2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
43 * 1. slab_mutex (Global Mutex)
45 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 * Issues still to be resolved:
129 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 * - Variable sizing of the per node arrays
134 /* Enable to test recovery from slab corruption on boot */
135 #undef SLUB_RESILIENCY_TEST
137 /* Enable to log cmpxchg failures */
138 #undef SLUB_DEBUG_CMPXCHG
141 * Mininum number of partial slabs. These will be left on the partial
142 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 #define MIN_PARTIAL 5
147 * Maximum number of desirable partial slabs.
148 * The existence of more partial slabs makes kmem_cache_shrink
149 * sort the partial list by the number of objects in the.
151 #define MAX_PARTIAL 10
153 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_STORE_USER)
157 * Debugging flags that require metadata to be stored in the slab. These get
158 * disabled when slub_debug=O is used and a cache's min order increases with
161 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
164 * Set of flags that will prevent slab merging
166 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
167 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
170 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
171 SLAB_CACHE_DMA | SLAB_NOTRACK)
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static struct notifier_block slab_notifier
;
186 * Tracking user of a slab.
188 #define TRACK_ADDRS_COUNT 16
190 unsigned long addr
; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
194 int cpu
; /* Was running on cpu */
195 int pid
; /* Pid context */
196 unsigned long when
; /* When did the operation occur */
199 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
202 static int sysfs_slab_add(struct kmem_cache
*);
203 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
204 static void sysfs_slab_remove(struct kmem_cache
*);
205 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
207 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
210 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
212 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
215 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
217 #ifdef CONFIG_SLUB_STATS
218 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
226 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
228 return s
->node
[node
];
231 /* Verify that a pointer has an address that is valid within a slab page */
232 static inline int check_valid_pointer(struct kmem_cache
*s
,
233 struct page
*page
, const void *object
)
240 base
= page_address(page
);
241 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
242 (object
- base
) % s
->size
) {
249 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
251 return *(void **)(object
+ s
->offset
);
254 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
256 prefetch(object
+ s
->offset
);
259 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
263 #ifdef CONFIG_DEBUG_PAGEALLOC
264 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
266 p
= get_freepointer(s
, object
);
271 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
273 *(void **)(object
+ s
->offset
) = fp
;
276 /* Loop over all objects in a slab */
277 #define for_each_object(__p, __s, __addr, __objects) \
278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
284 return (p
- addr
) / s
->size
;
287 static inline size_t slab_ksize(const struct kmem_cache
*s
)
289 #ifdef CONFIG_SLUB_DEBUG
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
294 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
295 return s
->object_size
;
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
303 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
306 * Else we can use all the padding etc for the allocation
311 static inline int order_objects(int order
, unsigned long size
, int reserved
)
313 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
316 static inline struct kmem_cache_order_objects
oo_make(int order
,
317 unsigned long size
, int reserved
)
319 struct kmem_cache_order_objects x
= {
320 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
326 static inline int oo_order(struct kmem_cache_order_objects x
)
328 return x
.x
>> OO_SHIFT
;
331 static inline int oo_objects(struct kmem_cache_order_objects x
)
333 return x
.x
& OO_MASK
;
337 * Per slab locking using the pagelock
339 static __always_inline
void slab_lock(struct page
*page
)
341 bit_spin_lock(PG_locked
, &page
->flags
);
344 static __always_inline
void slab_unlock(struct page
*page
)
346 __bit_spin_unlock(PG_locked
, &page
->flags
);
349 /* Interrupts must be disabled (for the fallback code to work right) */
350 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
351 void *freelist_old
, unsigned long counters_old
,
352 void *freelist_new
, unsigned long counters_new
,
355 VM_BUG_ON(!irqs_disabled());
356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
358 if (s
->flags
& __CMPXCHG_DOUBLE
) {
359 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
360 freelist_old
, counters_old
,
361 freelist_new
, counters_new
))
367 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
368 page
->freelist
= freelist_new
;
369 page
->counters
= counters_new
;
377 stat(s
, CMPXCHG_DOUBLE_FAIL
);
379 #ifdef SLUB_DEBUG_CMPXCHG
380 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
386 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
387 void *freelist_old
, unsigned long counters_old
,
388 void *freelist_new
, unsigned long counters_new
,
391 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
393 if (s
->flags
& __CMPXCHG_DOUBLE
) {
394 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
395 freelist_old
, counters_old
,
396 freelist_new
, counters_new
))
403 local_irq_save(flags
);
405 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
406 page
->freelist
= freelist_new
;
407 page
->counters
= counters_new
;
409 local_irq_restore(flags
);
413 local_irq_restore(flags
);
417 stat(s
, CMPXCHG_DOUBLE_FAIL
);
419 #ifdef SLUB_DEBUG_CMPXCHG
420 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
426 #ifdef CONFIG_SLUB_DEBUG
428 * Determine a map of object in use on a page.
430 * Node listlock must be held to guarantee that the page does
431 * not vanish from under us.
433 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
436 void *addr
= page_address(page
);
438 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
439 set_bit(slab_index(p
, s
, addr
), map
);
445 #ifdef CONFIG_SLUB_DEBUG_ON
446 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
448 static int slub_debug
;
451 static char *slub_debug_slabs
;
452 static int disable_higher_order_debug
;
457 static void print_section(char *text
, u8
*addr
, unsigned int length
)
459 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
463 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
464 enum track_item alloc
)
469 p
= object
+ s
->offset
+ sizeof(void *);
471 p
= object
+ s
->inuse
;
476 static void set_track(struct kmem_cache
*s
, void *object
,
477 enum track_item alloc
, unsigned long addr
)
479 struct track
*p
= get_track(s
, object
, alloc
);
482 #ifdef CONFIG_STACKTRACE
483 struct stack_trace trace
;
486 trace
.nr_entries
= 0;
487 trace
.max_entries
= TRACK_ADDRS_COUNT
;
488 trace
.entries
= p
->addrs
;
490 save_stack_trace(&trace
);
492 /* See rant in lockdep.c */
493 if (trace
.nr_entries
!= 0 &&
494 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
497 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
501 p
->cpu
= smp_processor_id();
502 p
->pid
= current
->pid
;
505 memset(p
, 0, sizeof(struct track
));
508 static void init_tracking(struct kmem_cache
*s
, void *object
)
510 if (!(s
->flags
& SLAB_STORE_USER
))
513 set_track(s
, object
, TRACK_FREE
, 0UL);
514 set_track(s
, object
, TRACK_ALLOC
, 0UL);
517 static void print_track(const char *s
, struct track
*t
)
522 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
523 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
524 #ifdef CONFIG_STACKTRACE
527 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
529 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
536 static void print_tracking(struct kmem_cache
*s
, void *object
)
538 if (!(s
->flags
& SLAB_STORE_USER
))
541 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
542 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
545 static void print_page_info(struct page
*page
)
547 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
552 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
558 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
560 printk(KERN_ERR
"========================================"
561 "=====================================\n");
562 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
563 printk(KERN_ERR
"----------------------------------------"
564 "-------------------------------------\n\n");
566 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
569 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
575 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
577 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
580 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
582 unsigned int off
; /* Offset of last byte */
583 u8
*addr
= page_address(page
);
585 print_tracking(s
, p
);
587 print_page_info(page
);
589 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
590 p
, p
- addr
, get_freepointer(s
, p
));
593 print_section("Bytes b4 ", p
- 16, 16);
595 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
597 if (s
->flags
& SLAB_RED_ZONE
)
598 print_section("Redzone ", p
+ s
->object_size
,
599 s
->inuse
- s
->object_size
);
602 off
= s
->offset
+ sizeof(void *);
606 if (s
->flags
& SLAB_STORE_USER
)
607 off
+= 2 * sizeof(struct track
);
610 /* Beginning of the filler is the free pointer */
611 print_section("Padding ", p
+ off
, s
->size
- off
);
616 static void object_err(struct kmem_cache
*s
, struct page
*page
,
617 u8
*object
, char *reason
)
619 slab_bug(s
, "%s", reason
);
620 print_trailer(s
, page
, object
);
623 static void slab_err(struct kmem_cache
*s
, struct page
*page
, const char *fmt
, ...)
629 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
631 slab_bug(s
, "%s", buf
);
632 print_page_info(page
);
636 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
640 if (s
->flags
& __OBJECT_POISON
) {
641 memset(p
, POISON_FREE
, s
->object_size
- 1);
642 p
[s
->object_size
- 1] = POISON_END
;
645 if (s
->flags
& SLAB_RED_ZONE
)
646 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
649 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
650 void *from
, void *to
)
652 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
653 memset(from
, data
, to
- from
);
656 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
657 u8
*object
, char *what
,
658 u8
*start
, unsigned int value
, unsigned int bytes
)
663 fault
= memchr_inv(start
, value
, bytes
);
668 while (end
> fault
&& end
[-1] == value
)
671 slab_bug(s
, "%s overwritten", what
);
672 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
673 fault
, end
- 1, fault
[0], value
);
674 print_trailer(s
, page
, object
);
676 restore_bytes(s
, what
, value
, fault
, end
);
684 * Bytes of the object to be managed.
685 * If the freepointer may overlay the object then the free
686 * pointer is the first word of the object.
688 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
691 * object + s->object_size
692 * Padding to reach word boundary. This is also used for Redzoning.
693 * Padding is extended by another word if Redzoning is enabled and
694 * object_size == inuse.
696 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
697 * 0xcc (RED_ACTIVE) for objects in use.
700 * Meta data starts here.
702 * A. Free pointer (if we cannot overwrite object on free)
703 * B. Tracking data for SLAB_STORE_USER
704 * C. Padding to reach required alignment boundary or at mininum
705 * one word if debugging is on to be able to detect writes
706 * before the word boundary.
708 * Padding is done using 0x5a (POISON_INUSE)
711 * Nothing is used beyond s->size.
713 * If slabcaches are merged then the object_size and inuse boundaries are mostly
714 * ignored. And therefore no slab options that rely on these boundaries
715 * may be used with merged slabcaches.
718 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
720 unsigned long off
= s
->inuse
; /* The end of info */
723 /* Freepointer is placed after the object. */
724 off
+= sizeof(void *);
726 if (s
->flags
& SLAB_STORE_USER
)
727 /* We also have user information there */
728 off
+= 2 * sizeof(struct track
);
733 return check_bytes_and_report(s
, page
, p
, "Object padding",
734 p
+ off
, POISON_INUSE
, s
->size
- off
);
737 /* Check the pad bytes at the end of a slab page */
738 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
746 if (!(s
->flags
& SLAB_POISON
))
749 start
= page_address(page
);
750 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
751 end
= start
+ length
;
752 remainder
= length
% s
->size
;
756 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
759 while (end
> fault
&& end
[-1] == POISON_INUSE
)
762 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
763 print_section("Padding ", end
- remainder
, remainder
);
765 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
769 static int check_object(struct kmem_cache
*s
, struct page
*page
,
770 void *object
, u8 val
)
773 u8
*endobject
= object
+ s
->object_size
;
775 if (s
->flags
& SLAB_RED_ZONE
) {
776 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
777 endobject
, val
, s
->inuse
- s
->object_size
))
780 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
781 check_bytes_and_report(s
, page
, p
, "Alignment padding",
782 endobject
, POISON_INUSE
, s
->inuse
- s
->object_size
);
786 if (s
->flags
& SLAB_POISON
) {
787 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
788 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
789 POISON_FREE
, s
->object_size
- 1) ||
790 !check_bytes_and_report(s
, page
, p
, "Poison",
791 p
+ s
->object_size
- 1, POISON_END
, 1)))
794 * check_pad_bytes cleans up on its own.
796 check_pad_bytes(s
, page
, p
);
799 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
801 * Object and freepointer overlap. Cannot check
802 * freepointer while object is allocated.
806 /* Check free pointer validity */
807 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
808 object_err(s
, page
, p
, "Freepointer corrupt");
810 * No choice but to zap it and thus lose the remainder
811 * of the free objects in this slab. May cause
812 * another error because the object count is now wrong.
814 set_freepointer(s
, p
, NULL
);
820 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
824 VM_BUG_ON(!irqs_disabled());
826 if (!PageSlab(page
)) {
827 slab_err(s
, page
, "Not a valid slab page");
831 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
832 if (page
->objects
> maxobj
) {
833 slab_err(s
, page
, "objects %u > max %u",
834 s
->name
, page
->objects
, maxobj
);
837 if (page
->inuse
> page
->objects
) {
838 slab_err(s
, page
, "inuse %u > max %u",
839 s
->name
, page
->inuse
, page
->objects
);
842 /* Slab_pad_check fixes things up after itself */
843 slab_pad_check(s
, page
);
848 * Determine if a certain object on a page is on the freelist. Must hold the
849 * slab lock to guarantee that the chains are in a consistent state.
851 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
856 unsigned long max_objects
;
859 while (fp
&& nr
<= page
->objects
) {
862 if (!check_valid_pointer(s
, page
, fp
)) {
864 object_err(s
, page
, object
,
865 "Freechain corrupt");
866 set_freepointer(s
, object
, NULL
);
869 slab_err(s
, page
, "Freepointer corrupt");
870 page
->freelist
= NULL
;
871 page
->inuse
= page
->objects
;
872 slab_fix(s
, "Freelist cleared");
878 fp
= get_freepointer(s
, object
);
882 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
883 if (max_objects
> MAX_OBJS_PER_PAGE
)
884 max_objects
= MAX_OBJS_PER_PAGE
;
886 if (page
->objects
!= max_objects
) {
887 slab_err(s
, page
, "Wrong number of objects. Found %d but "
888 "should be %d", page
->objects
, max_objects
);
889 page
->objects
= max_objects
;
890 slab_fix(s
, "Number of objects adjusted.");
892 if (page
->inuse
!= page
->objects
- nr
) {
893 slab_err(s
, page
, "Wrong object count. Counter is %d but "
894 "counted were %d", page
->inuse
, page
->objects
- nr
);
895 page
->inuse
= page
->objects
- nr
;
896 slab_fix(s
, "Object count adjusted.");
898 return search
== NULL
;
901 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
904 if (s
->flags
& SLAB_TRACE
) {
905 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
907 alloc
? "alloc" : "free",
912 print_section("Object ", (void *)object
, s
->object_size
);
919 * Hooks for other subsystems that check memory allocations. In a typical
920 * production configuration these hooks all should produce no code at all.
922 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
924 flags
&= gfp_allowed_mask
;
925 lockdep_trace_alloc(flags
);
926 might_sleep_if(flags
& __GFP_WAIT
);
928 return should_failslab(s
->object_size
, flags
, s
->flags
);
931 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
933 flags
&= gfp_allowed_mask
;
934 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
935 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
938 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
940 kmemleak_free_recursive(x
, s
->flags
);
943 * Trouble is that we may no longer disable interupts in the fast path
944 * So in order to make the debug calls that expect irqs to be
945 * disabled we need to disable interrupts temporarily.
947 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
951 local_irq_save(flags
);
952 kmemcheck_slab_free(s
, x
, s
->object_size
);
953 debug_check_no_locks_freed(x
, s
->object_size
);
954 local_irq_restore(flags
);
957 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
958 debug_check_no_obj_freed(x
, s
->object_size
);
962 * Tracking of fully allocated slabs for debugging purposes.
964 * list_lock must be held.
966 static void add_full(struct kmem_cache
*s
,
967 struct kmem_cache_node
*n
, struct page
*page
)
969 if (!(s
->flags
& SLAB_STORE_USER
))
972 list_add(&page
->lru
, &n
->full
);
976 * list_lock must be held.
978 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
980 if (!(s
->flags
& SLAB_STORE_USER
))
983 list_del(&page
->lru
);
986 /* Tracking of the number of slabs for debugging purposes */
987 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
989 struct kmem_cache_node
*n
= get_node(s
, node
);
991 return atomic_long_read(&n
->nr_slabs
);
994 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
996 return atomic_long_read(&n
->nr_slabs
);
999 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1001 struct kmem_cache_node
*n
= get_node(s
, node
);
1004 * May be called early in order to allocate a slab for the
1005 * kmem_cache_node structure. Solve the chicken-egg
1006 * dilemma by deferring the increment of the count during
1007 * bootstrap (see early_kmem_cache_node_alloc).
1010 atomic_long_inc(&n
->nr_slabs
);
1011 atomic_long_add(objects
, &n
->total_objects
);
1014 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1016 struct kmem_cache_node
*n
= get_node(s
, node
);
1018 atomic_long_dec(&n
->nr_slabs
);
1019 atomic_long_sub(objects
, &n
->total_objects
);
1022 /* Object debug checks for alloc/free paths */
1023 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1026 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1029 init_object(s
, object
, SLUB_RED_INACTIVE
);
1030 init_tracking(s
, object
);
1033 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1034 void *object
, unsigned long addr
)
1036 if (!check_slab(s
, page
))
1039 if (!check_valid_pointer(s
, page
, object
)) {
1040 object_err(s
, page
, object
, "Freelist Pointer check fails");
1044 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1047 /* Success perform special debug activities for allocs */
1048 if (s
->flags
& SLAB_STORE_USER
)
1049 set_track(s
, object
, TRACK_ALLOC
, addr
);
1050 trace(s
, page
, object
, 1);
1051 init_object(s
, object
, SLUB_RED_ACTIVE
);
1055 if (PageSlab(page
)) {
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1061 slab_fix(s
, "Marking all objects used");
1062 page
->inuse
= page
->objects
;
1063 page
->freelist
= NULL
;
1068 static noinline
struct kmem_cache_node
*free_debug_processing(
1069 struct kmem_cache
*s
, struct page
*page
, void *object
,
1070 unsigned long addr
, unsigned long *flags
)
1072 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1074 spin_lock_irqsave(&n
->list_lock
, *flags
);
1077 if (!check_slab(s
, page
))
1080 if (!check_valid_pointer(s
, page
, object
)) {
1081 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1085 if (on_freelist(s
, page
, object
)) {
1086 object_err(s
, page
, object
, "Object already free");
1090 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1093 if (unlikely(s
!= page
->slab_cache
)) {
1094 if (!PageSlab(page
)) {
1095 slab_err(s
, page
, "Attempt to free object(0x%p) "
1096 "outside of slab", object
);
1097 } else if (!page
->slab_cache
) {
1099 "SLUB <none>: no slab for object 0x%p.\n",
1103 object_err(s
, page
, object
,
1104 "page slab pointer corrupt.");
1108 if (s
->flags
& SLAB_STORE_USER
)
1109 set_track(s
, object
, TRACK_FREE
, addr
);
1110 trace(s
, page
, object
, 0);
1111 init_object(s
, object
, SLUB_RED_INACTIVE
);
1115 * Keep node_lock to preserve integrity
1116 * until the object is actually freed
1122 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1123 slab_fix(s
, "Object at 0x%p not freed", object
);
1127 static int __init
setup_slub_debug(char *str
)
1129 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1130 if (*str
++ != '=' || !*str
)
1132 * No options specified. Switch on full debugging.
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1143 if (tolower(*str
) == 'o') {
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1148 disable_higher_order_debug
= 1;
1155 * Switch off all debugging measures.
1160 * Determine which debug features should be switched on
1162 for (; *str
&& *str
!= ','; str
++) {
1163 switch (tolower(*str
)) {
1165 slub_debug
|= SLAB_DEBUG_FREE
;
1168 slub_debug
|= SLAB_RED_ZONE
;
1171 slub_debug
|= SLAB_POISON
;
1174 slub_debug
|= SLAB_STORE_USER
;
1177 slub_debug
|= SLAB_TRACE
;
1180 slub_debug
|= SLAB_FAILSLAB
;
1183 printk(KERN_ERR
"slub_debug option '%c' "
1184 "unknown. skipped\n", *str
);
1190 slub_debug_slabs
= str
+ 1;
1195 __setup("slub_debug", setup_slub_debug
);
1197 static unsigned long kmem_cache_flags(unsigned long object_size
,
1198 unsigned long flags
, const char *name
,
1199 void (*ctor
)(void *))
1202 * Enable debugging if selected on the kernel commandline.
1204 if (slub_debug
&& (!slub_debug_slabs
||
1205 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1206 flags
|= slub_debug
;
1211 static inline void setup_object_debug(struct kmem_cache
*s
,
1212 struct page
*page
, void *object
) {}
1214 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1215 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1217 static inline struct kmem_cache_node
*free_debug_processing(
1218 struct kmem_cache
*s
, struct page
*page
, void *object
,
1219 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1221 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1223 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1224 void *object
, u8 val
) { return 1; }
1225 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1226 struct page
*page
) {}
1227 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1228 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1229 unsigned long flags
, const char *name
,
1230 void (*ctor
)(void *))
1234 #define slub_debug 0
1236 #define disable_higher_order_debug 0
1238 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1240 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1242 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1244 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1247 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1250 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1253 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1255 #endif /* CONFIG_SLUB_DEBUG */
1258 * Slab allocation and freeing
1260 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1261 struct kmem_cache_order_objects oo
)
1263 int order
= oo_order(oo
);
1265 flags
|= __GFP_NOTRACK
;
1267 if (node
== NUMA_NO_NODE
)
1268 return alloc_pages(flags
, order
);
1270 return alloc_pages_exact_node(node
, flags
, order
);
1273 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1276 struct kmem_cache_order_objects oo
= s
->oo
;
1279 flags
&= gfp_allowed_mask
;
1281 if (flags
& __GFP_WAIT
)
1284 flags
|= s
->allocflags
;
1287 * Let the initial higher-order allocation fail under memory pressure
1288 * so we fall-back to the minimum order allocation.
1290 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1292 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1293 if (unlikely(!page
)) {
1296 * Allocation may have failed due to fragmentation.
1297 * Try a lower order alloc if possible
1299 page
= alloc_slab_page(flags
, node
, oo
);
1302 stat(s
, ORDER_FALLBACK
);
1305 if (kmemcheck_enabled
&& page
1306 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1307 int pages
= 1 << oo_order(oo
);
1309 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1312 * Objects from caches that have a constructor don't get
1313 * cleared when they're allocated, so we need to do it here.
1316 kmemcheck_mark_uninitialized_pages(page
, pages
);
1318 kmemcheck_mark_unallocated_pages(page
, pages
);
1321 if (flags
& __GFP_WAIT
)
1322 local_irq_disable();
1326 page
->objects
= oo_objects(oo
);
1327 mod_zone_page_state(page_zone(page
),
1328 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1329 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1335 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1338 setup_object_debug(s
, page
, object
);
1339 if (unlikely(s
->ctor
))
1343 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1351 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1353 page
= allocate_slab(s
,
1354 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1358 order
= compound_order(page
);
1359 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1360 memcg_bind_pages(s
, order
);
1361 page
->slab_cache
= s
;
1362 __SetPageSlab(page
);
1363 if (page
->pfmemalloc
)
1364 SetPageSlabPfmemalloc(page
);
1366 start
= page_address(page
);
1368 if (unlikely(s
->flags
& SLAB_POISON
))
1369 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1372 for_each_object(p
, s
, start
, page
->objects
) {
1373 setup_object(s
, page
, last
);
1374 set_freepointer(s
, last
, p
);
1377 setup_object(s
, page
, last
);
1378 set_freepointer(s
, last
, NULL
);
1380 page
->freelist
= start
;
1381 page
->inuse
= page
->objects
;
1387 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1389 int order
= compound_order(page
);
1390 int pages
= 1 << order
;
1392 if (kmem_cache_debug(s
)) {
1395 slab_pad_check(s
, page
);
1396 for_each_object(p
, s
, page_address(page
),
1398 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1401 kmemcheck_free_shadow(page
, compound_order(page
));
1403 mod_zone_page_state(page_zone(page
),
1404 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1405 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1408 __ClearPageSlabPfmemalloc(page
);
1409 __ClearPageSlab(page
);
1411 memcg_release_pages(s
, order
);
1412 page_mapcount_reset(page
);
1413 if (current
->reclaim_state
)
1414 current
->reclaim_state
->reclaimed_slab
+= pages
;
1415 __free_memcg_kmem_pages(page
, order
);
1418 #define need_reserve_slab_rcu \
1419 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1421 static void rcu_free_slab(struct rcu_head
*h
)
1425 if (need_reserve_slab_rcu
)
1426 page
= virt_to_head_page(h
);
1428 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1430 __free_slab(page
->slab_cache
, page
);
1433 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1435 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1436 struct rcu_head
*head
;
1438 if (need_reserve_slab_rcu
) {
1439 int order
= compound_order(page
);
1440 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1442 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1443 head
= page_address(page
) + offset
;
1446 * RCU free overloads the RCU head over the LRU
1448 head
= (void *)&page
->lru
;
1451 call_rcu(head
, rcu_free_slab
);
1453 __free_slab(s
, page
);
1456 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1458 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1463 * Management of partially allocated slabs.
1465 * list_lock must be held.
1467 static inline void add_partial(struct kmem_cache_node
*n
,
1468 struct page
*page
, int tail
)
1471 if (tail
== DEACTIVATE_TO_TAIL
)
1472 list_add_tail(&page
->lru
, &n
->partial
);
1474 list_add(&page
->lru
, &n
->partial
);
1478 * list_lock must be held.
1480 static inline void remove_partial(struct kmem_cache_node
*n
,
1483 list_del(&page
->lru
);
1488 * Remove slab from the partial list, freeze it and
1489 * return the pointer to the freelist.
1491 * Returns a list of objects or NULL if it fails.
1493 * Must hold list_lock since we modify the partial list.
1495 static inline void *acquire_slab(struct kmem_cache
*s
,
1496 struct kmem_cache_node
*n
, struct page
*page
,
1500 unsigned long counters
;
1504 * Zap the freelist and set the frozen bit.
1505 * The old freelist is the list of objects for the
1506 * per cpu allocation list.
1508 freelist
= page
->freelist
;
1509 counters
= page
->counters
;
1510 new.counters
= counters
;
1512 new.inuse
= page
->objects
;
1513 new.freelist
= NULL
;
1515 new.freelist
= freelist
;
1518 VM_BUG_ON(new.frozen
);
1521 if (!__cmpxchg_double_slab(s
, page
,
1523 new.freelist
, new.counters
,
1527 remove_partial(n
, page
);
1532 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1533 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1536 * Try to allocate a partial slab from a specific node.
1538 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1539 struct kmem_cache_cpu
*c
, gfp_t flags
)
1541 struct page
*page
, *page2
;
1542 void *object
= NULL
;
1545 * Racy check. If we mistakenly see no partial slabs then we
1546 * just allocate an empty slab. If we mistakenly try to get a
1547 * partial slab and there is none available then get_partials()
1550 if (!n
|| !n
->nr_partial
)
1553 spin_lock(&n
->list_lock
);
1554 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1558 if (!pfmemalloc_match(page
, flags
))
1561 t
= acquire_slab(s
, n
, page
, object
== NULL
);
1567 stat(s
, ALLOC_FROM_PARTIAL
);
1569 available
= page
->objects
- page
->inuse
;
1571 available
= put_cpu_partial(s
, page
, 0);
1572 stat(s
, CPU_PARTIAL_NODE
);
1574 if (kmem_cache_debug(s
) || available
> s
->cpu_partial
/ 2)
1578 spin_unlock(&n
->list_lock
);
1583 * Get a page from somewhere. Search in increasing NUMA distances.
1585 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1586 struct kmem_cache_cpu
*c
)
1589 struct zonelist
*zonelist
;
1592 enum zone_type high_zoneidx
= gfp_zone(flags
);
1594 unsigned int cpuset_mems_cookie
;
1597 * The defrag ratio allows a configuration of the tradeoffs between
1598 * inter node defragmentation and node local allocations. A lower
1599 * defrag_ratio increases the tendency to do local allocations
1600 * instead of attempting to obtain partial slabs from other nodes.
1602 * If the defrag_ratio is set to 0 then kmalloc() always
1603 * returns node local objects. If the ratio is higher then kmalloc()
1604 * may return off node objects because partial slabs are obtained
1605 * from other nodes and filled up.
1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1608 * defrag_ratio = 1000) then every (well almost) allocation will
1609 * first attempt to defrag slab caches on other nodes. This means
1610 * scanning over all nodes to look for partial slabs which may be
1611 * expensive if we do it every time we are trying to find a slab
1612 * with available objects.
1614 if (!s
->remote_node_defrag_ratio
||
1615 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1619 cpuset_mems_cookie
= get_mems_allowed();
1620 zonelist
= node_zonelist(slab_node(), flags
);
1621 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1622 struct kmem_cache_node
*n
;
1624 n
= get_node(s
, zone_to_nid(zone
));
1626 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1627 n
->nr_partial
> s
->min_partial
) {
1628 object
= get_partial_node(s
, n
, c
, flags
);
1631 * Return the object even if
1632 * put_mems_allowed indicated that
1633 * the cpuset mems_allowed was
1634 * updated in parallel. It's a
1635 * harmless race between the alloc
1636 * and the cpuset update.
1638 put_mems_allowed(cpuset_mems_cookie
);
1643 } while (!put_mems_allowed(cpuset_mems_cookie
));
1649 * Get a partial page, lock it and return it.
1651 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1652 struct kmem_cache_cpu
*c
)
1655 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1657 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1658 if (object
|| node
!= NUMA_NO_NODE
)
1661 return get_any_partial(s
, flags
, c
);
1664 #ifdef CONFIG_PREEMPT
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1670 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1673 * No preemption supported therefore also no need to check for
1679 static inline unsigned long next_tid(unsigned long tid
)
1681 return tid
+ TID_STEP
;
1684 static inline unsigned int tid_to_cpu(unsigned long tid
)
1686 return tid
% TID_STEP
;
1689 static inline unsigned long tid_to_event(unsigned long tid
)
1691 return tid
/ TID_STEP
;
1694 static inline unsigned int init_tid(int cpu
)
1699 static inline void note_cmpxchg_failure(const char *n
,
1700 const struct kmem_cache
*s
, unsigned long tid
)
1702 #ifdef SLUB_DEBUG_CMPXCHG
1703 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1705 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1707 #ifdef CONFIG_PREEMPT
1708 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1709 printk("due to cpu change %d -> %d\n",
1710 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1713 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1714 printk("due to cpu running other code. Event %ld->%ld\n",
1715 tid_to_event(tid
), tid_to_event(actual_tid
));
1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718 actual_tid
, tid
, next_tid(tid
));
1720 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1723 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1727 for_each_possible_cpu(cpu
)
1728 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1732 * Remove the cpu slab
1734 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, void *freelist
)
1736 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1737 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1739 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1741 int tail
= DEACTIVATE_TO_HEAD
;
1745 if (page
->freelist
) {
1746 stat(s
, DEACTIVATE_REMOTE_FREES
);
1747 tail
= DEACTIVATE_TO_TAIL
;
1751 * Stage one: Free all available per cpu objects back
1752 * to the page freelist while it is still frozen. Leave the
1755 * There is no need to take the list->lock because the page
1758 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1760 unsigned long counters
;
1763 prior
= page
->freelist
;
1764 counters
= page
->counters
;
1765 set_freepointer(s
, freelist
, prior
);
1766 new.counters
= counters
;
1768 VM_BUG_ON(!new.frozen
);
1770 } while (!__cmpxchg_double_slab(s
, page
,
1772 freelist
, new.counters
,
1773 "drain percpu freelist"));
1775 freelist
= nextfree
;
1779 * Stage two: Ensure that the page is unfrozen while the
1780 * list presence reflects the actual number of objects
1783 * We setup the list membership and then perform a cmpxchg
1784 * with the count. If there is a mismatch then the page
1785 * is not unfrozen but the page is on the wrong list.
1787 * Then we restart the process which may have to remove
1788 * the page from the list that we just put it on again
1789 * because the number of objects in the slab may have
1794 old
.freelist
= page
->freelist
;
1795 old
.counters
= page
->counters
;
1796 VM_BUG_ON(!old
.frozen
);
1798 /* Determine target state of the slab */
1799 new.counters
= old
.counters
;
1802 set_freepointer(s
, freelist
, old
.freelist
);
1803 new.freelist
= freelist
;
1805 new.freelist
= old
.freelist
;
1809 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1811 else if (new.freelist
) {
1816 * Taking the spinlock removes the possiblity
1817 * that acquire_slab() will see a slab page that
1820 spin_lock(&n
->list_lock
);
1824 if (kmem_cache_debug(s
) && !lock
) {
1827 * This also ensures that the scanning of full
1828 * slabs from diagnostic functions will not see
1831 spin_lock(&n
->list_lock
);
1839 remove_partial(n
, page
);
1841 else if (l
== M_FULL
)
1843 remove_full(s
, page
);
1845 if (m
== M_PARTIAL
) {
1847 add_partial(n
, page
, tail
);
1850 } else if (m
== M_FULL
) {
1852 stat(s
, DEACTIVATE_FULL
);
1853 add_full(s
, n
, page
);
1859 if (!__cmpxchg_double_slab(s
, page
,
1860 old
.freelist
, old
.counters
,
1861 new.freelist
, new.counters
,
1866 spin_unlock(&n
->list_lock
);
1869 stat(s
, DEACTIVATE_EMPTY
);
1870 discard_slab(s
, page
);
1876 * Unfreeze all the cpu partial slabs.
1878 * This function must be called with interrupts disabled
1879 * for the cpu using c (or some other guarantee must be there
1880 * to guarantee no concurrent accesses).
1882 static void unfreeze_partials(struct kmem_cache
*s
,
1883 struct kmem_cache_cpu
*c
)
1885 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1886 struct page
*page
, *discard_page
= NULL
;
1888 while ((page
= c
->partial
)) {
1892 c
->partial
= page
->next
;
1894 n2
= get_node(s
, page_to_nid(page
));
1897 spin_unlock(&n
->list_lock
);
1900 spin_lock(&n
->list_lock
);
1905 old
.freelist
= page
->freelist
;
1906 old
.counters
= page
->counters
;
1907 VM_BUG_ON(!old
.frozen
);
1909 new.counters
= old
.counters
;
1910 new.freelist
= old
.freelist
;
1914 } while (!__cmpxchg_double_slab(s
, page
,
1915 old
.freelist
, old
.counters
,
1916 new.freelist
, new.counters
,
1917 "unfreezing slab"));
1919 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1920 page
->next
= discard_page
;
1921 discard_page
= page
;
1923 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1924 stat(s
, FREE_ADD_PARTIAL
);
1929 spin_unlock(&n
->list_lock
);
1931 while (discard_page
) {
1932 page
= discard_page
;
1933 discard_page
= discard_page
->next
;
1935 stat(s
, DEACTIVATE_EMPTY
);
1936 discard_slab(s
, page
);
1942 * Put a page that was just frozen (in __slab_free) into a partial page
1943 * slot if available. This is done without interrupts disabled and without
1944 * preemption disabled. The cmpxchg is racy and may put the partial page
1945 * onto a random cpus partial slot.
1947 * If we did not find a slot then simply move all the partials to the
1948 * per node partial list.
1950 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
1952 struct page
*oldpage
;
1959 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
1962 pobjects
= oldpage
->pobjects
;
1963 pages
= oldpage
->pages
;
1964 if (drain
&& pobjects
> s
->cpu_partial
) {
1965 unsigned long flags
;
1967 * partial array is full. Move the existing
1968 * set to the per node partial list.
1970 local_irq_save(flags
);
1971 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
1972 local_irq_restore(flags
);
1976 stat(s
, CPU_PARTIAL_DRAIN
);
1981 pobjects
+= page
->objects
- page
->inuse
;
1983 page
->pages
= pages
;
1984 page
->pobjects
= pobjects
;
1985 page
->next
= oldpage
;
1987 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
1991 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1993 stat(s
, CPUSLAB_FLUSH
);
1994 deactivate_slab(s
, c
->page
, c
->freelist
);
1996 c
->tid
= next_tid(c
->tid
);
2004 * Called from IPI handler with interrupts disabled.
2006 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2008 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2014 unfreeze_partials(s
, c
);
2018 static void flush_cpu_slab(void *d
)
2020 struct kmem_cache
*s
= d
;
2022 __flush_cpu_slab(s
, smp_processor_id());
2025 static bool has_cpu_slab(int cpu
, void *info
)
2027 struct kmem_cache
*s
= info
;
2028 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2030 return c
->page
|| c
->partial
;
2033 static void flush_all(struct kmem_cache
*s
)
2035 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2039 * Check if the objects in a per cpu structure fit numa
2040 * locality expectations.
2042 static inline int node_match(struct page
*page
, int node
)
2045 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2051 static int count_free(struct page
*page
)
2053 return page
->objects
- page
->inuse
;
2056 static unsigned long count_partial(struct kmem_cache_node
*n
,
2057 int (*get_count
)(struct page
*))
2059 unsigned long flags
;
2060 unsigned long x
= 0;
2063 spin_lock_irqsave(&n
->list_lock
, flags
);
2064 list_for_each_entry(page
, &n
->partial
, lru
)
2065 x
+= get_count(page
);
2066 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2070 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2072 #ifdef CONFIG_SLUB_DEBUG
2073 return atomic_long_read(&n
->total_objects
);
2079 static noinline
void
2080 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2085 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2087 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2088 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2089 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2091 if (oo_order(s
->min
) > get_order(s
->object_size
))
2092 printk(KERN_WARNING
" %s debugging increased min order, use "
2093 "slub_debug=O to disable.\n", s
->name
);
2095 for_each_online_node(node
) {
2096 struct kmem_cache_node
*n
= get_node(s
, node
);
2097 unsigned long nr_slabs
;
2098 unsigned long nr_objs
;
2099 unsigned long nr_free
;
2104 nr_free
= count_partial(n
, count_free
);
2105 nr_slabs
= node_nr_slabs(n
);
2106 nr_objs
= node_nr_objs(n
);
2109 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2110 node
, nr_slabs
, nr_objs
, nr_free
);
2114 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2115 int node
, struct kmem_cache_cpu
**pc
)
2118 struct kmem_cache_cpu
*c
= *pc
;
2121 freelist
= get_partial(s
, flags
, node
, c
);
2126 page
= new_slab(s
, flags
, node
);
2128 c
= __this_cpu_ptr(s
->cpu_slab
);
2133 * No other reference to the page yet so we can
2134 * muck around with it freely without cmpxchg
2136 freelist
= page
->freelist
;
2137 page
->freelist
= NULL
;
2139 stat(s
, ALLOC_SLAB
);
2148 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2150 if (unlikely(PageSlabPfmemalloc(page
)))
2151 return gfp_pfmemalloc_allowed(gfpflags
);
2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158 * or deactivate the page.
2160 * The page is still frozen if the return value is not NULL.
2162 * If this function returns NULL then the page has been unfrozen.
2164 * This function must be called with interrupt disabled.
2166 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2169 unsigned long counters
;
2173 freelist
= page
->freelist
;
2174 counters
= page
->counters
;
2176 new.counters
= counters
;
2177 VM_BUG_ON(!new.frozen
);
2179 new.inuse
= page
->objects
;
2180 new.frozen
= freelist
!= NULL
;
2182 } while (!__cmpxchg_double_slab(s
, page
,
2191 * Slow path. The lockless freelist is empty or we need to perform
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
2202 * And if we were unable to get a new slab from the partial slab lists then
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
2206 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2207 unsigned long addr
, struct kmem_cache_cpu
*c
)
2211 unsigned long flags
;
2213 local_irq_save(flags
);
2214 #ifdef CONFIG_PREEMPT
2216 * We may have been preempted and rescheduled on a different
2217 * cpu before disabling interrupts. Need to reload cpu area
2220 c
= this_cpu_ptr(s
->cpu_slab
);
2228 if (unlikely(!node_match(page
, node
))) {
2229 stat(s
, ALLOC_NODE_MISMATCH
);
2230 deactivate_slab(s
, page
, c
->freelist
);
2237 * By rights, we should be searching for a slab page that was
2238 * PFMEMALLOC but right now, we are losing the pfmemalloc
2239 * information when the page leaves the per-cpu allocator
2241 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2242 deactivate_slab(s
, page
, c
->freelist
);
2248 /* must check again c->freelist in case of cpu migration or IRQ */
2249 freelist
= c
->freelist
;
2253 stat(s
, ALLOC_SLOWPATH
);
2255 freelist
= get_freelist(s
, page
);
2259 stat(s
, DEACTIVATE_BYPASS
);
2263 stat(s
, ALLOC_REFILL
);
2267 * freelist is pointing to the list of objects to be used.
2268 * page is pointing to the page from which the objects are obtained.
2269 * That page must be frozen for per cpu allocations to work.
2271 VM_BUG_ON(!c
->page
->frozen
);
2272 c
->freelist
= get_freepointer(s
, freelist
);
2273 c
->tid
= next_tid(c
->tid
);
2274 local_irq_restore(flags
);
2280 page
= c
->page
= c
->partial
;
2281 c
->partial
= page
->next
;
2282 stat(s
, CPU_PARTIAL_ALLOC
);
2287 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2289 if (unlikely(!freelist
)) {
2290 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2291 slab_out_of_memory(s
, gfpflags
, node
);
2293 local_irq_restore(flags
);
2298 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2301 /* Only entered in the debug case */
2302 if (kmem_cache_debug(s
) && !alloc_debug_processing(s
, page
, freelist
, addr
))
2303 goto new_slab
; /* Slab failed checks. Next slab needed */
2305 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2308 local_irq_restore(flags
);
2313 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2314 * have the fastpath folded into their functions. So no function call
2315 * overhead for requests that can be satisfied on the fastpath.
2317 * The fastpath works by first checking if the lockless freelist can be used.
2318 * If not then __slab_alloc is called for slow processing.
2320 * Otherwise we can simply pick the next object from the lockless free list.
2322 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2323 gfp_t gfpflags
, int node
, unsigned long addr
)
2326 struct kmem_cache_cpu
*c
;
2330 if (slab_pre_alloc_hook(s
, gfpflags
))
2333 s
= memcg_kmem_get_cache(s
, gfpflags
);
2337 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2338 * enabled. We may switch back and forth between cpus while
2339 * reading from one cpu area. That does not matter as long
2340 * as we end up on the original cpu again when doing the cmpxchg.
2342 c
= __this_cpu_ptr(s
->cpu_slab
);
2345 * The transaction ids are globally unique per cpu and per operation on
2346 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2347 * occurs on the right processor and that there was no operation on the
2348 * linked list in between.
2353 object
= c
->freelist
;
2355 if (unlikely(!object
|| !node_match(page
, node
)))
2356 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2359 void *next_object
= get_freepointer_safe(s
, object
);
2362 * The cmpxchg will only match if there was no additional
2363 * operation and if we are on the right processor.
2365 * The cmpxchg does the following atomically (without lock semantics!)
2366 * 1. Relocate first pointer to the current per cpu area.
2367 * 2. Verify that tid and freelist have not been changed
2368 * 3. If they were not changed replace tid and freelist
2370 * Since this is without lock semantics the protection is only against
2371 * code executing on this cpu *not* from access by other cpus.
2373 if (unlikely(!this_cpu_cmpxchg_double(
2374 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2376 next_object
, next_tid(tid
)))) {
2378 note_cmpxchg_failure("slab_alloc", s
, tid
);
2381 prefetch_freepointer(s
, next_object
);
2382 stat(s
, ALLOC_FASTPATH
);
2385 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2386 memset(object
, 0, s
->object_size
);
2388 slab_post_alloc_hook(s
, gfpflags
, object
);
2393 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2394 gfp_t gfpflags
, unsigned long addr
)
2396 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2399 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2401 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2403 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
, s
->size
, gfpflags
);
2407 EXPORT_SYMBOL(kmem_cache_alloc
);
2409 #ifdef CONFIG_TRACING
2410 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2412 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2413 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2416 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2418 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2420 void *ret
= kmalloc_order(size
, flags
, order
);
2421 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2424 EXPORT_SYMBOL(kmalloc_order_trace
);
2428 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2430 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2432 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2433 s
->object_size
, s
->size
, gfpflags
, node
);
2437 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2439 #ifdef CONFIG_TRACING
2440 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2442 int node
, size_t size
)
2444 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2446 trace_kmalloc_node(_RET_IP_
, ret
,
2447 size
, s
->size
, gfpflags
, node
);
2450 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2455 * Slow patch handling. This may still be called frequently since objects
2456 * have a longer lifetime than the cpu slabs in most processing loads.
2458 * So we still attempt to reduce cache line usage. Just take the slab
2459 * lock and free the item. If there is no additional partial page
2460 * handling required then we can return immediately.
2462 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2463 void *x
, unsigned long addr
)
2466 void **object
= (void *)x
;
2469 unsigned long counters
;
2470 struct kmem_cache_node
*n
= NULL
;
2471 unsigned long uninitialized_var(flags
);
2473 stat(s
, FREE_SLOWPATH
);
2475 if (kmem_cache_debug(s
) &&
2476 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2481 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2484 prior
= page
->freelist
;
2485 counters
= page
->counters
;
2486 set_freepointer(s
, object
, prior
);
2487 new.counters
= counters
;
2488 was_frozen
= new.frozen
;
2490 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2492 if (!kmem_cache_debug(s
) && !prior
)
2495 * Slab was on no list before and will be partially empty
2496 * We can defer the list move and instead freeze it.
2500 else { /* Needs to be taken off a list */
2502 n
= get_node(s
, page_to_nid(page
));
2504 * Speculatively acquire the list_lock.
2505 * If the cmpxchg does not succeed then we may
2506 * drop the list_lock without any processing.
2508 * Otherwise the list_lock will synchronize with
2509 * other processors updating the list of slabs.
2511 spin_lock_irqsave(&n
->list_lock
, flags
);
2516 } while (!cmpxchg_double_slab(s
, page
,
2518 object
, new.counters
,
2524 * If we just froze the page then put it onto the
2525 * per cpu partial list.
2527 if (new.frozen
&& !was_frozen
) {
2528 put_cpu_partial(s
, page
, 1);
2529 stat(s
, CPU_PARTIAL_FREE
);
2532 * The list lock was not taken therefore no list
2533 * activity can be necessary.
2536 stat(s
, FREE_FROZEN
);
2540 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
))
2544 * Objects left in the slab. If it was not on the partial list before
2547 if (kmem_cache_debug(s
) && unlikely(!prior
)) {
2548 remove_full(s
, page
);
2549 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2550 stat(s
, FREE_ADD_PARTIAL
);
2552 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2558 * Slab on the partial list.
2560 remove_partial(n
, page
);
2561 stat(s
, FREE_REMOVE_PARTIAL
);
2563 /* Slab must be on the full list */
2564 remove_full(s
, page
);
2566 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2568 discard_slab(s
, page
);
2572 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2573 * can perform fastpath freeing without additional function calls.
2575 * The fastpath is only possible if we are freeing to the current cpu slab
2576 * of this processor. This typically the case if we have just allocated
2579 * If fastpath is not possible then fall back to __slab_free where we deal
2580 * with all sorts of special processing.
2582 static __always_inline
void slab_free(struct kmem_cache
*s
,
2583 struct page
*page
, void *x
, unsigned long addr
)
2585 void **object
= (void *)x
;
2586 struct kmem_cache_cpu
*c
;
2589 slab_free_hook(s
, x
);
2593 * Determine the currently cpus per cpu slab.
2594 * The cpu may change afterward. However that does not matter since
2595 * data is retrieved via this pointer. If we are on the same cpu
2596 * during the cmpxchg then the free will succedd.
2598 c
= __this_cpu_ptr(s
->cpu_slab
);
2603 if (likely(page
== c
->page
)) {
2604 set_freepointer(s
, object
, c
->freelist
);
2606 if (unlikely(!this_cpu_cmpxchg_double(
2607 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2609 object
, next_tid(tid
)))) {
2611 note_cmpxchg_failure("slab_free", s
, tid
);
2614 stat(s
, FREE_FASTPATH
);
2616 __slab_free(s
, page
, x
, addr
);
2620 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2622 s
= cache_from_obj(s
, x
);
2625 slab_free(s
, virt_to_head_page(x
), x
, _RET_IP_
);
2626 trace_kmem_cache_free(_RET_IP_
, x
);
2628 EXPORT_SYMBOL(kmem_cache_free
);
2631 * Object placement in a slab is made very easy because we always start at
2632 * offset 0. If we tune the size of the object to the alignment then we can
2633 * get the required alignment by putting one properly sized object after
2636 * Notice that the allocation order determines the sizes of the per cpu
2637 * caches. Each processor has always one slab available for allocations.
2638 * Increasing the allocation order reduces the number of times that slabs
2639 * must be moved on and off the partial lists and is therefore a factor in
2644 * Mininum / Maximum order of slab pages. This influences locking overhead
2645 * and slab fragmentation. A higher order reduces the number of partial slabs
2646 * and increases the number of allocations possible without having to
2647 * take the list_lock.
2649 static int slub_min_order
;
2650 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2651 static int slub_min_objects
;
2654 * Merge control. If this is set then no merging of slab caches will occur.
2655 * (Could be removed. This was introduced to pacify the merge skeptics.)
2657 static int slub_nomerge
;
2660 * Calculate the order of allocation given an slab object size.
2662 * The order of allocation has significant impact on performance and other
2663 * system components. Generally order 0 allocations should be preferred since
2664 * order 0 does not cause fragmentation in the page allocator. Larger objects
2665 * be problematic to put into order 0 slabs because there may be too much
2666 * unused space left. We go to a higher order if more than 1/16th of the slab
2669 * In order to reach satisfactory performance we must ensure that a minimum
2670 * number of objects is in one slab. Otherwise we may generate too much
2671 * activity on the partial lists which requires taking the list_lock. This is
2672 * less a concern for large slabs though which are rarely used.
2674 * slub_max_order specifies the order where we begin to stop considering the
2675 * number of objects in a slab as critical. If we reach slub_max_order then
2676 * we try to keep the page order as low as possible. So we accept more waste
2677 * of space in favor of a small page order.
2679 * Higher order allocations also allow the placement of more objects in a
2680 * slab and thereby reduce object handling overhead. If the user has
2681 * requested a higher mininum order then we start with that one instead of
2682 * the smallest order which will fit the object.
2684 static inline int slab_order(int size
, int min_objects
,
2685 int max_order
, int fract_leftover
, int reserved
)
2689 int min_order
= slub_min_order
;
2691 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2692 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2694 for (order
= max(min_order
,
2695 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2696 order
<= max_order
; order
++) {
2698 unsigned long slab_size
= PAGE_SIZE
<< order
;
2700 if (slab_size
< min_objects
* size
+ reserved
)
2703 rem
= (slab_size
- reserved
) % size
;
2705 if (rem
<= slab_size
/ fract_leftover
)
2713 static inline int calculate_order(int size
, int reserved
)
2721 * Attempt to find best configuration for a slab. This
2722 * works by first attempting to generate a layout with
2723 * the best configuration and backing off gradually.
2725 * First we reduce the acceptable waste in a slab. Then
2726 * we reduce the minimum objects required in a slab.
2728 min_objects
= slub_min_objects
;
2730 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2731 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2732 min_objects
= min(min_objects
, max_objects
);
2734 while (min_objects
> 1) {
2736 while (fraction
>= 4) {
2737 order
= slab_order(size
, min_objects
,
2738 slub_max_order
, fraction
, reserved
);
2739 if (order
<= slub_max_order
)
2747 * We were unable to place multiple objects in a slab. Now
2748 * lets see if we can place a single object there.
2750 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2751 if (order
<= slub_max_order
)
2755 * Doh this slab cannot be placed using slub_max_order.
2757 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2758 if (order
< MAX_ORDER
)
2764 init_kmem_cache_node(struct kmem_cache_node
*n
)
2767 spin_lock_init(&n
->list_lock
);
2768 INIT_LIST_HEAD(&n
->partial
);
2769 #ifdef CONFIG_SLUB_DEBUG
2770 atomic_long_set(&n
->nr_slabs
, 0);
2771 atomic_long_set(&n
->total_objects
, 0);
2772 INIT_LIST_HEAD(&n
->full
);
2776 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2778 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2779 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2782 * Must align to double word boundary for the double cmpxchg
2783 * instructions to work; see __pcpu_double_call_return_bool().
2785 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2786 2 * sizeof(void *));
2791 init_kmem_cache_cpus(s
);
2796 static struct kmem_cache
*kmem_cache_node
;
2799 * No kmalloc_node yet so do it by hand. We know that this is the first
2800 * slab on the node for this slabcache. There are no concurrent accesses
2803 * Note that this function only works on the kmalloc_node_cache
2804 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2805 * memory on a fresh node that has no slab structures yet.
2807 static void early_kmem_cache_node_alloc(int node
)
2810 struct kmem_cache_node
*n
;
2812 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2814 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2817 if (page_to_nid(page
) != node
) {
2818 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2820 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2821 "in order to be able to continue\n");
2826 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2829 kmem_cache_node
->node
[node
] = n
;
2830 #ifdef CONFIG_SLUB_DEBUG
2831 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2832 init_tracking(kmem_cache_node
, n
);
2834 init_kmem_cache_node(n
);
2835 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2837 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2840 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2844 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2845 struct kmem_cache_node
*n
= s
->node
[node
];
2848 kmem_cache_free(kmem_cache_node
, n
);
2850 s
->node
[node
] = NULL
;
2854 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2858 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2859 struct kmem_cache_node
*n
;
2861 if (slab_state
== DOWN
) {
2862 early_kmem_cache_node_alloc(node
);
2865 n
= kmem_cache_alloc_node(kmem_cache_node
,
2869 free_kmem_cache_nodes(s
);
2874 init_kmem_cache_node(n
);
2879 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2881 if (min
< MIN_PARTIAL
)
2883 else if (min
> MAX_PARTIAL
)
2885 s
->min_partial
= min
;
2889 * calculate_sizes() determines the order and the distribution of data within
2892 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2894 unsigned long flags
= s
->flags
;
2895 unsigned long size
= s
->object_size
;
2899 * Round up object size to the next word boundary. We can only
2900 * place the free pointer at word boundaries and this determines
2901 * the possible location of the free pointer.
2903 size
= ALIGN(size
, sizeof(void *));
2905 #ifdef CONFIG_SLUB_DEBUG
2907 * Determine if we can poison the object itself. If the user of
2908 * the slab may touch the object after free or before allocation
2909 * then we should never poison the object itself.
2911 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2913 s
->flags
|= __OBJECT_POISON
;
2915 s
->flags
&= ~__OBJECT_POISON
;
2919 * If we are Redzoning then check if there is some space between the
2920 * end of the object and the free pointer. If not then add an
2921 * additional word to have some bytes to store Redzone information.
2923 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
2924 size
+= sizeof(void *);
2928 * With that we have determined the number of bytes in actual use
2929 * by the object. This is the potential offset to the free pointer.
2933 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2936 * Relocate free pointer after the object if it is not
2937 * permitted to overwrite the first word of the object on
2940 * This is the case if we do RCU, have a constructor or
2941 * destructor or are poisoning the objects.
2944 size
+= sizeof(void *);
2947 #ifdef CONFIG_SLUB_DEBUG
2948 if (flags
& SLAB_STORE_USER
)
2950 * Need to store information about allocs and frees after
2953 size
+= 2 * sizeof(struct track
);
2955 if (flags
& SLAB_RED_ZONE
)
2957 * Add some empty padding so that we can catch
2958 * overwrites from earlier objects rather than let
2959 * tracking information or the free pointer be
2960 * corrupted if a user writes before the start
2963 size
+= sizeof(void *);
2967 * SLUB stores one object immediately after another beginning from
2968 * offset 0. In order to align the objects we have to simply size
2969 * each object to conform to the alignment.
2971 size
= ALIGN(size
, s
->align
);
2973 if (forced_order
>= 0)
2974 order
= forced_order
;
2976 order
= calculate_order(size
, s
->reserved
);
2983 s
->allocflags
|= __GFP_COMP
;
2985 if (s
->flags
& SLAB_CACHE_DMA
)
2986 s
->allocflags
|= SLUB_DMA
;
2988 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2989 s
->allocflags
|= __GFP_RECLAIMABLE
;
2992 * Determine the number of objects per slab
2994 s
->oo
= oo_make(order
, size
, s
->reserved
);
2995 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2996 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2999 return !!oo_objects(s
->oo
);
3002 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3004 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3007 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3008 s
->reserved
= sizeof(struct rcu_head
);
3010 if (!calculate_sizes(s
, -1))
3012 if (disable_higher_order_debug
) {
3014 * Disable debugging flags that store metadata if the min slab
3017 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3018 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3020 if (!calculate_sizes(s
, -1))
3025 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3026 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3027 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3028 /* Enable fast mode */
3029 s
->flags
|= __CMPXCHG_DOUBLE
;
3033 * The larger the object size is, the more pages we want on the partial
3034 * list to avoid pounding the page allocator excessively.
3036 set_min_partial(s
, ilog2(s
->size
) / 2);
3039 * cpu_partial determined the maximum number of objects kept in the
3040 * per cpu partial lists of a processor.
3042 * Per cpu partial lists mainly contain slabs that just have one
3043 * object freed. If they are used for allocation then they can be
3044 * filled up again with minimal effort. The slab will never hit the
3045 * per node partial lists and therefore no locking will be required.
3047 * This setting also determines
3049 * A) The number of objects from per cpu partial slabs dumped to the
3050 * per node list when we reach the limit.
3051 * B) The number of objects in cpu partial slabs to extract from the
3052 * per node list when we run out of per cpu objects. We only fetch 50%
3053 * to keep some capacity around for frees.
3055 if (kmem_cache_debug(s
))
3057 else if (s
->size
>= PAGE_SIZE
)
3059 else if (s
->size
>= 1024)
3061 else if (s
->size
>= 256)
3062 s
->cpu_partial
= 13;
3064 s
->cpu_partial
= 30;
3067 s
->remote_node_defrag_ratio
= 1000;
3069 if (!init_kmem_cache_nodes(s
))
3072 if (alloc_kmem_cache_cpus(s
))
3075 free_kmem_cache_nodes(s
);
3077 if (flags
& SLAB_PANIC
)
3078 panic("Cannot create slab %s size=%lu realsize=%u "
3079 "order=%u offset=%u flags=%lx\n",
3080 s
->name
, (unsigned long)s
->size
, s
->size
, oo_order(s
->oo
),
3085 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3088 #ifdef CONFIG_SLUB_DEBUG
3089 void *addr
= page_address(page
);
3091 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3092 sizeof(long), GFP_ATOMIC
);
3095 slab_err(s
, page
, text
, s
->name
);
3098 get_map(s
, page
, map
);
3099 for_each_object(p
, s
, addr
, page
->objects
) {
3101 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3102 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3104 print_tracking(s
, p
);
3113 * Attempt to free all partial slabs on a node.
3114 * This is called from kmem_cache_close(). We must be the last thread
3115 * using the cache and therefore we do not need to lock anymore.
3117 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3119 struct page
*page
, *h
;
3121 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3123 remove_partial(n
, page
);
3124 discard_slab(s
, page
);
3126 list_slab_objects(s
, page
,
3127 "Objects remaining in %s on kmem_cache_close()");
3133 * Release all resources used by a slab cache.
3135 static inline int kmem_cache_close(struct kmem_cache
*s
)
3140 /* Attempt to free all objects */
3141 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3142 struct kmem_cache_node
*n
= get_node(s
, node
);
3145 if (n
->nr_partial
|| slabs_node(s
, node
))
3148 free_percpu(s
->cpu_slab
);
3149 free_kmem_cache_nodes(s
);
3153 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3155 int rc
= kmem_cache_close(s
);
3159 * We do the same lock strategy around sysfs_slab_add, see
3160 * __kmem_cache_create. Because this is pretty much the last
3161 * operation we do and the lock will be released shortly after
3162 * that in slab_common.c, we could just move sysfs_slab_remove
3163 * to a later point in common code. We should do that when we
3164 * have a common sysfs framework for all allocators.
3166 mutex_unlock(&slab_mutex
);
3167 sysfs_slab_remove(s
);
3168 mutex_lock(&slab_mutex
);
3174 /********************************************************************
3176 *******************************************************************/
3178 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
3179 EXPORT_SYMBOL(kmalloc_caches
);
3181 #ifdef CONFIG_ZONE_DMA
3182 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3185 static int __init
setup_slub_min_order(char *str
)
3187 get_option(&str
, &slub_min_order
);
3192 __setup("slub_min_order=", setup_slub_min_order
);
3194 static int __init
setup_slub_max_order(char *str
)
3196 get_option(&str
, &slub_max_order
);
3197 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3202 __setup("slub_max_order=", setup_slub_max_order
);
3204 static int __init
setup_slub_min_objects(char *str
)
3206 get_option(&str
, &slub_min_objects
);
3211 __setup("slub_min_objects=", setup_slub_min_objects
);
3213 static int __init
setup_slub_nomerge(char *str
)
3219 __setup("slub_nomerge", setup_slub_nomerge
);
3222 * Conversion table for small slabs sizes / 8 to the index in the
3223 * kmalloc array. This is necessary for slabs < 192 since we have non power
3224 * of two cache sizes there. The size of larger slabs can be determined using
3227 static s8 size_index
[24] = {
3254 static inline int size_index_elem(size_t bytes
)
3256 return (bytes
- 1) / 8;
3259 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3265 return ZERO_SIZE_PTR
;
3267 index
= size_index
[size_index_elem(size
)];
3269 index
= fls(size
- 1);
3271 #ifdef CONFIG_ZONE_DMA
3272 if (unlikely((flags
& SLUB_DMA
)))
3273 return kmalloc_dma_caches
[index
];
3276 return kmalloc_caches
[index
];
3279 void *__kmalloc(size_t size
, gfp_t flags
)
3281 struct kmem_cache
*s
;
3284 if (unlikely(size
> SLUB_MAX_SIZE
))
3285 return kmalloc_large(size
, flags
);
3287 s
= get_slab(size
, flags
);
3289 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3292 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3294 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3298 EXPORT_SYMBOL(__kmalloc
);
3301 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3306 flags
|= __GFP_COMP
| __GFP_NOTRACK
| __GFP_KMEMCG
;
3307 page
= alloc_pages_node(node
, flags
, get_order(size
));
3309 ptr
= page_address(page
);
3311 kmemleak_alloc(ptr
, size
, 1, flags
);
3315 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3317 struct kmem_cache
*s
;
3320 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3321 ret
= kmalloc_large_node(size
, flags
, node
);
3323 trace_kmalloc_node(_RET_IP_
, ret
,
3324 size
, PAGE_SIZE
<< get_order(size
),
3330 s
= get_slab(size
, flags
);
3332 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3335 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3337 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3341 EXPORT_SYMBOL(__kmalloc_node
);
3344 size_t ksize(const void *object
)
3348 if (unlikely(object
== ZERO_SIZE_PTR
))
3351 page
= virt_to_head_page(object
);
3353 if (unlikely(!PageSlab(page
))) {
3354 WARN_ON(!PageCompound(page
));
3355 return PAGE_SIZE
<< compound_order(page
);
3358 return slab_ksize(page
->slab_cache
);
3360 EXPORT_SYMBOL(ksize
);
3362 #ifdef CONFIG_SLUB_DEBUG
3363 bool verify_mem_not_deleted(const void *x
)
3366 void *object
= (void *)x
;
3367 unsigned long flags
;
3370 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3373 local_irq_save(flags
);
3375 page
= virt_to_head_page(x
);
3376 if (unlikely(!PageSlab(page
))) {
3377 /* maybe it was from stack? */
3383 if (on_freelist(page
->slab_cache
, page
, object
)) {
3384 object_err(page
->slab_cache
, page
, object
, "Object is on free-list");
3392 local_irq_restore(flags
);
3395 EXPORT_SYMBOL(verify_mem_not_deleted
);
3398 void kfree(const void *x
)
3401 void *object
= (void *)x
;
3403 trace_kfree(_RET_IP_
, x
);
3405 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3408 page
= virt_to_head_page(x
);
3409 if (unlikely(!PageSlab(page
))) {
3410 BUG_ON(!PageCompound(page
));
3412 __free_memcg_kmem_pages(page
, compound_order(page
));
3415 slab_free(page
->slab_cache
, page
, object
, _RET_IP_
);
3417 EXPORT_SYMBOL(kfree
);
3420 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3421 * the remaining slabs by the number of items in use. The slabs with the
3422 * most items in use come first. New allocations will then fill those up
3423 * and thus they can be removed from the partial lists.
3425 * The slabs with the least items are placed last. This results in them
3426 * being allocated from last increasing the chance that the last objects
3427 * are freed in them.
3429 int kmem_cache_shrink(struct kmem_cache
*s
)
3433 struct kmem_cache_node
*n
;
3436 int objects
= oo_objects(s
->max
);
3437 struct list_head
*slabs_by_inuse
=
3438 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3439 unsigned long flags
;
3441 if (!slabs_by_inuse
)
3445 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3446 n
= get_node(s
, node
);
3451 for (i
= 0; i
< objects
; i
++)
3452 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3454 spin_lock_irqsave(&n
->list_lock
, flags
);
3457 * Build lists indexed by the items in use in each slab.
3459 * Note that concurrent frees may occur while we hold the
3460 * list_lock. page->inuse here is the upper limit.
3462 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3463 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3469 * Rebuild the partial list with the slabs filled up most
3470 * first and the least used slabs at the end.
3472 for (i
= objects
- 1; i
> 0; i
--)
3473 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3475 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3477 /* Release empty slabs */
3478 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3479 discard_slab(s
, page
);
3482 kfree(slabs_by_inuse
);
3485 EXPORT_SYMBOL(kmem_cache_shrink
);
3487 static int slab_mem_going_offline_callback(void *arg
)
3489 struct kmem_cache
*s
;
3491 mutex_lock(&slab_mutex
);
3492 list_for_each_entry(s
, &slab_caches
, list
)
3493 kmem_cache_shrink(s
);
3494 mutex_unlock(&slab_mutex
);
3499 static void slab_mem_offline_callback(void *arg
)
3501 struct kmem_cache_node
*n
;
3502 struct kmem_cache
*s
;
3503 struct memory_notify
*marg
= arg
;
3506 offline_node
= marg
->status_change_nid_normal
;
3509 * If the node still has available memory. we need kmem_cache_node
3512 if (offline_node
< 0)
3515 mutex_lock(&slab_mutex
);
3516 list_for_each_entry(s
, &slab_caches
, list
) {
3517 n
= get_node(s
, offline_node
);
3520 * if n->nr_slabs > 0, slabs still exist on the node
3521 * that is going down. We were unable to free them,
3522 * and offline_pages() function shouldn't call this
3523 * callback. So, we must fail.
3525 BUG_ON(slabs_node(s
, offline_node
));
3527 s
->node
[offline_node
] = NULL
;
3528 kmem_cache_free(kmem_cache_node
, n
);
3531 mutex_unlock(&slab_mutex
);
3534 static int slab_mem_going_online_callback(void *arg
)
3536 struct kmem_cache_node
*n
;
3537 struct kmem_cache
*s
;
3538 struct memory_notify
*marg
= arg
;
3539 int nid
= marg
->status_change_nid_normal
;
3543 * If the node's memory is already available, then kmem_cache_node is
3544 * already created. Nothing to do.
3550 * We are bringing a node online. No memory is available yet. We must
3551 * allocate a kmem_cache_node structure in order to bring the node
3554 mutex_lock(&slab_mutex
);
3555 list_for_each_entry(s
, &slab_caches
, list
) {
3557 * XXX: kmem_cache_alloc_node will fallback to other nodes
3558 * since memory is not yet available from the node that
3561 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3566 init_kmem_cache_node(n
);
3570 mutex_unlock(&slab_mutex
);
3574 static int slab_memory_callback(struct notifier_block
*self
,
3575 unsigned long action
, void *arg
)
3580 case MEM_GOING_ONLINE
:
3581 ret
= slab_mem_going_online_callback(arg
);
3583 case MEM_GOING_OFFLINE
:
3584 ret
= slab_mem_going_offline_callback(arg
);
3587 case MEM_CANCEL_ONLINE
:
3588 slab_mem_offline_callback(arg
);
3591 case MEM_CANCEL_OFFLINE
:
3595 ret
= notifier_from_errno(ret
);
3601 static struct notifier_block slab_memory_callback_nb
= {
3602 .notifier_call
= slab_memory_callback
,
3603 .priority
= SLAB_CALLBACK_PRI
,
3606 /********************************************************************
3607 * Basic setup of slabs
3608 *******************************************************************/
3611 * Used for early kmem_cache structures that were allocated using
3612 * the page allocator. Allocate them properly then fix up the pointers
3613 * that may be pointing to the wrong kmem_cache structure.
3616 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3619 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3621 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3623 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3624 struct kmem_cache_node
*n
= get_node(s
, node
);
3628 list_for_each_entry(p
, &n
->partial
, lru
)
3631 #ifdef CONFIG_SLUB_DEBUG
3632 list_for_each_entry(p
, &n
->full
, lru
)
3637 list_add(&s
->list
, &slab_caches
);
3641 void __init
kmem_cache_init(void)
3643 static __initdata
struct kmem_cache boot_kmem_cache
,
3644 boot_kmem_cache_node
;
3648 if (debug_guardpage_minorder())
3651 kmem_cache_node
= &boot_kmem_cache_node
;
3652 kmem_cache
= &boot_kmem_cache
;
3654 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3655 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3657 register_hotmemory_notifier(&slab_memory_callback_nb
);
3659 /* Able to allocate the per node structures */
3660 slab_state
= PARTIAL
;
3662 create_boot_cache(kmem_cache
, "kmem_cache",
3663 offsetof(struct kmem_cache
, node
) +
3664 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3665 SLAB_HWCACHE_ALIGN
);
3667 kmem_cache
= bootstrap(&boot_kmem_cache
);
3670 * Allocate kmem_cache_node properly from the kmem_cache slab.
3671 * kmem_cache_node is separately allocated so no need to
3672 * update any list pointers.
3674 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3676 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3679 * Patch up the size_index table if we have strange large alignment
3680 * requirements for the kmalloc array. This is only the case for
3681 * MIPS it seems. The standard arches will not generate any code here.
3683 * Largest permitted alignment is 256 bytes due to the way we
3684 * handle the index determination for the smaller caches.
3686 * Make sure that nothing crazy happens if someone starts tinkering
3687 * around with ARCH_KMALLOC_MINALIGN
3689 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3690 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3692 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3693 int elem
= size_index_elem(i
);
3694 if (elem
>= ARRAY_SIZE(size_index
))
3696 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3699 if (KMALLOC_MIN_SIZE
== 64) {
3701 * The 96 byte size cache is not used if the alignment
3704 for (i
= 64 + 8; i
<= 96; i
+= 8)
3705 size_index
[size_index_elem(i
)] = 7;
3706 } else if (KMALLOC_MIN_SIZE
== 128) {
3708 * The 192 byte sized cache is not used if the alignment
3709 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3712 for (i
= 128 + 8; i
<= 192; i
+= 8)
3713 size_index
[size_index_elem(i
)] = 8;
3716 /* Caches that are not of the two-to-the-power-of size */
3717 if (KMALLOC_MIN_SIZE
<= 32) {
3718 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3722 if (KMALLOC_MIN_SIZE
<= 64) {
3723 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3727 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3728 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3734 /* Provide the correct kmalloc names now that the caches are up */
3735 if (KMALLOC_MIN_SIZE
<= 32) {
3736 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3737 BUG_ON(!kmalloc_caches
[1]->name
);
3740 if (KMALLOC_MIN_SIZE
<= 64) {
3741 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3742 BUG_ON(!kmalloc_caches
[2]->name
);
3745 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3746 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3749 kmalloc_caches
[i
]->name
= s
;
3753 register_cpu_notifier(&slab_notifier
);
3756 #ifdef CONFIG_ZONE_DMA
3757 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3758 struct kmem_cache
*s
= kmalloc_caches
[i
];
3761 char *name
= kasprintf(GFP_NOWAIT
,
3762 "dma-kmalloc-%d", s
->object_size
);
3765 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3766 s
->object_size
, SLAB_CACHE_DMA
);
3771 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3772 " CPUs=%d, Nodes=%d\n",
3773 caches
, cache_line_size(),
3774 slub_min_order
, slub_max_order
, slub_min_objects
,
3775 nr_cpu_ids
, nr_node_ids
);
3778 void __init
kmem_cache_init_late(void)
3783 * Find a mergeable slab cache
3785 static int slab_unmergeable(struct kmem_cache
*s
)
3787 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3794 * We may have set a slab to be unmergeable during bootstrap.
3796 if (s
->refcount
< 0)
3802 static struct kmem_cache
*find_mergeable(struct mem_cgroup
*memcg
, size_t size
,
3803 size_t align
, unsigned long flags
, const char *name
,
3804 void (*ctor
)(void *))
3806 struct kmem_cache
*s
;
3808 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3814 size
= ALIGN(size
, sizeof(void *));
3815 align
= calculate_alignment(flags
, align
, size
);
3816 size
= ALIGN(size
, align
);
3817 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3819 list_for_each_entry(s
, &slab_caches
, list
) {
3820 if (slab_unmergeable(s
))
3826 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3829 * Check if alignment is compatible.
3830 * Courtesy of Adrian Drzewiecki
3832 if ((s
->size
& ~(align
- 1)) != s
->size
)
3835 if (s
->size
- size
>= sizeof(void *))
3838 if (!cache_match_memcg(s
, memcg
))
3847 __kmem_cache_alias(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
3848 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3850 struct kmem_cache
*s
;
3852 s
= find_mergeable(memcg
, size
, align
, flags
, name
, ctor
);
3856 * Adjust the object sizes so that we clear
3857 * the complete object on kzalloc.
3859 s
->object_size
= max(s
->object_size
, (int)size
);
3860 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3862 if (sysfs_slab_alias(s
, name
)) {
3871 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3875 err
= kmem_cache_open(s
, flags
);
3879 /* Mutex is not taken during early boot */
3880 if (slab_state
<= UP
)
3883 memcg_propagate_slab_attrs(s
);
3884 mutex_unlock(&slab_mutex
);
3885 err
= sysfs_slab_add(s
);
3886 mutex_lock(&slab_mutex
);
3889 kmem_cache_close(s
);
3896 * Use the cpu notifier to insure that the cpu slabs are flushed when
3899 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3900 unsigned long action
, void *hcpu
)
3902 long cpu
= (long)hcpu
;
3903 struct kmem_cache
*s
;
3904 unsigned long flags
;
3907 case CPU_UP_CANCELED
:
3908 case CPU_UP_CANCELED_FROZEN
:
3910 case CPU_DEAD_FROZEN
:
3911 mutex_lock(&slab_mutex
);
3912 list_for_each_entry(s
, &slab_caches
, list
) {
3913 local_irq_save(flags
);
3914 __flush_cpu_slab(s
, cpu
);
3915 local_irq_restore(flags
);
3917 mutex_unlock(&slab_mutex
);
3925 static struct notifier_block __cpuinitdata slab_notifier
= {
3926 .notifier_call
= slab_cpuup_callback
3931 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3933 struct kmem_cache
*s
;
3936 if (unlikely(size
> SLUB_MAX_SIZE
))
3937 return kmalloc_large(size
, gfpflags
);
3939 s
= get_slab(size
, gfpflags
);
3941 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3944 ret
= slab_alloc(s
, gfpflags
, caller
);
3946 /* Honor the call site pointer we received. */
3947 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3953 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3954 int node
, unsigned long caller
)
3956 struct kmem_cache
*s
;
3959 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3960 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3962 trace_kmalloc_node(caller
, ret
,
3963 size
, PAGE_SIZE
<< get_order(size
),
3969 s
= get_slab(size
, gfpflags
);
3971 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3974 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
3976 /* Honor the call site pointer we received. */
3977 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3984 static int count_inuse(struct page
*page
)
3989 static int count_total(struct page
*page
)
3991 return page
->objects
;
3995 #ifdef CONFIG_SLUB_DEBUG
3996 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4000 void *addr
= page_address(page
);
4002 if (!check_slab(s
, page
) ||
4003 !on_freelist(s
, page
, NULL
))
4006 /* Now we know that a valid freelist exists */
4007 bitmap_zero(map
, page
->objects
);
4009 get_map(s
, page
, map
);
4010 for_each_object(p
, s
, addr
, page
->objects
) {
4011 if (test_bit(slab_index(p
, s
, addr
), map
))
4012 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4016 for_each_object(p
, s
, addr
, page
->objects
)
4017 if (!test_bit(slab_index(p
, s
, addr
), map
))
4018 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4023 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4027 validate_slab(s
, page
, map
);
4031 static int validate_slab_node(struct kmem_cache
*s
,
4032 struct kmem_cache_node
*n
, unsigned long *map
)
4034 unsigned long count
= 0;
4036 unsigned long flags
;
4038 spin_lock_irqsave(&n
->list_lock
, flags
);
4040 list_for_each_entry(page
, &n
->partial
, lru
) {
4041 validate_slab_slab(s
, page
, map
);
4044 if (count
!= n
->nr_partial
)
4045 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
4046 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
4048 if (!(s
->flags
& SLAB_STORE_USER
))
4051 list_for_each_entry(page
, &n
->full
, lru
) {
4052 validate_slab_slab(s
, page
, map
);
4055 if (count
!= atomic_long_read(&n
->nr_slabs
))
4056 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
4057 "counter=%ld\n", s
->name
, count
,
4058 atomic_long_read(&n
->nr_slabs
));
4061 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4065 static long validate_slab_cache(struct kmem_cache
*s
)
4068 unsigned long count
= 0;
4069 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4070 sizeof(unsigned long), GFP_KERNEL
);
4076 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4077 struct kmem_cache_node
*n
= get_node(s
, node
);
4079 count
+= validate_slab_node(s
, n
, map
);
4085 * Generate lists of code addresses where slabcache objects are allocated
4090 unsigned long count
;
4097 DECLARE_BITMAP(cpus
, NR_CPUS
);
4103 unsigned long count
;
4104 struct location
*loc
;
4107 static void free_loc_track(struct loc_track
*t
)
4110 free_pages((unsigned long)t
->loc
,
4111 get_order(sizeof(struct location
) * t
->max
));
4114 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4119 order
= get_order(sizeof(struct location
) * max
);
4121 l
= (void *)__get_free_pages(flags
, order
);
4126 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4134 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4135 const struct track
*track
)
4137 long start
, end
, pos
;
4139 unsigned long caddr
;
4140 unsigned long age
= jiffies
- track
->when
;
4146 pos
= start
+ (end
- start
+ 1) / 2;
4149 * There is nothing at "end". If we end up there
4150 * we need to add something to before end.
4155 caddr
= t
->loc
[pos
].addr
;
4156 if (track
->addr
== caddr
) {
4162 if (age
< l
->min_time
)
4164 if (age
> l
->max_time
)
4167 if (track
->pid
< l
->min_pid
)
4168 l
->min_pid
= track
->pid
;
4169 if (track
->pid
> l
->max_pid
)
4170 l
->max_pid
= track
->pid
;
4172 cpumask_set_cpu(track
->cpu
,
4173 to_cpumask(l
->cpus
));
4175 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4179 if (track
->addr
< caddr
)
4186 * Not found. Insert new tracking element.
4188 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4194 (t
->count
- pos
) * sizeof(struct location
));
4197 l
->addr
= track
->addr
;
4201 l
->min_pid
= track
->pid
;
4202 l
->max_pid
= track
->pid
;
4203 cpumask_clear(to_cpumask(l
->cpus
));
4204 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4205 nodes_clear(l
->nodes
);
4206 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4210 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4211 struct page
*page
, enum track_item alloc
,
4214 void *addr
= page_address(page
);
4217 bitmap_zero(map
, page
->objects
);
4218 get_map(s
, page
, map
);
4220 for_each_object(p
, s
, addr
, page
->objects
)
4221 if (!test_bit(slab_index(p
, s
, addr
), map
))
4222 add_location(t
, s
, get_track(s
, p
, alloc
));
4225 static int list_locations(struct kmem_cache
*s
, char *buf
,
4226 enum track_item alloc
)
4230 struct loc_track t
= { 0, 0, NULL
};
4232 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4233 sizeof(unsigned long), GFP_KERNEL
);
4235 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4238 return sprintf(buf
, "Out of memory\n");
4240 /* Push back cpu slabs */
4243 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4244 struct kmem_cache_node
*n
= get_node(s
, node
);
4245 unsigned long flags
;
4248 if (!atomic_long_read(&n
->nr_slabs
))
4251 spin_lock_irqsave(&n
->list_lock
, flags
);
4252 list_for_each_entry(page
, &n
->partial
, lru
)
4253 process_slab(&t
, s
, page
, alloc
, map
);
4254 list_for_each_entry(page
, &n
->full
, lru
)
4255 process_slab(&t
, s
, page
, alloc
, map
);
4256 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4259 for (i
= 0; i
< t
.count
; i
++) {
4260 struct location
*l
= &t
.loc
[i
];
4262 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4264 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4267 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4269 len
+= sprintf(buf
+ len
, "<not-available>");
4271 if (l
->sum_time
!= l
->min_time
) {
4272 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4274 (long)div_u64(l
->sum_time
, l
->count
),
4277 len
+= sprintf(buf
+ len
, " age=%ld",
4280 if (l
->min_pid
!= l
->max_pid
)
4281 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4282 l
->min_pid
, l
->max_pid
);
4284 len
+= sprintf(buf
+ len
, " pid=%ld",
4287 if (num_online_cpus() > 1 &&
4288 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4289 len
< PAGE_SIZE
- 60) {
4290 len
+= sprintf(buf
+ len
, " cpus=");
4291 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4292 to_cpumask(l
->cpus
));
4295 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4296 len
< PAGE_SIZE
- 60) {
4297 len
+= sprintf(buf
+ len
, " nodes=");
4298 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4302 len
+= sprintf(buf
+ len
, "\n");
4308 len
+= sprintf(buf
, "No data\n");
4313 #ifdef SLUB_RESILIENCY_TEST
4314 static void resiliency_test(void)
4318 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4320 printk(KERN_ERR
"SLUB resiliency testing\n");
4321 printk(KERN_ERR
"-----------------------\n");
4322 printk(KERN_ERR
"A. Corruption after allocation\n");
4324 p
= kzalloc(16, GFP_KERNEL
);
4326 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4327 " 0x12->0x%p\n\n", p
+ 16);
4329 validate_slab_cache(kmalloc_caches
[4]);
4331 /* Hmmm... The next two are dangerous */
4332 p
= kzalloc(32, GFP_KERNEL
);
4333 p
[32 + sizeof(void *)] = 0x34;
4334 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4335 " 0x34 -> -0x%p\n", p
);
4337 "If allocated object is overwritten then not detectable\n\n");
4339 validate_slab_cache(kmalloc_caches
[5]);
4340 p
= kzalloc(64, GFP_KERNEL
);
4341 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4343 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4346 "If allocated object is overwritten then not detectable\n\n");
4347 validate_slab_cache(kmalloc_caches
[6]);
4349 printk(KERN_ERR
"\nB. Corruption after free\n");
4350 p
= kzalloc(128, GFP_KERNEL
);
4353 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4354 validate_slab_cache(kmalloc_caches
[7]);
4356 p
= kzalloc(256, GFP_KERNEL
);
4359 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4361 validate_slab_cache(kmalloc_caches
[8]);
4363 p
= kzalloc(512, GFP_KERNEL
);
4366 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4367 validate_slab_cache(kmalloc_caches
[9]);
4371 static void resiliency_test(void) {};
4376 enum slab_stat_type
{
4377 SL_ALL
, /* All slabs */
4378 SL_PARTIAL
, /* Only partially allocated slabs */
4379 SL_CPU
, /* Only slabs used for cpu caches */
4380 SL_OBJECTS
, /* Determine allocated objects not slabs */
4381 SL_TOTAL
/* Determine object capacity not slabs */
4384 #define SO_ALL (1 << SL_ALL)
4385 #define SO_PARTIAL (1 << SL_PARTIAL)
4386 #define SO_CPU (1 << SL_CPU)
4387 #define SO_OBJECTS (1 << SL_OBJECTS)
4388 #define SO_TOTAL (1 << SL_TOTAL)
4390 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4391 char *buf
, unsigned long flags
)
4393 unsigned long total
= 0;
4396 unsigned long *nodes
;
4397 unsigned long *per_cpu
;
4399 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4402 per_cpu
= nodes
+ nr_node_ids
;
4404 if (flags
& SO_CPU
) {
4407 for_each_possible_cpu(cpu
) {
4408 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4412 page
= ACCESS_ONCE(c
->page
);
4416 node
= page_to_nid(page
);
4417 if (flags
& SO_TOTAL
)
4419 else if (flags
& SO_OBJECTS
)
4427 page
= ACCESS_ONCE(c
->partial
);
4438 lock_memory_hotplug();
4439 #ifdef CONFIG_SLUB_DEBUG
4440 if (flags
& SO_ALL
) {
4441 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4442 struct kmem_cache_node
*n
= get_node(s
, node
);
4444 if (flags
& SO_TOTAL
)
4445 x
= atomic_long_read(&n
->total_objects
);
4446 else if (flags
& SO_OBJECTS
)
4447 x
= atomic_long_read(&n
->total_objects
) -
4448 count_partial(n
, count_free
);
4451 x
= atomic_long_read(&n
->nr_slabs
);
4458 if (flags
& SO_PARTIAL
) {
4459 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4460 struct kmem_cache_node
*n
= get_node(s
, node
);
4462 if (flags
& SO_TOTAL
)
4463 x
= count_partial(n
, count_total
);
4464 else if (flags
& SO_OBJECTS
)
4465 x
= count_partial(n
, count_inuse
);
4472 x
= sprintf(buf
, "%lu", total
);
4474 for_each_node_state(node
, N_NORMAL_MEMORY
)
4476 x
+= sprintf(buf
+ x
, " N%d=%lu",
4479 unlock_memory_hotplug();
4481 return x
+ sprintf(buf
+ x
, "\n");
4484 #ifdef CONFIG_SLUB_DEBUG
4485 static int any_slab_objects(struct kmem_cache
*s
)
4489 for_each_online_node(node
) {
4490 struct kmem_cache_node
*n
= get_node(s
, node
);
4495 if (atomic_long_read(&n
->total_objects
))
4502 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4503 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4505 struct slab_attribute
{
4506 struct attribute attr
;
4507 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4508 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4511 #define SLAB_ATTR_RO(_name) \
4512 static struct slab_attribute _name##_attr = \
4513 __ATTR(_name, 0400, _name##_show, NULL)
4515 #define SLAB_ATTR(_name) \
4516 static struct slab_attribute _name##_attr = \
4517 __ATTR(_name, 0600, _name##_show, _name##_store)
4519 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4521 return sprintf(buf
, "%d\n", s
->size
);
4523 SLAB_ATTR_RO(slab_size
);
4525 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4527 return sprintf(buf
, "%d\n", s
->align
);
4529 SLAB_ATTR_RO(align
);
4531 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4533 return sprintf(buf
, "%d\n", s
->object_size
);
4535 SLAB_ATTR_RO(object_size
);
4537 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4539 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4541 SLAB_ATTR_RO(objs_per_slab
);
4543 static ssize_t
order_store(struct kmem_cache
*s
,
4544 const char *buf
, size_t length
)
4546 unsigned long order
;
4549 err
= strict_strtoul(buf
, 10, &order
);
4553 if (order
> slub_max_order
|| order
< slub_min_order
)
4556 calculate_sizes(s
, order
);
4560 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4562 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4566 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4568 return sprintf(buf
, "%lu\n", s
->min_partial
);
4571 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4577 err
= strict_strtoul(buf
, 10, &min
);
4581 set_min_partial(s
, min
);
4584 SLAB_ATTR(min_partial
);
4586 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4588 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4591 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4594 unsigned long objects
;
4597 err
= strict_strtoul(buf
, 10, &objects
);
4600 if (objects
&& kmem_cache_debug(s
))
4603 s
->cpu_partial
= objects
;
4607 SLAB_ATTR(cpu_partial
);
4609 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4613 return sprintf(buf
, "%pS\n", s
->ctor
);
4617 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4619 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4621 SLAB_ATTR_RO(aliases
);
4623 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4625 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4627 SLAB_ATTR_RO(partial
);
4629 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4631 return show_slab_objects(s
, buf
, SO_CPU
);
4633 SLAB_ATTR_RO(cpu_slabs
);
4635 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4637 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4639 SLAB_ATTR_RO(objects
);
4641 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4643 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4645 SLAB_ATTR_RO(objects_partial
);
4647 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4654 for_each_online_cpu(cpu
) {
4655 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4658 pages
+= page
->pages
;
4659 objects
+= page
->pobjects
;
4663 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4666 for_each_online_cpu(cpu
) {
4667 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4669 if (page
&& len
< PAGE_SIZE
- 20)
4670 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4671 page
->pobjects
, page
->pages
);
4674 return len
+ sprintf(buf
+ len
, "\n");
4676 SLAB_ATTR_RO(slabs_cpu_partial
);
4678 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4680 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4683 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4684 const char *buf
, size_t length
)
4686 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4688 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4691 SLAB_ATTR(reclaim_account
);
4693 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4695 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4697 SLAB_ATTR_RO(hwcache_align
);
4699 #ifdef CONFIG_ZONE_DMA
4700 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4702 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4704 SLAB_ATTR_RO(cache_dma
);
4707 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4709 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4711 SLAB_ATTR_RO(destroy_by_rcu
);
4713 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4715 return sprintf(buf
, "%d\n", s
->reserved
);
4717 SLAB_ATTR_RO(reserved
);
4719 #ifdef CONFIG_SLUB_DEBUG
4720 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4722 return show_slab_objects(s
, buf
, SO_ALL
);
4724 SLAB_ATTR_RO(slabs
);
4726 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4728 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4730 SLAB_ATTR_RO(total_objects
);
4732 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4734 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4737 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4738 const char *buf
, size_t length
)
4740 s
->flags
&= ~SLAB_DEBUG_FREE
;
4741 if (buf
[0] == '1') {
4742 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4743 s
->flags
|= SLAB_DEBUG_FREE
;
4747 SLAB_ATTR(sanity_checks
);
4749 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4751 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4754 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4757 s
->flags
&= ~SLAB_TRACE
;
4758 if (buf
[0] == '1') {
4759 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4760 s
->flags
|= SLAB_TRACE
;
4766 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4768 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4771 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4772 const char *buf
, size_t length
)
4774 if (any_slab_objects(s
))
4777 s
->flags
&= ~SLAB_RED_ZONE
;
4778 if (buf
[0] == '1') {
4779 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4780 s
->flags
|= SLAB_RED_ZONE
;
4782 calculate_sizes(s
, -1);
4785 SLAB_ATTR(red_zone
);
4787 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4789 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4792 static ssize_t
poison_store(struct kmem_cache
*s
,
4793 const char *buf
, size_t length
)
4795 if (any_slab_objects(s
))
4798 s
->flags
&= ~SLAB_POISON
;
4799 if (buf
[0] == '1') {
4800 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4801 s
->flags
|= SLAB_POISON
;
4803 calculate_sizes(s
, -1);
4808 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4810 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4813 static ssize_t
store_user_store(struct kmem_cache
*s
,
4814 const char *buf
, size_t length
)
4816 if (any_slab_objects(s
))
4819 s
->flags
&= ~SLAB_STORE_USER
;
4820 if (buf
[0] == '1') {
4821 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4822 s
->flags
|= SLAB_STORE_USER
;
4824 calculate_sizes(s
, -1);
4827 SLAB_ATTR(store_user
);
4829 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4834 static ssize_t
validate_store(struct kmem_cache
*s
,
4835 const char *buf
, size_t length
)
4839 if (buf
[0] == '1') {
4840 ret
= validate_slab_cache(s
);
4846 SLAB_ATTR(validate
);
4848 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4850 if (!(s
->flags
& SLAB_STORE_USER
))
4852 return list_locations(s
, buf
, TRACK_ALLOC
);
4854 SLAB_ATTR_RO(alloc_calls
);
4856 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4858 if (!(s
->flags
& SLAB_STORE_USER
))
4860 return list_locations(s
, buf
, TRACK_FREE
);
4862 SLAB_ATTR_RO(free_calls
);
4863 #endif /* CONFIG_SLUB_DEBUG */
4865 #ifdef CONFIG_FAILSLAB
4866 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4868 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4871 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4874 s
->flags
&= ~SLAB_FAILSLAB
;
4876 s
->flags
|= SLAB_FAILSLAB
;
4879 SLAB_ATTR(failslab
);
4882 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4887 static ssize_t
shrink_store(struct kmem_cache
*s
,
4888 const char *buf
, size_t length
)
4890 if (buf
[0] == '1') {
4891 int rc
= kmem_cache_shrink(s
);
4902 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4904 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4907 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4908 const char *buf
, size_t length
)
4910 unsigned long ratio
;
4913 err
= strict_strtoul(buf
, 10, &ratio
);
4918 s
->remote_node_defrag_ratio
= ratio
* 10;
4922 SLAB_ATTR(remote_node_defrag_ratio
);
4925 #ifdef CONFIG_SLUB_STATS
4926 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4928 unsigned long sum
= 0;
4931 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4936 for_each_online_cpu(cpu
) {
4937 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4943 len
= sprintf(buf
, "%lu", sum
);
4946 for_each_online_cpu(cpu
) {
4947 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4948 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4952 return len
+ sprintf(buf
+ len
, "\n");
4955 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4959 for_each_online_cpu(cpu
)
4960 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4963 #define STAT_ATTR(si, text) \
4964 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4966 return show_stat(s, buf, si); \
4968 static ssize_t text##_store(struct kmem_cache *s, \
4969 const char *buf, size_t length) \
4971 if (buf[0] != '0') \
4973 clear_stat(s, si); \
4978 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4979 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4980 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4981 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4982 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4983 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4984 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4985 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4986 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4987 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4988 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4989 STAT_ATTR(FREE_SLAB
, free_slab
);
4990 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4991 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4992 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4993 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4994 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4995 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4996 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4997 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4998 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4999 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5000 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5001 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5002 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5003 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5006 static struct attribute
*slab_attrs
[] = {
5007 &slab_size_attr
.attr
,
5008 &object_size_attr
.attr
,
5009 &objs_per_slab_attr
.attr
,
5011 &min_partial_attr
.attr
,
5012 &cpu_partial_attr
.attr
,
5014 &objects_partial_attr
.attr
,
5016 &cpu_slabs_attr
.attr
,
5020 &hwcache_align_attr
.attr
,
5021 &reclaim_account_attr
.attr
,
5022 &destroy_by_rcu_attr
.attr
,
5024 &reserved_attr
.attr
,
5025 &slabs_cpu_partial_attr
.attr
,
5026 #ifdef CONFIG_SLUB_DEBUG
5027 &total_objects_attr
.attr
,
5029 &sanity_checks_attr
.attr
,
5031 &red_zone_attr
.attr
,
5033 &store_user_attr
.attr
,
5034 &validate_attr
.attr
,
5035 &alloc_calls_attr
.attr
,
5036 &free_calls_attr
.attr
,
5038 #ifdef CONFIG_ZONE_DMA
5039 &cache_dma_attr
.attr
,
5042 &remote_node_defrag_ratio_attr
.attr
,
5044 #ifdef CONFIG_SLUB_STATS
5045 &alloc_fastpath_attr
.attr
,
5046 &alloc_slowpath_attr
.attr
,
5047 &free_fastpath_attr
.attr
,
5048 &free_slowpath_attr
.attr
,
5049 &free_frozen_attr
.attr
,
5050 &free_add_partial_attr
.attr
,
5051 &free_remove_partial_attr
.attr
,
5052 &alloc_from_partial_attr
.attr
,
5053 &alloc_slab_attr
.attr
,
5054 &alloc_refill_attr
.attr
,
5055 &alloc_node_mismatch_attr
.attr
,
5056 &free_slab_attr
.attr
,
5057 &cpuslab_flush_attr
.attr
,
5058 &deactivate_full_attr
.attr
,
5059 &deactivate_empty_attr
.attr
,
5060 &deactivate_to_head_attr
.attr
,
5061 &deactivate_to_tail_attr
.attr
,
5062 &deactivate_remote_frees_attr
.attr
,
5063 &deactivate_bypass_attr
.attr
,
5064 &order_fallback_attr
.attr
,
5065 &cmpxchg_double_fail_attr
.attr
,
5066 &cmpxchg_double_cpu_fail_attr
.attr
,
5067 &cpu_partial_alloc_attr
.attr
,
5068 &cpu_partial_free_attr
.attr
,
5069 &cpu_partial_node_attr
.attr
,
5070 &cpu_partial_drain_attr
.attr
,
5072 #ifdef CONFIG_FAILSLAB
5073 &failslab_attr
.attr
,
5079 static struct attribute_group slab_attr_group
= {
5080 .attrs
= slab_attrs
,
5083 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5084 struct attribute
*attr
,
5087 struct slab_attribute
*attribute
;
5088 struct kmem_cache
*s
;
5091 attribute
= to_slab_attr(attr
);
5094 if (!attribute
->show
)
5097 err
= attribute
->show(s
, buf
);
5102 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5103 struct attribute
*attr
,
5104 const char *buf
, size_t len
)
5106 struct slab_attribute
*attribute
;
5107 struct kmem_cache
*s
;
5110 attribute
= to_slab_attr(attr
);
5113 if (!attribute
->store
)
5116 err
= attribute
->store(s
, buf
, len
);
5117 #ifdef CONFIG_MEMCG_KMEM
5118 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5121 mutex_lock(&slab_mutex
);
5122 if (s
->max_attr_size
< len
)
5123 s
->max_attr_size
= len
;
5126 * This is a best effort propagation, so this function's return
5127 * value will be determined by the parent cache only. This is
5128 * basically because not all attributes will have a well
5129 * defined semantics for rollbacks - most of the actions will
5130 * have permanent effects.
5132 * Returning the error value of any of the children that fail
5133 * is not 100 % defined, in the sense that users seeing the
5134 * error code won't be able to know anything about the state of
5137 * Only returning the error code for the parent cache at least
5138 * has well defined semantics. The cache being written to
5139 * directly either failed or succeeded, in which case we loop
5140 * through the descendants with best-effort propagation.
5142 for_each_memcg_cache_index(i
) {
5143 struct kmem_cache
*c
= cache_from_memcg(s
, i
);
5145 attribute
->store(c
, buf
, len
);
5147 mutex_unlock(&slab_mutex
);
5153 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5155 #ifdef CONFIG_MEMCG_KMEM
5157 char *buffer
= NULL
;
5159 if (!is_root_cache(s
))
5163 * This mean this cache had no attribute written. Therefore, no point
5164 * in copying default values around
5166 if (!s
->max_attr_size
)
5169 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5172 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5174 if (!attr
|| !attr
->store
|| !attr
->show
)
5178 * It is really bad that we have to allocate here, so we will
5179 * do it only as a fallback. If we actually allocate, though,
5180 * we can just use the allocated buffer until the end.
5182 * Most of the slub attributes will tend to be very small in
5183 * size, but sysfs allows buffers up to a page, so they can
5184 * theoretically happen.
5188 else if (s
->max_attr_size
< ARRAY_SIZE(mbuf
))
5191 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5192 if (WARN_ON(!buffer
))
5197 attr
->show(s
->memcg_params
->root_cache
, buf
);
5198 attr
->store(s
, buf
, strlen(buf
));
5202 free_page((unsigned long)buffer
);
5206 static const struct sysfs_ops slab_sysfs_ops
= {
5207 .show
= slab_attr_show
,
5208 .store
= slab_attr_store
,
5211 static struct kobj_type slab_ktype
= {
5212 .sysfs_ops
= &slab_sysfs_ops
,
5215 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5217 struct kobj_type
*ktype
= get_ktype(kobj
);
5219 if (ktype
== &slab_ktype
)
5224 static const struct kset_uevent_ops slab_uevent_ops
= {
5225 .filter
= uevent_filter
,
5228 static struct kset
*slab_kset
;
5230 #define ID_STR_LENGTH 64
5232 /* Create a unique string id for a slab cache:
5234 * Format :[flags-]size
5236 static char *create_unique_id(struct kmem_cache
*s
)
5238 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5245 * First flags affecting slabcache operations. We will only
5246 * get here for aliasable slabs so we do not need to support
5247 * too many flags. The flags here must cover all flags that
5248 * are matched during merging to guarantee that the id is
5251 if (s
->flags
& SLAB_CACHE_DMA
)
5253 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5255 if (s
->flags
& SLAB_DEBUG_FREE
)
5257 if (!(s
->flags
& SLAB_NOTRACK
))
5261 p
+= sprintf(p
, "%07d", s
->size
);
5263 #ifdef CONFIG_MEMCG_KMEM
5264 if (!is_root_cache(s
))
5265 p
+= sprintf(p
, "-%08d", memcg_cache_id(s
->memcg_params
->memcg
));
5268 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5272 static int sysfs_slab_add(struct kmem_cache
*s
)
5276 int unmergeable
= slab_unmergeable(s
);
5280 * Slabcache can never be merged so we can use the name proper.
5281 * This is typically the case for debug situations. In that
5282 * case we can catch duplicate names easily.
5284 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5288 * Create a unique name for the slab as a target
5291 name
= create_unique_id(s
);
5294 s
->kobj
.kset
= slab_kset
;
5295 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5297 kobject_put(&s
->kobj
);
5301 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5303 kobject_del(&s
->kobj
);
5304 kobject_put(&s
->kobj
);
5307 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5309 /* Setup first alias */
5310 sysfs_slab_alias(s
, s
->name
);
5316 static void sysfs_slab_remove(struct kmem_cache
*s
)
5318 if (slab_state
< FULL
)
5320 * Sysfs has not been setup yet so no need to remove the
5325 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5326 kobject_del(&s
->kobj
);
5327 kobject_put(&s
->kobj
);
5331 * Need to buffer aliases during bootup until sysfs becomes
5332 * available lest we lose that information.
5334 struct saved_alias
{
5335 struct kmem_cache
*s
;
5337 struct saved_alias
*next
;
5340 static struct saved_alias
*alias_list
;
5342 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5344 struct saved_alias
*al
;
5346 if (slab_state
== FULL
) {
5348 * If we have a leftover link then remove it.
5350 sysfs_remove_link(&slab_kset
->kobj
, name
);
5351 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5354 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5360 al
->next
= alias_list
;
5365 static int __init
slab_sysfs_init(void)
5367 struct kmem_cache
*s
;
5370 mutex_lock(&slab_mutex
);
5372 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5374 mutex_unlock(&slab_mutex
);
5375 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5381 list_for_each_entry(s
, &slab_caches
, list
) {
5382 err
= sysfs_slab_add(s
);
5384 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5385 " to sysfs\n", s
->name
);
5388 while (alias_list
) {
5389 struct saved_alias
*al
= alias_list
;
5391 alias_list
= alias_list
->next
;
5392 err
= sysfs_slab_alias(al
->s
, al
->name
);
5394 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5395 " %s to sysfs\n", al
->name
);
5399 mutex_unlock(&slab_mutex
);
5404 __initcall(slab_sysfs_init
);
5405 #endif /* CONFIG_SYSFS */
5408 * The /proc/slabinfo ABI
5410 #ifdef CONFIG_SLABINFO
5411 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5413 unsigned long nr_partials
= 0;
5414 unsigned long nr_slabs
= 0;
5415 unsigned long nr_objs
= 0;
5416 unsigned long nr_free
= 0;
5419 for_each_online_node(node
) {
5420 struct kmem_cache_node
*n
= get_node(s
, node
);
5425 nr_partials
+= n
->nr_partial
;
5426 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5427 nr_objs
+= atomic_long_read(&n
->total_objects
);
5428 nr_free
+= count_partial(n
, count_free
);
5431 sinfo
->active_objs
= nr_objs
- nr_free
;
5432 sinfo
->num_objs
= nr_objs
;
5433 sinfo
->active_slabs
= nr_slabs
;
5434 sinfo
->num_slabs
= nr_slabs
;
5435 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5436 sinfo
->cache_order
= oo_order(s
->oo
);
5439 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5443 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5444 size_t count
, loff_t
*ppos
)
5448 #endif /* CONFIG_SLABINFO */