2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
6 * NUMA support by Paul Mundt, 2007.
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_exact_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
65 #include <linux/swap.h> /* struct reclaim_state */
66 #include <linux/cache.h>
67 #include <linux/init.h>
68 #include <linux/export.h>
69 #include <linux/rcupdate.h>
70 #include <linux/list.h>
71 #include <linux/kmemleak.h>
73 #include <trace/events/kmem.h>
75 #include <linux/atomic.h>
78 * slob_block has a field 'units', which indicates size of block if +ve,
79 * or offset of next block if -ve (in SLOB_UNITs).
81 * Free blocks of size 1 unit simply contain the offset of the next block.
82 * Those with larger size contain their size in the first SLOB_UNIT of
83 * memory, and the offset of the next free block in the second SLOB_UNIT.
85 #if PAGE_SIZE <= (32767 * 2)
86 typedef s16 slobidx_t
;
88 typedef s32 slobidx_t
;
94 typedef struct slob_block slob_t
;
97 * All partially free slob pages go on these lists.
99 #define SLOB_BREAK1 256
100 #define SLOB_BREAK2 1024
101 static LIST_HEAD(free_slob_small
);
102 static LIST_HEAD(free_slob_medium
);
103 static LIST_HEAD(free_slob_large
);
106 * slob_page_free: true for pages on free_slob_pages list.
108 static inline int slob_page_free(struct page
*sp
)
110 return PageSlobFree(sp
);
113 static void set_slob_page_free(struct page
*sp
, struct list_head
*list
)
115 list_add(&sp
->list
, list
);
116 __SetPageSlobFree(sp
);
119 static inline void clear_slob_page_free(struct page
*sp
)
122 __ClearPageSlobFree(sp
);
125 #define SLOB_UNIT sizeof(slob_t)
126 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
127 #define SLOB_ALIGN L1_CACHE_BYTES
130 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
131 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
132 * the block using call_rcu.
135 struct rcu_head head
;
140 * slob_lock protects all slob allocator structures.
142 static DEFINE_SPINLOCK(slob_lock
);
145 * Encode the given size and next info into a free slob block s.
147 static void set_slob(slob_t
*s
, slobidx_t size
, slob_t
*next
)
149 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
150 slobidx_t offset
= next
- base
;
156 s
[0].units
= -offset
;
160 * Return the size of a slob block.
162 static slobidx_t
slob_units(slob_t
*s
)
170 * Return the next free slob block pointer after this one.
172 static slob_t
*slob_next(slob_t
*s
)
174 slob_t
*base
= (slob_t
*)((unsigned long)s
& PAGE_MASK
);
185 * Returns true if s is the last free block in its page.
187 static int slob_last(slob_t
*s
)
189 return !((unsigned long)slob_next(s
) & ~PAGE_MASK
);
192 static void *slob_new_pages(gfp_t gfp
, int order
, int node
)
197 if (node
!= NUMA_NO_NODE
)
198 page
= alloc_pages_exact_node(node
, gfp
, order
);
201 page
= alloc_pages(gfp
, order
);
206 return page_address(page
);
209 static void slob_free_pages(void *b
, int order
)
211 if (current
->reclaim_state
)
212 current
->reclaim_state
->reclaimed_slab
+= 1 << order
;
213 free_pages((unsigned long)b
, order
);
217 * Allocate a slob block within a given slob_page sp.
219 static void *slob_page_alloc(struct page
*sp
, size_t size
, int align
)
221 slob_t
*prev
, *cur
, *aligned
= NULL
;
222 int delta
= 0, units
= SLOB_UNITS(size
);
224 for (prev
= NULL
, cur
= sp
->freelist
; ; prev
= cur
, cur
= slob_next(cur
)) {
225 slobidx_t avail
= slob_units(cur
);
228 aligned
= (slob_t
*)ALIGN((unsigned long)cur
, align
);
229 delta
= aligned
- cur
;
231 if (avail
>= units
+ delta
) { /* room enough? */
234 if (delta
) { /* need to fragment head to align? */
235 next
= slob_next(cur
);
236 set_slob(aligned
, avail
- delta
, next
);
237 set_slob(cur
, delta
, aligned
);
240 avail
= slob_units(cur
);
243 next
= slob_next(cur
);
244 if (avail
== units
) { /* exact fit? unlink. */
246 set_slob(prev
, slob_units(prev
), next
);
249 } else { /* fragment */
251 set_slob(prev
, slob_units(prev
), cur
+ units
);
253 sp
->freelist
= cur
+ units
;
254 set_slob(cur
+ units
, avail
- units
, next
);
259 clear_slob_page_free(sp
);
268 * slob_alloc: entry point into the slob allocator.
270 static void *slob_alloc(size_t size
, gfp_t gfp
, int align
, int node
)
273 struct list_head
*prev
;
274 struct list_head
*slob_list
;
278 if (size
< SLOB_BREAK1
)
279 slob_list
= &free_slob_small
;
280 else if (size
< SLOB_BREAK2
)
281 slob_list
= &free_slob_medium
;
283 slob_list
= &free_slob_large
;
285 spin_lock_irqsave(&slob_lock
, flags
);
286 /* Iterate through each partially free page, try to find room */
287 list_for_each_entry(sp
, slob_list
, list
) {
290 * If there's a node specification, search for a partial
291 * page with a matching node id in the freelist.
293 if (node
!= NUMA_NO_NODE
&& page_to_nid(sp
) != node
)
296 /* Enough room on this page? */
297 if (sp
->units
< SLOB_UNITS(size
))
300 /* Attempt to alloc */
301 prev
= sp
->list
.prev
;
302 b
= slob_page_alloc(sp
, size
, align
);
306 /* Improve fragment distribution and reduce our average
307 * search time by starting our next search here. (see
308 * Knuth vol 1, sec 2.5, pg 449) */
309 if (prev
!= slob_list
->prev
&&
310 slob_list
->next
!= prev
->next
)
311 list_move_tail(slob_list
, prev
->next
);
314 spin_unlock_irqrestore(&slob_lock
, flags
);
316 /* Not enough space: must allocate a new page */
318 b
= slob_new_pages(gfp
& ~__GFP_ZERO
, 0, node
);
321 sp
= virt_to_page(b
);
324 spin_lock_irqsave(&slob_lock
, flags
);
325 sp
->units
= SLOB_UNITS(PAGE_SIZE
);
327 INIT_LIST_HEAD(&sp
->list
);
328 set_slob(b
, SLOB_UNITS(PAGE_SIZE
), b
+ SLOB_UNITS(PAGE_SIZE
));
329 set_slob_page_free(sp
, slob_list
);
330 b
= slob_page_alloc(sp
, size
, align
);
332 spin_unlock_irqrestore(&slob_lock
, flags
);
334 if (unlikely((gfp
& __GFP_ZERO
) && b
))
340 * slob_free: entry point into the slob allocator.
342 static void slob_free(void *block
, int size
)
345 slob_t
*prev
, *next
, *b
= (slob_t
*)block
;
348 struct list_head
*slob_list
;
350 if (unlikely(ZERO_OR_NULL_PTR(block
)))
354 sp
= virt_to_page(block
);
355 units
= SLOB_UNITS(size
);
357 spin_lock_irqsave(&slob_lock
, flags
);
359 if (sp
->units
+ units
== SLOB_UNITS(PAGE_SIZE
)) {
360 /* Go directly to page allocator. Do not pass slob allocator */
361 if (slob_page_free(sp
))
362 clear_slob_page_free(sp
);
363 spin_unlock_irqrestore(&slob_lock
, flags
);
365 reset_page_mapcount(sp
);
366 slob_free_pages(b
, 0);
370 if (!slob_page_free(sp
)) {
371 /* This slob page is about to become partially free. Easy! */
375 (void *)((unsigned long)(b
+
376 SLOB_UNITS(PAGE_SIZE
)) & PAGE_MASK
));
377 if (size
< SLOB_BREAK1
)
378 slob_list
= &free_slob_small
;
379 else if (size
< SLOB_BREAK2
)
380 slob_list
= &free_slob_medium
;
382 slob_list
= &free_slob_large
;
383 set_slob_page_free(sp
, slob_list
);
388 * Otherwise the page is already partially free, so find reinsertion
393 if (b
< (slob_t
*)sp
->freelist
) {
394 if (b
+ units
== sp
->freelist
) {
395 units
+= slob_units(sp
->freelist
);
396 sp
->freelist
= slob_next(sp
->freelist
);
398 set_slob(b
, units
, sp
->freelist
);
402 next
= slob_next(prev
);
405 next
= slob_next(prev
);
408 if (!slob_last(prev
) && b
+ units
== next
) {
409 units
+= slob_units(next
);
410 set_slob(b
, units
, slob_next(next
));
412 set_slob(b
, units
, next
);
414 if (prev
+ slob_units(prev
) == b
) {
415 units
= slob_units(b
) + slob_units(prev
);
416 set_slob(prev
, units
, slob_next(b
));
418 set_slob(prev
, slob_units(prev
), b
);
421 spin_unlock_irqrestore(&slob_lock
, flags
);
425 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
428 static __always_inline
void *
429 __do_kmalloc_node(size_t size
, gfp_t gfp
, int node
, unsigned long caller
)
432 int align
= max_t(size_t, ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
435 gfp
&= gfp_allowed_mask
;
437 lockdep_trace_alloc(gfp
);
439 if (size
< PAGE_SIZE
- align
) {
441 return ZERO_SIZE_PTR
;
443 m
= slob_alloc(size
+ align
, gfp
, align
, node
);
448 ret
= (void *)m
+ align
;
450 trace_kmalloc_node(caller
, ret
,
451 size
, size
+ align
, gfp
, node
);
453 unsigned int order
= get_order(size
);
457 ret
= slob_new_pages(gfp
, order
, node
);
460 page
= virt_to_page(ret
);
461 page
->private = size
;
464 trace_kmalloc_node(caller
, ret
,
465 size
, PAGE_SIZE
<< order
, gfp
, node
);
468 kmemleak_alloc(ret
, size
, 1, gfp
);
472 void *__kmalloc_node(size_t size
, gfp_t gfp
, int node
)
474 return __do_kmalloc_node(size
, gfp
, node
, _RET_IP_
);
476 EXPORT_SYMBOL(__kmalloc_node
);
478 #ifdef CONFIG_TRACING
479 void *__kmalloc_track_caller(size_t size
, gfp_t gfp
, unsigned long caller
)
481 return __do_kmalloc_node(size
, gfp
, NUMA_NO_NODE
, caller
);
485 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfp
,
486 int node
, unsigned long caller
)
488 return __do_kmalloc_node(size
, gfp
, node
, caller
);
493 void kfree(const void *block
)
497 trace_kfree(_RET_IP_
, block
);
499 if (unlikely(ZERO_OR_NULL_PTR(block
)))
501 kmemleak_free(block
);
503 sp
= virt_to_page(block
);
505 int align
= max_t(size_t, ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
506 unsigned int *m
= (unsigned int *)(block
- align
);
507 slob_free(m
, *m
+ align
);
511 EXPORT_SYMBOL(kfree
);
513 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
514 size_t ksize(const void *block
)
519 if (unlikely(block
== ZERO_SIZE_PTR
))
522 sp
= virt_to_page(block
);
524 int align
= max_t(size_t, ARCH_KMALLOC_MINALIGN
, ARCH_SLAB_MINALIGN
);
525 unsigned int *m
= (unsigned int *)(block
- align
);
526 return SLOB_UNITS(*m
) * SLOB_UNIT
;
530 EXPORT_SYMBOL(ksize
);
532 int __kmem_cache_create(struct kmem_cache
*c
, unsigned long flags
)
534 size_t align
= c
->size
;
536 if (flags
& SLAB_DESTROY_BY_RCU
) {
537 /* leave room for rcu footer at the end of object */
538 c
->size
+= sizeof(struct slob_rcu
);
541 /* ignore alignment unless it's forced */
542 c
->align
= (flags
& SLAB_HWCACHE_ALIGN
) ? SLOB_ALIGN
: 0;
543 if (c
->align
< ARCH_SLAB_MINALIGN
)
544 c
->align
= ARCH_SLAB_MINALIGN
;
545 if (c
->align
< align
)
551 void *kmem_cache_alloc_node(struct kmem_cache
*c
, gfp_t flags
, int node
)
555 flags
&= gfp_allowed_mask
;
557 lockdep_trace_alloc(flags
);
559 if (c
->size
< PAGE_SIZE
) {
560 b
= slob_alloc(c
->size
, flags
, c
->align
, node
);
561 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->size
,
562 SLOB_UNITS(c
->size
) * SLOB_UNIT
,
565 b
= slob_new_pages(flags
, get_order(c
->size
), node
);
566 trace_kmem_cache_alloc_node(_RET_IP_
, b
, c
->size
,
567 PAGE_SIZE
<< get_order(c
->size
),
574 kmemleak_alloc_recursive(b
, c
->size
, 1, c
->flags
, flags
);
577 EXPORT_SYMBOL(kmem_cache_alloc_node
);
579 static void __kmem_cache_free(void *b
, int size
)
581 if (size
< PAGE_SIZE
)
584 slob_free_pages(b
, get_order(size
));
587 static void kmem_rcu_free(struct rcu_head
*head
)
589 struct slob_rcu
*slob_rcu
= (struct slob_rcu
*)head
;
590 void *b
= (void *)slob_rcu
- (slob_rcu
->size
- sizeof(struct slob_rcu
));
592 __kmem_cache_free(b
, slob_rcu
->size
);
595 void kmem_cache_free(struct kmem_cache
*c
, void *b
)
597 kmemleak_free_recursive(b
, c
->flags
);
598 if (unlikely(c
->flags
& SLAB_DESTROY_BY_RCU
)) {
599 struct slob_rcu
*slob_rcu
;
600 slob_rcu
= b
+ (c
->size
- sizeof(struct slob_rcu
));
601 slob_rcu
->size
= c
->size
;
602 call_rcu(&slob_rcu
->head
, kmem_rcu_free
);
604 __kmem_cache_free(b
, c
->size
);
607 trace_kmem_cache_free(_RET_IP_
, b
);
609 EXPORT_SYMBOL(kmem_cache_free
);
611 unsigned int kmem_cache_size(struct kmem_cache
*c
)
615 EXPORT_SYMBOL(kmem_cache_size
);
617 int __kmem_cache_shutdown(struct kmem_cache
*c
)
619 /* No way to check for remaining objects */
623 int kmem_cache_shrink(struct kmem_cache
*d
)
627 EXPORT_SYMBOL(kmem_cache_shrink
);
629 struct kmem_cache kmem_cache_boot
= {
630 .name
= "kmem_cache",
631 .size
= sizeof(struct kmem_cache
),
633 .align
= ARCH_KMALLOC_MINALIGN
,
636 void __init
kmem_cache_init(void)
638 kmem_cache
= &kmem_cache_boot
;
642 void __init
kmem_cache_init_late(void)