2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49 /* return minimum truesize of one skb containing X bytes of data */
50 #define SKB_TRUESIZE(X) ((X) + \
51 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
52 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
54 /* A. Checksumming of received packets by device.
56 * NONE: device failed to checksum this packet.
57 * skb->csum is undefined.
59 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
60 * skb->csum is undefined.
61 * It is bad option, but, unfortunately, many of vendors do this.
62 * Apparently with secret goal to sell you new device, when you
63 * will add new protocol to your host. F.e. IPv6. 8)
65 * COMPLETE: the most generic way. Device supplied checksum of _all_
66 * the packet as seen by netif_rx in skb->csum.
67 * NOTE: Even if device supports only some protocols, but
68 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * PARTIAL: identical to the case for output below. This may occur
72 * on a packet received directly from another Linux OS, e.g.,
73 * a virtualised Linux kernel on the same host. The packet can
74 * be treated in the same way as UNNECESSARY except that on
75 * output (i.e., forwarding) the checksum must be filled in
76 * by the OS or the hardware.
78 * B. Checksumming on output.
80 * NONE: skb is checksummed by protocol or csum is not required.
82 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
83 * from skb->csum_start to the end and to record the checksum
84 * at skb->csum_start + skb->csum_offset.
86 * Device must show its capabilities in dev->features, set
87 * at device setup time.
88 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
90 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92 * TCP/UDP over IPv4. Sigh. Vendors like this
93 * way by an unknown reason. Though, see comment above
94 * about CHECKSUM_UNNECESSARY. 8)
95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 * Any questions? No questions, good. --ANK
102 struct pipe_inode_info
;
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack
{
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info
{
113 struct net_device
*physindev
;
114 struct net_device
*physoutdev
;
116 unsigned long data
[32 / sizeof(unsigned long)];
120 struct sk_buff_head
{
121 /* These two members must be first. */
122 struct sk_buff
*next
;
123 struct sk_buff
*prev
;
131 /* To allow 64K frame to be packed as single skb without frag_list. Since
132 * GRO uses frags we allocate at least 16 regardless of page size.
134 #if (65536/PAGE_SIZE + 2) < 16
135 #define MAX_SKB_FRAGS 16UL
137 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
140 typedef struct skb_frag_struct skb_frag_t
;
142 struct skb_frag_struct
{
146 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
155 static inline unsigned int skb_frag_size(const skb_frag_t
*frag
)
160 static inline void skb_frag_size_set(skb_frag_t
*frag
, unsigned int size
)
165 static inline void skb_frag_size_add(skb_frag_t
*frag
, int delta
)
170 static inline void skb_frag_size_sub(skb_frag_t
*frag
, int delta
)
175 #define HAVE_HW_TIME_STAMP
178 * struct skb_shared_hwtstamps - hardware time stamps
179 * @hwtstamp: hardware time stamp transformed into duration
180 * since arbitrary point in time
181 * @syststamp: hwtstamp transformed to system time base
183 * Software time stamps generated by ktime_get_real() are stored in
184 * skb->tstamp. The relation between the different kinds of time
185 * stamps is as follows:
187 * syststamp and tstamp can be compared against each other in
188 * arbitrary combinations. The accuracy of a
189 * syststamp/tstamp/"syststamp from other device" comparison is
190 * limited by the accuracy of the transformation into system time
191 * base. This depends on the device driver and its underlying
194 * hwtstamps can only be compared against other hwtstamps from
197 * This structure is attached to packets as part of the
198 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
200 struct skb_shared_hwtstamps
{
205 /* Definitions for tx_flags in struct skb_shared_info */
207 /* generate hardware time stamp */
208 SKBTX_HW_TSTAMP
= 1 << 0,
210 /* generate software time stamp */
211 SKBTX_SW_TSTAMP
= 1 << 1,
213 /* device driver is going to provide hardware time stamp */
214 SKBTX_IN_PROGRESS
= 1 << 2,
216 /* ensure the originating sk reference is available on driver level */
217 SKBTX_DRV_NEEDS_SK_REF
= 1 << 3,
219 /* device driver supports TX zero-copy buffers */
220 SKBTX_DEV_ZEROCOPY
= 1 << 4,
224 * The callback notifies userspace to release buffers when skb DMA is done in
225 * lower device, the skb last reference should be 0 when calling this.
226 * The desc is used to track userspace buffer index.
229 void (*callback
)(void *);
234 /* This data is invariant across clones and lives at
235 * the end of the header data, ie. at skb->end.
237 struct skb_shared_info
{
238 unsigned short nr_frags
;
239 unsigned short gso_size
;
240 /* Warning: this field is not always filled in (UFO)! */
241 unsigned short gso_segs
;
242 unsigned short gso_type
;
245 struct sk_buff
*frag_list
;
246 struct skb_shared_hwtstamps hwtstamps
;
249 * Warning : all fields before dataref are cleared in __alloc_skb()
253 /* Intermediate layers must ensure that destructor_arg
254 * remains valid until skb destructor */
255 void * destructor_arg
;
257 /* must be last field, see pskb_expand_head() */
258 skb_frag_t frags
[MAX_SKB_FRAGS
];
261 /* We divide dataref into two halves. The higher 16 bits hold references
262 * to the payload part of skb->data. The lower 16 bits hold references to
263 * the entire skb->data. A clone of a headerless skb holds the length of
264 * the header in skb->hdr_len.
266 * All users must obey the rule that the skb->data reference count must be
267 * greater than or equal to the payload reference count.
269 * Holding a reference to the payload part means that the user does not
270 * care about modifications to the header part of skb->data.
272 #define SKB_DATAREF_SHIFT 16
273 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
277 SKB_FCLONE_UNAVAILABLE
,
283 SKB_GSO_TCPV4
= 1 << 0,
284 SKB_GSO_UDP
= 1 << 1,
286 /* This indicates the skb is from an untrusted source. */
287 SKB_GSO_DODGY
= 1 << 2,
289 /* This indicates the tcp segment has CWR set. */
290 SKB_GSO_TCP_ECN
= 1 << 3,
292 SKB_GSO_TCPV6
= 1 << 4,
294 SKB_GSO_FCOE
= 1 << 5,
297 #if BITS_PER_LONG > 32
298 #define NET_SKBUFF_DATA_USES_OFFSET 1
301 #ifdef NET_SKBUFF_DATA_USES_OFFSET
302 typedef unsigned int sk_buff_data_t
;
304 typedef unsigned char *sk_buff_data_t
;
307 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
308 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
309 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
313 * struct sk_buff - socket buffer
314 * @next: Next buffer in list
315 * @prev: Previous buffer in list
316 * @tstamp: Time we arrived
317 * @sk: Socket we are owned by
318 * @dev: Device we arrived on/are leaving by
319 * @cb: Control buffer. Free for use by every layer. Put private vars here
320 * @_skb_refdst: destination entry (with norefcount bit)
321 * @sp: the security path, used for xfrm
322 * @len: Length of actual data
323 * @data_len: Data length
324 * @mac_len: Length of link layer header
325 * @hdr_len: writable header length of cloned skb
326 * @csum: Checksum (must include start/offset pair)
327 * @csum_start: Offset from skb->head where checksumming should start
328 * @csum_offset: Offset from csum_start where checksum should be stored
329 * @priority: Packet queueing priority
330 * @local_df: allow local fragmentation
331 * @cloned: Head may be cloned (check refcnt to be sure)
332 * @ip_summed: Driver fed us an IP checksum
333 * @nohdr: Payload reference only, must not modify header
334 * @nfctinfo: Relationship of this skb to the connection
335 * @pkt_type: Packet class
336 * @fclone: skbuff clone status
337 * @ipvs_property: skbuff is owned by ipvs
338 * @peeked: this packet has been seen already, so stats have been
339 * done for it, don't do them again
340 * @nf_trace: netfilter packet trace flag
341 * @protocol: Packet protocol from driver
342 * @destructor: Destruct function
343 * @nfct: Associated connection, if any
344 * @nfct_reasm: netfilter conntrack re-assembly pointer
345 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
346 * @skb_iif: ifindex of device we arrived on
347 * @tc_index: Traffic control index
348 * @tc_verd: traffic control verdict
349 * @rxhash: the packet hash computed on receive
350 * @queue_mapping: Queue mapping for multiqueue devices
351 * @ndisc_nodetype: router type (from link layer)
352 * @ooo_okay: allow the mapping of a socket to a queue to be changed
353 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
355 * @dma_cookie: a cookie to one of several possible DMA operations
356 * done by skb DMA functions
357 * @secmark: security marking
358 * @mark: Generic packet mark
359 * @dropcount: total number of sk_receive_queue overflows
360 * @vlan_tci: vlan tag control information
361 * @transport_header: Transport layer header
362 * @network_header: Network layer header
363 * @mac_header: Link layer header
364 * @tail: Tail pointer
366 * @head: Head of buffer
367 * @data: Data head pointer
368 * @truesize: Buffer size
369 * @users: User count - see {datagram,tcp}.c
373 /* These two members must be first. */
374 struct sk_buff
*next
;
375 struct sk_buff
*prev
;
380 struct net_device
*dev
;
383 * This is the control buffer. It is free to use for every
384 * layer. Please put your private variables there. If you
385 * want to keep them across layers you have to do a skb_clone()
386 * first. This is owned by whoever has the skb queued ATM.
388 char cb
[48] __aligned(8);
390 unsigned long _skb_refdst
;
406 kmemcheck_bitfield_begin(flags1
);
417 kmemcheck_bitfield_end(flags1
);
420 void (*destructor
)(struct sk_buff
*skb
);
421 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
422 struct nf_conntrack
*nfct
;
424 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
425 struct sk_buff
*nfct_reasm
;
427 #ifdef CONFIG_BRIDGE_NETFILTER
428 struct nf_bridge_info
*nf_bridge
;
432 #ifdef CONFIG_NET_SCHED
433 __u16 tc_index
; /* traffic control index */
434 #ifdef CONFIG_NET_CLS_ACT
435 __u16 tc_verd
; /* traffic control verdict */
442 kmemcheck_bitfield_begin(flags2
);
443 #ifdef CONFIG_IPV6_NDISC_NODETYPE
444 __u8 ndisc_nodetype
:2;
448 kmemcheck_bitfield_end(flags2
);
452 #ifdef CONFIG_NET_DMA
453 dma_cookie_t dma_cookie
;
455 #ifdef CONFIG_NETWORK_SECMARK
465 sk_buff_data_t transport_header
;
466 sk_buff_data_t network_header
;
467 sk_buff_data_t mac_header
;
468 /* These elements must be at the end, see alloc_skb() for details. */
473 unsigned int truesize
;
479 * Handling routines are only of interest to the kernel
481 #include <linux/slab.h>
483 #include <asm/system.h>
486 * skb might have a dst pointer attached, refcounted or not.
487 * _skb_refdst low order bit is set if refcount was _not_ taken
489 #define SKB_DST_NOREF 1UL
490 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
493 * skb_dst - returns skb dst_entry
496 * Returns skb dst_entry, regardless of reference taken or not.
498 static inline struct dst_entry
*skb_dst(const struct sk_buff
*skb
)
500 /* If refdst was not refcounted, check we still are in a
501 * rcu_read_lock section
503 WARN_ON((skb
->_skb_refdst
& SKB_DST_NOREF
) &&
504 !rcu_read_lock_held() &&
505 !rcu_read_lock_bh_held());
506 return (struct dst_entry
*)(skb
->_skb_refdst
& SKB_DST_PTRMASK
);
510 * skb_dst_set - sets skb dst
514 * Sets skb dst, assuming a reference was taken on dst and should
515 * be released by skb_dst_drop()
517 static inline void skb_dst_set(struct sk_buff
*skb
, struct dst_entry
*dst
)
519 skb
->_skb_refdst
= (unsigned long)dst
;
522 extern void skb_dst_set_noref(struct sk_buff
*skb
, struct dst_entry
*dst
);
525 * skb_dst_is_noref - Test if skb dst isn't refcounted
528 static inline bool skb_dst_is_noref(const struct sk_buff
*skb
)
530 return (skb
->_skb_refdst
& SKB_DST_NOREF
) && skb_dst(skb
);
533 static inline struct rtable
*skb_rtable(const struct sk_buff
*skb
)
535 return (struct rtable
*)skb_dst(skb
);
538 extern void kfree_skb(struct sk_buff
*skb
);
539 extern void consume_skb(struct sk_buff
*skb
);
540 extern void __kfree_skb(struct sk_buff
*skb
);
541 extern struct sk_buff
*__alloc_skb(unsigned int size
,
542 gfp_t priority
, int fclone
, int node
);
543 static inline struct sk_buff
*alloc_skb(unsigned int size
,
546 return __alloc_skb(size
, priority
, 0, NUMA_NO_NODE
);
549 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
552 return __alloc_skb(size
, priority
, 1, NUMA_NO_NODE
);
555 extern void skb_recycle(struct sk_buff
*skb
);
556 extern bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
558 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
559 extern int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
);
560 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
562 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
564 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
566 extern int pskb_expand_head(struct sk_buff
*skb
,
567 int nhead
, int ntail
,
569 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
570 unsigned int headroom
);
571 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
572 int newheadroom
, int newtailroom
,
574 extern int skb_to_sgvec(struct sk_buff
*skb
,
575 struct scatterlist
*sg
, int offset
,
577 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
578 struct sk_buff
**trailer
);
579 extern int skb_pad(struct sk_buff
*skb
, int pad
);
580 #define dev_kfree_skb(a) consume_skb(a)
582 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
583 int getfrag(void *from
, char *to
, int offset
,
584 int len
,int odd
, struct sk_buff
*skb
),
585 void *from
, int length
);
587 struct skb_seq_state
{
591 __u32 stepped_offset
;
592 struct sk_buff
*root_skb
;
593 struct sk_buff
*cur_skb
;
597 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
598 unsigned int from
, unsigned int to
,
599 struct skb_seq_state
*st
);
600 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
601 struct skb_seq_state
*st
);
602 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
604 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
605 unsigned int to
, struct ts_config
*config
,
606 struct ts_state
*state
);
608 extern void __skb_get_rxhash(struct sk_buff
*skb
);
609 static inline __u32
skb_get_rxhash(struct sk_buff
*skb
)
612 __skb_get_rxhash(skb
);
617 #ifdef NET_SKBUFF_DATA_USES_OFFSET
618 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
620 return skb
->head
+ skb
->end
;
623 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
630 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
632 static inline struct skb_shared_hwtstamps
*skb_hwtstamps(struct sk_buff
*skb
)
634 return &skb_shinfo(skb
)->hwtstamps
;
638 * skb_queue_empty - check if a queue is empty
641 * Returns true if the queue is empty, false otherwise.
643 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
645 return list
->next
== (struct sk_buff
*)list
;
649 * skb_queue_is_last - check if skb is the last entry in the queue
653 * Returns true if @skb is the last buffer on the list.
655 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
656 const struct sk_buff
*skb
)
658 return skb
->next
== (struct sk_buff
*)list
;
662 * skb_queue_is_first - check if skb is the first entry in the queue
666 * Returns true if @skb is the first buffer on the list.
668 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
669 const struct sk_buff
*skb
)
671 return skb
->prev
== (struct sk_buff
*)list
;
675 * skb_queue_next - return the next packet in the queue
677 * @skb: current buffer
679 * Return the next packet in @list after @skb. It is only valid to
680 * call this if skb_queue_is_last() evaluates to false.
682 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
683 const struct sk_buff
*skb
)
685 /* This BUG_ON may seem severe, but if we just return then we
686 * are going to dereference garbage.
688 BUG_ON(skb_queue_is_last(list
, skb
));
693 * skb_queue_prev - return the prev packet in the queue
695 * @skb: current buffer
697 * Return the prev packet in @list before @skb. It is only valid to
698 * call this if skb_queue_is_first() evaluates to false.
700 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
701 const struct sk_buff
*skb
)
703 /* This BUG_ON may seem severe, but if we just return then we
704 * are going to dereference garbage.
706 BUG_ON(skb_queue_is_first(list
, skb
));
711 * skb_get - reference buffer
712 * @skb: buffer to reference
714 * Makes another reference to a socket buffer and returns a pointer
717 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
719 atomic_inc(&skb
->users
);
724 * If users == 1, we are the only owner and are can avoid redundant
729 * skb_cloned - is the buffer a clone
730 * @skb: buffer to check
732 * Returns true if the buffer was generated with skb_clone() and is
733 * one of multiple shared copies of the buffer. Cloned buffers are
734 * shared data so must not be written to under normal circumstances.
736 static inline int skb_cloned(const struct sk_buff
*skb
)
738 return skb
->cloned
&&
739 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
743 * skb_header_cloned - is the header a clone
744 * @skb: buffer to check
746 * Returns true if modifying the header part of the buffer requires
747 * the data to be copied.
749 static inline int skb_header_cloned(const struct sk_buff
*skb
)
756 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
757 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
762 * skb_header_release - release reference to header
763 * @skb: buffer to operate on
765 * Drop a reference to the header part of the buffer. This is done
766 * by acquiring a payload reference. You must not read from the header
767 * part of skb->data after this.
769 static inline void skb_header_release(struct sk_buff
*skb
)
773 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
777 * skb_shared - is the buffer shared
778 * @skb: buffer to check
780 * Returns true if more than one person has a reference to this
783 static inline int skb_shared(const struct sk_buff
*skb
)
785 return atomic_read(&skb
->users
) != 1;
789 * skb_share_check - check if buffer is shared and if so clone it
790 * @skb: buffer to check
791 * @pri: priority for memory allocation
793 * If the buffer is shared the buffer is cloned and the old copy
794 * drops a reference. A new clone with a single reference is returned.
795 * If the buffer is not shared the original buffer is returned. When
796 * being called from interrupt status or with spinlocks held pri must
799 * NULL is returned on a memory allocation failure.
801 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
804 might_sleep_if(pri
& __GFP_WAIT
);
805 if (skb_shared(skb
)) {
806 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
814 * Copy shared buffers into a new sk_buff. We effectively do COW on
815 * packets to handle cases where we have a local reader and forward
816 * and a couple of other messy ones. The normal one is tcpdumping
817 * a packet thats being forwarded.
821 * skb_unshare - make a copy of a shared buffer
822 * @skb: buffer to check
823 * @pri: priority for memory allocation
825 * If the socket buffer is a clone then this function creates a new
826 * copy of the data, drops a reference count on the old copy and returns
827 * the new copy with the reference count at 1. If the buffer is not a clone
828 * the original buffer is returned. When called with a spinlock held or
829 * from interrupt state @pri must be %GFP_ATOMIC
831 * %NULL is returned on a memory allocation failure.
833 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
836 might_sleep_if(pri
& __GFP_WAIT
);
837 if (skb_cloned(skb
)) {
838 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
839 kfree_skb(skb
); /* Free our shared copy */
846 * skb_peek - peek at the head of an &sk_buff_head
847 * @list_: list to peek at
849 * Peek an &sk_buff. Unlike most other operations you _MUST_
850 * be careful with this one. A peek leaves the buffer on the
851 * list and someone else may run off with it. You must hold
852 * the appropriate locks or have a private queue to do this.
854 * Returns %NULL for an empty list or a pointer to the head element.
855 * The reference count is not incremented and the reference is therefore
856 * volatile. Use with caution.
858 static inline struct sk_buff
*skb_peek(const struct sk_buff_head
*list_
)
860 struct sk_buff
*list
= ((const struct sk_buff
*)list_
)->next
;
861 if (list
== (struct sk_buff
*)list_
)
867 * skb_peek_tail - peek at the tail of an &sk_buff_head
868 * @list_: list to peek at
870 * Peek an &sk_buff. Unlike most other operations you _MUST_
871 * be careful with this one. A peek leaves the buffer on the
872 * list and someone else may run off with it. You must hold
873 * the appropriate locks or have a private queue to do this.
875 * Returns %NULL for an empty list or a pointer to the tail element.
876 * The reference count is not incremented and the reference is therefore
877 * volatile. Use with caution.
879 static inline struct sk_buff
*skb_peek_tail(const struct sk_buff_head
*list_
)
881 struct sk_buff
*list
= ((const struct sk_buff
*)list_
)->prev
;
882 if (list
== (struct sk_buff
*)list_
)
888 * skb_queue_len - get queue length
889 * @list_: list to measure
891 * Return the length of an &sk_buff queue.
893 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
899 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
900 * @list: queue to initialize
902 * This initializes only the list and queue length aspects of
903 * an sk_buff_head object. This allows to initialize the list
904 * aspects of an sk_buff_head without reinitializing things like
905 * the spinlock. It can also be used for on-stack sk_buff_head
906 * objects where the spinlock is known to not be used.
908 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
910 list
->prev
= list
->next
= (struct sk_buff
*)list
;
915 * This function creates a split out lock class for each invocation;
916 * this is needed for now since a whole lot of users of the skb-queue
917 * infrastructure in drivers have different locking usage (in hardirq)
918 * than the networking core (in softirq only). In the long run either the
919 * network layer or drivers should need annotation to consolidate the
920 * main types of usage into 3 classes.
922 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
924 spin_lock_init(&list
->lock
);
925 __skb_queue_head_init(list
);
928 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
929 struct lock_class_key
*class)
931 skb_queue_head_init(list
);
932 lockdep_set_class(&list
->lock
, class);
936 * Insert an sk_buff on a list.
938 * The "__skb_xxxx()" functions are the non-atomic ones that
939 * can only be called with interrupts disabled.
941 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
942 static inline void __skb_insert(struct sk_buff
*newsk
,
943 struct sk_buff
*prev
, struct sk_buff
*next
,
944 struct sk_buff_head
*list
)
948 next
->prev
= prev
->next
= newsk
;
952 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
953 struct sk_buff
*prev
,
954 struct sk_buff
*next
)
956 struct sk_buff
*first
= list
->next
;
957 struct sk_buff
*last
= list
->prev
;
967 * skb_queue_splice - join two skb lists, this is designed for stacks
968 * @list: the new list to add
969 * @head: the place to add it in the first list
971 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
972 struct sk_buff_head
*head
)
974 if (!skb_queue_empty(list
)) {
975 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
976 head
->qlen
+= list
->qlen
;
981 * skb_queue_splice - join two skb lists and reinitialise the emptied list
982 * @list: the new list to add
983 * @head: the place to add it in the first list
985 * The list at @list is reinitialised
987 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
988 struct sk_buff_head
*head
)
990 if (!skb_queue_empty(list
)) {
991 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
992 head
->qlen
+= list
->qlen
;
993 __skb_queue_head_init(list
);
998 * skb_queue_splice_tail - join two skb lists, each list being a queue
999 * @list: the new list to add
1000 * @head: the place to add it in the first list
1002 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
1003 struct sk_buff_head
*head
)
1005 if (!skb_queue_empty(list
)) {
1006 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
1007 head
->qlen
+= list
->qlen
;
1012 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1013 * @list: the new list to add
1014 * @head: the place to add it in the first list
1016 * Each of the lists is a queue.
1017 * The list at @list is reinitialised
1019 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
1020 struct sk_buff_head
*head
)
1022 if (!skb_queue_empty(list
)) {
1023 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
1024 head
->qlen
+= list
->qlen
;
1025 __skb_queue_head_init(list
);
1030 * __skb_queue_after - queue a buffer at the list head
1031 * @list: list to use
1032 * @prev: place after this buffer
1033 * @newsk: buffer to queue
1035 * Queue a buffer int the middle of a list. This function takes no locks
1036 * and you must therefore hold required locks before calling it.
1038 * A buffer cannot be placed on two lists at the same time.
1040 static inline void __skb_queue_after(struct sk_buff_head
*list
,
1041 struct sk_buff
*prev
,
1042 struct sk_buff
*newsk
)
1044 __skb_insert(newsk
, prev
, prev
->next
, list
);
1047 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
1048 struct sk_buff_head
*list
);
1050 static inline void __skb_queue_before(struct sk_buff_head
*list
,
1051 struct sk_buff
*next
,
1052 struct sk_buff
*newsk
)
1054 __skb_insert(newsk
, next
->prev
, next
, list
);
1058 * __skb_queue_head - queue a buffer at the list head
1059 * @list: list to use
1060 * @newsk: buffer to queue
1062 * Queue a buffer at the start of a list. This function takes no locks
1063 * and you must therefore hold required locks before calling it.
1065 * A buffer cannot be placed on two lists at the same time.
1067 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1068 static inline void __skb_queue_head(struct sk_buff_head
*list
,
1069 struct sk_buff
*newsk
)
1071 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
1075 * __skb_queue_tail - queue a buffer at the list tail
1076 * @list: list to use
1077 * @newsk: buffer to queue
1079 * Queue a buffer at the end of a list. This function takes no locks
1080 * and you must therefore hold required locks before calling it.
1082 * A buffer cannot be placed on two lists at the same time.
1084 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1085 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
1086 struct sk_buff
*newsk
)
1088 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
1092 * remove sk_buff from list. _Must_ be called atomically, and with
1095 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
1096 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1098 struct sk_buff
*next
, *prev
;
1103 skb
->next
= skb
->prev
= NULL
;
1109 * __skb_dequeue - remove from the head of the queue
1110 * @list: list to dequeue from
1112 * Remove the head of the list. This function does not take any locks
1113 * so must be used with appropriate locks held only. The head item is
1114 * returned or %NULL if the list is empty.
1116 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
1117 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
1119 struct sk_buff
*skb
= skb_peek(list
);
1121 __skb_unlink(skb
, list
);
1126 * __skb_dequeue_tail - remove from the tail of the queue
1127 * @list: list to dequeue from
1129 * Remove the tail of the list. This function does not take any locks
1130 * so must be used with appropriate locks held only. The tail item is
1131 * returned or %NULL if the list is empty.
1133 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
1134 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
1136 struct sk_buff
*skb
= skb_peek_tail(list
);
1138 __skb_unlink(skb
, list
);
1143 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
1145 return skb
->data_len
;
1148 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
1150 return skb
->len
- skb
->data_len
;
1153 static inline int skb_pagelen(const struct sk_buff
*skb
)
1157 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
1158 len
+= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1159 return len
+ skb_headlen(skb
);
1163 * __skb_fill_page_desc - initialise a paged fragment in an skb
1164 * @skb: buffer containing fragment to be initialised
1165 * @i: paged fragment index to initialise
1166 * @page: the page to use for this fragment
1167 * @off: the offset to the data with @page
1168 * @size: the length of the data
1170 * Initialises the @i'th fragment of @skb to point to &size bytes at
1171 * offset @off within @page.
1173 * Does not take any additional reference on the fragment.
1175 static inline void __skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1176 struct page
*page
, int off
, int size
)
1178 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1180 frag
->page
.p
= page
;
1181 frag
->page_offset
= off
;
1182 skb_frag_size_set(frag
, size
);
1186 * skb_fill_page_desc - initialise a paged fragment in an skb
1187 * @skb: buffer containing fragment to be initialised
1188 * @i: paged fragment index to initialise
1189 * @page: the page to use for this fragment
1190 * @off: the offset to the data with @page
1191 * @size: the length of the data
1193 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1194 * @skb to point to &size bytes at offset @off within @page. In
1195 * addition updates @skb such that @i is the last fragment.
1197 * Does not take any additional reference on the fragment.
1199 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1200 struct page
*page
, int off
, int size
)
1202 __skb_fill_page_desc(skb
, i
, page
, off
, size
);
1203 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1206 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
1209 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1210 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1211 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1213 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1214 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1216 return skb
->head
+ skb
->tail
;
1219 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1221 skb
->tail
= skb
->data
- skb
->head
;
1224 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1226 skb_reset_tail_pointer(skb
);
1227 skb
->tail
+= offset
;
1229 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1230 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1235 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1237 skb
->tail
= skb
->data
;
1240 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1242 skb
->tail
= skb
->data
+ offset
;
1245 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1248 * Add data to an sk_buff
1250 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1251 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1253 unsigned char *tmp
= skb_tail_pointer(skb
);
1254 SKB_LINEAR_ASSERT(skb
);
1260 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1261 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1268 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1269 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1272 BUG_ON(skb
->len
< skb
->data_len
);
1273 return skb
->data
+= len
;
1276 static inline unsigned char *skb_pull_inline(struct sk_buff
*skb
, unsigned int len
)
1278 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
1281 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1283 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1285 if (len
> skb_headlen(skb
) &&
1286 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1289 return skb
->data
+= len
;
1292 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1294 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1297 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1299 if (likely(len
<= skb_headlen(skb
)))
1301 if (unlikely(len
> skb
->len
))
1303 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1307 * skb_headroom - bytes at buffer head
1308 * @skb: buffer to check
1310 * Return the number of bytes of free space at the head of an &sk_buff.
1312 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1314 return skb
->data
- skb
->head
;
1318 * skb_tailroom - bytes at buffer end
1319 * @skb: buffer to check
1321 * Return the number of bytes of free space at the tail of an sk_buff
1323 static inline int skb_tailroom(const struct sk_buff
*skb
)
1325 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1329 * skb_reserve - adjust headroom
1330 * @skb: buffer to alter
1331 * @len: bytes to move
1333 * Increase the headroom of an empty &sk_buff by reducing the tail
1334 * room. This is only allowed for an empty buffer.
1336 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1342 static inline void skb_reset_mac_len(struct sk_buff
*skb
)
1344 skb
->mac_len
= skb
->network_header
- skb
->mac_header
;
1347 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1348 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1350 return skb
->head
+ skb
->transport_header
;
1353 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1355 skb
->transport_header
= skb
->data
- skb
->head
;
1358 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1361 skb_reset_transport_header(skb
);
1362 skb
->transport_header
+= offset
;
1365 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1367 return skb
->head
+ skb
->network_header
;
1370 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1372 skb
->network_header
= skb
->data
- skb
->head
;
1375 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1377 skb_reset_network_header(skb
);
1378 skb
->network_header
+= offset
;
1381 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1383 return skb
->head
+ skb
->mac_header
;
1386 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1388 return skb
->mac_header
!= ~0U;
1391 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1393 skb
->mac_header
= skb
->data
- skb
->head
;
1396 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1398 skb_reset_mac_header(skb
);
1399 skb
->mac_header
+= offset
;
1402 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1404 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1406 return skb
->transport_header
;
1409 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1411 skb
->transport_header
= skb
->data
;
1414 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1417 skb
->transport_header
= skb
->data
+ offset
;
1420 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1422 return skb
->network_header
;
1425 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1427 skb
->network_header
= skb
->data
;
1430 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1432 skb
->network_header
= skb
->data
+ offset
;
1435 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1437 return skb
->mac_header
;
1440 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1442 return skb
->mac_header
!= NULL
;
1445 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1447 skb
->mac_header
= skb
->data
;
1450 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1452 skb
->mac_header
= skb
->data
+ offset
;
1454 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1456 static inline int skb_checksum_start_offset(const struct sk_buff
*skb
)
1458 return skb
->csum_start
- skb_headroom(skb
);
1461 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1463 return skb_transport_header(skb
) - skb
->data
;
1466 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1468 return skb
->transport_header
- skb
->network_header
;
1471 static inline int skb_network_offset(const struct sk_buff
*skb
)
1473 return skb_network_header(skb
) - skb
->data
;
1476 static inline int pskb_network_may_pull(struct sk_buff
*skb
, unsigned int len
)
1478 return pskb_may_pull(skb
, skb_network_offset(skb
) + len
);
1482 * CPUs often take a performance hit when accessing unaligned memory
1483 * locations. The actual performance hit varies, it can be small if the
1484 * hardware handles it or large if we have to take an exception and fix it
1487 * Since an ethernet header is 14 bytes network drivers often end up with
1488 * the IP header at an unaligned offset. The IP header can be aligned by
1489 * shifting the start of the packet by 2 bytes. Drivers should do this
1492 * skb_reserve(skb, NET_IP_ALIGN);
1494 * The downside to this alignment of the IP header is that the DMA is now
1495 * unaligned. On some architectures the cost of an unaligned DMA is high
1496 * and this cost outweighs the gains made by aligning the IP header.
1498 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1501 #ifndef NET_IP_ALIGN
1502 #define NET_IP_ALIGN 2
1506 * The networking layer reserves some headroom in skb data (via
1507 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1508 * the header has to grow. In the default case, if the header has to grow
1509 * 32 bytes or less we avoid the reallocation.
1511 * Unfortunately this headroom changes the DMA alignment of the resulting
1512 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1513 * on some architectures. An architecture can override this value,
1514 * perhaps setting it to a cacheline in size (since that will maintain
1515 * cacheline alignment of the DMA). It must be a power of 2.
1517 * Various parts of the networking layer expect at least 32 bytes of
1518 * headroom, you should not reduce this.
1520 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1521 * to reduce average number of cache lines per packet.
1522 * get_rps_cpus() for example only access one 64 bytes aligned block :
1523 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1526 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1529 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1531 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1533 if (unlikely(skb_is_nonlinear(skb
))) {
1538 skb_set_tail_pointer(skb
, len
);
1541 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1543 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1546 return ___pskb_trim(skb
, len
);
1547 __skb_trim(skb
, len
);
1551 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1553 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1557 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1558 * @skb: buffer to alter
1561 * This is identical to pskb_trim except that the caller knows that
1562 * the skb is not cloned so we should never get an error due to out-
1565 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1567 int err
= pskb_trim(skb
, len
);
1572 * skb_orphan - orphan a buffer
1573 * @skb: buffer to orphan
1575 * If a buffer currently has an owner then we call the owner's
1576 * destructor function and make the @skb unowned. The buffer continues
1577 * to exist but is no longer charged to its former owner.
1579 static inline void skb_orphan(struct sk_buff
*skb
)
1581 if (skb
->destructor
)
1582 skb
->destructor(skb
);
1583 skb
->destructor
= NULL
;
1588 * __skb_queue_purge - empty a list
1589 * @list: list to empty
1591 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1592 * the list and one reference dropped. This function does not take the
1593 * list lock and the caller must hold the relevant locks to use it.
1595 extern void skb_queue_purge(struct sk_buff_head
*list
);
1596 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1598 struct sk_buff
*skb
;
1599 while ((skb
= __skb_dequeue(list
)) != NULL
)
1604 * __dev_alloc_skb - allocate an skbuff for receiving
1605 * @length: length to allocate
1606 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1608 * Allocate a new &sk_buff and assign it a usage count of one. The
1609 * buffer has unspecified headroom built in. Users should allocate
1610 * the headroom they think they need without accounting for the
1611 * built in space. The built in space is used for optimisations.
1613 * %NULL is returned if there is no free memory.
1615 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1618 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1620 skb_reserve(skb
, NET_SKB_PAD
);
1624 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1626 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1627 unsigned int length
, gfp_t gfp_mask
);
1630 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1631 * @dev: network device to receive on
1632 * @length: length to allocate
1634 * Allocate a new &sk_buff and assign it a usage count of one. The
1635 * buffer has unspecified headroom built in. Users should allocate
1636 * the headroom they think they need without accounting for the
1637 * built in space. The built in space is used for optimisations.
1639 * %NULL is returned if there is no free memory. Although this function
1640 * allocates memory it can be called from an interrupt.
1642 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1643 unsigned int length
)
1645 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1648 static inline struct sk_buff
*__netdev_alloc_skb_ip_align(struct net_device
*dev
,
1649 unsigned int length
, gfp_t gfp
)
1651 struct sk_buff
*skb
= __netdev_alloc_skb(dev
, length
+ NET_IP_ALIGN
, gfp
);
1653 if (NET_IP_ALIGN
&& skb
)
1654 skb_reserve(skb
, NET_IP_ALIGN
);
1658 static inline struct sk_buff
*netdev_alloc_skb_ip_align(struct net_device
*dev
,
1659 unsigned int length
)
1661 return __netdev_alloc_skb_ip_align(dev
, length
, GFP_ATOMIC
);
1665 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1666 * @dev: network device to receive on
1667 * @gfp_mask: alloc_pages_node mask
1669 * Allocate a new page. dev currently unused.
1671 * %NULL is returned if there is no free memory.
1673 static inline struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
)
1675 return alloc_pages_node(NUMA_NO_NODE
, gfp_mask
, 0);
1679 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1680 * @dev: network device to receive on
1682 * Allocate a new page. dev currently unused.
1684 * %NULL is returned if there is no free memory.
1686 static inline struct page
*netdev_alloc_page(struct net_device
*dev
)
1688 return __netdev_alloc_page(dev
, GFP_ATOMIC
);
1691 static inline void netdev_free_page(struct net_device
*dev
, struct page
*page
)
1697 * skb_frag_page - retrieve the page refered to by a paged fragment
1698 * @frag: the paged fragment
1700 * Returns the &struct page associated with @frag.
1702 static inline struct page
*skb_frag_page(const skb_frag_t
*frag
)
1704 return frag
->page
.p
;
1708 * __skb_frag_ref - take an addition reference on a paged fragment.
1709 * @frag: the paged fragment
1711 * Takes an additional reference on the paged fragment @frag.
1713 static inline void __skb_frag_ref(skb_frag_t
*frag
)
1715 get_page(skb_frag_page(frag
));
1719 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1721 * @f: the fragment offset.
1723 * Takes an additional reference on the @f'th paged fragment of @skb.
1725 static inline void skb_frag_ref(struct sk_buff
*skb
, int f
)
1727 __skb_frag_ref(&skb_shinfo(skb
)->frags
[f
]);
1731 * __skb_frag_unref - release a reference on a paged fragment.
1732 * @frag: the paged fragment
1734 * Releases a reference on the paged fragment @frag.
1736 static inline void __skb_frag_unref(skb_frag_t
*frag
)
1738 put_page(skb_frag_page(frag
));
1742 * skb_frag_unref - release a reference on a paged fragment of an skb.
1744 * @f: the fragment offset
1746 * Releases a reference on the @f'th paged fragment of @skb.
1748 static inline void skb_frag_unref(struct sk_buff
*skb
, int f
)
1750 __skb_frag_unref(&skb_shinfo(skb
)->frags
[f
]);
1754 * skb_frag_address - gets the address of the data contained in a paged fragment
1755 * @frag: the paged fragment buffer
1757 * Returns the address of the data within @frag. The page must already
1760 static inline void *skb_frag_address(const skb_frag_t
*frag
)
1762 return page_address(skb_frag_page(frag
)) + frag
->page_offset
;
1766 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1767 * @frag: the paged fragment buffer
1769 * Returns the address of the data within @frag. Checks that the page
1770 * is mapped and returns %NULL otherwise.
1772 static inline void *skb_frag_address_safe(const skb_frag_t
*frag
)
1774 void *ptr
= page_address(skb_frag_page(frag
));
1778 return ptr
+ frag
->page_offset
;
1782 * __skb_frag_set_page - sets the page contained in a paged fragment
1783 * @frag: the paged fragment
1784 * @page: the page to set
1786 * Sets the fragment @frag to contain @page.
1788 static inline void __skb_frag_set_page(skb_frag_t
*frag
, struct page
*page
)
1790 frag
->page
.p
= page
;
1794 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1796 * @f: the fragment offset
1797 * @page: the page to set
1799 * Sets the @f'th fragment of @skb to contain @page.
1801 static inline void skb_frag_set_page(struct sk_buff
*skb
, int f
,
1804 __skb_frag_set_page(&skb_shinfo(skb
)->frags
[f
], page
);
1808 * skb_frag_dma_map - maps a paged fragment via the DMA API
1809 * @dev: the device to map the fragment to
1810 * @frag: the paged fragment to map
1811 * @offset: the offset within the fragment (starting at the
1812 * fragment's own offset)
1813 * @size: the number of bytes to map
1814 * @dir: the direction of the mapping (%PCI_DMA_*)
1816 * Maps the page associated with @frag to @device.
1818 static inline dma_addr_t
skb_frag_dma_map(struct device
*dev
,
1819 const skb_frag_t
*frag
,
1820 size_t offset
, size_t size
,
1821 enum dma_data_direction dir
)
1823 return dma_map_page(dev
, skb_frag_page(frag
),
1824 frag
->page_offset
+ offset
, size
, dir
);
1828 * skb_clone_writable - is the header of a clone writable
1829 * @skb: buffer to check
1830 * @len: length up to which to write
1832 * Returns true if modifying the header part of the cloned buffer
1833 * does not requires the data to be copied.
1835 static inline int skb_clone_writable(const struct sk_buff
*skb
, unsigned int len
)
1837 return !skb_header_cloned(skb
) &&
1838 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1841 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1846 if (headroom
< NET_SKB_PAD
)
1847 headroom
= NET_SKB_PAD
;
1848 if (headroom
> skb_headroom(skb
))
1849 delta
= headroom
- skb_headroom(skb
);
1851 if (delta
|| cloned
)
1852 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1858 * skb_cow - copy header of skb when it is required
1859 * @skb: buffer to cow
1860 * @headroom: needed headroom
1862 * If the skb passed lacks sufficient headroom or its data part
1863 * is shared, data is reallocated. If reallocation fails, an error
1864 * is returned and original skb is not changed.
1866 * The result is skb with writable area skb->head...skb->tail
1867 * and at least @headroom of space at head.
1869 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1871 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1875 * skb_cow_head - skb_cow but only making the head writable
1876 * @skb: buffer to cow
1877 * @headroom: needed headroom
1879 * This function is identical to skb_cow except that we replace the
1880 * skb_cloned check by skb_header_cloned. It should be used when
1881 * you only need to push on some header and do not need to modify
1884 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1886 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1890 * skb_padto - pad an skbuff up to a minimal size
1891 * @skb: buffer to pad
1892 * @len: minimal length
1894 * Pads up a buffer to ensure the trailing bytes exist and are
1895 * blanked. If the buffer already contains sufficient data it
1896 * is untouched. Otherwise it is extended. Returns zero on
1897 * success. The skb is freed on error.
1900 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1902 unsigned int size
= skb
->len
;
1903 if (likely(size
>= len
))
1905 return skb_pad(skb
, len
- size
);
1908 static inline int skb_add_data(struct sk_buff
*skb
,
1909 char __user
*from
, int copy
)
1911 const int off
= skb
->len
;
1913 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1915 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1918 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1921 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1924 __skb_trim(skb
, off
);
1928 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1929 const struct page
*page
, int off
)
1932 const struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1934 return page
== skb_frag_page(frag
) &&
1935 off
== frag
->page_offset
+ skb_frag_size(frag
);
1940 static inline int __skb_linearize(struct sk_buff
*skb
)
1942 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1946 * skb_linearize - convert paged skb to linear one
1947 * @skb: buffer to linarize
1949 * If there is no free memory -ENOMEM is returned, otherwise zero
1950 * is returned and the old skb data released.
1952 static inline int skb_linearize(struct sk_buff
*skb
)
1954 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1958 * skb_linearize_cow - make sure skb is linear and writable
1959 * @skb: buffer to process
1961 * If there is no free memory -ENOMEM is returned, otherwise zero
1962 * is returned and the old skb data released.
1964 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1966 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1967 __skb_linearize(skb
) : 0;
1971 * skb_postpull_rcsum - update checksum for received skb after pull
1972 * @skb: buffer to update
1973 * @start: start of data before pull
1974 * @len: length of data pulled
1976 * After doing a pull on a received packet, you need to call this to
1977 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1978 * CHECKSUM_NONE so that it can be recomputed from scratch.
1981 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1982 const void *start
, unsigned int len
)
1984 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1985 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1988 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1991 * pskb_trim_rcsum - trim received skb and update checksum
1992 * @skb: buffer to trim
1995 * This is exactly the same as pskb_trim except that it ensures the
1996 * checksum of received packets are still valid after the operation.
1999 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
2001 if (likely(len
>= skb
->len
))
2003 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2004 skb
->ip_summed
= CHECKSUM_NONE
;
2005 return __pskb_trim(skb
, len
);
2008 #define skb_queue_walk(queue, skb) \
2009 for (skb = (queue)->next; \
2010 skb != (struct sk_buff *)(queue); \
2013 #define skb_queue_walk_safe(queue, skb, tmp) \
2014 for (skb = (queue)->next, tmp = skb->next; \
2015 skb != (struct sk_buff *)(queue); \
2016 skb = tmp, tmp = skb->next)
2018 #define skb_queue_walk_from(queue, skb) \
2019 for (; skb != (struct sk_buff *)(queue); \
2022 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2023 for (tmp = skb->next; \
2024 skb != (struct sk_buff *)(queue); \
2025 skb = tmp, tmp = skb->next)
2027 #define skb_queue_reverse_walk(queue, skb) \
2028 for (skb = (queue)->prev; \
2029 skb != (struct sk_buff *)(queue); \
2032 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2033 for (skb = (queue)->prev, tmp = skb->prev; \
2034 skb != (struct sk_buff *)(queue); \
2035 skb = tmp, tmp = skb->prev)
2037 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2038 for (tmp = skb->prev; \
2039 skb != (struct sk_buff *)(queue); \
2040 skb = tmp, tmp = skb->prev)
2042 static inline bool skb_has_frag_list(const struct sk_buff
*skb
)
2044 return skb_shinfo(skb
)->frag_list
!= NULL
;
2047 static inline void skb_frag_list_init(struct sk_buff
*skb
)
2049 skb_shinfo(skb
)->frag_list
= NULL
;
2052 static inline void skb_frag_add_head(struct sk_buff
*skb
, struct sk_buff
*frag
)
2054 frag
->next
= skb_shinfo(skb
)->frag_list
;
2055 skb_shinfo(skb
)->frag_list
= frag
;
2058 #define skb_walk_frags(skb, iter) \
2059 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2061 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
2062 int *peeked
, int *err
);
2063 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
2064 int noblock
, int *err
);
2065 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
2066 struct poll_table_struct
*wait
);
2067 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
2068 int offset
, struct iovec
*to
,
2070 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
2073 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
2075 const struct iovec
*from
,
2078 extern int skb_copy_datagram_const_iovec(const struct sk_buff
*from
,
2080 const struct iovec
*to
,
2083 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
2084 extern void skb_free_datagram_locked(struct sock
*sk
,
2085 struct sk_buff
*skb
);
2086 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
2087 unsigned int flags
);
2088 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2089 int len
, __wsum csum
);
2090 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
2092 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
2093 const void *from
, int len
);
2094 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
2095 int offset
, u8
*to
, int len
,
2097 extern int skb_splice_bits(struct sk_buff
*skb
,
2098 unsigned int offset
,
2099 struct pipe_inode_info
*pipe
,
2101 unsigned int flags
);
2102 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
2103 extern void skb_split(struct sk_buff
*skb
,
2104 struct sk_buff
*skb1
, const u32 len
);
2105 extern int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
,
2108 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
);
2110 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
2111 int len
, void *buffer
)
2113 int hlen
= skb_headlen(skb
);
2115 if (hlen
- offset
>= len
)
2116 return skb
->data
+ offset
;
2118 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
2124 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
2126 const unsigned int len
)
2128 memcpy(to
, skb
->data
, len
);
2131 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
2132 const int offset
, void *to
,
2133 const unsigned int len
)
2135 memcpy(to
, skb
->data
+ offset
, len
);
2138 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
2140 const unsigned int len
)
2142 memcpy(skb
->data
, from
, len
);
2145 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
2148 const unsigned int len
)
2150 memcpy(skb
->data
+ offset
, from
, len
);
2153 extern void skb_init(void);
2155 static inline ktime_t
skb_get_ktime(const struct sk_buff
*skb
)
2161 * skb_get_timestamp - get timestamp from a skb
2162 * @skb: skb to get stamp from
2163 * @stamp: pointer to struct timeval to store stamp in
2165 * Timestamps are stored in the skb as offsets to a base timestamp.
2166 * This function converts the offset back to a struct timeval and stores
2169 static inline void skb_get_timestamp(const struct sk_buff
*skb
,
2170 struct timeval
*stamp
)
2172 *stamp
= ktime_to_timeval(skb
->tstamp
);
2175 static inline void skb_get_timestampns(const struct sk_buff
*skb
,
2176 struct timespec
*stamp
)
2178 *stamp
= ktime_to_timespec(skb
->tstamp
);
2181 static inline void __net_timestamp(struct sk_buff
*skb
)
2183 skb
->tstamp
= ktime_get_real();
2186 static inline ktime_t
net_timedelta(ktime_t t
)
2188 return ktime_sub(ktime_get_real(), t
);
2191 static inline ktime_t
net_invalid_timestamp(void)
2193 return ktime_set(0, 0);
2196 extern void skb_timestamping_init(void);
2198 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2200 extern void skb_clone_tx_timestamp(struct sk_buff
*skb
);
2201 extern bool skb_defer_rx_timestamp(struct sk_buff
*skb
);
2203 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2205 static inline void skb_clone_tx_timestamp(struct sk_buff
*skb
)
2209 static inline bool skb_defer_rx_timestamp(struct sk_buff
*skb
)
2214 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2217 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2219 * PHY drivers may accept clones of transmitted packets for
2220 * timestamping via their phy_driver.txtstamp method. These drivers
2221 * must call this function to return the skb back to the stack, with
2222 * or without a timestamp.
2224 * @skb: clone of the the original outgoing packet
2225 * @hwtstamps: hardware time stamps, may be NULL if not available
2228 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
2229 struct skb_shared_hwtstamps
*hwtstamps
);
2232 * skb_tstamp_tx - queue clone of skb with send time stamps
2233 * @orig_skb: the original outgoing packet
2234 * @hwtstamps: hardware time stamps, may be NULL if not available
2236 * If the skb has a socket associated, then this function clones the
2237 * skb (thus sharing the actual data and optional structures), stores
2238 * the optional hardware time stamping information (if non NULL) or
2239 * generates a software time stamp (otherwise), then queues the clone
2240 * to the error queue of the socket. Errors are silently ignored.
2242 extern void skb_tstamp_tx(struct sk_buff
*orig_skb
,
2243 struct skb_shared_hwtstamps
*hwtstamps
);
2245 static inline void sw_tx_timestamp(struct sk_buff
*skb
)
2247 if (skb_shinfo(skb
)->tx_flags
& SKBTX_SW_TSTAMP
&&
2248 !(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2249 skb_tstamp_tx(skb
, NULL
);
2253 * skb_tx_timestamp() - Driver hook for transmit timestamping
2255 * Ethernet MAC Drivers should call this function in their hard_xmit()
2256 * function immediately before giving the sk_buff to the MAC hardware.
2258 * @skb: A socket buffer.
2260 static inline void skb_tx_timestamp(struct sk_buff
*skb
)
2262 skb_clone_tx_timestamp(skb
);
2263 sw_tx_timestamp(skb
);
2266 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
2267 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
2269 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
2271 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
2275 * skb_checksum_complete - Calculate checksum of an entire packet
2276 * @skb: packet to process
2278 * This function calculates the checksum over the entire packet plus
2279 * the value of skb->csum. The latter can be used to supply the
2280 * checksum of a pseudo header as used by TCP/UDP. It returns the
2283 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2284 * this function can be used to verify that checksum on received
2285 * packets. In that case the function should return zero if the
2286 * checksum is correct. In particular, this function will return zero
2287 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2288 * hardware has already verified the correctness of the checksum.
2290 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
2292 return skb_csum_unnecessary(skb
) ?
2293 0 : __skb_checksum_complete(skb
);
2296 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2297 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
2298 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
2300 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
2301 nf_conntrack_destroy(nfct
);
2303 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
2306 atomic_inc(&nfct
->use
);
2309 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2310 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
2313 atomic_inc(&skb
->users
);
2315 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
2321 #ifdef CONFIG_BRIDGE_NETFILTER
2322 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
2324 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
2327 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
2330 atomic_inc(&nf_bridge
->use
);
2332 #endif /* CONFIG_BRIDGE_NETFILTER */
2333 static inline void nf_reset(struct sk_buff
*skb
)
2335 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2336 nf_conntrack_put(skb
->nfct
);
2339 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2340 nf_conntrack_put_reasm(skb
->nfct_reasm
);
2341 skb
->nfct_reasm
= NULL
;
2343 #ifdef CONFIG_BRIDGE_NETFILTER
2344 nf_bridge_put(skb
->nf_bridge
);
2345 skb
->nf_bridge
= NULL
;
2349 /* Note: This doesn't put any conntrack and bridge info in dst. */
2350 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
2352 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2353 dst
->nfct
= src
->nfct
;
2354 nf_conntrack_get(src
->nfct
);
2355 dst
->nfctinfo
= src
->nfctinfo
;
2357 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2358 dst
->nfct_reasm
= src
->nfct_reasm
;
2359 nf_conntrack_get_reasm(src
->nfct_reasm
);
2361 #ifdef CONFIG_BRIDGE_NETFILTER
2362 dst
->nf_bridge
= src
->nf_bridge
;
2363 nf_bridge_get(src
->nf_bridge
);
2367 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
2369 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2370 nf_conntrack_put(dst
->nfct
);
2372 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2373 nf_conntrack_put_reasm(dst
->nfct_reasm
);
2375 #ifdef CONFIG_BRIDGE_NETFILTER
2376 nf_bridge_put(dst
->nf_bridge
);
2378 __nf_copy(dst
, src
);
2381 #ifdef CONFIG_NETWORK_SECMARK
2382 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2384 to
->secmark
= from
->secmark
;
2387 static inline void skb_init_secmark(struct sk_buff
*skb
)
2392 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2395 static inline void skb_init_secmark(struct sk_buff
*skb
)
2399 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
2401 skb
->queue_mapping
= queue_mapping
;
2404 static inline u16
skb_get_queue_mapping(const struct sk_buff
*skb
)
2406 return skb
->queue_mapping
;
2409 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
2411 to
->queue_mapping
= from
->queue_mapping
;
2414 static inline void skb_record_rx_queue(struct sk_buff
*skb
, u16 rx_queue
)
2416 skb
->queue_mapping
= rx_queue
+ 1;
2419 static inline u16
skb_get_rx_queue(const struct sk_buff
*skb
)
2421 return skb
->queue_mapping
- 1;
2424 static inline bool skb_rx_queue_recorded(const struct sk_buff
*skb
)
2426 return skb
->queue_mapping
!= 0;
2429 extern u16
__skb_tx_hash(const struct net_device
*dev
,
2430 const struct sk_buff
*skb
,
2431 unsigned int num_tx_queues
);
2434 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2439 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2445 static inline int skb_is_gso(const struct sk_buff
*skb
)
2447 return skb_shinfo(skb
)->gso_size
;
2450 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
2452 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
2455 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
2457 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
2459 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2460 * wanted then gso_type will be set. */
2461 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2463 if (skb_is_nonlinear(skb
) && shinfo
->gso_size
!= 0 &&
2464 unlikely(shinfo
->gso_type
== 0)) {
2465 __skb_warn_lro_forwarding(skb
);
2471 static inline void skb_forward_csum(struct sk_buff
*skb
)
2473 /* Unfortunately we don't support this one. Any brave souls? */
2474 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2475 skb
->ip_summed
= CHECKSUM_NONE
;
2479 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2480 * @skb: skb to check
2482 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2483 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2484 * use this helper, to document places where we make this assertion.
2486 static inline void skb_checksum_none_assert(const struct sk_buff
*skb
)
2489 BUG_ON(skb
->ip_summed
!= CHECKSUM_NONE
);
2493 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
2495 static inline bool skb_is_recycleable(const struct sk_buff
*skb
, int skb_size
)
2497 if (irqs_disabled())
2500 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
)
2503 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
2506 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
2507 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
2510 if (skb_shared(skb
) || skb_cloned(skb
))
2515 #endif /* __KERNEL__ */
2516 #endif /* _LINUX_SKBUFF_H */