2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate
;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct
*work
);
60 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
66 struct cpufreq_governor cpufreq_gov_ondemand
= {
68 .governor
= cpufreq_governor_dbs
,
69 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
74 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
76 struct cpu_dbs_info_s
{
77 cputime64_t prev_cpu_idle
;
78 cputime64_t prev_cpu_iowait
;
79 cputime64_t prev_cpu_wall
;
80 cputime64_t prev_cpu_nice
;
81 struct cpufreq_policy
*cur_policy
;
82 struct delayed_work work
;
83 struct cpufreq_frequency_table
*freq_table
;
85 unsigned int freq_lo_jiffies
;
86 unsigned int freq_hi_jiffies
;
87 unsigned int rate_mult
;
89 unsigned int sample_type
:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex
;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, od_cpu_dbs_info
);
99 static unsigned int dbs_enable
; /* number of CPUs using this policy */
102 * dbs_mutex protects dbs_enable in governor start/stop.
104 static DEFINE_MUTEX(dbs_mutex
);
106 static struct dbs_tuners
{
107 unsigned int sampling_rate
;
108 unsigned int up_threshold
;
109 unsigned int down_differential
;
110 unsigned int ignore_nice
;
111 unsigned int sampling_down_factor
;
112 unsigned int powersave_bias
;
113 unsigned int io_is_busy
;
115 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
116 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
117 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
122 static inline u64
get_cpu_idle_time_jiffy(unsigned int cpu
, u64
*wall
)
128 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
130 busy_time
= kcpustat_cpu(cpu
).cpustat
[CPUTIME_USER
];
131 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_SYSTEM
];
132 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_IRQ
];
133 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_SOFTIRQ
];
134 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_STEAL
];
135 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_NICE
];
137 idle_time
= cur_wall_time
- busy_time
;
139 *wall
= jiffies_to_usecs(cur_wall_time
);
141 return jiffies_to_usecs(idle_time
);
144 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
146 u64 idle_time
= get_cpu_idle_time_us(cpu
, NULL
);
148 if (idle_time
== -1ULL)
149 return get_cpu_idle_time_jiffy(cpu
, wall
);
151 idle_time
+= get_cpu_iowait_time_us(cpu
, wall
);
156 static inline cputime64_t
get_cpu_iowait_time(unsigned int cpu
, cputime64_t
*wall
)
158 u64 iowait_time
= get_cpu_iowait_time_us(cpu
, wall
);
160 if (iowait_time
== -1ULL)
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
171 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
172 unsigned int freq_next
,
173 unsigned int relation
)
175 unsigned int freq_req
, freq_reduc
, freq_avg
;
176 unsigned int freq_hi
, freq_lo
;
177 unsigned int index
= 0;
178 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
179 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
,
182 if (!dbs_info
->freq_table
) {
183 dbs_info
->freq_lo
= 0;
184 dbs_info
->freq_lo_jiffies
= 0;
188 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
190 freq_req
= dbs_info
->freq_table
[index
].frequency
;
191 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
192 freq_avg
= freq_req
- freq_reduc
;
194 /* Find freq bounds for freq_avg in freq_table */
196 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
197 CPUFREQ_RELATION_H
, &index
);
198 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
200 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
201 CPUFREQ_RELATION_L
, &index
);
202 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
204 /* Find out how long we have to be in hi and lo freqs */
205 if (freq_hi
== freq_lo
) {
206 dbs_info
->freq_lo
= 0;
207 dbs_info
->freq_lo_jiffies
= 0;
210 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
211 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
212 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
213 jiffies_hi
/= (freq_hi
- freq_lo
);
214 jiffies_lo
= jiffies_total
- jiffies_hi
;
215 dbs_info
->freq_lo
= freq_lo
;
216 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
217 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
221 static void ondemand_powersave_bias_init_cpu(int cpu
)
223 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
224 dbs_info
->freq_table
= cpufreq_frequency_get_table(cpu
);
225 dbs_info
->freq_lo
= 0;
228 static void ondemand_powersave_bias_init(void)
231 for_each_online_cpu(i
) {
232 ondemand_powersave_bias_init_cpu(i
);
236 /************************** sysfs interface ************************/
238 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
239 struct attribute
*attr
, char *buf
)
241 return sprintf(buf
, "%u\n", min_sampling_rate
);
244 define_one_global_ro(sampling_rate_min
);
246 /* cpufreq_ondemand Governor Tunables */
247 #define show_one(file_name, object) \
248 static ssize_t show_##file_name \
249 (struct kobject *kobj, struct attribute *attr, char *buf) \
251 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
253 show_one(sampling_rate
, sampling_rate
);
254 show_one(io_is_busy
, io_is_busy
);
255 show_one(up_threshold
, up_threshold
);
256 show_one(sampling_down_factor
, sampling_down_factor
);
257 show_one(ignore_nice_load
, ignore_nice
);
258 show_one(powersave_bias
, powersave_bias
);
261 * update_sampling_rate - update sampling rate effective immediately if needed.
262 * @new_rate: new sampling rate
264 * If new rate is smaller than the old, simply updaing
265 * dbs_tuners_int.sampling_rate might not be appropriate. For example,
266 * if the original sampling_rate was 1 second and the requested new sampling
267 * rate is 10 ms because the user needs immediate reaction from ondemand
268 * governor, but not sure if higher frequency will be required or not,
269 * then, the governor may change the sampling rate too late; up to 1 second
270 * later. Thus, if we are reducing the sampling rate, we need to make the
271 * new value effective immediately.
273 static void update_sampling_rate(unsigned int new_rate
)
277 dbs_tuners_ins
.sampling_rate
= new_rate
278 = max(new_rate
, min_sampling_rate
);
280 for_each_online_cpu(cpu
) {
281 struct cpufreq_policy
*policy
;
282 struct cpu_dbs_info_s
*dbs_info
;
283 unsigned long next_sampling
, appointed_at
;
285 policy
= cpufreq_cpu_get(cpu
);
288 dbs_info
= &per_cpu(od_cpu_dbs_info
, policy
->cpu
);
289 cpufreq_cpu_put(policy
);
291 mutex_lock(&dbs_info
->timer_mutex
);
293 if (!delayed_work_pending(&dbs_info
->work
)) {
294 mutex_unlock(&dbs_info
->timer_mutex
);
298 next_sampling
= jiffies
+ usecs_to_jiffies(new_rate
);
299 appointed_at
= dbs_info
->work
.timer
.expires
;
302 if (time_before(next_sampling
, appointed_at
)) {
304 mutex_unlock(&dbs_info
->timer_mutex
);
305 cancel_delayed_work_sync(&dbs_info
->work
);
306 mutex_lock(&dbs_info
->timer_mutex
);
308 schedule_delayed_work_on(dbs_info
->cpu
, &dbs_info
->work
,
309 usecs_to_jiffies(new_rate
));
312 mutex_unlock(&dbs_info
->timer_mutex
);
316 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
317 const char *buf
, size_t count
)
321 ret
= sscanf(buf
, "%u", &input
);
324 update_sampling_rate(input
);
328 static ssize_t
store_io_is_busy(struct kobject
*a
, struct attribute
*b
,
329 const char *buf
, size_t count
)
334 ret
= sscanf(buf
, "%u", &input
);
337 dbs_tuners_ins
.io_is_busy
= !!input
;
341 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
342 const char *buf
, size_t count
)
346 ret
= sscanf(buf
, "%u", &input
);
348 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
349 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
352 dbs_tuners_ins
.up_threshold
= input
;
356 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
357 struct attribute
*b
, const char *buf
, size_t count
)
359 unsigned int input
, j
;
361 ret
= sscanf(buf
, "%u", &input
);
363 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
365 dbs_tuners_ins
.sampling_down_factor
= input
;
367 /* Reset down sampling multiplier in case it was active */
368 for_each_online_cpu(j
) {
369 struct cpu_dbs_info_s
*dbs_info
;
370 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
371 dbs_info
->rate_mult
= 1;
376 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
377 const char *buf
, size_t count
)
384 ret
= sscanf(buf
, "%u", &input
);
391 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
394 dbs_tuners_ins
.ignore_nice
= input
;
396 /* we need to re-evaluate prev_cpu_idle */
397 for_each_online_cpu(j
) {
398 struct cpu_dbs_info_s
*dbs_info
;
399 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
400 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
401 &dbs_info
->prev_cpu_wall
);
402 if (dbs_tuners_ins
.ignore_nice
)
403 dbs_info
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
409 static ssize_t
store_powersave_bias(struct kobject
*a
, struct attribute
*b
,
410 const char *buf
, size_t count
)
414 ret
= sscanf(buf
, "%u", &input
);
422 dbs_tuners_ins
.powersave_bias
= input
;
423 ondemand_powersave_bias_init();
427 define_one_global_rw(sampling_rate
);
428 define_one_global_rw(io_is_busy
);
429 define_one_global_rw(up_threshold
);
430 define_one_global_rw(sampling_down_factor
);
431 define_one_global_rw(ignore_nice_load
);
432 define_one_global_rw(powersave_bias
);
434 static struct attribute
*dbs_attributes
[] = {
435 &sampling_rate_min
.attr
,
438 &sampling_down_factor
.attr
,
439 &ignore_nice_load
.attr
,
440 &powersave_bias
.attr
,
445 static struct attribute_group dbs_attr_group
= {
446 .attrs
= dbs_attributes
,
450 /************************** sysfs end ************************/
452 static void dbs_freq_increase(struct cpufreq_policy
*p
, unsigned int freq
)
454 if (dbs_tuners_ins
.powersave_bias
)
455 freq
= powersave_bias_target(p
, freq
, CPUFREQ_RELATION_H
);
456 else if (p
->cur
== p
->max
)
459 __cpufreq_driver_target(p
, freq
, dbs_tuners_ins
.powersave_bias
?
460 CPUFREQ_RELATION_L
: CPUFREQ_RELATION_H
);
463 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
465 unsigned int max_load_freq
;
467 struct cpufreq_policy
*policy
;
470 this_dbs_info
->freq_lo
= 0;
471 policy
= this_dbs_info
->cur_policy
;
474 * Every sampling_rate, we check, if current idle time is less
475 * than 20% (default), then we try to increase frequency
476 * Every sampling_rate, we look for a the lowest
477 * frequency which can sustain the load while keeping idle time over
478 * 30%. If such a frequency exist, we try to decrease to this frequency.
480 * Any frequency increase takes it to the maximum frequency.
481 * Frequency reduction happens at minimum steps of
482 * 5% (default) of current frequency
485 /* Get Absolute Load - in terms of freq */
488 for_each_cpu(j
, policy
->cpus
) {
489 struct cpu_dbs_info_s
*j_dbs_info
;
490 cputime64_t cur_wall_time
, cur_idle_time
, cur_iowait_time
;
491 unsigned int idle_time
, wall_time
, iowait_time
;
492 unsigned int load
, load_freq
;
495 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
497 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
498 cur_iowait_time
= get_cpu_iowait_time(j
, &cur_wall_time
);
500 wall_time
= (unsigned int)
501 (cur_wall_time
- j_dbs_info
->prev_cpu_wall
);
502 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
504 idle_time
= (unsigned int)
505 (cur_idle_time
- j_dbs_info
->prev_cpu_idle
);
506 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
508 iowait_time
= (unsigned int)
509 (cur_iowait_time
- j_dbs_info
->prev_cpu_iowait
);
510 j_dbs_info
->prev_cpu_iowait
= cur_iowait_time
;
512 if (dbs_tuners_ins
.ignore_nice
) {
514 unsigned long cur_nice_jiffies
;
516 cur_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
] -
517 j_dbs_info
->prev_cpu_nice
;
519 * Assumption: nice time between sampling periods will
520 * be less than 2^32 jiffies for 32 bit sys
522 cur_nice_jiffies
= (unsigned long)
523 cputime64_to_jiffies64(cur_nice
);
525 j_dbs_info
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
526 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
530 * For the purpose of ondemand, waiting for disk IO is an
531 * indication that you're performance critical, and not that
532 * the system is actually idle. So subtract the iowait time
533 * from the cpu idle time.
536 if (dbs_tuners_ins
.io_is_busy
&& idle_time
>= iowait_time
)
537 idle_time
-= iowait_time
;
539 if (unlikely(!wall_time
|| wall_time
< idle_time
))
542 load
= 100 * (wall_time
- idle_time
) / wall_time
;
544 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
546 freq_avg
= policy
->cur
;
548 load_freq
= load
* freq_avg
;
549 if (load_freq
> max_load_freq
)
550 max_load_freq
= load_freq
;
553 /* Check for frequency increase */
554 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
555 /* If switching to max speed, apply sampling_down_factor */
556 if (policy
->cur
< policy
->max
)
557 this_dbs_info
->rate_mult
=
558 dbs_tuners_ins
.sampling_down_factor
;
559 dbs_freq_increase(policy
, policy
->max
);
563 /* Check for frequency decrease */
564 /* if we cannot reduce the frequency anymore, break out early */
565 if (policy
->cur
== policy
->min
)
569 * The optimal frequency is the frequency that is the lowest that
570 * can support the current CPU usage without triggering the up
571 * policy. To be safe, we focus 10 points under the threshold.
574 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
576 unsigned int freq_next
;
577 freq_next
= max_load_freq
/
578 (dbs_tuners_ins
.up_threshold
-
579 dbs_tuners_ins
.down_differential
);
581 /* No longer fully busy, reset rate_mult */
582 this_dbs_info
->rate_mult
= 1;
584 if (freq_next
< policy
->min
)
585 freq_next
= policy
->min
;
587 if (!dbs_tuners_ins
.powersave_bias
) {
588 __cpufreq_driver_target(policy
, freq_next
,
591 int freq
= powersave_bias_target(policy
, freq_next
,
593 __cpufreq_driver_target(policy
, freq
,
599 static void do_dbs_timer(struct work_struct
*work
)
601 struct cpu_dbs_info_s
*dbs_info
=
602 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
603 unsigned int cpu
= dbs_info
->cpu
;
604 int sample_type
= dbs_info
->sample_type
;
608 mutex_lock(&dbs_info
->timer_mutex
);
610 /* Common NORMAL_SAMPLE setup */
611 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
612 if (!dbs_tuners_ins
.powersave_bias
||
613 sample_type
== DBS_NORMAL_SAMPLE
) {
614 dbs_check_cpu(dbs_info
);
615 if (dbs_info
->freq_lo
) {
616 /* Setup timer for SUB_SAMPLE */
617 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
618 delay
= dbs_info
->freq_hi_jiffies
;
620 /* We want all CPUs to do sampling nearly on
623 delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
624 * dbs_info
->rate_mult
);
626 if (num_online_cpus() > 1)
627 delay
-= jiffies
% delay
;
630 __cpufreq_driver_target(dbs_info
->cur_policy
,
631 dbs_info
->freq_lo
, CPUFREQ_RELATION_H
);
632 delay
= dbs_info
->freq_lo_jiffies
;
634 schedule_delayed_work_on(cpu
, &dbs_info
->work
, delay
);
635 mutex_unlock(&dbs_info
->timer_mutex
);
638 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
640 /* We want all CPUs to do sampling nearly on same jiffy */
641 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
643 if (num_online_cpus() > 1)
644 delay
-= jiffies
% delay
;
646 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
647 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
648 schedule_delayed_work_on(dbs_info
->cpu
, &dbs_info
->work
, delay
);
651 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
653 cancel_delayed_work_sync(&dbs_info
->work
);
657 * Not all CPUs want IO time to be accounted as busy; this dependson how
658 * efficient idling at a higher frequency/voltage is.
659 * Pavel Machek says this is not so for various generations of AMD and old
661 * Mike Chan (androidlcom) calis this is also not true for ARM.
662 * Because of this, whitelist specific known (series) of CPUs by default, and
663 * leave all others up to the user.
665 static int should_io_be_busy(void)
667 #if defined(CONFIG_X86)
669 * For Intel, Core 2 (model 15) andl later have an efficient idle.
671 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
672 boot_cpu_data
.x86
== 6 &&
673 boot_cpu_data
.x86_model
>= 15)
679 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
682 unsigned int cpu
= policy
->cpu
;
683 struct cpu_dbs_info_s
*this_dbs_info
;
687 this_dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
690 case CPUFREQ_GOV_START
:
691 if ((!cpu_online(cpu
)) || (!policy
->cur
))
694 mutex_lock(&dbs_mutex
);
697 for_each_cpu(j
, policy
->cpus
) {
698 struct cpu_dbs_info_s
*j_dbs_info
;
699 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
700 j_dbs_info
->cur_policy
= policy
;
702 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
703 &j_dbs_info
->prev_cpu_wall
);
704 if (dbs_tuners_ins
.ignore_nice
)
705 j_dbs_info
->prev_cpu_nice
=
706 kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
708 this_dbs_info
->cpu
= cpu
;
709 this_dbs_info
->rate_mult
= 1;
710 ondemand_powersave_bias_init_cpu(cpu
);
712 * Start the timerschedule work, when this governor
713 * is used for first time
715 if (dbs_enable
== 1) {
716 unsigned int latency
;
718 rc
= sysfs_create_group(cpufreq_global_kobject
,
721 mutex_unlock(&dbs_mutex
);
725 /* policy latency is in nS. Convert it to uS first */
726 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
729 /* Bring kernel and HW constraints together */
730 min_sampling_rate
= max(min_sampling_rate
,
731 MIN_LATENCY_MULTIPLIER
* latency
);
732 dbs_tuners_ins
.sampling_rate
=
733 max(min_sampling_rate
,
734 latency
* LATENCY_MULTIPLIER
);
735 dbs_tuners_ins
.io_is_busy
= should_io_be_busy();
737 mutex_unlock(&dbs_mutex
);
739 mutex_init(&this_dbs_info
->timer_mutex
);
740 dbs_timer_init(this_dbs_info
);
743 case CPUFREQ_GOV_STOP
:
744 dbs_timer_exit(this_dbs_info
);
746 mutex_lock(&dbs_mutex
);
747 mutex_destroy(&this_dbs_info
->timer_mutex
);
749 mutex_unlock(&dbs_mutex
);
751 sysfs_remove_group(cpufreq_global_kobject
,
756 case CPUFREQ_GOV_LIMITS
:
757 mutex_lock(&this_dbs_info
->timer_mutex
);
758 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
759 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
760 policy
->max
, CPUFREQ_RELATION_H
);
761 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
762 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
763 policy
->min
, CPUFREQ_RELATION_L
);
764 mutex_unlock(&this_dbs_info
->timer_mutex
);
770 static int __init
cpufreq_gov_dbs_init(void)
775 idle_time
= get_cpu_idle_time_us(cpu
, NULL
);
777 if (idle_time
!= -1ULL) {
778 /* Idle micro accounting is supported. Use finer thresholds */
779 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
780 dbs_tuners_ins
.down_differential
=
781 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
783 * In nohz/micro accounting case we set the minimum frequency
784 * not depending on HZ, but fixed (very low). The deferred
785 * timer might skip some samples if idle/sleeping as needed.
787 min_sampling_rate
= MICRO_FREQUENCY_MIN_SAMPLE_RATE
;
789 /* For correct statistics, we need 10 ticks for each measure */
791 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
794 return cpufreq_register_governor(&cpufreq_gov_ondemand
);
797 static void __exit
cpufreq_gov_dbs_exit(void)
799 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
803 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
804 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
805 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
806 "Low Latency Frequency Transition capable processors");
807 MODULE_LICENSE("GPL");
809 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
810 fs_initcall(cpufreq_gov_dbs_init
);
812 module_init(cpufreq_gov_dbs_init
);
814 module_exit(cpufreq_gov_dbs_exit
);