memcg: always create memsw files if CONFIG_CGROUP_MEM_RES_CTLR_SWAP
[linux-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
blob836e9b062e5ec4a2e08c935d4c49f17a79ef124b
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
76 struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_iowait;
79 cputime64_t prev_cpu_wall;
80 cputime64_t prev_cpu_nice;
81 struct cpufreq_policy *cur_policy;
82 struct delayed_work work;
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
87 unsigned int rate_mult;
88 int cpu;
89 unsigned int sample_type:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
99 static unsigned int dbs_enable; /* number of CPUs using this policy */
102 * dbs_mutex protects dbs_enable in governor start/stop.
104 static DEFINE_MUTEX(dbs_mutex);
106 static struct dbs_tuners {
107 unsigned int sampling_rate;
108 unsigned int up_threshold;
109 unsigned int down_differential;
110 unsigned int ignore_nice;
111 unsigned int sampling_down_factor;
112 unsigned int powersave_bias;
113 unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 .ignore_nice = 0,
119 .powersave_bias = 0,
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
124 u64 idle_time;
125 u64 cur_wall_time;
126 u64 busy_time;
128 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
137 idle_time = cur_wall_time - busy_time;
138 if (wall)
139 *wall = jiffies_to_usecs(cur_wall_time);
141 return jiffies_to_usecs(idle_time);
144 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
150 else
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
153 return idle_time;
156 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
158 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
160 if (iowait_time == -1ULL)
161 return 0;
163 return iowait_time;
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
171 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172 unsigned int freq_next,
173 unsigned int relation)
175 unsigned int freq_req, freq_reduc, freq_avg;
176 unsigned int freq_hi, freq_lo;
177 unsigned int index = 0;
178 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180 policy->cpu);
182 if (!dbs_info->freq_table) {
183 dbs_info->freq_lo = 0;
184 dbs_info->freq_lo_jiffies = 0;
185 return freq_next;
188 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189 relation, &index);
190 freq_req = dbs_info->freq_table[index].frequency;
191 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192 freq_avg = freq_req - freq_reduc;
194 /* Find freq bounds for freq_avg in freq_table */
195 index = 0;
196 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197 CPUFREQ_RELATION_H, &index);
198 freq_lo = dbs_info->freq_table[index].frequency;
199 index = 0;
200 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201 CPUFREQ_RELATION_L, &index);
202 freq_hi = dbs_info->freq_table[index].frequency;
204 /* Find out how long we have to be in hi and lo freqs */
205 if (freq_hi == freq_lo) {
206 dbs_info->freq_lo = 0;
207 dbs_info->freq_lo_jiffies = 0;
208 return freq_lo;
210 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212 jiffies_hi += ((freq_hi - freq_lo) / 2);
213 jiffies_hi /= (freq_hi - freq_lo);
214 jiffies_lo = jiffies_total - jiffies_hi;
215 dbs_info->freq_lo = freq_lo;
216 dbs_info->freq_lo_jiffies = jiffies_lo;
217 dbs_info->freq_hi_jiffies = jiffies_hi;
218 return freq_hi;
221 static void ondemand_powersave_bias_init_cpu(int cpu)
223 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225 dbs_info->freq_lo = 0;
228 static void ondemand_powersave_bias_init(void)
230 int i;
231 for_each_online_cpu(i) {
232 ondemand_powersave_bias_init_cpu(i);
236 /************************** sysfs interface ************************/
238 static ssize_t show_sampling_rate_min(struct kobject *kobj,
239 struct attribute *attr, char *buf)
241 return sprintf(buf, "%u\n", min_sampling_rate);
244 define_one_global_ro(sampling_rate_min);
246 /* cpufreq_ondemand Governor Tunables */
247 #define show_one(file_name, object) \
248 static ssize_t show_##file_name \
249 (struct kobject *kobj, struct attribute *attr, char *buf) \
251 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
253 show_one(sampling_rate, sampling_rate);
254 show_one(io_is_busy, io_is_busy);
255 show_one(up_threshold, up_threshold);
256 show_one(sampling_down_factor, sampling_down_factor);
257 show_one(ignore_nice_load, ignore_nice);
258 show_one(powersave_bias, powersave_bias);
261 * update_sampling_rate - update sampling rate effective immediately if needed.
262 * @new_rate: new sampling rate
264 * If new rate is smaller than the old, simply updaing
265 * dbs_tuners_int.sampling_rate might not be appropriate. For example,
266 * if the original sampling_rate was 1 second and the requested new sampling
267 * rate is 10 ms because the user needs immediate reaction from ondemand
268 * governor, but not sure if higher frequency will be required or not,
269 * then, the governor may change the sampling rate too late; up to 1 second
270 * later. Thus, if we are reducing the sampling rate, we need to make the
271 * new value effective immediately.
273 static void update_sampling_rate(unsigned int new_rate)
275 int cpu;
277 dbs_tuners_ins.sampling_rate = new_rate
278 = max(new_rate, min_sampling_rate);
280 for_each_online_cpu(cpu) {
281 struct cpufreq_policy *policy;
282 struct cpu_dbs_info_s *dbs_info;
283 unsigned long next_sampling, appointed_at;
285 policy = cpufreq_cpu_get(cpu);
286 if (!policy)
287 continue;
288 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
289 cpufreq_cpu_put(policy);
291 mutex_lock(&dbs_info->timer_mutex);
293 if (!delayed_work_pending(&dbs_info->work)) {
294 mutex_unlock(&dbs_info->timer_mutex);
295 continue;
298 next_sampling = jiffies + usecs_to_jiffies(new_rate);
299 appointed_at = dbs_info->work.timer.expires;
302 if (time_before(next_sampling, appointed_at)) {
304 mutex_unlock(&dbs_info->timer_mutex);
305 cancel_delayed_work_sync(&dbs_info->work);
306 mutex_lock(&dbs_info->timer_mutex);
308 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work,
309 usecs_to_jiffies(new_rate));
312 mutex_unlock(&dbs_info->timer_mutex);
316 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
317 const char *buf, size_t count)
319 unsigned int input;
320 int ret;
321 ret = sscanf(buf, "%u", &input);
322 if (ret != 1)
323 return -EINVAL;
324 update_sampling_rate(input);
325 return count;
328 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
329 const char *buf, size_t count)
331 unsigned int input;
332 int ret;
334 ret = sscanf(buf, "%u", &input);
335 if (ret != 1)
336 return -EINVAL;
337 dbs_tuners_ins.io_is_busy = !!input;
338 return count;
341 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
342 const char *buf, size_t count)
344 unsigned int input;
345 int ret;
346 ret = sscanf(buf, "%u", &input);
348 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
349 input < MIN_FREQUENCY_UP_THRESHOLD) {
350 return -EINVAL;
352 dbs_tuners_ins.up_threshold = input;
353 return count;
356 static ssize_t store_sampling_down_factor(struct kobject *a,
357 struct attribute *b, const char *buf, size_t count)
359 unsigned int input, j;
360 int ret;
361 ret = sscanf(buf, "%u", &input);
363 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
364 return -EINVAL;
365 dbs_tuners_ins.sampling_down_factor = input;
367 /* Reset down sampling multiplier in case it was active */
368 for_each_online_cpu(j) {
369 struct cpu_dbs_info_s *dbs_info;
370 dbs_info = &per_cpu(od_cpu_dbs_info, j);
371 dbs_info->rate_mult = 1;
373 return count;
376 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
377 const char *buf, size_t count)
379 unsigned int input;
380 int ret;
382 unsigned int j;
384 ret = sscanf(buf, "%u", &input);
385 if (ret != 1)
386 return -EINVAL;
388 if (input > 1)
389 input = 1;
391 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
392 return count;
394 dbs_tuners_ins.ignore_nice = input;
396 /* we need to re-evaluate prev_cpu_idle */
397 for_each_online_cpu(j) {
398 struct cpu_dbs_info_s *dbs_info;
399 dbs_info = &per_cpu(od_cpu_dbs_info, j);
400 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
401 &dbs_info->prev_cpu_wall);
402 if (dbs_tuners_ins.ignore_nice)
403 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
406 return count;
409 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
410 const char *buf, size_t count)
412 unsigned int input;
413 int ret;
414 ret = sscanf(buf, "%u", &input);
416 if (ret != 1)
417 return -EINVAL;
419 if (input > 1000)
420 input = 1000;
422 dbs_tuners_ins.powersave_bias = input;
423 ondemand_powersave_bias_init();
424 return count;
427 define_one_global_rw(sampling_rate);
428 define_one_global_rw(io_is_busy);
429 define_one_global_rw(up_threshold);
430 define_one_global_rw(sampling_down_factor);
431 define_one_global_rw(ignore_nice_load);
432 define_one_global_rw(powersave_bias);
434 static struct attribute *dbs_attributes[] = {
435 &sampling_rate_min.attr,
436 &sampling_rate.attr,
437 &up_threshold.attr,
438 &sampling_down_factor.attr,
439 &ignore_nice_load.attr,
440 &powersave_bias.attr,
441 &io_is_busy.attr,
442 NULL
445 static struct attribute_group dbs_attr_group = {
446 .attrs = dbs_attributes,
447 .name = "ondemand",
450 /************************** sysfs end ************************/
452 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
454 if (dbs_tuners_ins.powersave_bias)
455 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
456 else if (p->cur == p->max)
457 return;
459 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
460 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
463 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
465 unsigned int max_load_freq;
467 struct cpufreq_policy *policy;
468 unsigned int j;
470 this_dbs_info->freq_lo = 0;
471 policy = this_dbs_info->cur_policy;
474 * Every sampling_rate, we check, if current idle time is less
475 * than 20% (default), then we try to increase frequency
476 * Every sampling_rate, we look for a the lowest
477 * frequency which can sustain the load while keeping idle time over
478 * 30%. If such a frequency exist, we try to decrease to this frequency.
480 * Any frequency increase takes it to the maximum frequency.
481 * Frequency reduction happens at minimum steps of
482 * 5% (default) of current frequency
485 /* Get Absolute Load - in terms of freq */
486 max_load_freq = 0;
488 for_each_cpu(j, policy->cpus) {
489 struct cpu_dbs_info_s *j_dbs_info;
490 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
491 unsigned int idle_time, wall_time, iowait_time;
492 unsigned int load, load_freq;
493 int freq_avg;
495 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
497 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
498 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
500 wall_time = (unsigned int)
501 (cur_wall_time - j_dbs_info->prev_cpu_wall);
502 j_dbs_info->prev_cpu_wall = cur_wall_time;
504 idle_time = (unsigned int)
505 (cur_idle_time - j_dbs_info->prev_cpu_idle);
506 j_dbs_info->prev_cpu_idle = cur_idle_time;
508 iowait_time = (unsigned int)
509 (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
510 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
512 if (dbs_tuners_ins.ignore_nice) {
513 u64 cur_nice;
514 unsigned long cur_nice_jiffies;
516 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
517 j_dbs_info->prev_cpu_nice;
519 * Assumption: nice time between sampling periods will
520 * be less than 2^32 jiffies for 32 bit sys
522 cur_nice_jiffies = (unsigned long)
523 cputime64_to_jiffies64(cur_nice);
525 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
526 idle_time += jiffies_to_usecs(cur_nice_jiffies);
530 * For the purpose of ondemand, waiting for disk IO is an
531 * indication that you're performance critical, and not that
532 * the system is actually idle. So subtract the iowait time
533 * from the cpu idle time.
536 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
537 idle_time -= iowait_time;
539 if (unlikely(!wall_time || wall_time < idle_time))
540 continue;
542 load = 100 * (wall_time - idle_time) / wall_time;
544 freq_avg = __cpufreq_driver_getavg(policy, j);
545 if (freq_avg <= 0)
546 freq_avg = policy->cur;
548 load_freq = load * freq_avg;
549 if (load_freq > max_load_freq)
550 max_load_freq = load_freq;
553 /* Check for frequency increase */
554 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
555 /* If switching to max speed, apply sampling_down_factor */
556 if (policy->cur < policy->max)
557 this_dbs_info->rate_mult =
558 dbs_tuners_ins.sampling_down_factor;
559 dbs_freq_increase(policy, policy->max);
560 return;
563 /* Check for frequency decrease */
564 /* if we cannot reduce the frequency anymore, break out early */
565 if (policy->cur == policy->min)
566 return;
569 * The optimal frequency is the frequency that is the lowest that
570 * can support the current CPU usage without triggering the up
571 * policy. To be safe, we focus 10 points under the threshold.
573 if (max_load_freq <
574 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
575 policy->cur) {
576 unsigned int freq_next;
577 freq_next = max_load_freq /
578 (dbs_tuners_ins.up_threshold -
579 dbs_tuners_ins.down_differential);
581 /* No longer fully busy, reset rate_mult */
582 this_dbs_info->rate_mult = 1;
584 if (freq_next < policy->min)
585 freq_next = policy->min;
587 if (!dbs_tuners_ins.powersave_bias) {
588 __cpufreq_driver_target(policy, freq_next,
589 CPUFREQ_RELATION_L);
590 } else {
591 int freq = powersave_bias_target(policy, freq_next,
592 CPUFREQ_RELATION_L);
593 __cpufreq_driver_target(policy, freq,
594 CPUFREQ_RELATION_L);
599 static void do_dbs_timer(struct work_struct *work)
601 struct cpu_dbs_info_s *dbs_info =
602 container_of(work, struct cpu_dbs_info_s, work.work);
603 unsigned int cpu = dbs_info->cpu;
604 int sample_type = dbs_info->sample_type;
606 int delay;
608 mutex_lock(&dbs_info->timer_mutex);
610 /* Common NORMAL_SAMPLE setup */
611 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
612 if (!dbs_tuners_ins.powersave_bias ||
613 sample_type == DBS_NORMAL_SAMPLE) {
614 dbs_check_cpu(dbs_info);
615 if (dbs_info->freq_lo) {
616 /* Setup timer for SUB_SAMPLE */
617 dbs_info->sample_type = DBS_SUB_SAMPLE;
618 delay = dbs_info->freq_hi_jiffies;
619 } else {
620 /* We want all CPUs to do sampling nearly on
621 * same jiffy
623 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
624 * dbs_info->rate_mult);
626 if (num_online_cpus() > 1)
627 delay -= jiffies % delay;
629 } else {
630 __cpufreq_driver_target(dbs_info->cur_policy,
631 dbs_info->freq_lo, CPUFREQ_RELATION_H);
632 delay = dbs_info->freq_lo_jiffies;
634 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
635 mutex_unlock(&dbs_info->timer_mutex);
638 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
640 /* We want all CPUs to do sampling nearly on same jiffy */
641 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
643 if (num_online_cpus() > 1)
644 delay -= jiffies % delay;
646 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
647 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
648 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
651 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
653 cancel_delayed_work_sync(&dbs_info->work);
657 * Not all CPUs want IO time to be accounted as busy; this dependson how
658 * efficient idling at a higher frequency/voltage is.
659 * Pavel Machek says this is not so for various generations of AMD and old
660 * Intel systems.
661 * Mike Chan (androidlcom) calis this is also not true for ARM.
662 * Because of this, whitelist specific known (series) of CPUs by default, and
663 * leave all others up to the user.
665 static int should_io_be_busy(void)
667 #if defined(CONFIG_X86)
669 * For Intel, Core 2 (model 15) andl later have an efficient idle.
671 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
672 boot_cpu_data.x86 == 6 &&
673 boot_cpu_data.x86_model >= 15)
674 return 1;
675 #endif
676 return 0;
679 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
680 unsigned int event)
682 unsigned int cpu = policy->cpu;
683 struct cpu_dbs_info_s *this_dbs_info;
684 unsigned int j;
685 int rc;
687 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
689 switch (event) {
690 case CPUFREQ_GOV_START:
691 if ((!cpu_online(cpu)) || (!policy->cur))
692 return -EINVAL;
694 mutex_lock(&dbs_mutex);
696 dbs_enable++;
697 for_each_cpu(j, policy->cpus) {
698 struct cpu_dbs_info_s *j_dbs_info;
699 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
700 j_dbs_info->cur_policy = policy;
702 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
703 &j_dbs_info->prev_cpu_wall);
704 if (dbs_tuners_ins.ignore_nice)
705 j_dbs_info->prev_cpu_nice =
706 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
708 this_dbs_info->cpu = cpu;
709 this_dbs_info->rate_mult = 1;
710 ondemand_powersave_bias_init_cpu(cpu);
712 * Start the timerschedule work, when this governor
713 * is used for first time
715 if (dbs_enable == 1) {
716 unsigned int latency;
718 rc = sysfs_create_group(cpufreq_global_kobject,
719 &dbs_attr_group);
720 if (rc) {
721 mutex_unlock(&dbs_mutex);
722 return rc;
725 /* policy latency is in nS. Convert it to uS first */
726 latency = policy->cpuinfo.transition_latency / 1000;
727 if (latency == 0)
728 latency = 1;
729 /* Bring kernel and HW constraints together */
730 min_sampling_rate = max(min_sampling_rate,
731 MIN_LATENCY_MULTIPLIER * latency);
732 dbs_tuners_ins.sampling_rate =
733 max(min_sampling_rate,
734 latency * LATENCY_MULTIPLIER);
735 dbs_tuners_ins.io_is_busy = should_io_be_busy();
737 mutex_unlock(&dbs_mutex);
739 mutex_init(&this_dbs_info->timer_mutex);
740 dbs_timer_init(this_dbs_info);
741 break;
743 case CPUFREQ_GOV_STOP:
744 dbs_timer_exit(this_dbs_info);
746 mutex_lock(&dbs_mutex);
747 mutex_destroy(&this_dbs_info->timer_mutex);
748 dbs_enable--;
749 mutex_unlock(&dbs_mutex);
750 if (!dbs_enable)
751 sysfs_remove_group(cpufreq_global_kobject,
752 &dbs_attr_group);
754 break;
756 case CPUFREQ_GOV_LIMITS:
757 mutex_lock(&this_dbs_info->timer_mutex);
758 if (policy->max < this_dbs_info->cur_policy->cur)
759 __cpufreq_driver_target(this_dbs_info->cur_policy,
760 policy->max, CPUFREQ_RELATION_H);
761 else if (policy->min > this_dbs_info->cur_policy->cur)
762 __cpufreq_driver_target(this_dbs_info->cur_policy,
763 policy->min, CPUFREQ_RELATION_L);
764 mutex_unlock(&this_dbs_info->timer_mutex);
765 break;
767 return 0;
770 static int __init cpufreq_gov_dbs_init(void)
772 u64 idle_time;
773 int cpu = get_cpu();
775 idle_time = get_cpu_idle_time_us(cpu, NULL);
776 put_cpu();
777 if (idle_time != -1ULL) {
778 /* Idle micro accounting is supported. Use finer thresholds */
779 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
780 dbs_tuners_ins.down_differential =
781 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
783 * In nohz/micro accounting case we set the minimum frequency
784 * not depending on HZ, but fixed (very low). The deferred
785 * timer might skip some samples if idle/sleeping as needed.
787 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
788 } else {
789 /* For correct statistics, we need 10 ticks for each measure */
790 min_sampling_rate =
791 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
794 return cpufreq_register_governor(&cpufreq_gov_ondemand);
797 static void __exit cpufreq_gov_dbs_exit(void)
799 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
803 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
804 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
805 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
806 "Low Latency Frequency Transition capable processors");
807 MODULE_LICENSE("GPL");
809 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
810 fs_initcall(cpufreq_gov_dbs_init);
811 #else
812 module_init(cpufreq_gov_dbs_init);
813 #endif
814 module_exit(cpufreq_gov_dbs_exit);