 * mode for us.
4073 xfs_iext_realloc_direct(ifp, new_size);
4074 ifp->if_bytes = new_size;
4078 * This is called when incore extents are being removed from the
4079 * indirection array and the extents being removed span multiple extent
4080 * buffers. The idx parameter contains the file extent index where we
4081 * want to begin removing extents, and the count parameter contains
4082 * how many extents need to be removed.
4084 * |-------| |-------|
4085 * | nex1 | | | nex1 - number of extents before idx
4086 * |-------| | count |
4087 * | | | | count - number of extents being removed at idx
4088 * | count | |-------|
4089 * | | | nex2 | nex2 - number of extents after idx + count
4090 * |-------| |-------|
4092 void
4093 xfs_iext_remove_indirect(
4094 xfs_ifork_t *ifp, /* inode fork pointer */
4095 xfs_extnum_t idx, /* index to begin removing extents */
4096 int count) /* number of extents to remove */
4098 xfs_ext_irec_t *erp; /* indirection array pointer */
4099 int erp_idx = 0; /* indirection array index */
4100 xfs_extnum_t ext_cnt; /* extents left to remove */
4101 xfs_extnum_t ext_diff; /* extents to remove in current list */
4102 xfs_extnum_t nex1; /* number of extents before idx */
4103 xfs_extnum_t nex2; /* extents after idx + count */
4104 int nlists; /* entries in indirection array */
4105 int page_idx = idx; /* index in target extent list */
4107 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4108 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4109 ASSERT(erp != NULL);
4110 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4111 nex1 = page_idx;
4112 ext_cnt = count;
4113 while (ext_cnt) {
4114 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4115 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4117 * Check for deletion of entire list;
4118 * xfs_iext_irec_remove() updates extent offsets.
4120 if (ext_diff == erp->er_extcount) {
4121 xfs_iext_irec_remove(ifp, erp_idx);
4122 ext_cnt -= ext_diff;
4123 nex1 = 0;
4124 if (ext_cnt) {
4125 ASSERT(erp_idx < ifp->if_real_bytes /
4126 XFS_IEXT_BUFSZ);
4127 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4128 nex1 = 0;
4129 continue;
4130 } else {
4131 break;
4134 /* Move extents up (if needed) */
4135 if (nex2) {
4136 memmove(&erp->er_extbuf[nex1],
4137 &erp->er_extbuf[nex1 + ext_diff],
4138 nex2 * sizeof(xfs_bmbt_rec_t));
4140 /* Zero out rest of page */
4141 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4142 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4143 /* Update remaining counters */
4144 erp->er_extcount -= ext_diff;
4145 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4146 ext_cnt -= ext_diff;
4147 nex1 = 0;
4148 erp_idx++;
4149 erp++;
4151 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4152 xfs_iext_irec_compact(ifp);
4156 * Create, destroy, or resize a linear (direct) block of extents.
4158 void
4159 xfs_iext_realloc_direct(
4160 xfs_ifork_t *ifp, /* inode fork pointer */
4161 int new_size) /* new size of extents */
4163 int rnew_size; /* real new size of extents */
4165 rnew_size = new_size;
4167 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4168 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4169 (new_size != ifp->if_real_bytes)));
4171 /* Free extent records */
4172 if (new_size == 0) {
4173 xfs_iext_destroy(ifp);
4175 /* Resize direct extent list and zero any new bytes */
4176 else if (ifp->if_real_bytes) {
4177 /* Check if extents will fit inside the inode */
4178 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4179 xfs_iext_direct_to_inline(ifp, new_size /
4180 (uint)sizeof(xfs_bmbt_rec_t));
4181 ifp->if_bytes = new_size;
4182 return;
4184 if (!is_power_of_2(new_size)){
4185 rnew_size = xfs_iroundup(new_size);
4187 if (rnew_size != ifp->if_real_bytes) {
4188 ifp->if_u1.if_extents =
4189 kmem_realloc(ifp->if_u1.if_extents,
4190 rnew_size,
4191 ifp->if_real_bytes,
4192 KM_SLEEP);
4194 if (rnew_size > ifp->if_real_bytes) {
4195 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4196 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4197 rnew_size - ifp->if_real_bytes);
4201 * Switch from the inline extent buffer to a direct
4202 * extent list. Be sure to include the inline extent
4203 * bytes in new_size.
4205 else {
4206 new_size += ifp->if_bytes;
4207 if (!is_power_of_2(new_size)) {
4208 rnew_size = xfs_iroundup(new_size);
4210 xfs_iext_inline_to_direct(ifp, rnew_size);
4212 ifp->if_real_bytes = rnew_size;
4213 ifp->if_bytes = new_size;
4217 * Switch from linear (direct) extent records to inline buffer.
4219 void
4220 xfs_iext_direct_to_inline(
4221 xfs_ifork_t *ifp, /* inode fork pointer */
4222 xfs_extnum_t nextents) /* number of extents in file */
4224 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4225 ASSERT(nextents <= XFS_INLINE_EXTS);
4227 * The inline buffer was zeroed when we switched
4228 * from inline to direct extent allocation mode,
4229 * so we don't need to clear it here.
4231 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4232 nextents * sizeof(xfs_bmbt_rec_t));
4233 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4234 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4235 ifp->if_real_bytes = 0;
4239 * Switch from inline buffer to linear (direct) extent records.
4240 * new_size should already be rounded up to the next power of 2
4241 * by the caller (when appropriate), so use new_size as it is.
4242 * However, since new_size may be rounded up, we can't update
4243 * if_bytes here. It is the caller's responsibility to update
4244 * if_bytes upon return.
4246 void
4247 xfs_iext_inline_to_direct(
4248 xfs_ifork_t *ifp, /* inode fork pointer */
4249 int new_size) /* number of extents in file */
4251 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4252 memset(ifp->if_u1.if_extents, 0, new_size);
4253 if (ifp->if_bytes) {
4254 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4255 ifp->if_bytes);
4256 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4257 sizeof(xfs_bmbt_rec_t));
4259 ifp->if_real_bytes = new_size;
4263 * Resize an extent indirection array to new_size bytes.
4265 void
4266 xfs_iext_realloc_indirect(
4267 xfs_ifork_t *ifp, /* inode fork pointer */
4268 int new_size) /* new indirection array size */
4270 int nlists; /* number of irec's (ex lists) */
4271 int size; /* current indirection array size */
4273 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4274 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4275 size = nlists * sizeof(xfs_ext_irec_t);
4276 ASSERT(ifp->if_real_bytes);
4277 ASSERT((new_size >= 0) && (new_size != size));
4278 if (new_size == 0) {
4279 xfs_iext_destroy(ifp);
4280 } else {
4281 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4282 kmem_realloc(ifp->if_u1.if_ext_irec,
4283 new_size, size, KM_SLEEP);
4288 * Switch from indirection array to linear (direct) extent allocations.
4290 void
4291 xfs_iext_indirect_to_direct(
4292 xfs_ifork_t *ifp) /* inode fork pointer */
4294 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4295 xfs_extnum_t nextents; /* number of extents in file */
4296 int size; /* size of file extents */
4298 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4299 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4300 ASSERT(nextents <= XFS_LINEAR_EXTS);
4301 size = nextents * sizeof(xfs_bmbt_rec_t);
4303 xfs_iext_irec_compact_full(ifp);
4304 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4306 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4307 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4308 ifp->if_flags &= ~XFS_IFEXTIREC;
4309 ifp->if_u1.if_extents = ep;
4310 ifp->if_bytes = size;
4311 if (nextents < XFS_LINEAR_EXTS) {
4312 xfs_iext_realloc_direct(ifp, size);
4317 * Free incore file extents.
4319 void
4320 xfs_iext_destroy(
4321 xfs_ifork_t *ifp) /* inode fork pointer */
4323 if (ifp->if_flags & XFS_IFEXTIREC) {
4324 int erp_idx;
4325 int nlists;
4327 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4328 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4329 xfs_iext_irec_remove(ifp, erp_idx);
4331 ifp->if_flags &= ~XFS_IFEXTIREC;
4332 } else if (ifp->if_real_bytes) {
4333 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4334 } else if (ifp->if_bytes) {
4335 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4336 sizeof(xfs_bmbt_rec_t));
4338 ifp->if_u1.if_extents = NULL;
4339 ifp->if_real_bytes = 0;
4340 ifp->if_bytes = 0;
4344 * Return a pointer to the extent record for file system block bno.
4346 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4347 xfs_iext_bno_to_ext(
4348 xfs_ifork_t *ifp, /* inode fork pointer */
4349 xfs_fileoff_t bno, /* block number to search for */
4350 xfs_extnum_t *idxp) /* index of target extent */
4352 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4353 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4354 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4355 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4356 int high; /* upper boundary in search */
4357 xfs_extnum_t idx = 0; /* index of target extent */
4358 int low; /* lower boundary in search */
4359 xfs_extnum_t nextents; /* number of file extents */
4360 xfs_fileoff_t startoff = 0; /* start offset of extent */
4362 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4363 if (nextents == 0) {
4364 *idxp = 0;
4365 return NULL;
4367 low = 0;
4368 if (ifp->if_flags & XFS_IFEXTIREC) {
4369 /* Find target extent list */
4370 int erp_idx = 0;
4371 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4372 base = erp->er_extbuf;
4373 high = erp->er_extcount - 1;
4374 } else {
4375 base = ifp->if_u1.if_extents;
4376 high = nextents - 1;
4378 /* Binary search extent records */
4379 while (low <= high) {
4380 idx = (low + high) >> 1;
4381 ep = base + idx;
4382 startoff = xfs_bmbt_get_startoff(ep);
4383 blockcount = xfs_bmbt_get_blockcount(ep);
4384 if (bno < startoff) {
4385 high = idx - 1;
4386 } else if (bno >= startoff + blockcount) {
4387 low = idx + 1;
4388 } else {
4389 /* Convert back to file-based extent index */
4390 if (ifp->if_flags & XFS_IFEXTIREC) {
4391 idx += erp->er_extoff;
4393 *idxp = idx;
4394 return ep;
4397 /* Convert back to file-based extent index */
4398 if (ifp->if_flags & XFS_IFEXTIREC) {
4399 idx += erp->er_extoff;
4401 if (bno >= startoff + blockcount) {
4402 if (++idx == nextents) {
4403 ep = NULL;
4404 } else {
4405 ep = xfs_iext_get_ext(ifp, idx);
4408 *idxp = idx;
4409 return ep;
4413 * Return a pointer to the indirection array entry containing the
4414 * extent record for filesystem block bno. Store the index of the
4415 * target irec in *erp_idxp.
4417 xfs_ext_irec_t * /* pointer to found extent record */
4418 xfs_iext_bno_to_irec(
4419 xfs_ifork_t *ifp, /* inode fork pointer */
4420 xfs_fileoff_t bno, /* block number to search for */
4421 int *erp_idxp) /* irec index of target ext list */
4423 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4424 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4425 int erp_idx; /* indirection array index */
4426 int nlists; /* number of extent irec's (lists) */
4427 int high; /* binary search upper limit */
4428 int low; /* binary search lower limit */
4430 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4431 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4432 erp_idx = 0;
4433 low = 0;
4434 high = nlists - 1;
4435 while (low <= high) {
4436 erp_idx = (low + high) >> 1;
4437 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4438 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4439 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4440 high = erp_idx - 1;
4441 } else if (erp_next && bno >=
4442 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4443 low = erp_idx + 1;
4444 } else {
4445 break;
4448 *erp_idxp = erp_idx;
4449 return erp;
4453 * Return a pointer to the indirection array entry containing the
4454 * extent record at file extent index *idxp. Store the index of the
4455 * target irec in *erp_idxp and store the page index of the target
4456 * extent record in *idxp.
4458 xfs_ext_irec_t *
4459 xfs_iext_idx_to_irec(
4460 xfs_ifork_t *ifp, /* inode fork pointer */
4461 xfs_extnum_t *idxp, /* extent index (file -> page) */
4462 int *erp_idxp, /* pointer to target irec */
4463 int realloc) /* new bytes were just added */
4465 xfs_ext_irec_t *prev; /* pointer to previous irec */
4466 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4467 int erp_idx; /* indirection array index */
4468 int nlists; /* number of irec's (ex lists) */
4469 int high; /* binary search upper limit */
4470 int low; /* binary search lower limit */
4471 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4473 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4474 ASSERT(page_idx >= 0 && page_idx <=
4475 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4476 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4477 erp_idx = 0;
4478 low = 0;
4479 high = nlists - 1;
4481 /* Binary search extent irec's */
4482 while (low <= high) {
4483 erp_idx = (low + high) >> 1;
4484 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4485 prev = erp_idx > 0 ? erp - 1 : NULL;
4486 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4487 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4488 high = erp_idx - 1;
4489 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4490 (page_idx == erp->er_extoff + erp->er_extcount &&
4491 !realloc)) {
4492 low = erp_idx + 1;
4493 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4494 erp->er_extcount == XFS_LINEAR_EXTS) {
4495 ASSERT(realloc);
4496 page_idx = 0;
4497 erp_idx++;
4498 erp = erp_idx < nlists ? erp + 1 : NULL;
4499 break;
4500 } else {
4501 page_idx -= erp->er_extoff;
4502 break;
4505 *idxp = page_idx;
4506 *erp_idxp = erp_idx;
4507 return(erp);
4511 * Allocate and initialize an indirection array once the space needed
4512 * for incore extents increases above XFS_IEXT_BUFSZ.
4514 void
4515 xfs_iext_irec_init(
4516 xfs_ifork_t *ifp) /* inode fork pointer */
4518 xfs_ext_irec_t *erp; /* indirection array pointer */
4519 xfs_extnum_t nextents; /* number of extents in file */
4521 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4522 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4523 ASSERT(nextents <= XFS_LINEAR_EXTS);
4525 erp = (xfs_ext_irec_t *)
4526 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4528 if (nextents == 0) {
4529 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4530 } else if (!ifp->if_real_bytes) {
4531 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4532 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4533 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4535 erp->er_extbuf = ifp->if_u1.if_extents;
4536 erp->er_extcount = nextents;
4537 erp->er_extoff = 0;
4539 ifp->if_flags |= XFS_IFEXTIREC;
4540 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4541 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4542 ifp->if_u1.if_ext_irec = erp;
4544 return;
4548 * Allocate and initialize a new entry in the indirection array.
4550 xfs_ext_irec_t *
4551 xfs_iext_irec_new(
4552 xfs_ifork_t *ifp, /* inode fork pointer */
4553 int erp_idx) /* index for new irec */
4555 xfs_ext_irec_t *erp; /* indirection array pointer */
4556 int i; /* loop counter */
4557 int nlists; /* number of irec's (ex lists) */
4559 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4560 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4562 /* Resize indirection array */
4563 xfs_iext_realloc_indirect(ifp, ++nlists *
4564 sizeof(xfs_ext_irec_t));
4566 * Move records down in the array so the
4567 * new page can use erp_idx.
4569 erp = ifp->if_u1.if_ext_irec;
4570 for (i = nlists - 1; i > erp_idx; i--) {
4571 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4573 ASSERT(i == erp_idx);
4575 /* Initialize new extent record */
4576 erp = ifp->if_u1.if_ext_irec;
4577 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4578 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4579 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4580 erp[erp_idx].er_extcount = 0;
4581 erp[erp_idx].er_extoff = erp_idx > 0 ?
4582 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4583 return (&erp[erp_idx]);
4587 * Remove a record from the indirection array.
4589 void
4590 xfs_iext_irec_remove(
4591 xfs_ifork_t *ifp, /* inode fork pointer */
4592 int erp_idx) /* irec index to remove */
4594 xfs_ext_irec_t *erp; /* indirection array pointer */
4595 int i; /* loop counter */
4596 int nlists; /* number of irec's (ex lists) */
4598 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4599 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4600 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4601 if (erp->er_extbuf) {
4602 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4603 -erp->er_extcount);
4604 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4606 /* Compact extent records */
4607 erp = ifp->if_u1.if_ext_irec;
4608 for (i = erp_idx; i < nlists - 1; i++) {
4609 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4612 * Manually free the last extent record from the indirection
4613 * array. A call to xfs_iext_realloc_indirect() with a size
4614 * of zero would result in a call to xfs_iext_destroy() which
4615 * would in turn call this function again, creating a nasty
4616 * infinite loop.
4618 if (--nlists) {
4619 xfs_iext_realloc_indirect(ifp,
4620 nlists * sizeof(xfs_ext_irec_t));
4621 } else {
4622 kmem_free(ifp->if_u1.if_ext_irec,
4623 sizeof(xfs_ext_irec_t));
4625 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4629 * This is called to clean up large amounts of unused memory allocated
4630 * by the indirection array. Before compacting anything though, verify
4631 * that the indirection array is still needed and switch back to the
4632 * linear extent list (or even the inline buffer) if possible. The
4633 * compaction policy is as follows:
4635 * Full Compaction: Extents fit into a single page (or inline buffer)
4636 * Full Compaction: Extents occupy less than 10% of allocated space
4637 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4638 * No Compaction: Extents occupy at least 50% of allocated space
4640 void
4641 xfs_iext_irec_compact(
4642 xfs_ifork_t *ifp) /* inode fork pointer */
4644 xfs_extnum_t nextents; /* number of extents in file */
4645 int nlists; /* number of irec's (ex lists) */
4647 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4648 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4649 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4651 if (nextents == 0) {
4652 xfs_iext_destroy(ifp);
4653 } else if (nextents <= XFS_INLINE_EXTS) {
4654 xfs_iext_indirect_to_direct(ifp);
4655 xfs_iext_direct_to_inline(ifp, nextents);
4656 } else if (nextents <= XFS_LINEAR_EXTS) {
4657 xfs_iext_indirect_to_direct(ifp);
4658 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4659 xfs_iext_irec_compact_full(ifp);
4660 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4661 xfs_iext_irec_compact_pages(ifp);
4666 * Combine extents from neighboring extent pages.
4668 void
4669 xfs_iext_irec_compact_pages(
4670 xfs_ifork_t *ifp) /* inode fork pointer */
4672 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4673 int erp_idx = 0; /* indirection array index */
4674 int nlists; /* number of irec's (ex lists) */
4676 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4677 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4678 while (erp_idx < nlists - 1) {
4679 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4680 erp_next = erp + 1;
4681 if (erp_next->er_extcount <=
4682 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4683 memmove(&erp->er_extbuf[erp->er_extcount],
4684 erp_next->er_extbuf, erp_next->er_extcount *
4685 sizeof(xfs_bmbt_rec_t));
4686 erp->er_extcount += erp_next->er_extcount;
4688 * Free page before removing extent record
4689 * so er_extoffs don't get modified in
4690 * xfs_iext_irec_remove.
4692 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4693 erp_next->er_extbuf = NULL;
4694 xfs_iext_irec_remove(ifp, erp_idx + 1);
4695 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4696 } else {
4697 erp_idx++;
4703 * Fully compact the extent records managed by the indirection array.
4705 void
4706 xfs_iext_irec_compact_full(
4707 xfs_ifork_t *ifp) /* inode fork pointer */
4709 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4710 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4711 int erp_idx = 0; /* extent irec index */
4712 int ext_avail; /* empty entries in ex list */
4713 int ext_diff; /* number of exts to add */
4714 int nlists; /* number of irec's (ex lists) */
4716 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4717 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4718 erp = ifp->if_u1.if_ext_irec;
4719 ep = &erp->er_extbuf[erp->er_extcount];
4720 erp_next = erp + 1;
4721 ep_next = erp_next->er_extbuf;
4722 while (erp_idx < nlists - 1) {
4723 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4724 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4725 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4726 erp->er_extcount += ext_diff;
4727 erp_next->er_extcount -= ext_diff;
4728 /* Remove next page */
4729 if (erp_next->er_extcount == 0) {
4731 * Free page before removing extent record
4732 * so er_extoffs don't get modified in
4733 * xfs_iext_irec_remove.
4735 kmem_free(erp_next->er_extbuf,
4736 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4737 erp_next->er_extbuf = NULL;
4738 xfs_iext_irec_remove(ifp, erp_idx + 1);
4739 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4740 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4741 /* Update next page */
4742 } else {
4743 /* Move rest of page up to become next new page */
4744 memmove(erp_next->er_extbuf, ep_next,
4745 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4746 ep_next = erp_next->er_extbuf;
4747 memset(&ep_next[erp_next->er_extcount], 0,
4748 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4749 sizeof(xfs_bmbt_rec_t));
4751 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4752 erp_idx++;
4753 if (erp_idx < nlists)
4754 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4755 else
4756 break;
4758 ep = &erp->er_extbuf[erp->er_extcount];
4759 erp_next = erp + 1;
4760 ep_next = erp_next->er_extbuf;
4765 * This is called to update the er_extoff field in the indirection
4766 * array when extents have been added or removed from one of the
4767 * extent lists. erp_idx contains the irec index to begin updating
4768 * at and ext_diff contains the number of extents that were added
4769 * or removed.
4771 void
4772 xfs_iext_irec_update_extoffs(
4773 xfs_ifork_t *ifp, /* inode fork pointer */
4774 int erp_idx, /* irec index to update */
4775 int ext_diff) /* number of new extents */
4777 int i; /* loop counter */
4778 int nlists; /* number of irec's (ex lists */
4780 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4781 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4782 for (i = erp_idx; i < nlists; i++) {
4783 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;