ext4: update extent status tree after an extent is zeroed out
[linux-2.6.git] / fs / ext4 / inode.c
blob4f1d54a88d8cf5d38239500e1f591a44e31f1124
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
74 return csum;
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
96 return provided == calculated;
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
102 __u32 csum;
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
120 trace_ext4_begin_ordered_truncate(inode, new_size);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
142 * Test whether an inode is a fast symlink.
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 (inode->i_sb->s_blocksize >> 9) : 0;
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 int nblocks)
160 int ret;
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 jbd_debug(2, "restarting handle %p\n", handle);
170 up_write(&EXT4_I(inode)->i_data_sem);
171 ret = ext4_journal_restart(handle, nblocks);
172 down_write(&EXT4_I(inode)->i_data_sem);
173 ext4_discard_preallocations(inode);
175 return ret;
179 * Called at the last iput() if i_nlink is zero.
181 void ext4_evict_inode(struct inode *inode)
183 handle_t *handle;
184 int err;
186 trace_ext4_evict_inode(inode);
188 ext4_ioend_wait(inode);
190 if (inode->i_nlink) {
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
206 * Note that directories do not have this problem because they
207 * don't use page cache.
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_log_start_commit(journal, commit_tid);
215 jbd2_log_wait_commit(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
218 truncate_inode_pages(&inode->i_data, 0);
219 goto no_delete;
222 if (!is_bad_inode(inode))
223 dquot_initialize(inode);
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
230 goto no_delete;
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
236 sb_start_intwrite(inode->i_sb);
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
239 if (IS_ERR(handle)) {
240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
246 ext4_orphan_del(NULL, inode);
247 sb_end_intwrite(inode->i_sb);
248 goto no_delete;
251 if (IS_SYNC(inode))
252 ext4_handle_sync(handle);
253 inode->i_size = 0;
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
260 if (inode->i_blocks)
261 ext4_truncate(inode);
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
269 if (!ext4_handle_has_enough_credits(handle, 3)) {
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
274 ext4_warning(inode->i_sb,
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
278 ext4_orphan_del(NULL, inode);
279 sb_end_intwrite(inode->i_sb);
280 goto no_delete;
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
305 else
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 sb_end_intwrite(inode->i_sb);
309 return;
310 no_delete:
311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 return &EXT4_I(inode)->i_reserved_quota;
319 #endif
322 * Calculate the number of metadata blocks need to reserve
323 * to allocate a block located at @lblock
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328 return ext4_ext_calc_metadata_amount(inode, lblock);
330 return ext4_ind_calc_metadata_amount(inode, lblock);
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
337 void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 struct ext4_inode_info *ei = EXT4_I(inode);
343 spin_lock(&ei->i_block_reservation_lock);
344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 if (unlikely(used > ei->i_reserved_data_blocks)) {
346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 "with only %d reserved metadata blocks "
357 "(releasing %d blocks with reserved %d data blocks)",
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks, used,
360 ei->i_reserved_data_blocks);
361 WARN_ON(1);
362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 /* Update per-inode reservations */
366 ei->i_reserved_data_blocks -= used;
367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369 used + ei->i_allocated_meta_blocks);
370 ei->i_allocated_meta_blocks = 0;
372 if (ei->i_reserved_data_blocks == 0) {
374 * We can release all of the reserved metadata blocks
375 * only when we have written all of the delayed
376 * allocation blocks.
378 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379 ei->i_reserved_meta_blocks);
380 ei->i_reserved_meta_blocks = 0;
381 ei->i_da_metadata_calc_len = 0;
383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 /* Update quota subsystem for data blocks */
386 if (quota_claim)
387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388 else {
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
392 * not re-claim the quota for fallocated blocks.
394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
404 ext4_discard_preallocations(inode);
407 static int __check_block_validity(struct inode *inode, const char *func,
408 unsigned int line,
409 struct ext4_map_blocks *map)
411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 map->m_len)) {
413 ext4_error_inode(inode, func, line, map->m_pblk,
414 "lblock %lu mapped to illegal pblock "
415 "(length %d)", (unsigned long) map->m_lblk,
416 map->m_len);
417 return -EIO;
419 return 0;
422 #define check_block_validity(inode, map) \
423 __check_block_validity((inode), __func__, __LINE__, (map))
426 * Return the number of contiguous dirty pages in a given inode
427 * starting at page frame idx.
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 unsigned int max_pages)
432 struct address_space *mapping = inode->i_mapping;
433 pgoff_t index;
434 struct pagevec pvec;
435 pgoff_t num = 0;
436 int i, nr_pages, done = 0;
438 if (max_pages == 0)
439 return 0;
440 pagevec_init(&pvec, 0);
441 while (!done) {
442 index = idx;
443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 PAGECACHE_TAG_DIRTY,
445 (pgoff_t)PAGEVEC_SIZE);
446 if (nr_pages == 0)
447 break;
448 for (i = 0; i < nr_pages; i++) {
449 struct page *page = pvec.pages[i];
450 struct buffer_head *bh, *head;
452 lock_page(page);
453 if (unlikely(page->mapping != mapping) ||
454 !PageDirty(page) ||
455 PageWriteback(page) ||
456 page->index != idx) {
457 done = 1;
458 unlock_page(page);
459 break;
461 if (page_has_buffers(page)) {
462 bh = head = page_buffers(page);
463 do {
464 if (!buffer_delay(bh) &&
465 !buffer_unwritten(bh))
466 done = 1;
467 bh = bh->b_this_page;
468 } while (!done && (bh != head));
470 unlock_page(page);
471 if (done)
472 break;
473 idx++;
474 num++;
475 if (num >= max_pages) {
476 done = 1;
477 break;
480 pagevec_release(&pvec);
482 return num;
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487 struct inode *inode,
488 struct ext4_map_blocks *es_map,
489 struct ext4_map_blocks *map,
490 int flags)
492 int retval;
494 map->m_flags = 0;
496 * There is a race window that the result is not the same.
497 * e.g. xfstests #223 when dioread_nolock enables. The reason
498 * is that we lookup a block mapping in extent status tree with
499 * out taking i_data_sem. So at the time the unwritten extent
500 * could be converted.
502 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503 down_read((&EXT4_I(inode)->i_data_sem));
504 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506 EXT4_GET_BLOCKS_KEEP_SIZE);
507 } else {
508 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 up_read((&EXT4_I(inode)->i_data_sem));
514 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515 * because it shouldn't be marked in es_map->m_flags.
517 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520 * We don't check m_len because extent will be collpased in status
521 * tree. So the m_len might not equal.
523 if (es_map->m_lblk != map->m_lblk ||
524 es_map->m_flags != map->m_flags ||
525 es_map->m_pblk != map->m_pblk) {
526 printk("ES cache assertation failed for inode: %lu "
527 "es_cached ex [%d/%d/%llu/%x] != "
528 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529 inode->i_ino, es_map->m_lblk, es_map->m_len,
530 es_map->m_pblk, es_map->m_flags, map->m_lblk,
531 map->m_len, map->m_pblk, map->m_flags,
532 retval, flags);
535 #endif /* ES_AGGRESSIVE_TEST */
538 * The ext4_map_blocks() function tries to look up the requested blocks,
539 * and returns if the blocks are already mapped.
541 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542 * and store the allocated blocks in the result buffer head and mark it
543 * mapped.
545 * If file type is extents based, it will call ext4_ext_map_blocks(),
546 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547 * based files
549 * On success, it returns the number of blocks being mapped or allocate.
550 * if create==0 and the blocks are pre-allocated and uninitialized block,
551 * the result buffer head is unmapped. If the create ==1, it will make sure
552 * the buffer head is mapped.
554 * It returns 0 if plain look up failed (blocks have not been allocated), in
555 * that case, buffer head is unmapped
557 * It returns the error in case of allocation failure.
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560 struct ext4_map_blocks *map, int flags)
562 struct extent_status es;
563 int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565 struct ext4_map_blocks orig_map;
567 memcpy(&orig_map, map, sizeof(*map));
568 #endif
570 map->m_flags = 0;
571 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572 "logical block %lu\n", inode->i_ino, flags, map->m_len,
573 (unsigned long) map->m_lblk);
575 /* Lookup extent status tree firstly */
576 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578 map->m_pblk = ext4_es_pblock(&es) +
579 map->m_lblk - es.es_lblk;
580 map->m_flags |= ext4_es_is_written(&es) ?
581 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582 retval = es.es_len - (map->m_lblk - es.es_lblk);
583 if (retval > map->m_len)
584 retval = map->m_len;
585 map->m_len = retval;
586 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587 retval = 0;
588 } else {
589 BUG_ON(1);
591 #ifdef ES_AGGRESSIVE_TEST
592 ext4_map_blocks_es_recheck(handle, inode, map,
593 &orig_map, flags);
594 #endif
595 goto found;
599 * Try to see if we can get the block without requesting a new
600 * file system block.
602 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603 down_read((&EXT4_I(inode)->i_data_sem));
604 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606 EXT4_GET_BLOCKS_KEEP_SIZE);
607 } else {
608 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
611 if (retval > 0) {
612 int ret;
613 unsigned long long status;
615 #ifdef ES_AGGRESSIVE_TEST
616 if (retval != map->m_len) {
617 printk("ES len assertation failed for inode: %lu "
618 "retval %d != map->m_len %d "
619 "in %s (lookup)\n", inode->i_ino, retval,
620 map->m_len, __func__);
622 #endif
624 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627 ext4_find_delalloc_range(inode, map->m_lblk,
628 map->m_lblk + map->m_len - 1))
629 status |= EXTENT_STATUS_DELAYED;
630 ret = ext4_es_insert_extent(inode, map->m_lblk,
631 map->m_len, map->m_pblk, status);
632 if (ret < 0)
633 retval = ret;
635 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636 up_read((&EXT4_I(inode)->i_data_sem));
638 found:
639 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640 int ret = check_block_validity(inode, map);
641 if (ret != 0)
642 return ret;
645 /* If it is only a block(s) look up */
646 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647 return retval;
650 * Returns if the blocks have already allocated
652 * Note that if blocks have been preallocated
653 * ext4_ext_get_block() returns the create = 0
654 * with buffer head unmapped.
656 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657 return retval;
660 * Here we clear m_flags because after allocating an new extent,
661 * it will be set again.
663 map->m_flags &= ~EXT4_MAP_FLAGS;
666 * New blocks allocate and/or writing to uninitialized extent
667 * will possibly result in updating i_data, so we take
668 * the write lock of i_data_sem, and call get_blocks()
669 * with create == 1 flag.
671 down_write((&EXT4_I(inode)->i_data_sem));
674 * if the caller is from delayed allocation writeout path
675 * we have already reserved fs blocks for allocation
676 * let the underlying get_block() function know to
677 * avoid double accounting
679 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 * We need to check for EXT4 here because migrate
683 * could have changed the inode type in between
685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687 } else {
688 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 * We allocated new blocks which will result in
693 * i_data's format changing. Force the migrate
694 * to fail by clearing migrate flags
696 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
700 * Update reserved blocks/metadata blocks after successful
701 * block allocation which had been deferred till now. We don't
702 * support fallocate for non extent files. So we can update
703 * reserve space here.
705 if ((retval > 0) &&
706 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707 ext4_da_update_reserve_space(inode, retval, 1);
709 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712 if (retval > 0) {
713 int ret;
714 unsigned long long status;
716 #ifdef ES_AGGRESSIVE_TEST
717 if (retval != map->m_len) {
718 printk("ES len assertation failed for inode: %lu "
719 "retval %d != map->m_len %d "
720 "in %s (allocation)\n", inode->i_ino, retval,
721 map->m_len, __func__);
723 #endif
726 * If the extent has been zeroed out, we don't need to update
727 * extent status tree.
729 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731 if (ext4_es_is_written(&es))
732 goto has_zeroout;
734 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737 ext4_find_delalloc_range(inode, map->m_lblk,
738 map->m_lblk + map->m_len - 1))
739 status |= EXTENT_STATUS_DELAYED;
740 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741 map->m_pblk, status);
742 if (ret < 0)
743 retval = ret;
746 has_zeroout:
747 up_write((&EXT4_I(inode)->i_data_sem));
748 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749 int ret = check_block_validity(inode, map);
750 if (ret != 0)
751 return ret;
753 return retval;
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760 struct buffer_head *bh, int flags)
762 handle_t *handle = ext4_journal_current_handle();
763 struct ext4_map_blocks map;
764 int ret = 0, started = 0;
765 int dio_credits;
767 if (ext4_has_inline_data(inode))
768 return -ERANGE;
770 map.m_lblk = iblock;
771 map.m_len = bh->b_size >> inode->i_blkbits;
773 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774 /* Direct IO write... */
775 if (map.m_len > DIO_MAX_BLOCKS)
776 map.m_len = DIO_MAX_BLOCKS;
777 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779 dio_credits);
780 if (IS_ERR(handle)) {
781 ret = PTR_ERR(handle);
782 return ret;
784 started = 1;
787 ret = ext4_map_blocks(handle, inode, &map, flags);
788 if (ret > 0) {
789 map_bh(bh, inode->i_sb, map.m_pblk);
790 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792 ret = 0;
794 if (started)
795 ext4_journal_stop(handle);
796 return ret;
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800 struct buffer_head *bh, int create)
802 return _ext4_get_block(inode, iblock, bh,
803 create ? EXT4_GET_BLOCKS_CREATE : 0);
807 * `handle' can be NULL if create is zero
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810 ext4_lblk_t block, int create, int *errp)
812 struct ext4_map_blocks map;
813 struct buffer_head *bh;
814 int fatal = 0, err;
816 J_ASSERT(handle != NULL || create == 0);
818 map.m_lblk = block;
819 map.m_len = 1;
820 err = ext4_map_blocks(handle, inode, &map,
821 create ? EXT4_GET_BLOCKS_CREATE : 0);
823 /* ensure we send some value back into *errp */
824 *errp = 0;
826 if (create && err == 0)
827 err = -ENOSPC; /* should never happen */
828 if (err < 0)
829 *errp = err;
830 if (err <= 0)
831 return NULL;
833 bh = sb_getblk(inode->i_sb, map.m_pblk);
834 if (unlikely(!bh)) {
835 *errp = -ENOMEM;
836 return NULL;
838 if (map.m_flags & EXT4_MAP_NEW) {
839 J_ASSERT(create != 0);
840 J_ASSERT(handle != NULL);
843 * Now that we do not always journal data, we should
844 * keep in mind whether this should always journal the
845 * new buffer as metadata. For now, regular file
846 * writes use ext4_get_block instead, so it's not a
847 * problem.
849 lock_buffer(bh);
850 BUFFER_TRACE(bh, "call get_create_access");
851 fatal = ext4_journal_get_create_access(handle, bh);
852 if (!fatal && !buffer_uptodate(bh)) {
853 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854 set_buffer_uptodate(bh);
856 unlock_buffer(bh);
857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858 err = ext4_handle_dirty_metadata(handle, inode, bh);
859 if (!fatal)
860 fatal = err;
861 } else {
862 BUFFER_TRACE(bh, "not a new buffer");
864 if (fatal) {
865 *errp = fatal;
866 brelse(bh);
867 bh = NULL;
869 return bh;
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873 ext4_lblk_t block, int create, int *err)
875 struct buffer_head *bh;
877 bh = ext4_getblk(handle, inode, block, create, err);
878 if (!bh)
879 return bh;
880 if (buffer_uptodate(bh))
881 return bh;
882 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883 wait_on_buffer(bh);
884 if (buffer_uptodate(bh))
885 return bh;
886 put_bh(bh);
887 *err = -EIO;
888 return NULL;
891 int ext4_walk_page_buffers(handle_t *handle,
892 struct buffer_head *head,
893 unsigned from,
894 unsigned to,
895 int *partial,
896 int (*fn)(handle_t *handle,
897 struct buffer_head *bh))
899 struct buffer_head *bh;
900 unsigned block_start, block_end;
901 unsigned blocksize = head->b_size;
902 int err, ret = 0;
903 struct buffer_head *next;
905 for (bh = head, block_start = 0;
906 ret == 0 && (bh != head || !block_start);
907 block_start = block_end, bh = next) {
908 next = bh->b_this_page;
909 block_end = block_start + blocksize;
910 if (block_end <= from || block_start >= to) {
911 if (partial && !buffer_uptodate(bh))
912 *partial = 1;
913 continue;
915 err = (*fn)(handle, bh);
916 if (!ret)
917 ret = err;
919 return ret;
923 * To preserve ordering, it is essential that the hole instantiation and
924 * the data write be encapsulated in a single transaction. We cannot
925 * close off a transaction and start a new one between the ext4_get_block()
926 * and the commit_write(). So doing the jbd2_journal_start at the start of
927 * prepare_write() is the right place.
929 * Also, this function can nest inside ext4_writepage(). In that case, we
930 * *know* that ext4_writepage() has generated enough buffer credits to do the
931 * whole page. So we won't block on the journal in that case, which is good,
932 * because the caller may be PF_MEMALLOC.
934 * By accident, ext4 can be reentered when a transaction is open via
935 * quota file writes. If we were to commit the transaction while thus
936 * reentered, there can be a deadlock - we would be holding a quota
937 * lock, and the commit would never complete if another thread had a
938 * transaction open and was blocking on the quota lock - a ranking
939 * violation.
941 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942 * will _not_ run commit under these circumstances because handle->h_ref
943 * is elevated. We'll still have enough credits for the tiny quotafile
944 * write.
946 int do_journal_get_write_access(handle_t *handle,
947 struct buffer_head *bh)
949 int dirty = buffer_dirty(bh);
950 int ret;
952 if (!buffer_mapped(bh) || buffer_freed(bh))
953 return 0;
955 * __block_write_begin() could have dirtied some buffers. Clean
956 * the dirty bit as jbd2_journal_get_write_access() could complain
957 * otherwise about fs integrity issues. Setting of the dirty bit
958 * by __block_write_begin() isn't a real problem here as we clear
959 * the bit before releasing a page lock and thus writeback cannot
960 * ever write the buffer.
962 if (dirty)
963 clear_buffer_dirty(bh);
964 ret = ext4_journal_get_write_access(handle, bh);
965 if (!ret && dirty)
966 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967 return ret;
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971 struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 loff_t pos, unsigned len, unsigned flags,
974 struct page **pagep, void **fsdata)
976 struct inode *inode = mapping->host;
977 int ret, needed_blocks;
978 handle_t *handle;
979 int retries = 0;
980 struct page *page;
981 pgoff_t index;
982 unsigned from, to;
984 trace_ext4_write_begin(inode, pos, len, flags);
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990 index = pos >> PAGE_CACHE_SHIFT;
991 from = pos & (PAGE_CACHE_SIZE - 1);
992 to = from + len;
994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 flags, pagep);
997 if (ret < 0)
998 return ret;
999 if (ret == 1)
1000 return 0;
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1010 retry_grab:
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1012 if (!page)
1013 return -ENOMEM;
1014 unlock_page(page);
1016 retry_journal:
1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018 if (IS_ERR(handle)) {
1019 page_cache_release(page);
1020 return PTR_ERR(handle);
1023 lock_page(page);
1024 if (page->mapping != mapping) {
1025 /* The page got truncated from under us */
1026 unlock_page(page);
1027 page_cache_release(page);
1028 ext4_journal_stop(handle);
1029 goto retry_grab;
1031 wait_on_page_writeback(page);
1033 if (ext4_should_dioread_nolock(inode))
1034 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035 else
1036 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038 if (!ret && ext4_should_journal_data(inode)) {
1039 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040 from, to, NULL,
1041 do_journal_get_write_access);
1044 if (ret) {
1045 unlock_page(page);
1047 * __block_write_begin may have instantiated a few blocks
1048 * outside i_size. Trim these off again. Don't need
1049 * i_size_read because we hold i_mutex.
1051 * Add inode to orphan list in case we crash before
1052 * truncate finishes
1054 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055 ext4_orphan_add(handle, inode);
1057 ext4_journal_stop(handle);
1058 if (pos + len > inode->i_size) {
1059 ext4_truncate_failed_write(inode);
1061 * If truncate failed early the inode might
1062 * still be on the orphan list; we need to
1063 * make sure the inode is removed from the
1064 * orphan list in that case.
1066 if (inode->i_nlink)
1067 ext4_orphan_del(NULL, inode);
1070 if (ret == -ENOSPC &&
1071 ext4_should_retry_alloc(inode->i_sb, &retries))
1072 goto retry_journal;
1073 page_cache_release(page);
1074 return ret;
1076 *pagep = page;
1077 return ret;
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 if (!buffer_mapped(bh) || buffer_freed(bh))
1084 return 0;
1085 set_buffer_uptodate(bh);
1086 return ext4_handle_dirty_metadata(handle, NULL, bh);
1089 static int ext4_generic_write_end(struct file *file,
1090 struct address_space *mapping,
1091 loff_t pos, unsigned len, unsigned copied,
1092 struct page *page, void *fsdata)
1094 int i_size_changed = 0;
1095 struct inode *inode = mapping->host;
1096 handle_t *handle = ext4_journal_current_handle();
1098 if (ext4_has_inline_data(inode))
1099 copied = ext4_write_inline_data_end(inode, pos, len,
1100 copied, page);
1101 else
1102 copied = block_write_end(file, mapping, pos,
1103 len, copied, page, fsdata);
1106 * No need to use i_size_read() here, the i_size
1107 * cannot change under us because we hold i_mutex.
1109 * But it's important to update i_size while still holding page lock:
1110 * page writeout could otherwise come in and zero beyond i_size.
1112 if (pos + copied > inode->i_size) {
1113 i_size_write(inode, pos + copied);
1114 i_size_changed = 1;
1117 if (pos + copied > EXT4_I(inode)->i_disksize) {
1118 /* We need to mark inode dirty even if
1119 * new_i_size is less that inode->i_size
1120 * bu greater than i_disksize.(hint delalloc)
1122 ext4_update_i_disksize(inode, (pos + copied));
1123 i_size_changed = 1;
1125 unlock_page(page);
1126 page_cache_release(page);
1129 * Don't mark the inode dirty under page lock. First, it unnecessarily
1130 * makes the holding time of page lock longer. Second, it forces lock
1131 * ordering of page lock and transaction start for journaling
1132 * filesystems.
1134 if (i_size_changed)
1135 ext4_mark_inode_dirty(handle, inode);
1137 return copied;
1141 * We need to pick up the new inode size which generic_commit_write gave us
1142 * `file' can be NULL - eg, when called from page_symlink().
1144 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1145 * buffers are managed internally.
1147 static int ext4_ordered_write_end(struct file *file,
1148 struct address_space *mapping,
1149 loff_t pos, unsigned len, unsigned copied,
1150 struct page *page, void *fsdata)
1152 handle_t *handle = ext4_journal_current_handle();
1153 struct inode *inode = mapping->host;
1154 int ret = 0, ret2;
1156 trace_ext4_ordered_write_end(inode, pos, len, copied);
1157 ret = ext4_jbd2_file_inode(handle, inode);
1159 if (ret == 0) {
1160 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1161 page, fsdata);
1162 copied = ret2;
1163 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 /* if we have allocated more blocks and copied
1165 * less. We will have blocks allocated outside
1166 * inode->i_size. So truncate them
1168 ext4_orphan_add(handle, inode);
1169 if (ret2 < 0)
1170 ret = ret2;
1171 } else {
1172 unlock_page(page);
1173 page_cache_release(page);
1176 ret2 = ext4_journal_stop(handle);
1177 if (!ret)
1178 ret = ret2;
1180 if (pos + len > inode->i_size) {
1181 ext4_truncate_failed_write(inode);
1183 * If truncate failed early the inode might still be
1184 * on the orphan list; we need to make sure the inode
1185 * is removed from the orphan list in that case.
1187 if (inode->i_nlink)
1188 ext4_orphan_del(NULL, inode);
1192 return ret ? ret : copied;
1195 static int ext4_writeback_write_end(struct file *file,
1196 struct address_space *mapping,
1197 loff_t pos, unsigned len, unsigned copied,
1198 struct page *page, void *fsdata)
1200 handle_t *handle = ext4_journal_current_handle();
1201 struct inode *inode = mapping->host;
1202 int ret = 0, ret2;
1204 trace_ext4_writeback_write_end(inode, pos, len, copied);
1205 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1206 page, fsdata);
1207 copied = ret2;
1208 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1209 /* if we have allocated more blocks and copied
1210 * less. We will have blocks allocated outside
1211 * inode->i_size. So truncate them
1213 ext4_orphan_add(handle, inode);
1215 if (ret2 < 0)
1216 ret = ret2;
1218 ret2 = ext4_journal_stop(handle);
1219 if (!ret)
1220 ret = ret2;
1222 if (pos + len > inode->i_size) {
1223 ext4_truncate_failed_write(inode);
1225 * If truncate failed early the inode might still be
1226 * on the orphan list; we need to make sure the inode
1227 * is removed from the orphan list in that case.
1229 if (inode->i_nlink)
1230 ext4_orphan_del(NULL, inode);
1233 return ret ? ret : copied;
1236 static int ext4_journalled_write_end(struct file *file,
1237 struct address_space *mapping,
1238 loff_t pos, unsigned len, unsigned copied,
1239 struct page *page, void *fsdata)
1241 handle_t *handle = ext4_journal_current_handle();
1242 struct inode *inode = mapping->host;
1243 int ret = 0, ret2;
1244 int partial = 0;
1245 unsigned from, to;
1246 loff_t new_i_size;
1248 trace_ext4_journalled_write_end(inode, pos, len, copied);
1249 from = pos & (PAGE_CACHE_SIZE - 1);
1250 to = from + len;
1252 BUG_ON(!ext4_handle_valid(handle));
1254 if (ext4_has_inline_data(inode))
1255 copied = ext4_write_inline_data_end(inode, pos, len,
1256 copied, page);
1257 else {
1258 if (copied < len) {
1259 if (!PageUptodate(page))
1260 copied = 0;
1261 page_zero_new_buffers(page, from+copied, to);
1264 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1265 to, &partial, write_end_fn);
1266 if (!partial)
1267 SetPageUptodate(page);
1269 new_i_size = pos + copied;
1270 if (new_i_size > inode->i_size)
1271 i_size_write(inode, pos+copied);
1272 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1273 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1274 if (new_i_size > EXT4_I(inode)->i_disksize) {
1275 ext4_update_i_disksize(inode, new_i_size);
1276 ret2 = ext4_mark_inode_dirty(handle, inode);
1277 if (!ret)
1278 ret = ret2;
1281 unlock_page(page);
1282 page_cache_release(page);
1283 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1284 /* if we have allocated more blocks and copied
1285 * less. We will have blocks allocated outside
1286 * inode->i_size. So truncate them
1288 ext4_orphan_add(handle, inode);
1290 ret2 = ext4_journal_stop(handle);
1291 if (!ret)
1292 ret = ret2;
1293 if (pos + len > inode->i_size) {
1294 ext4_truncate_failed_write(inode);
1296 * If truncate failed early the inode might still be
1297 * on the orphan list; we need to make sure the inode
1298 * is removed from the orphan list in that case.
1300 if (inode->i_nlink)
1301 ext4_orphan_del(NULL, inode);
1304 return ret ? ret : copied;
1308 * Reserve a single cluster located at lblock
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312 int retries = 0;
1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314 struct ext4_inode_info *ei = EXT4_I(inode);
1315 unsigned int md_needed;
1316 int ret;
1317 ext4_lblk_t save_last_lblock;
1318 int save_len;
1321 * We will charge metadata quota at writeout time; this saves
1322 * us from metadata over-estimation, though we may go over by
1323 * a small amount in the end. Here we just reserve for data.
1325 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326 if (ret)
1327 return ret;
1330 * recalculate the amount of metadata blocks to reserve
1331 * in order to allocate nrblocks
1332 * worse case is one extent per block
1334 repeat:
1335 spin_lock(&ei->i_block_reservation_lock);
1337 * ext4_calc_metadata_amount() has side effects, which we have
1338 * to be prepared undo if we fail to claim space.
1340 save_len = ei->i_da_metadata_calc_len;
1341 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342 md_needed = EXT4_NUM_B2C(sbi,
1343 ext4_calc_metadata_amount(inode, lblock));
1344 trace_ext4_da_reserve_space(inode, md_needed);
1347 * We do still charge estimated metadata to the sb though;
1348 * we cannot afford to run out of free blocks.
1350 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351 ei->i_da_metadata_calc_len = save_len;
1352 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353 spin_unlock(&ei->i_block_reservation_lock);
1354 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1355 yield();
1356 goto repeat;
1358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359 return -ENOSPC;
1361 ei->i_reserved_data_blocks++;
1362 ei->i_reserved_meta_blocks += md_needed;
1363 spin_unlock(&ei->i_block_reservation_lock);
1365 return 0; /* success */
1368 static void ext4_da_release_space(struct inode *inode, int to_free)
1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371 struct ext4_inode_info *ei = EXT4_I(inode);
1373 if (!to_free)
1374 return; /* Nothing to release, exit */
1376 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1378 trace_ext4_da_release_space(inode, to_free);
1379 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1381 * if there aren't enough reserved blocks, then the
1382 * counter is messed up somewhere. Since this
1383 * function is called from invalidate page, it's
1384 * harmless to return without any action.
1386 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387 "ino %lu, to_free %d with only %d reserved "
1388 "data blocks", inode->i_ino, to_free,
1389 ei->i_reserved_data_blocks);
1390 WARN_ON(1);
1391 to_free = ei->i_reserved_data_blocks;
1393 ei->i_reserved_data_blocks -= to_free;
1395 if (ei->i_reserved_data_blocks == 0) {
1397 * We can release all of the reserved metadata blocks
1398 * only when we have written all of the delayed
1399 * allocation blocks.
1400 * Note that in case of bigalloc, i_reserved_meta_blocks,
1401 * i_reserved_data_blocks, etc. refer to number of clusters.
1403 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404 ei->i_reserved_meta_blocks);
1405 ei->i_reserved_meta_blocks = 0;
1406 ei->i_da_metadata_calc_len = 0;
1409 /* update fs dirty data blocks counter */
1410 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1412 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1414 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1417 static void ext4_da_page_release_reservation(struct page *page,
1418 unsigned long offset)
1420 int to_release = 0;
1421 struct buffer_head *head, *bh;
1422 unsigned int curr_off = 0;
1423 struct inode *inode = page->mapping->host;
1424 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425 int num_clusters;
1426 ext4_fsblk_t lblk;
1428 head = page_buffers(page);
1429 bh = head;
1430 do {
1431 unsigned int next_off = curr_off + bh->b_size;
1433 if ((offset <= curr_off) && (buffer_delay(bh))) {
1434 to_release++;
1435 clear_buffer_delay(bh);
1437 curr_off = next_off;
1438 } while ((bh = bh->b_this_page) != head);
1440 if (to_release) {
1441 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442 ext4_es_remove_extent(inode, lblk, to_release);
1445 /* If we have released all the blocks belonging to a cluster, then we
1446 * need to release the reserved space for that cluster. */
1447 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448 while (num_clusters > 0) {
1449 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450 ((num_clusters - 1) << sbi->s_cluster_bits);
1451 if (sbi->s_cluster_ratio == 1 ||
1452 !ext4_find_delalloc_cluster(inode, lblk))
1453 ext4_da_release_space(inode, 1);
1455 num_clusters--;
1460 * Delayed allocation stuff
1464 * mpage_da_submit_io - walks through extent of pages and try to write
1465 * them with writepage() call back
1467 * @mpd->inode: inode
1468 * @mpd->first_page: first page of the extent
1469 * @mpd->next_page: page after the last page of the extent
1471 * By the time mpage_da_submit_io() is called we expect all blocks
1472 * to be allocated. this may be wrong if allocation failed.
1474 * As pages are already locked by write_cache_pages(), we can't use it
1476 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477 struct ext4_map_blocks *map)
1479 struct pagevec pvec;
1480 unsigned long index, end;
1481 int ret = 0, err, nr_pages, i;
1482 struct inode *inode = mpd->inode;
1483 struct address_space *mapping = inode->i_mapping;
1484 loff_t size = i_size_read(inode);
1485 unsigned int len, block_start;
1486 struct buffer_head *bh, *page_bufs = NULL;
1487 sector_t pblock = 0, cur_logical = 0;
1488 struct ext4_io_submit io_submit;
1490 BUG_ON(mpd->next_page <= mpd->first_page);
1491 memset(&io_submit, 0, sizeof(io_submit));
1493 * We need to start from the first_page to the next_page - 1
1494 * to make sure we also write the mapped dirty buffer_heads.
1495 * If we look at mpd->b_blocknr we would only be looking
1496 * at the currently mapped buffer_heads.
1498 index = mpd->first_page;
1499 end = mpd->next_page - 1;
1501 pagevec_init(&pvec, 0);
1502 while (index <= end) {
1503 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1504 if (nr_pages == 0)
1505 break;
1506 for (i = 0; i < nr_pages; i++) {
1507 int skip_page = 0;
1508 struct page *page = pvec.pages[i];
1510 index = page->index;
1511 if (index > end)
1512 break;
1514 if (index == size >> PAGE_CACHE_SHIFT)
1515 len = size & ~PAGE_CACHE_MASK;
1516 else
1517 len = PAGE_CACHE_SIZE;
1518 if (map) {
1519 cur_logical = index << (PAGE_CACHE_SHIFT -
1520 inode->i_blkbits);
1521 pblock = map->m_pblk + (cur_logical -
1522 map->m_lblk);
1524 index++;
1526 BUG_ON(!PageLocked(page));
1527 BUG_ON(PageWriteback(page));
1529 bh = page_bufs = page_buffers(page);
1530 block_start = 0;
1531 do {
1532 if (map && (cur_logical >= map->m_lblk) &&
1533 (cur_logical <= (map->m_lblk +
1534 (map->m_len - 1)))) {
1535 if (buffer_delay(bh)) {
1536 clear_buffer_delay(bh);
1537 bh->b_blocknr = pblock;
1539 if (buffer_unwritten(bh) ||
1540 buffer_mapped(bh))
1541 BUG_ON(bh->b_blocknr != pblock);
1542 if (map->m_flags & EXT4_MAP_UNINIT)
1543 set_buffer_uninit(bh);
1544 clear_buffer_unwritten(bh);
1548 * skip page if block allocation undone and
1549 * block is dirty
1551 if (ext4_bh_delay_or_unwritten(NULL, bh))
1552 skip_page = 1;
1553 bh = bh->b_this_page;
1554 block_start += bh->b_size;
1555 cur_logical++;
1556 pblock++;
1557 } while (bh != page_bufs);
1559 if (skip_page) {
1560 unlock_page(page);
1561 continue;
1564 clear_page_dirty_for_io(page);
1565 err = ext4_bio_write_page(&io_submit, page, len,
1566 mpd->wbc);
1567 if (!err)
1568 mpd->pages_written++;
1570 * In error case, we have to continue because
1571 * remaining pages are still locked
1573 if (ret == 0)
1574 ret = err;
1576 pagevec_release(&pvec);
1578 ext4_io_submit(&io_submit);
1579 return ret;
1582 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1584 int nr_pages, i;
1585 pgoff_t index, end;
1586 struct pagevec pvec;
1587 struct inode *inode = mpd->inode;
1588 struct address_space *mapping = inode->i_mapping;
1589 ext4_lblk_t start, last;
1591 index = mpd->first_page;
1592 end = mpd->next_page - 1;
1594 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1595 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596 ext4_es_remove_extent(inode, start, last - start + 1);
1598 pagevec_init(&pvec, 0);
1599 while (index <= end) {
1600 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1601 if (nr_pages == 0)
1602 break;
1603 for (i = 0; i < nr_pages; i++) {
1604 struct page *page = pvec.pages[i];
1605 if (page->index > end)
1606 break;
1607 BUG_ON(!PageLocked(page));
1608 BUG_ON(PageWriteback(page));
1609 block_invalidatepage(page, 0);
1610 ClearPageUptodate(page);
1611 unlock_page(page);
1613 index = pvec.pages[nr_pages - 1]->index + 1;
1614 pagevec_release(&pvec);
1616 return;
1619 static void ext4_print_free_blocks(struct inode *inode)
1621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622 struct super_block *sb = inode->i_sb;
1624 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1625 EXT4_C2B(EXT4_SB(inode->i_sb),
1626 ext4_count_free_clusters(inode->i_sb)));
1627 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1628 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1629 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1630 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1631 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1632 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1633 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1634 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1635 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1636 EXT4_I(inode)->i_reserved_data_blocks);
1637 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1638 EXT4_I(inode)->i_reserved_meta_blocks);
1639 return;
1643 * mpage_da_map_and_submit - go through given space, map them
1644 * if necessary, and then submit them for I/O
1646 * @mpd - bh describing space
1648 * The function skips space we know is already mapped to disk blocks.
1651 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1653 int err, blks, get_blocks_flags;
1654 struct ext4_map_blocks map, *mapp = NULL;
1655 sector_t next = mpd->b_blocknr;
1656 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1657 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1658 handle_t *handle = NULL;
1661 * If the blocks are mapped already, or we couldn't accumulate
1662 * any blocks, then proceed immediately to the submission stage.
1664 if ((mpd->b_size == 0) ||
1665 ((mpd->b_state & (1 << BH_Mapped)) &&
1666 !(mpd->b_state & (1 << BH_Delay)) &&
1667 !(mpd->b_state & (1 << BH_Unwritten))))
1668 goto submit_io;
1670 handle = ext4_journal_current_handle();
1671 BUG_ON(!handle);
1674 * Call ext4_map_blocks() to allocate any delayed allocation
1675 * blocks, or to convert an uninitialized extent to be
1676 * initialized (in the case where we have written into
1677 * one or more preallocated blocks).
1679 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1680 * indicate that we are on the delayed allocation path. This
1681 * affects functions in many different parts of the allocation
1682 * call path. This flag exists primarily because we don't
1683 * want to change *many* call functions, so ext4_map_blocks()
1684 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1685 * inode's allocation semaphore is taken.
1687 * If the blocks in questions were delalloc blocks, set
1688 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1689 * variables are updated after the blocks have been allocated.
1691 map.m_lblk = next;
1692 map.m_len = max_blocks;
1693 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1694 if (ext4_should_dioread_nolock(mpd->inode))
1695 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1696 if (mpd->b_state & (1 << BH_Delay))
1697 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1699 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1700 if (blks < 0) {
1701 struct super_block *sb = mpd->inode->i_sb;
1703 err = blks;
1705 * If get block returns EAGAIN or ENOSPC and there
1706 * appears to be free blocks we will just let
1707 * mpage_da_submit_io() unlock all of the pages.
1709 if (err == -EAGAIN)
1710 goto submit_io;
1712 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1713 mpd->retval = err;
1714 goto submit_io;
1718 * get block failure will cause us to loop in
1719 * writepages, because a_ops->writepage won't be able
1720 * to make progress. The page will be redirtied by
1721 * writepage and writepages will again try to write
1722 * the same.
1724 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1725 ext4_msg(sb, KERN_CRIT,
1726 "delayed block allocation failed for inode %lu "
1727 "at logical offset %llu with max blocks %zd "
1728 "with error %d", mpd->inode->i_ino,
1729 (unsigned long long) next,
1730 mpd->b_size >> mpd->inode->i_blkbits, err);
1731 ext4_msg(sb, KERN_CRIT,
1732 "This should not happen!! Data will be lost");
1733 if (err == -ENOSPC)
1734 ext4_print_free_blocks(mpd->inode);
1736 /* invalidate all the pages */
1737 ext4_da_block_invalidatepages(mpd);
1739 /* Mark this page range as having been completed */
1740 mpd->io_done = 1;
1741 return;
1743 BUG_ON(blks == 0);
1745 mapp = &map;
1746 if (map.m_flags & EXT4_MAP_NEW) {
1747 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1748 int i;
1750 for (i = 0; i < map.m_len; i++)
1751 unmap_underlying_metadata(bdev, map.m_pblk + i);
1755 * Update on-disk size along with block allocation.
1757 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1758 if (disksize > i_size_read(mpd->inode))
1759 disksize = i_size_read(mpd->inode);
1760 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1761 ext4_update_i_disksize(mpd->inode, disksize);
1762 err = ext4_mark_inode_dirty(handle, mpd->inode);
1763 if (err)
1764 ext4_error(mpd->inode->i_sb,
1765 "Failed to mark inode %lu dirty",
1766 mpd->inode->i_ino);
1769 submit_io:
1770 mpage_da_submit_io(mpd, mapp);
1771 mpd->io_done = 1;
1774 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1775 (1 << BH_Delay) | (1 << BH_Unwritten))
1778 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1780 * @mpd->lbh - extent of blocks
1781 * @logical - logical number of the block in the file
1782 * @b_state - b_state of the buffer head added
1784 * the function is used to collect contig. blocks in same state
1786 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1787 unsigned long b_state)
1789 sector_t next;
1790 int blkbits = mpd->inode->i_blkbits;
1791 int nrblocks = mpd->b_size >> blkbits;
1794 * XXX Don't go larger than mballoc is willing to allocate
1795 * This is a stopgap solution. We eventually need to fold
1796 * mpage_da_submit_io() into this function and then call
1797 * ext4_map_blocks() multiple times in a loop
1799 if (nrblocks >= (8*1024*1024 >> blkbits))
1800 goto flush_it;
1802 /* check if the reserved journal credits might overflow */
1803 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1804 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1806 * With non-extent format we are limited by the journal
1807 * credit available. Total credit needed to insert
1808 * nrblocks contiguous blocks is dependent on the
1809 * nrblocks. So limit nrblocks.
1811 goto flush_it;
1815 * First block in the extent
1817 if (mpd->b_size == 0) {
1818 mpd->b_blocknr = logical;
1819 mpd->b_size = 1 << blkbits;
1820 mpd->b_state = b_state & BH_FLAGS;
1821 return;
1824 next = mpd->b_blocknr + nrblocks;
1826 * Can we merge the block to our big extent?
1828 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1829 mpd->b_size += 1 << blkbits;
1830 return;
1833 flush_it:
1835 * We couldn't merge the block to our extent, so we
1836 * need to flush current extent and start new one
1838 mpage_da_map_and_submit(mpd);
1839 return;
1842 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1844 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1848 * This function is grabs code from the very beginning of
1849 * ext4_map_blocks, but assumes that the caller is from delayed write
1850 * time. This function looks up the requested blocks and sets the
1851 * buffer delay bit under the protection of i_data_sem.
1853 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1854 struct ext4_map_blocks *map,
1855 struct buffer_head *bh)
1857 struct extent_status es;
1858 int retval;
1859 sector_t invalid_block = ~((sector_t) 0xffff);
1860 #ifdef ES_AGGRESSIVE_TEST
1861 struct ext4_map_blocks orig_map;
1863 memcpy(&orig_map, map, sizeof(*map));
1864 #endif
1866 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1867 invalid_block = ~0;
1869 map->m_flags = 0;
1870 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1871 "logical block %lu\n", inode->i_ino, map->m_len,
1872 (unsigned long) map->m_lblk);
1874 /* Lookup extent status tree firstly */
1875 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1877 if (ext4_es_is_hole(&es)) {
1878 retval = 0;
1879 down_read((&EXT4_I(inode)->i_data_sem));
1880 goto add_delayed;
1884 * Delayed extent could be allocated by fallocate.
1885 * So we need to check it.
1887 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1888 map_bh(bh, inode->i_sb, invalid_block);
1889 set_buffer_new(bh);
1890 set_buffer_delay(bh);
1891 return 0;
1894 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1895 retval = es.es_len - (iblock - es.es_lblk);
1896 if (retval > map->m_len)
1897 retval = map->m_len;
1898 map->m_len = retval;
1899 if (ext4_es_is_written(&es))
1900 map->m_flags |= EXT4_MAP_MAPPED;
1901 else if (ext4_es_is_unwritten(&es))
1902 map->m_flags |= EXT4_MAP_UNWRITTEN;
1903 else
1904 BUG_ON(1);
1906 #ifdef ES_AGGRESSIVE_TEST
1907 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1908 #endif
1909 return retval;
1913 * Try to see if we can get the block without requesting a new
1914 * file system block.
1916 down_read((&EXT4_I(inode)->i_data_sem));
1917 if (ext4_has_inline_data(inode)) {
1919 * We will soon create blocks for this page, and let
1920 * us pretend as if the blocks aren't allocated yet.
1921 * In case of clusters, we have to handle the work
1922 * of mapping from cluster so that the reserved space
1923 * is calculated properly.
1925 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1926 ext4_find_delalloc_cluster(inode, map->m_lblk))
1927 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1928 retval = 0;
1929 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1930 retval = ext4_ext_map_blocks(NULL, inode, map,
1931 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1932 else
1933 retval = ext4_ind_map_blocks(NULL, inode, map,
1934 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1936 add_delayed:
1937 if (retval == 0) {
1938 int ret;
1940 * XXX: __block_prepare_write() unmaps passed block,
1941 * is it OK?
1943 /* If the block was allocated from previously allocated cluster,
1944 * then we dont need to reserve it again. */
1945 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1946 ret = ext4_da_reserve_space(inode, iblock);
1947 if (ret) {
1948 /* not enough space to reserve */
1949 retval = ret;
1950 goto out_unlock;
1954 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1955 ~0, EXTENT_STATUS_DELAYED);
1956 if (ret) {
1957 retval = ret;
1958 goto out_unlock;
1961 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1962 * and it should not appear on the bh->b_state.
1964 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1966 map_bh(bh, inode->i_sb, invalid_block);
1967 set_buffer_new(bh);
1968 set_buffer_delay(bh);
1969 } else if (retval > 0) {
1970 int ret;
1971 unsigned long long status;
1973 #ifdef ES_AGGRESSIVE_TEST
1974 if (retval != map->m_len) {
1975 printk("ES len assertation failed for inode: %lu "
1976 "retval %d != map->m_len %d "
1977 "in %s (lookup)\n", inode->i_ino, retval,
1978 map->m_len, __func__);
1980 #endif
1982 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1983 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1984 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1985 map->m_pblk, status);
1986 if (ret != 0)
1987 retval = ret;
1990 out_unlock:
1991 up_read((&EXT4_I(inode)->i_data_sem));
1993 return retval;
1997 * This is a special get_blocks_t callback which is used by
1998 * ext4_da_write_begin(). It will either return mapped block or
1999 * reserve space for a single block.
2001 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2002 * We also have b_blocknr = -1 and b_bdev initialized properly
2004 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2005 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2006 * initialized properly.
2008 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2009 struct buffer_head *bh, int create)
2011 struct ext4_map_blocks map;
2012 int ret = 0;
2014 BUG_ON(create == 0);
2015 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2017 map.m_lblk = iblock;
2018 map.m_len = 1;
2021 * first, we need to know whether the block is allocated already
2022 * preallocated blocks are unmapped but should treated
2023 * the same as allocated blocks.
2025 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2026 if (ret <= 0)
2027 return ret;
2029 map_bh(bh, inode->i_sb, map.m_pblk);
2030 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2032 if (buffer_unwritten(bh)) {
2033 /* A delayed write to unwritten bh should be marked
2034 * new and mapped. Mapped ensures that we don't do
2035 * get_block multiple times when we write to the same
2036 * offset and new ensures that we do proper zero out
2037 * for partial write.
2039 set_buffer_new(bh);
2040 set_buffer_mapped(bh);
2042 return 0;
2045 static int bget_one(handle_t *handle, struct buffer_head *bh)
2047 get_bh(bh);
2048 return 0;
2051 static int bput_one(handle_t *handle, struct buffer_head *bh)
2053 put_bh(bh);
2054 return 0;
2057 static int __ext4_journalled_writepage(struct page *page,
2058 unsigned int len)
2060 struct address_space *mapping = page->mapping;
2061 struct inode *inode = mapping->host;
2062 struct buffer_head *page_bufs = NULL;
2063 handle_t *handle = NULL;
2064 int ret = 0, err = 0;
2065 int inline_data = ext4_has_inline_data(inode);
2066 struct buffer_head *inode_bh = NULL;
2068 ClearPageChecked(page);
2070 if (inline_data) {
2071 BUG_ON(page->index != 0);
2072 BUG_ON(len > ext4_get_max_inline_size(inode));
2073 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2074 if (inode_bh == NULL)
2075 goto out;
2076 } else {
2077 page_bufs = page_buffers(page);
2078 if (!page_bufs) {
2079 BUG();
2080 goto out;
2082 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2083 NULL, bget_one);
2085 /* As soon as we unlock the page, it can go away, but we have
2086 * references to buffers so we are safe */
2087 unlock_page(page);
2089 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2090 ext4_writepage_trans_blocks(inode));
2091 if (IS_ERR(handle)) {
2092 ret = PTR_ERR(handle);
2093 goto out;
2096 BUG_ON(!ext4_handle_valid(handle));
2098 if (inline_data) {
2099 ret = ext4_journal_get_write_access(handle, inode_bh);
2101 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2103 } else {
2104 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2105 do_journal_get_write_access);
2107 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2108 write_end_fn);
2110 if (ret == 0)
2111 ret = err;
2112 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2113 err = ext4_journal_stop(handle);
2114 if (!ret)
2115 ret = err;
2117 if (!ext4_has_inline_data(inode))
2118 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2119 NULL, bput_one);
2120 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2121 out:
2122 brelse(inode_bh);
2123 return ret;
2127 * Note that we don't need to start a transaction unless we're journaling data
2128 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2129 * need to file the inode to the transaction's list in ordered mode because if
2130 * we are writing back data added by write(), the inode is already there and if
2131 * we are writing back data modified via mmap(), no one guarantees in which
2132 * transaction the data will hit the disk. In case we are journaling data, we
2133 * cannot start transaction directly because transaction start ranks above page
2134 * lock so we have to do some magic.
2136 * This function can get called via...
2137 * - ext4_da_writepages after taking page lock (have journal handle)
2138 * - journal_submit_inode_data_buffers (no journal handle)
2139 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2140 * - grab_page_cache when doing write_begin (have journal handle)
2142 * We don't do any block allocation in this function. If we have page with
2143 * multiple blocks we need to write those buffer_heads that are mapped. This
2144 * is important for mmaped based write. So if we do with blocksize 1K
2145 * truncate(f, 1024);
2146 * a = mmap(f, 0, 4096);
2147 * a[0] = 'a';
2148 * truncate(f, 4096);
2149 * we have in the page first buffer_head mapped via page_mkwrite call back
2150 * but other buffer_heads would be unmapped but dirty (dirty done via the
2151 * do_wp_page). So writepage should write the first block. If we modify
2152 * the mmap area beyond 1024 we will again get a page_fault and the
2153 * page_mkwrite callback will do the block allocation and mark the
2154 * buffer_heads mapped.
2156 * We redirty the page if we have any buffer_heads that is either delay or
2157 * unwritten in the page.
2159 * We can get recursively called as show below.
2161 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2162 * ext4_writepage()
2164 * But since we don't do any block allocation we should not deadlock.
2165 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2167 static int ext4_writepage(struct page *page,
2168 struct writeback_control *wbc)
2170 int ret = 0;
2171 loff_t size;
2172 unsigned int len;
2173 struct buffer_head *page_bufs = NULL;
2174 struct inode *inode = page->mapping->host;
2175 struct ext4_io_submit io_submit;
2177 trace_ext4_writepage(page);
2178 size = i_size_read(inode);
2179 if (page->index == size >> PAGE_CACHE_SHIFT)
2180 len = size & ~PAGE_CACHE_MASK;
2181 else
2182 len = PAGE_CACHE_SIZE;
2184 page_bufs = page_buffers(page);
2186 * We cannot do block allocation or other extent handling in this
2187 * function. If there are buffers needing that, we have to redirty
2188 * the page. But we may reach here when we do a journal commit via
2189 * journal_submit_inode_data_buffers() and in that case we must write
2190 * allocated buffers to achieve data=ordered mode guarantees.
2192 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2193 ext4_bh_delay_or_unwritten)) {
2194 redirty_page_for_writepage(wbc, page);
2195 if (current->flags & PF_MEMALLOC) {
2197 * For memory cleaning there's no point in writing only
2198 * some buffers. So just bail out. Warn if we came here
2199 * from direct reclaim.
2201 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2202 == PF_MEMALLOC);
2203 unlock_page(page);
2204 return 0;
2208 if (PageChecked(page) && ext4_should_journal_data(inode))
2210 * It's mmapped pagecache. Add buffers and journal it. There
2211 * doesn't seem much point in redirtying the page here.
2213 return __ext4_journalled_writepage(page, len);
2215 memset(&io_submit, 0, sizeof(io_submit));
2216 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2217 ext4_io_submit(&io_submit);
2218 return ret;
2222 * This is called via ext4_da_writepages() to
2223 * calculate the total number of credits to reserve to fit
2224 * a single extent allocation into a single transaction,
2225 * ext4_da_writpeages() will loop calling this before
2226 * the block allocation.
2229 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2231 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2234 * With non-extent format the journal credit needed to
2235 * insert nrblocks contiguous block is dependent on
2236 * number of contiguous block. So we will limit
2237 * number of contiguous block to a sane value
2239 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2240 (max_blocks > EXT4_MAX_TRANS_DATA))
2241 max_blocks = EXT4_MAX_TRANS_DATA;
2243 return ext4_chunk_trans_blocks(inode, max_blocks);
2247 * write_cache_pages_da - walk the list of dirty pages of the given
2248 * address space and accumulate pages that need writing, and call
2249 * mpage_da_map_and_submit to map a single contiguous memory region
2250 * and then write them.
2252 static int write_cache_pages_da(handle_t *handle,
2253 struct address_space *mapping,
2254 struct writeback_control *wbc,
2255 struct mpage_da_data *mpd,
2256 pgoff_t *done_index)
2258 struct buffer_head *bh, *head;
2259 struct inode *inode = mapping->host;
2260 struct pagevec pvec;
2261 unsigned int nr_pages;
2262 sector_t logical;
2263 pgoff_t index, end;
2264 long nr_to_write = wbc->nr_to_write;
2265 int i, tag, ret = 0;
2267 memset(mpd, 0, sizeof(struct mpage_da_data));
2268 mpd->wbc = wbc;
2269 mpd->inode = inode;
2270 pagevec_init(&pvec, 0);
2271 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2272 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2274 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2275 tag = PAGECACHE_TAG_TOWRITE;
2276 else
2277 tag = PAGECACHE_TAG_DIRTY;
2279 *done_index = index;
2280 while (index <= end) {
2281 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2283 if (nr_pages == 0)
2284 return 0;
2286 for (i = 0; i < nr_pages; i++) {
2287 struct page *page = pvec.pages[i];
2290 * At this point, the page may be truncated or
2291 * invalidated (changing page->mapping to NULL), or
2292 * even swizzled back from swapper_space to tmpfs file
2293 * mapping. However, page->index will not change
2294 * because we have a reference on the page.
2296 if (page->index > end)
2297 goto out;
2299 *done_index = page->index + 1;
2302 * If we can't merge this page, and we have
2303 * accumulated an contiguous region, write it
2305 if ((mpd->next_page != page->index) &&
2306 (mpd->next_page != mpd->first_page)) {
2307 mpage_da_map_and_submit(mpd);
2308 goto ret_extent_tail;
2311 lock_page(page);
2314 * If the page is no longer dirty, or its
2315 * mapping no longer corresponds to inode we
2316 * are writing (which means it has been
2317 * truncated or invalidated), or the page is
2318 * already under writeback and we are not
2319 * doing a data integrity writeback, skip the page
2321 if (!PageDirty(page) ||
2322 (PageWriteback(page) &&
2323 (wbc->sync_mode == WB_SYNC_NONE)) ||
2324 unlikely(page->mapping != mapping)) {
2325 unlock_page(page);
2326 continue;
2329 wait_on_page_writeback(page);
2330 BUG_ON(PageWriteback(page));
2333 * If we have inline data and arrive here, it means that
2334 * we will soon create the block for the 1st page, so
2335 * we'd better clear the inline data here.
2337 if (ext4_has_inline_data(inode)) {
2338 BUG_ON(ext4_test_inode_state(inode,
2339 EXT4_STATE_MAY_INLINE_DATA));
2340 ext4_destroy_inline_data(handle, inode);
2343 if (mpd->next_page != page->index)
2344 mpd->first_page = page->index;
2345 mpd->next_page = page->index + 1;
2346 logical = (sector_t) page->index <<
2347 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2349 /* Add all dirty buffers to mpd */
2350 head = page_buffers(page);
2351 bh = head;
2352 do {
2353 BUG_ON(buffer_locked(bh));
2355 * We need to try to allocate unmapped blocks
2356 * in the same page. Otherwise we won't make
2357 * progress with the page in ext4_writepage
2359 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2360 mpage_add_bh_to_extent(mpd, logical,
2361 bh->b_state);
2362 if (mpd->io_done)
2363 goto ret_extent_tail;
2364 } else if (buffer_dirty(bh) &&
2365 buffer_mapped(bh)) {
2367 * mapped dirty buffer. We need to
2368 * update the b_state because we look
2369 * at b_state in mpage_da_map_blocks.
2370 * We don't update b_size because if we
2371 * find an unmapped buffer_head later
2372 * we need to use the b_state flag of
2373 * that buffer_head.
2375 if (mpd->b_size == 0)
2376 mpd->b_state =
2377 bh->b_state & BH_FLAGS;
2379 logical++;
2380 } while ((bh = bh->b_this_page) != head);
2382 if (nr_to_write > 0) {
2383 nr_to_write--;
2384 if (nr_to_write == 0 &&
2385 wbc->sync_mode == WB_SYNC_NONE)
2387 * We stop writing back only if we are
2388 * not doing integrity sync. In case of
2389 * integrity sync we have to keep going
2390 * because someone may be concurrently
2391 * dirtying pages, and we might have
2392 * synced a lot of newly appeared dirty
2393 * pages, but have not synced all of the
2394 * old dirty pages.
2396 goto out;
2399 pagevec_release(&pvec);
2400 cond_resched();
2402 return 0;
2403 ret_extent_tail:
2404 ret = MPAGE_DA_EXTENT_TAIL;
2405 out:
2406 pagevec_release(&pvec);
2407 cond_resched();
2408 return ret;
2412 static int ext4_da_writepages(struct address_space *mapping,
2413 struct writeback_control *wbc)
2415 pgoff_t index;
2416 int range_whole = 0;
2417 handle_t *handle = NULL;
2418 struct mpage_da_data mpd;
2419 struct inode *inode = mapping->host;
2420 int pages_written = 0;
2421 unsigned int max_pages;
2422 int range_cyclic, cycled = 1, io_done = 0;
2423 int needed_blocks, ret = 0;
2424 long desired_nr_to_write, nr_to_writebump = 0;
2425 loff_t range_start = wbc->range_start;
2426 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2427 pgoff_t done_index = 0;
2428 pgoff_t end;
2429 struct blk_plug plug;
2431 trace_ext4_da_writepages(inode, wbc);
2434 * No pages to write? This is mainly a kludge to avoid starting
2435 * a transaction for special inodes like journal inode on last iput()
2436 * because that could violate lock ordering on umount
2438 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2439 return 0;
2442 * If the filesystem has aborted, it is read-only, so return
2443 * right away instead of dumping stack traces later on that
2444 * will obscure the real source of the problem. We test
2445 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2446 * the latter could be true if the filesystem is mounted
2447 * read-only, and in that case, ext4_da_writepages should
2448 * *never* be called, so if that ever happens, we would want
2449 * the stack trace.
2451 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2452 return -EROFS;
2454 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2455 range_whole = 1;
2457 range_cyclic = wbc->range_cyclic;
2458 if (wbc->range_cyclic) {
2459 index = mapping->writeback_index;
2460 if (index)
2461 cycled = 0;
2462 wbc->range_start = index << PAGE_CACHE_SHIFT;
2463 wbc->range_end = LLONG_MAX;
2464 wbc->range_cyclic = 0;
2465 end = -1;
2466 } else {
2467 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2468 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2472 * This works around two forms of stupidity. The first is in
2473 * the writeback code, which caps the maximum number of pages
2474 * written to be 1024 pages. This is wrong on multiple
2475 * levels; different architectues have a different page size,
2476 * which changes the maximum amount of data which gets
2477 * written. Secondly, 4 megabytes is way too small. XFS
2478 * forces this value to be 16 megabytes by multiplying
2479 * nr_to_write parameter by four, and then relies on its
2480 * allocator to allocate larger extents to make them
2481 * contiguous. Unfortunately this brings us to the second
2482 * stupidity, which is that ext4's mballoc code only allocates
2483 * at most 2048 blocks. So we force contiguous writes up to
2484 * the number of dirty blocks in the inode, or
2485 * sbi->max_writeback_mb_bump whichever is smaller.
2487 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2488 if (!range_cyclic && range_whole) {
2489 if (wbc->nr_to_write == LONG_MAX)
2490 desired_nr_to_write = wbc->nr_to_write;
2491 else
2492 desired_nr_to_write = wbc->nr_to_write * 8;
2493 } else
2494 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2495 max_pages);
2496 if (desired_nr_to_write > max_pages)
2497 desired_nr_to_write = max_pages;
2499 if (wbc->nr_to_write < desired_nr_to_write) {
2500 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2501 wbc->nr_to_write = desired_nr_to_write;
2504 retry:
2505 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2506 tag_pages_for_writeback(mapping, index, end);
2508 blk_start_plug(&plug);
2509 while (!ret && wbc->nr_to_write > 0) {
2512 * we insert one extent at a time. So we need
2513 * credit needed for single extent allocation.
2514 * journalled mode is currently not supported
2515 * by delalloc
2517 BUG_ON(ext4_should_journal_data(inode));
2518 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2520 /* start a new transaction*/
2521 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2522 needed_blocks);
2523 if (IS_ERR(handle)) {
2524 ret = PTR_ERR(handle);
2525 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2526 "%ld pages, ino %lu; err %d", __func__,
2527 wbc->nr_to_write, inode->i_ino, ret);
2528 blk_finish_plug(&plug);
2529 goto out_writepages;
2533 * Now call write_cache_pages_da() to find the next
2534 * contiguous region of logical blocks that need
2535 * blocks to be allocated by ext4 and submit them.
2537 ret = write_cache_pages_da(handle, mapping,
2538 wbc, &mpd, &done_index);
2540 * If we have a contiguous extent of pages and we
2541 * haven't done the I/O yet, map the blocks and submit
2542 * them for I/O.
2544 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2545 mpage_da_map_and_submit(&mpd);
2546 ret = MPAGE_DA_EXTENT_TAIL;
2548 trace_ext4_da_write_pages(inode, &mpd);
2549 wbc->nr_to_write -= mpd.pages_written;
2551 ext4_journal_stop(handle);
2553 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2554 /* commit the transaction which would
2555 * free blocks released in the transaction
2556 * and try again
2558 jbd2_journal_force_commit_nested(sbi->s_journal);
2559 ret = 0;
2560 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2562 * Got one extent now try with rest of the pages.
2563 * If mpd.retval is set -EIO, journal is aborted.
2564 * So we don't need to write any more.
2566 pages_written += mpd.pages_written;
2567 ret = mpd.retval;
2568 io_done = 1;
2569 } else if (wbc->nr_to_write)
2571 * There is no more writeout needed
2572 * or we requested for a noblocking writeout
2573 * and we found the device congested
2575 break;
2577 blk_finish_plug(&plug);
2578 if (!io_done && !cycled) {
2579 cycled = 1;
2580 index = 0;
2581 wbc->range_start = index << PAGE_CACHE_SHIFT;
2582 wbc->range_end = mapping->writeback_index - 1;
2583 goto retry;
2586 /* Update index */
2587 wbc->range_cyclic = range_cyclic;
2588 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2590 * set the writeback_index so that range_cyclic
2591 * mode will write it back later
2593 mapping->writeback_index = done_index;
2595 out_writepages:
2596 wbc->nr_to_write -= nr_to_writebump;
2597 wbc->range_start = range_start;
2598 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2599 return ret;
2602 static int ext4_nonda_switch(struct super_block *sb)
2604 s64 free_blocks, dirty_blocks;
2605 struct ext4_sb_info *sbi = EXT4_SB(sb);
2608 * switch to non delalloc mode if we are running low
2609 * on free block. The free block accounting via percpu
2610 * counters can get slightly wrong with percpu_counter_batch getting
2611 * accumulated on each CPU without updating global counters
2612 * Delalloc need an accurate free block accounting. So switch
2613 * to non delalloc when we are near to error range.
2615 free_blocks = EXT4_C2B(sbi,
2616 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2617 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2619 * Start pushing delalloc when 1/2 of free blocks are dirty.
2621 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2622 !writeback_in_progress(sb->s_bdi) &&
2623 down_read_trylock(&sb->s_umount)) {
2624 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2625 up_read(&sb->s_umount);
2628 if (2 * free_blocks < 3 * dirty_blocks ||
2629 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2631 * free block count is less than 150% of dirty blocks
2632 * or free blocks is less than watermark
2634 return 1;
2636 return 0;
2639 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2640 loff_t pos, unsigned len, unsigned flags,
2641 struct page **pagep, void **fsdata)
2643 int ret, retries = 0;
2644 struct page *page;
2645 pgoff_t index;
2646 struct inode *inode = mapping->host;
2647 handle_t *handle;
2649 index = pos >> PAGE_CACHE_SHIFT;
2651 if (ext4_nonda_switch(inode->i_sb)) {
2652 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653 return ext4_write_begin(file, mapping, pos,
2654 len, flags, pagep, fsdata);
2656 *fsdata = (void *)0;
2657 trace_ext4_da_write_begin(inode, pos, len, flags);
2659 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660 ret = ext4_da_write_inline_data_begin(mapping, inode,
2661 pos, len, flags,
2662 pagep, fsdata);
2663 if (ret < 0)
2664 return ret;
2665 if (ret == 1)
2666 return 0;
2670 * grab_cache_page_write_begin() can take a long time if the
2671 * system is thrashing due to memory pressure, or if the page
2672 * is being written back. So grab it first before we start
2673 * the transaction handle. This also allows us to allocate
2674 * the page (if needed) without using GFP_NOFS.
2676 retry_grab:
2677 page = grab_cache_page_write_begin(mapping, index, flags);
2678 if (!page)
2679 return -ENOMEM;
2680 unlock_page(page);
2683 * With delayed allocation, we don't log the i_disksize update
2684 * if there is delayed block allocation. But we still need
2685 * to journalling the i_disksize update if writes to the end
2686 * of file which has an already mapped buffer.
2688 retry_journal:
2689 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2690 if (IS_ERR(handle)) {
2691 page_cache_release(page);
2692 return PTR_ERR(handle);
2695 lock_page(page);
2696 if (page->mapping != mapping) {
2697 /* The page got truncated from under us */
2698 unlock_page(page);
2699 page_cache_release(page);
2700 ext4_journal_stop(handle);
2701 goto retry_grab;
2703 /* In case writeback began while the page was unlocked */
2704 wait_on_page_writeback(page);
2706 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2707 if (ret < 0) {
2708 unlock_page(page);
2709 ext4_journal_stop(handle);
2711 * block_write_begin may have instantiated a few blocks
2712 * outside i_size. Trim these off again. Don't need
2713 * i_size_read because we hold i_mutex.
2715 if (pos + len > inode->i_size)
2716 ext4_truncate_failed_write(inode);
2718 if (ret == -ENOSPC &&
2719 ext4_should_retry_alloc(inode->i_sb, &retries))
2720 goto retry_journal;
2722 page_cache_release(page);
2723 return ret;
2726 *pagep = page;
2727 return ret;
2731 * Check if we should update i_disksize
2732 * when write to the end of file but not require block allocation
2734 static int ext4_da_should_update_i_disksize(struct page *page,
2735 unsigned long offset)
2737 struct buffer_head *bh;
2738 struct inode *inode = page->mapping->host;
2739 unsigned int idx;
2740 int i;
2742 bh = page_buffers(page);
2743 idx = offset >> inode->i_blkbits;
2745 for (i = 0; i < idx; i++)
2746 bh = bh->b_this_page;
2748 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2749 return 0;
2750 return 1;
2753 static int ext4_da_write_end(struct file *file,
2754 struct address_space *mapping,
2755 loff_t pos, unsigned len, unsigned copied,
2756 struct page *page, void *fsdata)
2758 struct inode *inode = mapping->host;
2759 int ret = 0, ret2;
2760 handle_t *handle = ext4_journal_current_handle();
2761 loff_t new_i_size;
2762 unsigned long start, end;
2763 int write_mode = (int)(unsigned long)fsdata;
2765 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2766 switch (ext4_inode_journal_mode(inode)) {
2767 case EXT4_INODE_ORDERED_DATA_MODE:
2768 return ext4_ordered_write_end(file, mapping, pos,
2769 len, copied, page, fsdata);
2770 case EXT4_INODE_WRITEBACK_DATA_MODE:
2771 return ext4_writeback_write_end(file, mapping, pos,
2772 len, copied, page, fsdata);
2773 default:
2774 BUG();
2778 trace_ext4_da_write_end(inode, pos, len, copied);
2779 start = pos & (PAGE_CACHE_SIZE - 1);
2780 end = start + copied - 1;
2783 * generic_write_end() will run mark_inode_dirty() if i_size
2784 * changes. So let's piggyback the i_disksize mark_inode_dirty
2785 * into that.
2787 new_i_size = pos + copied;
2788 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2789 if (ext4_has_inline_data(inode) ||
2790 ext4_da_should_update_i_disksize(page, end)) {
2791 down_write(&EXT4_I(inode)->i_data_sem);
2792 if (new_i_size > EXT4_I(inode)->i_disksize)
2793 EXT4_I(inode)->i_disksize = new_i_size;
2794 up_write(&EXT4_I(inode)->i_data_sem);
2795 /* We need to mark inode dirty even if
2796 * new_i_size is less that inode->i_size
2797 * bu greater than i_disksize.(hint delalloc)
2799 ext4_mark_inode_dirty(handle, inode);
2803 if (write_mode != CONVERT_INLINE_DATA &&
2804 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2805 ext4_has_inline_data(inode))
2806 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2807 page);
2808 else
2809 ret2 = generic_write_end(file, mapping, pos, len, copied,
2810 page, fsdata);
2812 copied = ret2;
2813 if (ret2 < 0)
2814 ret = ret2;
2815 ret2 = ext4_journal_stop(handle);
2816 if (!ret)
2817 ret = ret2;
2819 return ret ? ret : copied;
2822 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2825 * Drop reserved blocks
2827 BUG_ON(!PageLocked(page));
2828 if (!page_has_buffers(page))
2829 goto out;
2831 ext4_da_page_release_reservation(page, offset);
2833 out:
2834 ext4_invalidatepage(page, offset);
2836 return;
2840 * Force all delayed allocation blocks to be allocated for a given inode.
2842 int ext4_alloc_da_blocks(struct inode *inode)
2844 trace_ext4_alloc_da_blocks(inode);
2846 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2847 !EXT4_I(inode)->i_reserved_meta_blocks)
2848 return 0;
2851 * We do something simple for now. The filemap_flush() will
2852 * also start triggering a write of the data blocks, which is
2853 * not strictly speaking necessary (and for users of
2854 * laptop_mode, not even desirable). However, to do otherwise
2855 * would require replicating code paths in:
2857 * ext4_da_writepages() ->
2858 * write_cache_pages() ---> (via passed in callback function)
2859 * __mpage_da_writepage() -->
2860 * mpage_add_bh_to_extent()
2861 * mpage_da_map_blocks()
2863 * The problem is that write_cache_pages(), located in
2864 * mm/page-writeback.c, marks pages clean in preparation for
2865 * doing I/O, which is not desirable if we're not planning on
2866 * doing I/O at all.
2868 * We could call write_cache_pages(), and then redirty all of
2869 * the pages by calling redirty_page_for_writepage() but that
2870 * would be ugly in the extreme. So instead we would need to
2871 * replicate parts of the code in the above functions,
2872 * simplifying them because we wouldn't actually intend to
2873 * write out the pages, but rather only collect contiguous
2874 * logical block extents, call the multi-block allocator, and
2875 * then update the buffer heads with the block allocations.
2877 * For now, though, we'll cheat by calling filemap_flush(),
2878 * which will map the blocks, and start the I/O, but not
2879 * actually wait for the I/O to complete.
2881 return filemap_flush(inode->i_mapping);
2885 * bmap() is special. It gets used by applications such as lilo and by
2886 * the swapper to find the on-disk block of a specific piece of data.
2888 * Naturally, this is dangerous if the block concerned is still in the
2889 * journal. If somebody makes a swapfile on an ext4 data-journaling
2890 * filesystem and enables swap, then they may get a nasty shock when the
2891 * data getting swapped to that swapfile suddenly gets overwritten by
2892 * the original zero's written out previously to the journal and
2893 * awaiting writeback in the kernel's buffer cache.
2895 * So, if we see any bmap calls here on a modified, data-journaled file,
2896 * take extra steps to flush any blocks which might be in the cache.
2898 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2900 struct inode *inode = mapping->host;
2901 journal_t *journal;
2902 int err;
2905 * We can get here for an inline file via the FIBMAP ioctl
2907 if (ext4_has_inline_data(inode))
2908 return 0;
2910 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2911 test_opt(inode->i_sb, DELALLOC)) {
2913 * With delalloc we want to sync the file
2914 * so that we can make sure we allocate
2915 * blocks for file
2917 filemap_write_and_wait(mapping);
2920 if (EXT4_JOURNAL(inode) &&
2921 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2923 * This is a REALLY heavyweight approach, but the use of
2924 * bmap on dirty files is expected to be extremely rare:
2925 * only if we run lilo or swapon on a freshly made file
2926 * do we expect this to happen.
2928 * (bmap requires CAP_SYS_RAWIO so this does not
2929 * represent an unprivileged user DOS attack --- we'd be
2930 * in trouble if mortal users could trigger this path at
2931 * will.)
2933 * NB. EXT4_STATE_JDATA is not set on files other than
2934 * regular files. If somebody wants to bmap a directory
2935 * or symlink and gets confused because the buffer
2936 * hasn't yet been flushed to disk, they deserve
2937 * everything they get.
2940 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2941 journal = EXT4_JOURNAL(inode);
2942 jbd2_journal_lock_updates(journal);
2943 err = jbd2_journal_flush(journal);
2944 jbd2_journal_unlock_updates(journal);
2946 if (err)
2947 return 0;
2950 return generic_block_bmap(mapping, block, ext4_get_block);
2953 static int ext4_readpage(struct file *file, struct page *page)
2955 int ret = -EAGAIN;
2956 struct inode *inode = page->mapping->host;
2958 trace_ext4_readpage(page);
2960 if (ext4_has_inline_data(inode))
2961 ret = ext4_readpage_inline(inode, page);
2963 if (ret == -EAGAIN)
2964 return mpage_readpage(page, ext4_get_block);
2966 return ret;
2969 static int
2970 ext4_readpages(struct file *file, struct address_space *mapping,
2971 struct list_head *pages, unsigned nr_pages)
2973 struct inode *inode = mapping->host;
2975 /* If the file has inline data, no need to do readpages. */
2976 if (ext4_has_inline_data(inode))
2977 return 0;
2979 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2982 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2984 trace_ext4_invalidatepage(page, offset);
2986 /* No journalling happens on data buffers when this function is used */
2987 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2989 block_invalidatepage(page, offset);
2992 static int __ext4_journalled_invalidatepage(struct page *page,
2993 unsigned long offset)
2995 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2997 trace_ext4_journalled_invalidatepage(page, offset);
3000 * If it's a full truncate we just forget about the pending dirtying
3002 if (offset == 0)
3003 ClearPageChecked(page);
3005 return jbd2_journal_invalidatepage(journal, page, offset);
3008 /* Wrapper for aops... */
3009 static void ext4_journalled_invalidatepage(struct page *page,
3010 unsigned long offset)
3012 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3015 static int ext4_releasepage(struct page *page, gfp_t wait)
3017 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3019 trace_ext4_releasepage(page);
3021 WARN_ON(PageChecked(page));
3022 if (!page_has_buffers(page))
3023 return 0;
3024 if (journal)
3025 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3026 else
3027 return try_to_free_buffers(page);
3031 * ext4_get_block used when preparing for a DIO write or buffer write.
3032 * We allocate an uinitialized extent if blocks haven't been allocated.
3033 * The extent will be converted to initialized after the IO is complete.
3035 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3036 struct buffer_head *bh_result, int create)
3038 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3039 inode->i_ino, create);
3040 return _ext4_get_block(inode, iblock, bh_result,
3041 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3044 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3045 struct buffer_head *bh_result, int create)
3047 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3048 inode->i_ino, create);
3049 return _ext4_get_block(inode, iblock, bh_result,
3050 EXT4_GET_BLOCKS_NO_LOCK);
3053 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3054 ssize_t size, void *private, int ret,
3055 bool is_async)
3057 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3058 ext4_io_end_t *io_end = iocb->private;
3060 /* if not async direct IO or dio with 0 bytes write, just return */
3061 if (!io_end || !size)
3062 goto out;
3064 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3065 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3066 iocb->private, io_end->inode->i_ino, iocb, offset,
3067 size);
3069 iocb->private = NULL;
3071 /* if not aio dio with unwritten extents, just free io and return */
3072 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3073 ext4_free_io_end(io_end);
3074 out:
3075 inode_dio_done(inode);
3076 if (is_async)
3077 aio_complete(iocb, ret, 0);
3078 return;
3081 io_end->offset = offset;
3082 io_end->size = size;
3083 if (is_async) {
3084 io_end->iocb = iocb;
3085 io_end->result = ret;
3088 ext4_add_complete_io(io_end);
3092 * For ext4 extent files, ext4 will do direct-io write to holes,
3093 * preallocated extents, and those write extend the file, no need to
3094 * fall back to buffered IO.
3096 * For holes, we fallocate those blocks, mark them as uninitialized
3097 * If those blocks were preallocated, we mark sure they are split, but
3098 * still keep the range to write as uninitialized.
3100 * The unwritten extents will be converted to written when DIO is completed.
3101 * For async direct IO, since the IO may still pending when return, we
3102 * set up an end_io call back function, which will do the conversion
3103 * when async direct IO completed.
3105 * If the O_DIRECT write will extend the file then add this inode to the
3106 * orphan list. So recovery will truncate it back to the original size
3107 * if the machine crashes during the write.
3110 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3111 const struct iovec *iov, loff_t offset,
3112 unsigned long nr_segs)
3114 struct file *file = iocb->ki_filp;
3115 struct inode *inode = file->f_mapping->host;
3116 ssize_t ret;
3117 size_t count = iov_length(iov, nr_segs);
3118 int overwrite = 0;
3119 get_block_t *get_block_func = NULL;
3120 int dio_flags = 0;
3121 loff_t final_size = offset + count;
3123 /* Use the old path for reads and writes beyond i_size. */
3124 if (rw != WRITE || final_size > inode->i_size)
3125 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3127 BUG_ON(iocb->private == NULL);
3129 /* If we do a overwrite dio, i_mutex locking can be released */
3130 overwrite = *((int *)iocb->private);
3132 if (overwrite) {
3133 atomic_inc(&inode->i_dio_count);
3134 down_read(&EXT4_I(inode)->i_data_sem);
3135 mutex_unlock(&inode->i_mutex);
3139 * We could direct write to holes and fallocate.
3141 * Allocated blocks to fill the hole are marked as
3142 * uninitialized to prevent parallel buffered read to expose
3143 * the stale data before DIO complete the data IO.
3145 * As to previously fallocated extents, ext4 get_block will
3146 * just simply mark the buffer mapped but still keep the
3147 * extents uninitialized.
3149 * For non AIO case, we will convert those unwritten extents
3150 * to written after return back from blockdev_direct_IO.
3152 * For async DIO, the conversion needs to be deferred when the
3153 * IO is completed. The ext4 end_io callback function will be
3154 * called to take care of the conversion work. Here for async
3155 * case, we allocate an io_end structure to hook to the iocb.
3157 iocb->private = NULL;
3158 ext4_inode_aio_set(inode, NULL);
3159 if (!is_sync_kiocb(iocb)) {
3160 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3161 if (!io_end) {
3162 ret = -ENOMEM;
3163 goto retake_lock;
3165 io_end->flag |= EXT4_IO_END_DIRECT;
3166 iocb->private = io_end;
3168 * we save the io structure for current async direct
3169 * IO, so that later ext4_map_blocks() could flag the
3170 * io structure whether there is a unwritten extents
3171 * needs to be converted when IO is completed.
3173 ext4_inode_aio_set(inode, io_end);
3176 if (overwrite) {
3177 get_block_func = ext4_get_block_write_nolock;
3178 } else {
3179 get_block_func = ext4_get_block_write;
3180 dio_flags = DIO_LOCKING;
3182 ret = __blockdev_direct_IO(rw, iocb, inode,
3183 inode->i_sb->s_bdev, iov,
3184 offset, nr_segs,
3185 get_block_func,
3186 ext4_end_io_dio,
3187 NULL,
3188 dio_flags);
3190 if (iocb->private)
3191 ext4_inode_aio_set(inode, NULL);
3193 * The io_end structure takes a reference to the inode, that
3194 * structure needs to be destroyed and the reference to the
3195 * inode need to be dropped, when IO is complete, even with 0
3196 * byte write, or failed.
3198 * In the successful AIO DIO case, the io_end structure will
3199 * be destroyed and the reference to the inode will be dropped
3200 * after the end_io call back function is called.
3202 * In the case there is 0 byte write, or error case, since VFS
3203 * direct IO won't invoke the end_io call back function, we
3204 * need to free the end_io structure here.
3206 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3207 ext4_free_io_end(iocb->private);
3208 iocb->private = NULL;
3209 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3210 EXT4_STATE_DIO_UNWRITTEN)) {
3211 int err;
3213 * for non AIO case, since the IO is already
3214 * completed, we could do the conversion right here
3216 err = ext4_convert_unwritten_extents(inode,
3217 offset, ret);
3218 if (err < 0)
3219 ret = err;
3220 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3223 retake_lock:
3224 /* take i_mutex locking again if we do a ovewrite dio */
3225 if (overwrite) {
3226 inode_dio_done(inode);
3227 up_read(&EXT4_I(inode)->i_data_sem);
3228 mutex_lock(&inode->i_mutex);
3231 return ret;
3234 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3235 const struct iovec *iov, loff_t offset,
3236 unsigned long nr_segs)
3238 struct file *file = iocb->ki_filp;
3239 struct inode *inode = file->f_mapping->host;
3240 ssize_t ret;
3243 * If we are doing data journalling we don't support O_DIRECT
3245 if (ext4_should_journal_data(inode))
3246 return 0;
3248 /* Let buffer I/O handle the inline data case. */
3249 if (ext4_has_inline_data(inode))
3250 return 0;
3252 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3254 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3255 else
3256 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3257 trace_ext4_direct_IO_exit(inode, offset,
3258 iov_length(iov, nr_segs), rw, ret);
3259 return ret;
3263 * Pages can be marked dirty completely asynchronously from ext4's journalling
3264 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3265 * much here because ->set_page_dirty is called under VFS locks. The page is
3266 * not necessarily locked.
3268 * We cannot just dirty the page and leave attached buffers clean, because the
3269 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3270 * or jbddirty because all the journalling code will explode.
3272 * So what we do is to mark the page "pending dirty" and next time writepage
3273 * is called, propagate that into the buffers appropriately.
3275 static int ext4_journalled_set_page_dirty(struct page *page)
3277 SetPageChecked(page);
3278 return __set_page_dirty_nobuffers(page);
3281 static const struct address_space_operations ext4_ordered_aops = {
3282 .readpage = ext4_readpage,
3283 .readpages = ext4_readpages,
3284 .writepage = ext4_writepage,
3285 .write_begin = ext4_write_begin,
3286 .write_end = ext4_ordered_write_end,
3287 .bmap = ext4_bmap,
3288 .invalidatepage = ext4_invalidatepage,
3289 .releasepage = ext4_releasepage,
3290 .direct_IO = ext4_direct_IO,
3291 .migratepage = buffer_migrate_page,
3292 .is_partially_uptodate = block_is_partially_uptodate,
3293 .error_remove_page = generic_error_remove_page,
3296 static const struct address_space_operations ext4_writeback_aops = {
3297 .readpage = ext4_readpage,
3298 .readpages = ext4_readpages,
3299 .writepage = ext4_writepage,
3300 .write_begin = ext4_write_begin,
3301 .write_end = ext4_writeback_write_end,
3302 .bmap = ext4_bmap,
3303 .invalidatepage = ext4_invalidatepage,
3304 .releasepage = ext4_releasepage,
3305 .direct_IO = ext4_direct_IO,
3306 .migratepage = buffer_migrate_page,
3307 .is_partially_uptodate = block_is_partially_uptodate,
3308 .error_remove_page = generic_error_remove_page,
3311 static const struct address_space_operations ext4_journalled_aops = {
3312 .readpage = ext4_readpage,
3313 .readpages = ext4_readpages,
3314 .writepage = ext4_writepage,
3315 .write_begin = ext4_write_begin,
3316 .write_end = ext4_journalled_write_end,
3317 .set_page_dirty = ext4_journalled_set_page_dirty,
3318 .bmap = ext4_bmap,
3319 .invalidatepage = ext4_journalled_invalidatepage,
3320 .releasepage = ext4_releasepage,
3321 .direct_IO = ext4_direct_IO,
3322 .is_partially_uptodate = block_is_partially_uptodate,
3323 .error_remove_page = generic_error_remove_page,
3326 static const struct address_space_operations ext4_da_aops = {
3327 .readpage = ext4_readpage,
3328 .readpages = ext4_readpages,
3329 .writepage = ext4_writepage,
3330 .writepages = ext4_da_writepages,
3331 .write_begin = ext4_da_write_begin,
3332 .write_end = ext4_da_write_end,
3333 .bmap = ext4_bmap,
3334 .invalidatepage = ext4_da_invalidatepage,
3335 .releasepage = ext4_releasepage,
3336 .direct_IO = ext4_direct_IO,
3337 .migratepage = buffer_migrate_page,
3338 .is_partially_uptodate = block_is_partially_uptodate,
3339 .error_remove_page = generic_error_remove_page,
3342 void ext4_set_aops(struct inode *inode)
3344 switch (ext4_inode_journal_mode(inode)) {
3345 case EXT4_INODE_ORDERED_DATA_MODE:
3346 if (test_opt(inode->i_sb, DELALLOC))
3347 inode->i_mapping->a_ops = &ext4_da_aops;
3348 else
3349 inode->i_mapping->a_ops = &ext4_ordered_aops;
3350 break;
3351 case EXT4_INODE_WRITEBACK_DATA_MODE:
3352 if (test_opt(inode->i_sb, DELALLOC))
3353 inode->i_mapping->a_ops = &ext4_da_aops;
3354 else
3355 inode->i_mapping->a_ops = &ext4_writeback_aops;
3356 break;
3357 case EXT4_INODE_JOURNAL_DATA_MODE:
3358 inode->i_mapping->a_ops = &ext4_journalled_aops;
3359 break;
3360 default:
3361 BUG();
3367 * ext4_discard_partial_page_buffers()
3368 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3369 * This function finds and locks the page containing the offset
3370 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3371 * Calling functions that already have the page locked should call
3372 * ext4_discard_partial_page_buffers_no_lock directly.
3374 int ext4_discard_partial_page_buffers(handle_t *handle,
3375 struct address_space *mapping, loff_t from,
3376 loff_t length, int flags)
3378 struct inode *inode = mapping->host;
3379 struct page *page;
3380 int err = 0;
3382 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3383 mapping_gfp_mask(mapping) & ~__GFP_FS);
3384 if (!page)
3385 return -ENOMEM;
3387 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3388 from, length, flags);
3390 unlock_page(page);
3391 page_cache_release(page);
3392 return err;
3396 * ext4_discard_partial_page_buffers_no_lock()
3397 * Zeros a page range of length 'length' starting from offset 'from'.
3398 * Buffer heads that correspond to the block aligned regions of the
3399 * zeroed range will be unmapped. Unblock aligned regions
3400 * will have the corresponding buffer head mapped if needed so that
3401 * that region of the page can be updated with the partial zero out.
3403 * This function assumes that the page has already been locked. The
3404 * The range to be discarded must be contained with in the given page.
3405 * If the specified range exceeds the end of the page it will be shortened
3406 * to the end of the page that corresponds to 'from'. This function is
3407 * appropriate for updating a page and it buffer heads to be unmapped and
3408 * zeroed for blocks that have been either released, or are going to be
3409 * released.
3411 * handle: The journal handle
3412 * inode: The files inode
3413 * page: A locked page that contains the offset "from"
3414 * from: The starting byte offset (from the beginning of the file)
3415 * to begin discarding
3416 * len: The length of bytes to discard
3417 * flags: Optional flags that may be used:
3419 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3420 * Only zero the regions of the page whose buffer heads
3421 * have already been unmapped. This flag is appropriate
3422 * for updating the contents of a page whose blocks may
3423 * have already been released, and we only want to zero
3424 * out the regions that correspond to those released blocks.
3426 * Returns zero on success or negative on failure.
3428 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3429 struct inode *inode, struct page *page, loff_t from,
3430 loff_t length, int flags)
3432 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3433 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3434 unsigned int blocksize, max, pos;
3435 ext4_lblk_t iblock;
3436 struct buffer_head *bh;
3437 int err = 0;
3439 blocksize = inode->i_sb->s_blocksize;
3440 max = PAGE_CACHE_SIZE - offset;
3442 if (index != page->index)
3443 return -EINVAL;
3446 * correct length if it does not fall between
3447 * 'from' and the end of the page
3449 if (length > max || length < 0)
3450 length = max;
3452 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3454 if (!page_has_buffers(page))
3455 create_empty_buffers(page, blocksize, 0);
3457 /* Find the buffer that contains "offset" */
3458 bh = page_buffers(page);
3459 pos = blocksize;
3460 while (offset >= pos) {
3461 bh = bh->b_this_page;
3462 iblock++;
3463 pos += blocksize;
3466 pos = offset;
3467 while (pos < offset + length) {
3468 unsigned int end_of_block, range_to_discard;
3470 err = 0;
3472 /* The length of space left to zero and unmap */
3473 range_to_discard = offset + length - pos;
3475 /* The length of space until the end of the block */
3476 end_of_block = blocksize - (pos & (blocksize-1));
3479 * Do not unmap or zero past end of block
3480 * for this buffer head
3482 if (range_to_discard > end_of_block)
3483 range_to_discard = end_of_block;
3487 * Skip this buffer head if we are only zeroing unampped
3488 * regions of the page
3490 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3491 buffer_mapped(bh))
3492 goto next;
3494 /* If the range is block aligned, unmap */
3495 if (range_to_discard == blocksize) {
3496 clear_buffer_dirty(bh);
3497 bh->b_bdev = NULL;
3498 clear_buffer_mapped(bh);
3499 clear_buffer_req(bh);
3500 clear_buffer_new(bh);
3501 clear_buffer_delay(bh);
3502 clear_buffer_unwritten(bh);
3503 clear_buffer_uptodate(bh);
3504 zero_user(page, pos, range_to_discard);
3505 BUFFER_TRACE(bh, "Buffer discarded");
3506 goto next;
3510 * If this block is not completely contained in the range
3511 * to be discarded, then it is not going to be released. Because
3512 * we need to keep this block, we need to make sure this part
3513 * of the page is uptodate before we modify it by writeing
3514 * partial zeros on it.
3516 if (!buffer_mapped(bh)) {
3518 * Buffer head must be mapped before we can read
3519 * from the block
3521 BUFFER_TRACE(bh, "unmapped");
3522 ext4_get_block(inode, iblock, bh, 0);
3523 /* unmapped? It's a hole - nothing to do */
3524 if (!buffer_mapped(bh)) {
3525 BUFFER_TRACE(bh, "still unmapped");
3526 goto next;
3530 /* Ok, it's mapped. Make sure it's up-to-date */
3531 if (PageUptodate(page))
3532 set_buffer_uptodate(bh);
3534 if (!buffer_uptodate(bh)) {
3535 err = -EIO;
3536 ll_rw_block(READ, 1, &bh);
3537 wait_on_buffer(bh);
3538 /* Uhhuh. Read error. Complain and punt.*/
3539 if (!buffer_uptodate(bh))
3540 goto next;
3543 if (ext4_should_journal_data(inode)) {
3544 BUFFER_TRACE(bh, "get write access");
3545 err = ext4_journal_get_write_access(handle, bh);
3546 if (err)
3547 goto next;
3550 zero_user(page, pos, range_to_discard);
3552 err = 0;
3553 if (ext4_should_journal_data(inode)) {
3554 err = ext4_handle_dirty_metadata(handle, inode, bh);
3555 } else
3556 mark_buffer_dirty(bh);
3558 BUFFER_TRACE(bh, "Partial buffer zeroed");
3559 next:
3560 bh = bh->b_this_page;
3561 iblock++;
3562 pos += range_to_discard;
3565 return err;
3568 int ext4_can_truncate(struct inode *inode)
3570 if (S_ISREG(inode->i_mode))
3571 return 1;
3572 if (S_ISDIR(inode->i_mode))
3573 return 1;
3574 if (S_ISLNK(inode->i_mode))
3575 return !ext4_inode_is_fast_symlink(inode);
3576 return 0;
3580 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3581 * associated with the given offset and length
3583 * @inode: File inode
3584 * @offset: The offset where the hole will begin
3585 * @len: The length of the hole
3587 * Returns: 0 on success or negative on failure
3590 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3592 struct inode *inode = file->f_path.dentry->d_inode;
3593 if (!S_ISREG(inode->i_mode))
3594 return -EOPNOTSUPP;
3596 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3597 return ext4_ind_punch_hole(file, offset, length);
3599 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3600 /* TODO: Add support for bigalloc file systems */
3601 return -EOPNOTSUPP;
3604 trace_ext4_punch_hole(inode, offset, length);
3606 return ext4_ext_punch_hole(file, offset, length);
3610 * ext4_truncate()
3612 * We block out ext4_get_block() block instantiations across the entire
3613 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3614 * simultaneously on behalf of the same inode.
3616 * As we work through the truncate and commit bits of it to the journal there
3617 * is one core, guiding principle: the file's tree must always be consistent on
3618 * disk. We must be able to restart the truncate after a crash.
3620 * The file's tree may be transiently inconsistent in memory (although it
3621 * probably isn't), but whenever we close off and commit a journal transaction,
3622 * the contents of (the filesystem + the journal) must be consistent and
3623 * restartable. It's pretty simple, really: bottom up, right to left (although
3624 * left-to-right works OK too).
3626 * Note that at recovery time, journal replay occurs *before* the restart of
3627 * truncate against the orphan inode list.
3629 * The committed inode has the new, desired i_size (which is the same as
3630 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3631 * that this inode's truncate did not complete and it will again call
3632 * ext4_truncate() to have another go. So there will be instantiated blocks
3633 * to the right of the truncation point in a crashed ext4 filesystem. But
3634 * that's fine - as long as they are linked from the inode, the post-crash
3635 * ext4_truncate() run will find them and release them.
3637 void ext4_truncate(struct inode *inode)
3639 trace_ext4_truncate_enter(inode);
3641 if (!ext4_can_truncate(inode))
3642 return;
3644 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3646 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3647 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3649 if (ext4_has_inline_data(inode)) {
3650 int has_inline = 1;
3652 ext4_inline_data_truncate(inode, &has_inline);
3653 if (has_inline)
3654 return;
3657 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3658 ext4_ext_truncate(inode);
3659 else
3660 ext4_ind_truncate(inode);
3662 trace_ext4_truncate_exit(inode);
3666 * ext4_get_inode_loc returns with an extra refcount against the inode's
3667 * underlying buffer_head on success. If 'in_mem' is true, we have all
3668 * data in memory that is needed to recreate the on-disk version of this
3669 * inode.
3671 static int __ext4_get_inode_loc(struct inode *inode,
3672 struct ext4_iloc *iloc, int in_mem)
3674 struct ext4_group_desc *gdp;
3675 struct buffer_head *bh;
3676 struct super_block *sb = inode->i_sb;
3677 ext4_fsblk_t block;
3678 int inodes_per_block, inode_offset;
3680 iloc->bh = NULL;
3681 if (!ext4_valid_inum(sb, inode->i_ino))
3682 return -EIO;
3684 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3685 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3686 if (!gdp)
3687 return -EIO;
3690 * Figure out the offset within the block group inode table
3692 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3693 inode_offset = ((inode->i_ino - 1) %
3694 EXT4_INODES_PER_GROUP(sb));
3695 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3696 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3698 bh = sb_getblk(sb, block);
3699 if (unlikely(!bh))
3700 return -ENOMEM;
3701 if (!buffer_uptodate(bh)) {
3702 lock_buffer(bh);
3705 * If the buffer has the write error flag, we have failed
3706 * to write out another inode in the same block. In this
3707 * case, we don't have to read the block because we may
3708 * read the old inode data successfully.
3710 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3711 set_buffer_uptodate(bh);
3713 if (buffer_uptodate(bh)) {
3714 /* someone brought it uptodate while we waited */
3715 unlock_buffer(bh);
3716 goto has_buffer;
3720 * If we have all information of the inode in memory and this
3721 * is the only valid inode in the block, we need not read the
3722 * block.
3724 if (in_mem) {
3725 struct buffer_head *bitmap_bh;
3726 int i, start;
3728 start = inode_offset & ~(inodes_per_block - 1);
3730 /* Is the inode bitmap in cache? */
3731 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3732 if (unlikely(!bitmap_bh))
3733 goto make_io;
3736 * If the inode bitmap isn't in cache then the
3737 * optimisation may end up performing two reads instead
3738 * of one, so skip it.
3740 if (!buffer_uptodate(bitmap_bh)) {
3741 brelse(bitmap_bh);
3742 goto make_io;
3744 for (i = start; i < start + inodes_per_block; i++) {
3745 if (i == inode_offset)
3746 continue;
3747 if (ext4_test_bit(i, bitmap_bh->b_data))
3748 break;
3750 brelse(bitmap_bh);
3751 if (i == start + inodes_per_block) {
3752 /* all other inodes are free, so skip I/O */
3753 memset(bh->b_data, 0, bh->b_size);
3754 set_buffer_uptodate(bh);
3755 unlock_buffer(bh);
3756 goto has_buffer;
3760 make_io:
3762 * If we need to do any I/O, try to pre-readahead extra
3763 * blocks from the inode table.
3765 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3766 ext4_fsblk_t b, end, table;
3767 unsigned num;
3769 table = ext4_inode_table(sb, gdp);
3770 /* s_inode_readahead_blks is always a power of 2 */
3771 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3772 if (table > b)
3773 b = table;
3774 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3775 num = EXT4_INODES_PER_GROUP(sb);
3776 if (ext4_has_group_desc_csum(sb))
3777 num -= ext4_itable_unused_count(sb, gdp);
3778 table += num / inodes_per_block;
3779 if (end > table)
3780 end = table;
3781 while (b <= end)
3782 sb_breadahead(sb, b++);
3786 * There are other valid inodes in the buffer, this inode
3787 * has in-inode xattrs, or we don't have this inode in memory.
3788 * Read the block from disk.
3790 trace_ext4_load_inode(inode);
3791 get_bh(bh);
3792 bh->b_end_io = end_buffer_read_sync;
3793 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3794 wait_on_buffer(bh);
3795 if (!buffer_uptodate(bh)) {
3796 EXT4_ERROR_INODE_BLOCK(inode, block,
3797 "unable to read itable block");
3798 brelse(bh);
3799 return -EIO;
3802 has_buffer:
3803 iloc->bh = bh;
3804 return 0;
3807 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3809 /* We have all inode data except xattrs in memory here. */
3810 return __ext4_get_inode_loc(inode, iloc,
3811 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3814 void ext4_set_inode_flags(struct inode *inode)
3816 unsigned int flags = EXT4_I(inode)->i_flags;
3818 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3819 if (flags & EXT4_SYNC_FL)
3820 inode->i_flags |= S_SYNC;
3821 if (flags & EXT4_APPEND_FL)
3822 inode->i_flags |= S_APPEND;
3823 if (flags & EXT4_IMMUTABLE_FL)
3824 inode->i_flags |= S_IMMUTABLE;
3825 if (flags & EXT4_NOATIME_FL)
3826 inode->i_flags |= S_NOATIME;
3827 if (flags & EXT4_DIRSYNC_FL)
3828 inode->i_flags |= S_DIRSYNC;
3831 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3832 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3834 unsigned int vfs_fl;
3835 unsigned long old_fl, new_fl;
3837 do {
3838 vfs_fl = ei->vfs_inode.i_flags;
3839 old_fl = ei->i_flags;
3840 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3841 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3842 EXT4_DIRSYNC_FL);
3843 if (vfs_fl & S_SYNC)
3844 new_fl |= EXT4_SYNC_FL;
3845 if (vfs_fl & S_APPEND)
3846 new_fl |= EXT4_APPEND_FL;
3847 if (vfs_fl & S_IMMUTABLE)
3848 new_fl |= EXT4_IMMUTABLE_FL;
3849 if (vfs_fl & S_NOATIME)
3850 new_fl |= EXT4_NOATIME_FL;
3851 if (vfs_fl & S_DIRSYNC)
3852 new_fl |= EXT4_DIRSYNC_FL;
3853 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3856 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3857 struct ext4_inode_info *ei)
3859 blkcnt_t i_blocks ;
3860 struct inode *inode = &(ei->vfs_inode);
3861 struct super_block *sb = inode->i_sb;
3863 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3864 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3865 /* we are using combined 48 bit field */
3866 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3867 le32_to_cpu(raw_inode->i_blocks_lo);
3868 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3869 /* i_blocks represent file system block size */
3870 return i_blocks << (inode->i_blkbits - 9);
3871 } else {
3872 return i_blocks;
3874 } else {
3875 return le32_to_cpu(raw_inode->i_blocks_lo);
3879 static inline void ext4_iget_extra_inode(struct inode *inode,
3880 struct ext4_inode *raw_inode,
3881 struct ext4_inode_info *ei)
3883 __le32 *magic = (void *)raw_inode +
3884 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3885 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3886 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3887 ext4_find_inline_data_nolock(inode);
3888 } else
3889 EXT4_I(inode)->i_inline_off = 0;
3892 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3894 struct ext4_iloc iloc;
3895 struct ext4_inode *raw_inode;
3896 struct ext4_inode_info *ei;
3897 struct inode *inode;
3898 journal_t *journal = EXT4_SB(sb)->s_journal;
3899 long ret;
3900 int block;
3901 uid_t i_uid;
3902 gid_t i_gid;
3904 inode = iget_locked(sb, ino);
3905 if (!inode)
3906 return ERR_PTR(-ENOMEM);
3907 if (!(inode->i_state & I_NEW))
3908 return inode;
3910 ei = EXT4_I(inode);
3911 iloc.bh = NULL;
3913 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3914 if (ret < 0)
3915 goto bad_inode;
3916 raw_inode = ext4_raw_inode(&iloc);
3918 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3919 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3920 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3921 EXT4_INODE_SIZE(inode->i_sb)) {
3922 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3923 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3924 EXT4_INODE_SIZE(inode->i_sb));
3925 ret = -EIO;
3926 goto bad_inode;
3928 } else
3929 ei->i_extra_isize = 0;
3931 /* Precompute checksum seed for inode metadata */
3932 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3933 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3934 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3935 __u32 csum;
3936 __le32 inum = cpu_to_le32(inode->i_ino);
3937 __le32 gen = raw_inode->i_generation;
3938 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3939 sizeof(inum));
3940 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3941 sizeof(gen));
3944 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3945 EXT4_ERROR_INODE(inode, "checksum invalid");
3946 ret = -EIO;
3947 goto bad_inode;
3950 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3951 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3952 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3953 if (!(test_opt(inode->i_sb, NO_UID32))) {
3954 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3955 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3957 i_uid_write(inode, i_uid);
3958 i_gid_write(inode, i_gid);
3959 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3961 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3962 ei->i_inline_off = 0;
3963 ei->i_dir_start_lookup = 0;
3964 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3965 /* We now have enough fields to check if the inode was active or not.
3966 * This is needed because nfsd might try to access dead inodes
3967 * the test is that same one that e2fsck uses
3968 * NeilBrown 1999oct15
3970 if (inode->i_nlink == 0) {
3971 if (inode->i_mode == 0 ||
3972 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3973 /* this inode is deleted */
3974 ret = -ESTALE;
3975 goto bad_inode;
3977 /* The only unlinked inodes we let through here have
3978 * valid i_mode and are being read by the orphan
3979 * recovery code: that's fine, we're about to complete
3980 * the process of deleting those. */
3982 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3983 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3984 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3985 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3986 ei->i_file_acl |=
3987 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3988 inode->i_size = ext4_isize(raw_inode);
3989 ei->i_disksize = inode->i_size;
3990 #ifdef CONFIG_QUOTA
3991 ei->i_reserved_quota = 0;
3992 #endif
3993 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3994 ei->i_block_group = iloc.block_group;
3995 ei->i_last_alloc_group = ~0;
3997 * NOTE! The in-memory inode i_data array is in little-endian order
3998 * even on big-endian machines: we do NOT byteswap the block numbers!
4000 for (block = 0; block < EXT4_N_BLOCKS; block++)
4001 ei->i_data[block] = raw_inode->i_block[block];
4002 INIT_LIST_HEAD(&ei->i_orphan);
4005 * Set transaction id's of transactions that have to be committed
4006 * to finish f[data]sync. We set them to currently running transaction
4007 * as we cannot be sure that the inode or some of its metadata isn't
4008 * part of the transaction - the inode could have been reclaimed and
4009 * now it is reread from disk.
4011 if (journal) {
4012 transaction_t *transaction;
4013 tid_t tid;
4015 read_lock(&journal->j_state_lock);
4016 if (journal->j_running_transaction)
4017 transaction = journal->j_running_transaction;
4018 else
4019 transaction = journal->j_committing_transaction;
4020 if (transaction)
4021 tid = transaction->t_tid;
4022 else
4023 tid = journal->j_commit_sequence;
4024 read_unlock(&journal->j_state_lock);
4025 ei->i_sync_tid = tid;
4026 ei->i_datasync_tid = tid;
4029 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4030 if (ei->i_extra_isize == 0) {
4031 /* The extra space is currently unused. Use it. */
4032 ei->i_extra_isize = sizeof(struct ext4_inode) -
4033 EXT4_GOOD_OLD_INODE_SIZE;
4034 } else {
4035 ext4_iget_extra_inode(inode, raw_inode, ei);
4039 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4040 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4041 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4042 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4044 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4045 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4047 inode->i_version |=
4048 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4051 ret = 0;
4052 if (ei->i_file_acl &&
4053 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4054 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4055 ei->i_file_acl);
4056 ret = -EIO;
4057 goto bad_inode;
4058 } else if (!ext4_has_inline_data(inode)) {
4059 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4060 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4061 (S_ISLNK(inode->i_mode) &&
4062 !ext4_inode_is_fast_symlink(inode))))
4063 /* Validate extent which is part of inode */
4064 ret = ext4_ext_check_inode(inode);
4065 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4066 (S_ISLNK(inode->i_mode) &&
4067 !ext4_inode_is_fast_symlink(inode))) {
4068 /* Validate block references which are part of inode */
4069 ret = ext4_ind_check_inode(inode);
4072 if (ret)
4073 goto bad_inode;
4075 if (S_ISREG(inode->i_mode)) {
4076 inode->i_op = &ext4_file_inode_operations;
4077 inode->i_fop = &ext4_file_operations;
4078 ext4_set_aops(inode);
4079 } else if (S_ISDIR(inode->i_mode)) {
4080 inode->i_op = &ext4_dir_inode_operations;
4081 inode->i_fop = &ext4_dir_operations;
4082 } else if (S_ISLNK(inode->i_mode)) {
4083 if (ext4_inode_is_fast_symlink(inode)) {
4084 inode->i_op = &ext4_fast_symlink_inode_operations;
4085 nd_terminate_link(ei->i_data, inode->i_size,
4086 sizeof(ei->i_data) - 1);
4087 } else {
4088 inode->i_op = &ext4_symlink_inode_operations;
4089 ext4_set_aops(inode);
4091 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4092 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4093 inode->i_op = &ext4_special_inode_operations;
4094 if (raw_inode->i_block[0])
4095 init_special_inode(inode, inode->i_mode,
4096 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4097 else
4098 init_special_inode(inode, inode->i_mode,
4099 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4100 } else {
4101 ret = -EIO;
4102 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4103 goto bad_inode;
4105 brelse(iloc.bh);
4106 ext4_set_inode_flags(inode);
4107 unlock_new_inode(inode);
4108 return inode;
4110 bad_inode:
4111 brelse(iloc.bh);
4112 iget_failed(inode);
4113 return ERR_PTR(ret);
4116 static int ext4_inode_blocks_set(handle_t *handle,
4117 struct ext4_inode *raw_inode,
4118 struct ext4_inode_info *ei)
4120 struct inode *inode = &(ei->vfs_inode);
4121 u64 i_blocks = inode->i_blocks;
4122 struct super_block *sb = inode->i_sb;
4124 if (i_blocks <= ~0U) {
4126 * i_blocks can be represented in a 32 bit variable
4127 * as multiple of 512 bytes
4129 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4130 raw_inode->i_blocks_high = 0;
4131 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4132 return 0;
4134 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4135 return -EFBIG;
4137 if (i_blocks <= 0xffffffffffffULL) {
4139 * i_blocks can be represented in a 48 bit variable
4140 * as multiple of 512 bytes
4142 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4143 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4144 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4145 } else {
4146 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4147 /* i_block is stored in file system block size */
4148 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4149 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4150 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4152 return 0;
4156 * Post the struct inode info into an on-disk inode location in the
4157 * buffer-cache. This gobbles the caller's reference to the
4158 * buffer_head in the inode location struct.
4160 * The caller must have write access to iloc->bh.
4162 static int ext4_do_update_inode(handle_t *handle,
4163 struct inode *inode,
4164 struct ext4_iloc *iloc)
4166 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4167 struct ext4_inode_info *ei = EXT4_I(inode);
4168 struct buffer_head *bh = iloc->bh;
4169 int err = 0, rc, block;
4170 int need_datasync = 0;
4171 uid_t i_uid;
4172 gid_t i_gid;
4174 /* For fields not not tracking in the in-memory inode,
4175 * initialise them to zero for new inodes. */
4176 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4177 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4179 ext4_get_inode_flags(ei);
4180 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4181 i_uid = i_uid_read(inode);
4182 i_gid = i_gid_read(inode);
4183 if (!(test_opt(inode->i_sb, NO_UID32))) {
4184 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4185 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4187 * Fix up interoperability with old kernels. Otherwise, old inodes get
4188 * re-used with the upper 16 bits of the uid/gid intact
4190 if (!ei->i_dtime) {
4191 raw_inode->i_uid_high =
4192 cpu_to_le16(high_16_bits(i_uid));
4193 raw_inode->i_gid_high =
4194 cpu_to_le16(high_16_bits(i_gid));
4195 } else {
4196 raw_inode->i_uid_high = 0;
4197 raw_inode->i_gid_high = 0;
4199 } else {
4200 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4201 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4202 raw_inode->i_uid_high = 0;
4203 raw_inode->i_gid_high = 0;
4205 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4207 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4208 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4209 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4210 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4212 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4213 goto out_brelse;
4214 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4215 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4216 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4217 cpu_to_le32(EXT4_OS_HURD))
4218 raw_inode->i_file_acl_high =
4219 cpu_to_le16(ei->i_file_acl >> 32);
4220 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4221 if (ei->i_disksize != ext4_isize(raw_inode)) {
4222 ext4_isize_set(raw_inode, ei->i_disksize);
4223 need_datasync = 1;
4225 if (ei->i_disksize > 0x7fffffffULL) {
4226 struct super_block *sb = inode->i_sb;
4227 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4228 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4229 EXT4_SB(sb)->s_es->s_rev_level ==
4230 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4231 /* If this is the first large file
4232 * created, add a flag to the superblock.
4234 err = ext4_journal_get_write_access(handle,
4235 EXT4_SB(sb)->s_sbh);
4236 if (err)
4237 goto out_brelse;
4238 ext4_update_dynamic_rev(sb);
4239 EXT4_SET_RO_COMPAT_FEATURE(sb,
4240 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4241 ext4_handle_sync(handle);
4242 err = ext4_handle_dirty_super(handle, sb);
4245 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4246 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4247 if (old_valid_dev(inode->i_rdev)) {
4248 raw_inode->i_block[0] =
4249 cpu_to_le32(old_encode_dev(inode->i_rdev));
4250 raw_inode->i_block[1] = 0;
4251 } else {
4252 raw_inode->i_block[0] = 0;
4253 raw_inode->i_block[1] =
4254 cpu_to_le32(new_encode_dev(inode->i_rdev));
4255 raw_inode->i_block[2] = 0;
4257 } else if (!ext4_has_inline_data(inode)) {
4258 for (block = 0; block < EXT4_N_BLOCKS; block++)
4259 raw_inode->i_block[block] = ei->i_data[block];
4262 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4263 if (ei->i_extra_isize) {
4264 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4265 raw_inode->i_version_hi =
4266 cpu_to_le32(inode->i_version >> 32);
4267 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4270 ext4_inode_csum_set(inode, raw_inode, ei);
4272 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4273 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4274 if (!err)
4275 err = rc;
4276 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4278 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4279 out_brelse:
4280 brelse(bh);
4281 ext4_std_error(inode->i_sb, err);
4282 return err;
4286 * ext4_write_inode()
4288 * We are called from a few places:
4290 * - Within generic_file_write() for O_SYNC files.
4291 * Here, there will be no transaction running. We wait for any running
4292 * transaction to commit.
4294 * - Within sys_sync(), kupdate and such.
4295 * We wait on commit, if tol to.
4297 * - Within prune_icache() (PF_MEMALLOC == true)
4298 * Here we simply return. We can't afford to block kswapd on the
4299 * journal commit.
4301 * In all cases it is actually safe for us to return without doing anything,
4302 * because the inode has been copied into a raw inode buffer in
4303 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4304 * knfsd.
4306 * Note that we are absolutely dependent upon all inode dirtiers doing the
4307 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4308 * which we are interested.
4310 * It would be a bug for them to not do this. The code:
4312 * mark_inode_dirty(inode)
4313 * stuff();
4314 * inode->i_size = expr;
4316 * is in error because a kswapd-driven write_inode() could occur while
4317 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4318 * will no longer be on the superblock's dirty inode list.
4320 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4322 int err;
4324 if (current->flags & PF_MEMALLOC)
4325 return 0;
4327 if (EXT4_SB(inode->i_sb)->s_journal) {
4328 if (ext4_journal_current_handle()) {
4329 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4330 dump_stack();
4331 return -EIO;
4334 if (wbc->sync_mode != WB_SYNC_ALL)
4335 return 0;
4337 err = ext4_force_commit(inode->i_sb);
4338 } else {
4339 struct ext4_iloc iloc;
4341 err = __ext4_get_inode_loc(inode, &iloc, 0);
4342 if (err)
4343 return err;
4344 if (wbc->sync_mode == WB_SYNC_ALL)
4345 sync_dirty_buffer(iloc.bh);
4346 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4347 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4348 "IO error syncing inode");
4349 err = -EIO;
4351 brelse(iloc.bh);
4353 return err;
4357 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4358 * buffers that are attached to a page stradding i_size and are undergoing
4359 * commit. In that case we have to wait for commit to finish and try again.
4361 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4363 struct page *page;
4364 unsigned offset;
4365 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4366 tid_t commit_tid = 0;
4367 int ret;
4369 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4371 * All buffers in the last page remain valid? Then there's nothing to
4372 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4373 * blocksize case
4375 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4376 return;
4377 while (1) {
4378 page = find_lock_page(inode->i_mapping,
4379 inode->i_size >> PAGE_CACHE_SHIFT);
4380 if (!page)
4381 return;
4382 ret = __ext4_journalled_invalidatepage(page, offset);
4383 unlock_page(page);
4384 page_cache_release(page);
4385 if (ret != -EBUSY)
4386 return;
4387 commit_tid = 0;
4388 read_lock(&journal->j_state_lock);
4389 if (journal->j_committing_transaction)
4390 commit_tid = journal->j_committing_transaction->t_tid;
4391 read_unlock(&journal->j_state_lock);
4392 if (commit_tid)
4393 jbd2_log_wait_commit(journal, commit_tid);
4398 * ext4_setattr()
4400 * Called from notify_change.
4402 * We want to trap VFS attempts to truncate the file as soon as
4403 * possible. In particular, we want to make sure that when the VFS
4404 * shrinks i_size, we put the inode on the orphan list and modify
4405 * i_disksize immediately, so that during the subsequent flushing of
4406 * dirty pages and freeing of disk blocks, we can guarantee that any
4407 * commit will leave the blocks being flushed in an unused state on
4408 * disk. (On recovery, the inode will get truncated and the blocks will
4409 * be freed, so we have a strong guarantee that no future commit will
4410 * leave these blocks visible to the user.)
4412 * Another thing we have to assure is that if we are in ordered mode
4413 * and inode is still attached to the committing transaction, we must
4414 * we start writeout of all the dirty pages which are being truncated.
4415 * This way we are sure that all the data written in the previous
4416 * transaction are already on disk (truncate waits for pages under
4417 * writeback).
4419 * Called with inode->i_mutex down.
4421 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4423 struct inode *inode = dentry->d_inode;
4424 int error, rc = 0;
4425 int orphan = 0;
4426 const unsigned int ia_valid = attr->ia_valid;
4428 error = inode_change_ok(inode, attr);
4429 if (error)
4430 return error;
4432 if (is_quota_modification(inode, attr))
4433 dquot_initialize(inode);
4434 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4435 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4436 handle_t *handle;
4438 /* (user+group)*(old+new) structure, inode write (sb,
4439 * inode block, ? - but truncate inode update has it) */
4440 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4441 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4442 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4443 if (IS_ERR(handle)) {
4444 error = PTR_ERR(handle);
4445 goto err_out;
4447 error = dquot_transfer(inode, attr);
4448 if (error) {
4449 ext4_journal_stop(handle);
4450 return error;
4452 /* Update corresponding info in inode so that everything is in
4453 * one transaction */
4454 if (attr->ia_valid & ATTR_UID)
4455 inode->i_uid = attr->ia_uid;
4456 if (attr->ia_valid & ATTR_GID)
4457 inode->i_gid = attr->ia_gid;
4458 error = ext4_mark_inode_dirty(handle, inode);
4459 ext4_journal_stop(handle);
4462 if (attr->ia_valid & ATTR_SIZE) {
4464 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4465 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4467 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4468 return -EFBIG;
4472 if (S_ISREG(inode->i_mode) &&
4473 attr->ia_valid & ATTR_SIZE &&
4474 (attr->ia_size < inode->i_size)) {
4475 handle_t *handle;
4477 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4478 if (IS_ERR(handle)) {
4479 error = PTR_ERR(handle);
4480 goto err_out;
4482 if (ext4_handle_valid(handle)) {
4483 error = ext4_orphan_add(handle, inode);
4484 orphan = 1;
4486 EXT4_I(inode)->i_disksize = attr->ia_size;
4487 rc = ext4_mark_inode_dirty(handle, inode);
4488 if (!error)
4489 error = rc;
4490 ext4_journal_stop(handle);
4492 if (ext4_should_order_data(inode)) {
4493 error = ext4_begin_ordered_truncate(inode,
4494 attr->ia_size);
4495 if (error) {
4496 /* Do as much error cleanup as possible */
4497 handle = ext4_journal_start(inode,
4498 EXT4_HT_INODE, 3);
4499 if (IS_ERR(handle)) {
4500 ext4_orphan_del(NULL, inode);
4501 goto err_out;
4503 ext4_orphan_del(handle, inode);
4504 orphan = 0;
4505 ext4_journal_stop(handle);
4506 goto err_out;
4511 if (attr->ia_valid & ATTR_SIZE) {
4512 if (attr->ia_size != inode->i_size) {
4513 loff_t oldsize = inode->i_size;
4515 i_size_write(inode, attr->ia_size);
4517 * Blocks are going to be removed from the inode. Wait
4518 * for dio in flight. Temporarily disable
4519 * dioread_nolock to prevent livelock.
4521 if (orphan) {
4522 if (!ext4_should_journal_data(inode)) {
4523 ext4_inode_block_unlocked_dio(inode);
4524 inode_dio_wait(inode);
4525 ext4_inode_resume_unlocked_dio(inode);
4526 } else
4527 ext4_wait_for_tail_page_commit(inode);
4530 * Truncate pagecache after we've waited for commit
4531 * in data=journal mode to make pages freeable.
4533 truncate_pagecache(inode, oldsize, inode->i_size);
4535 ext4_truncate(inode);
4538 if (!rc) {
4539 setattr_copy(inode, attr);
4540 mark_inode_dirty(inode);
4544 * If the call to ext4_truncate failed to get a transaction handle at
4545 * all, we need to clean up the in-core orphan list manually.
4547 if (orphan && inode->i_nlink)
4548 ext4_orphan_del(NULL, inode);
4550 if (!rc && (ia_valid & ATTR_MODE))
4551 rc = ext4_acl_chmod(inode);
4553 err_out:
4554 ext4_std_error(inode->i_sb, error);
4555 if (!error)
4556 error = rc;
4557 return error;
4560 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4561 struct kstat *stat)
4563 struct inode *inode;
4564 unsigned long delalloc_blocks;
4566 inode = dentry->d_inode;
4567 generic_fillattr(inode, stat);
4570 * We can't update i_blocks if the block allocation is delayed
4571 * otherwise in the case of system crash before the real block
4572 * allocation is done, we will have i_blocks inconsistent with
4573 * on-disk file blocks.
4574 * We always keep i_blocks updated together with real
4575 * allocation. But to not confuse with user, stat
4576 * will return the blocks that include the delayed allocation
4577 * blocks for this file.
4579 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4580 EXT4_I(inode)->i_reserved_data_blocks);
4582 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4583 return 0;
4586 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4588 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4589 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4590 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4594 * Account for index blocks, block groups bitmaps and block group
4595 * descriptor blocks if modify datablocks and index blocks
4596 * worse case, the indexs blocks spread over different block groups
4598 * If datablocks are discontiguous, they are possible to spread over
4599 * different block groups too. If they are contiguous, with flexbg,
4600 * they could still across block group boundary.
4602 * Also account for superblock, inode, quota and xattr blocks
4604 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4606 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4607 int gdpblocks;
4608 int idxblocks;
4609 int ret = 0;
4612 * How many index blocks need to touch to modify nrblocks?
4613 * The "Chunk" flag indicating whether the nrblocks is
4614 * physically contiguous on disk
4616 * For Direct IO and fallocate, they calls get_block to allocate
4617 * one single extent at a time, so they could set the "Chunk" flag
4619 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4621 ret = idxblocks;
4624 * Now let's see how many group bitmaps and group descriptors need
4625 * to account
4627 groups = idxblocks;
4628 if (chunk)
4629 groups += 1;
4630 else
4631 groups += nrblocks;
4633 gdpblocks = groups;
4634 if (groups > ngroups)
4635 groups = ngroups;
4636 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4637 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4639 /* bitmaps and block group descriptor blocks */
4640 ret += groups + gdpblocks;
4642 /* Blocks for super block, inode, quota and xattr blocks */
4643 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4645 return ret;
4649 * Calculate the total number of credits to reserve to fit
4650 * the modification of a single pages into a single transaction,
4651 * which may include multiple chunks of block allocations.
4653 * This could be called via ext4_write_begin()
4655 * We need to consider the worse case, when
4656 * one new block per extent.
4658 int ext4_writepage_trans_blocks(struct inode *inode)
4660 int bpp = ext4_journal_blocks_per_page(inode);
4661 int ret;
4663 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4665 /* Account for data blocks for journalled mode */
4666 if (ext4_should_journal_data(inode))
4667 ret += bpp;
4668 return ret;
4672 * Calculate the journal credits for a chunk of data modification.
4674 * This is called from DIO, fallocate or whoever calling
4675 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4677 * journal buffers for data blocks are not included here, as DIO
4678 * and fallocate do no need to journal data buffers.
4680 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4682 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4686 * The caller must have previously called ext4_reserve_inode_write().
4687 * Give this, we know that the caller already has write access to iloc->bh.
4689 int ext4_mark_iloc_dirty(handle_t *handle,
4690 struct inode *inode, struct ext4_iloc *iloc)
4692 int err = 0;
4694 if (IS_I_VERSION(inode))
4695 inode_inc_iversion(inode);
4697 /* the do_update_inode consumes one bh->b_count */
4698 get_bh(iloc->bh);
4700 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4701 err = ext4_do_update_inode(handle, inode, iloc);
4702 put_bh(iloc->bh);
4703 return err;
4707 * On success, We end up with an outstanding reference count against
4708 * iloc->bh. This _must_ be cleaned up later.
4712 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4713 struct ext4_iloc *iloc)
4715 int err;
4717 err = ext4_get_inode_loc(inode, iloc);
4718 if (!err) {
4719 BUFFER_TRACE(iloc->bh, "get_write_access");
4720 err = ext4_journal_get_write_access(handle, iloc->bh);
4721 if (err) {
4722 brelse(iloc->bh);
4723 iloc->bh = NULL;
4726 ext4_std_error(inode->i_sb, err);
4727 return err;
4731 * Expand an inode by new_extra_isize bytes.
4732 * Returns 0 on success or negative error number on failure.
4734 static int ext4_expand_extra_isize(struct inode *inode,
4735 unsigned int new_extra_isize,
4736 struct ext4_iloc iloc,
4737 handle_t *handle)
4739 struct ext4_inode *raw_inode;
4740 struct ext4_xattr_ibody_header *header;
4742 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4743 return 0;
4745 raw_inode = ext4_raw_inode(&iloc);
4747 header = IHDR(inode, raw_inode);
4749 /* No extended attributes present */
4750 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4751 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4752 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4753 new_extra_isize);
4754 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4755 return 0;
4758 /* try to expand with EAs present */
4759 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4760 raw_inode, handle);
4764 * What we do here is to mark the in-core inode as clean with respect to inode
4765 * dirtiness (it may still be data-dirty).
4766 * This means that the in-core inode may be reaped by prune_icache
4767 * without having to perform any I/O. This is a very good thing,
4768 * because *any* task may call prune_icache - even ones which
4769 * have a transaction open against a different journal.
4771 * Is this cheating? Not really. Sure, we haven't written the
4772 * inode out, but prune_icache isn't a user-visible syncing function.
4773 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4774 * we start and wait on commits.
4776 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4778 struct ext4_iloc iloc;
4779 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4780 static unsigned int mnt_count;
4781 int err, ret;
4783 might_sleep();
4784 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4785 err = ext4_reserve_inode_write(handle, inode, &iloc);
4786 if (ext4_handle_valid(handle) &&
4787 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4788 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4790 * We need extra buffer credits since we may write into EA block
4791 * with this same handle. If journal_extend fails, then it will
4792 * only result in a minor loss of functionality for that inode.
4793 * If this is felt to be critical, then e2fsck should be run to
4794 * force a large enough s_min_extra_isize.
4796 if ((jbd2_journal_extend(handle,
4797 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4798 ret = ext4_expand_extra_isize(inode,
4799 sbi->s_want_extra_isize,
4800 iloc, handle);
4801 if (ret) {
4802 ext4_set_inode_state(inode,
4803 EXT4_STATE_NO_EXPAND);
4804 if (mnt_count !=
4805 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4806 ext4_warning(inode->i_sb,
4807 "Unable to expand inode %lu. Delete"
4808 " some EAs or run e2fsck.",
4809 inode->i_ino);
4810 mnt_count =
4811 le16_to_cpu(sbi->s_es->s_mnt_count);
4816 if (!err)
4817 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4818 return err;
4822 * ext4_dirty_inode() is called from __mark_inode_dirty()
4824 * We're really interested in the case where a file is being extended.
4825 * i_size has been changed by generic_commit_write() and we thus need
4826 * to include the updated inode in the current transaction.
4828 * Also, dquot_alloc_block() will always dirty the inode when blocks
4829 * are allocated to the file.
4831 * If the inode is marked synchronous, we don't honour that here - doing
4832 * so would cause a commit on atime updates, which we don't bother doing.
4833 * We handle synchronous inodes at the highest possible level.
4835 void ext4_dirty_inode(struct inode *inode, int flags)
4837 handle_t *handle;
4839 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4840 if (IS_ERR(handle))
4841 goto out;
4843 ext4_mark_inode_dirty(handle, inode);
4845 ext4_journal_stop(handle);
4846 out:
4847 return;
4850 #if 0
4852 * Bind an inode's backing buffer_head into this transaction, to prevent
4853 * it from being flushed to disk early. Unlike
4854 * ext4_reserve_inode_write, this leaves behind no bh reference and
4855 * returns no iloc structure, so the caller needs to repeat the iloc
4856 * lookup to mark the inode dirty later.
4858 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4860 struct ext4_iloc iloc;
4862 int err = 0;
4863 if (handle) {
4864 err = ext4_get_inode_loc(inode, &iloc);
4865 if (!err) {
4866 BUFFER_TRACE(iloc.bh, "get_write_access");
4867 err = jbd2_journal_get_write_access(handle, iloc.bh);
4868 if (!err)
4869 err = ext4_handle_dirty_metadata(handle,
4870 NULL,
4871 iloc.bh);
4872 brelse(iloc.bh);
4875 ext4_std_error(inode->i_sb, err);
4876 return err;
4878 #endif
4880 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4882 journal_t *journal;
4883 handle_t *handle;
4884 int err;
4887 * We have to be very careful here: changing a data block's
4888 * journaling status dynamically is dangerous. If we write a
4889 * data block to the journal, change the status and then delete
4890 * that block, we risk forgetting to revoke the old log record
4891 * from the journal and so a subsequent replay can corrupt data.
4892 * So, first we make sure that the journal is empty and that
4893 * nobody is changing anything.
4896 journal = EXT4_JOURNAL(inode);
4897 if (!journal)
4898 return 0;
4899 if (is_journal_aborted(journal))
4900 return -EROFS;
4901 /* We have to allocate physical blocks for delalloc blocks
4902 * before flushing journal. otherwise delalloc blocks can not
4903 * be allocated any more. even more truncate on delalloc blocks
4904 * could trigger BUG by flushing delalloc blocks in journal.
4905 * There is no delalloc block in non-journal data mode.
4907 if (val && test_opt(inode->i_sb, DELALLOC)) {
4908 err = ext4_alloc_da_blocks(inode);
4909 if (err < 0)
4910 return err;
4913 /* Wait for all existing dio workers */
4914 ext4_inode_block_unlocked_dio(inode);
4915 inode_dio_wait(inode);
4917 jbd2_journal_lock_updates(journal);
4920 * OK, there are no updates running now, and all cached data is
4921 * synced to disk. We are now in a completely consistent state
4922 * which doesn't have anything in the journal, and we know that
4923 * no filesystem updates are running, so it is safe to modify
4924 * the inode's in-core data-journaling state flag now.
4927 if (val)
4928 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4929 else {
4930 jbd2_journal_flush(journal);
4931 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4933 ext4_set_aops(inode);
4935 jbd2_journal_unlock_updates(journal);
4936 ext4_inode_resume_unlocked_dio(inode);
4938 /* Finally we can mark the inode as dirty. */
4940 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4941 if (IS_ERR(handle))
4942 return PTR_ERR(handle);
4944 err = ext4_mark_inode_dirty(handle, inode);
4945 ext4_handle_sync(handle);
4946 ext4_journal_stop(handle);
4947 ext4_std_error(inode->i_sb, err);
4949 return err;
4952 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4954 return !buffer_mapped(bh);
4957 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4959 struct page *page = vmf->page;
4960 loff_t size;
4961 unsigned long len;
4962 int ret;
4963 struct file *file = vma->vm_file;
4964 struct inode *inode = file->f_path.dentry->d_inode;
4965 struct address_space *mapping = inode->i_mapping;
4966 handle_t *handle;
4967 get_block_t *get_block;
4968 int retries = 0;
4970 sb_start_pagefault(inode->i_sb);
4971 file_update_time(vma->vm_file);
4972 /* Delalloc case is easy... */
4973 if (test_opt(inode->i_sb, DELALLOC) &&
4974 !ext4_should_journal_data(inode) &&
4975 !ext4_nonda_switch(inode->i_sb)) {
4976 do {
4977 ret = __block_page_mkwrite(vma, vmf,
4978 ext4_da_get_block_prep);
4979 } while (ret == -ENOSPC &&
4980 ext4_should_retry_alloc(inode->i_sb, &retries));
4981 goto out_ret;
4984 lock_page(page);
4985 size = i_size_read(inode);
4986 /* Page got truncated from under us? */
4987 if (page->mapping != mapping || page_offset(page) > size) {
4988 unlock_page(page);
4989 ret = VM_FAULT_NOPAGE;
4990 goto out;
4993 if (page->index == size >> PAGE_CACHE_SHIFT)
4994 len = size & ~PAGE_CACHE_MASK;
4995 else
4996 len = PAGE_CACHE_SIZE;
4998 * Return if we have all the buffers mapped. This avoids the need to do
4999 * journal_start/journal_stop which can block and take a long time
5001 if (page_has_buffers(page)) {
5002 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5003 0, len, NULL,
5004 ext4_bh_unmapped)) {
5005 /* Wait so that we don't change page under IO */
5006 wait_on_page_writeback(page);
5007 ret = VM_FAULT_LOCKED;
5008 goto out;
5011 unlock_page(page);
5012 /* OK, we need to fill the hole... */
5013 if (ext4_should_dioread_nolock(inode))
5014 get_block = ext4_get_block_write;
5015 else
5016 get_block = ext4_get_block;
5017 retry_alloc:
5018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5019 ext4_writepage_trans_blocks(inode));
5020 if (IS_ERR(handle)) {
5021 ret = VM_FAULT_SIGBUS;
5022 goto out;
5024 ret = __block_page_mkwrite(vma, vmf, get_block);
5025 if (!ret && ext4_should_journal_data(inode)) {
5026 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5027 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5028 unlock_page(page);
5029 ret = VM_FAULT_SIGBUS;
5030 ext4_journal_stop(handle);
5031 goto out;
5033 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5035 ext4_journal_stop(handle);
5036 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5037 goto retry_alloc;
5038 out_ret:
5039 ret = block_page_mkwrite_return(ret);
5040 out:
5041 sb_end_pagefault(inode->i_sb);
5042 return ret;